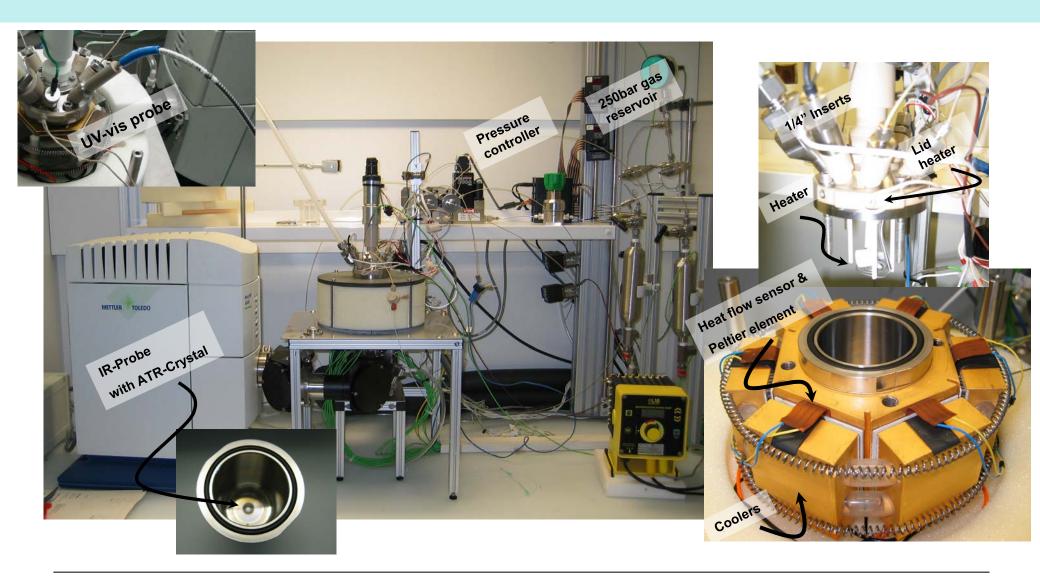
Small-scale reactor for data oriented process development

Gilles Richner, Sébastien Cap, Tamas Godany, Julien Billeter, Graeme Puxty, Bobby Neuhold, and Konrad Hungerbühler.

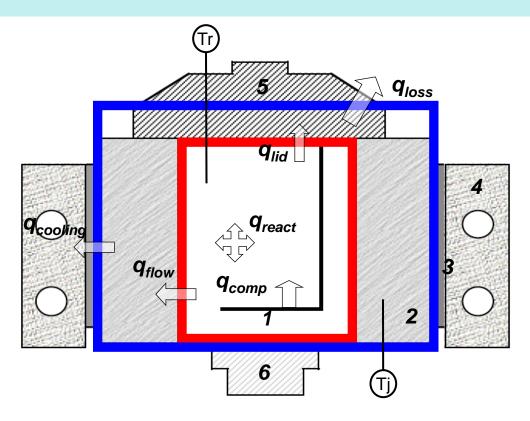
Background

- Determination of reaction enthalpies is crucial:
 - maintain safe operating conditions (avoid runaway reactions, excessive heat production, etc)
 - allow prediction of thermal behaviour
 - increased **chemical understanding** (information about bond energies, structure, etc)
- Determination of reaction mechanisms and their associated rate and equilibrium constants is crucial:
 - optimisation of reaction conditions for **productivity**, **efficiency**, **waste minimisation** and **detection of process upsets**
 - increased chemical understanding

Topics


- Reactor Development
- Chemistry Applications
- Data Analysis

Swiss Federal Institute of Technology Zurich


Reactor Development

Calorimetry Measurement Principle

Inner heat balance

$$q_{React} = q_{Flow} - q_{Comp} + q_{Lid} - q_{Dos}$$

Outer heat balance

$$q_{Cooling} = q_{Flow} + q_{Lid} - q_{Loss}$$

- 1: Compensation Heater
- 2: Metal Jacket
- 3: Peltier Element and heat flow sensors

- 4: Cooler
- 5: Lid
- 6: IR Probe

$$q_{React} = q_{Los} + q_{Cooling} - q_{Comp} - q_{Dos}$$

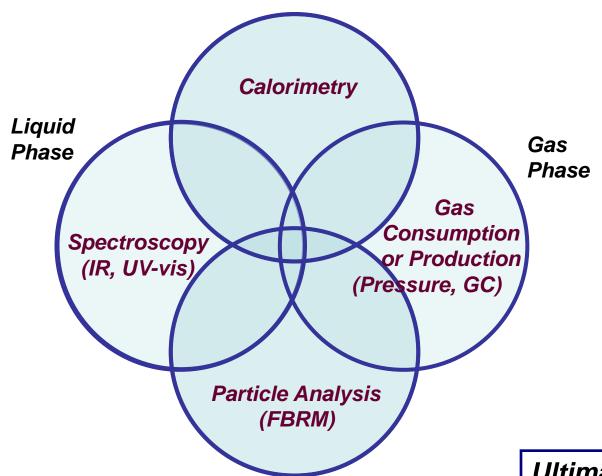
Data Analysis

Reactor Specifications

Specifications

- 25 to 50 ml
- -30°C to 180°C (-60°C in constr.)
- 60 bar
- Heat transfer calibration free
- Max reaction power 3 kW/L
- ATR probe integrated into the bottom of the reactor vessel
- Multiple free 6.5 mm inlets (8mm inlet in constr.)
- Interchangeable reactor vessel
- Parallelization possible
- Visualisation with endoscope

Accuracy


- Max. temp. dev. ≈ 0.5 °C/kW/L
- Detection limit ≈ 2 W/L
- Time constant:

Comp. heater = 4 sPeltier = 15 s

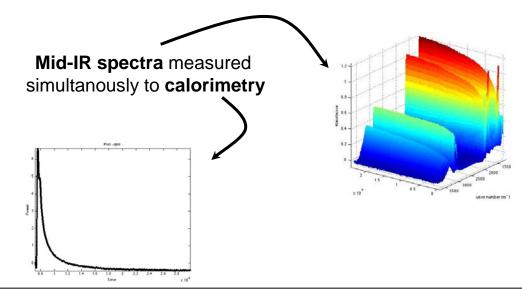
Applications

On-line monitoring of reactions by multiple insitu analytical devices

Reaction mechanism, rate/equilibr. constants, reaction enthalpies, pure species spectra

Ultimate goal:

• simultaneous analysis of all signals



Solid Phase

Solvent Free Butanol Esterification

n _{BuOH} :n _{AA} / moles	Temp. (°C)	c _{TMG} / M
1:1	40	0.4

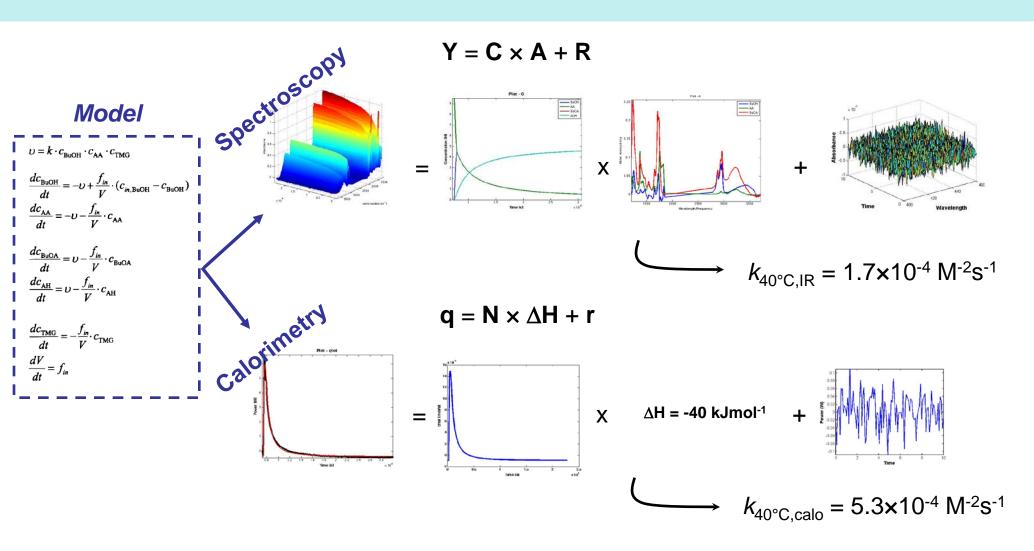
- Puxty et al, 2006, Chimia, 60, pp. 605-610
- Puxty et al, 2007, Chem. Eng. Sc., Submitted

Data Analysis

Soft-modelling methods:

- Principle component analysis
- Alternating least-squares with constraints
- Evolving factor analysis

Hard-modelling methods:


- Fitting of physico-chemical model using nonlinear regression:
 - Newton-Gauss-Levenberg/Marquardt method
 - genetic algorithms
- Fitting of models to:
 - spectroscopic data
 - calorimetry data
 - gas consumption data

Hard Modelling

Data Analysis

What data do you trust more?

What is the 'best' compromise when optimising calorimetric and spectroscopic signals simultaneously?

Residuals between spectroscopic signals and model

 $R = Y - C \times A$

Residuals between calorimetry signals and model

 $r = q - N \times \Delta H$

ssq_{cal}

Conclusions

- Development of small scale reaction calorimeters
 - with in-situ IR-, UV-vis spectroscopy,
 gas consumption/production, on-line micro GC* & particle analysis*
- Elucidation of reaction mechanisms
 - reaction enthalpies, rate constants, activation energies
 - to achieve/maintain efficient and safe reaction conditions
- Development of algorithms/tools
 - multivariate kinetic modelling of the various signals

* in project

