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A priori information and experimental design
ed for the systematic identification of the minimum requirements regarding
mathematical pre-treatment, a priori information, or experimental design, in order to allow optimising rate
constants and pure component spectra associated with a kinetic model via multivariate kinetic hard-
modelling of spectroscopic data. Rank deficiencies in the kinetic concentration matrix represent a major
problem for the calibration free method developed by Maeder and Zuberbühler, as its pseudo-inverse,
required for the optimisation process, is not defined. In this contribution, the underlying linear dependencies
in the concentration profiles are systematically elucidated and appropriate strategies are discussed in order
to break them. Also, conditions are predicted for which full spectral resolution can be expected. The method
is based on the kernel of a time invariant augmented matrix covering potential rank deficiency due to
stoichiometry and rate laws, also relevant for the concentration matrix. Compared to employing the full
concentration matrix, this augmented matrix does not require a numerical integration of the differential
equations describing the kinetic model and thus can easily be set up. The kernel can be calculated
numerically by Singular Value Decomposition (SVD) or determined in a symbolical way, the latter allowing
the detection of particular stoichiometric conditions leading to spectral resolution of species. The capabilities
of the method are demonstrated analysing three kinetic mechanisms of increasing complexity covering
consecutive and parallel reactions.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, chemometric methods dedicated to the analysis of
evolutionary multivariate data (e.g. as in kinetic and equilibrium
investigations) measured by spectroscopy (e.g. mid-IR, UV–Vis, Raman
or fluorescence) have considerably progressed in chemistry and
chemical engineering [1–10]. Kinetic hard-modelling is one of these
chemometric methods. It is used to determine the kinetic parameters
(e.g. rate constants) of a chemical reaction [2,8,10–14]. As it is based
on a hard model, kinetic hard-modelling has excellent predictive
capabilities, as long as all chemical and physical effects are covered by
the model [15]. For a good overview of the different hard-modelling
techniques, we refer to [16,17].

Under the assumption of bi-linearity, time and wavelength
resolved spectroscopic data can be decomposed according to Beer's
law into the concentration profiles and the molar spectra of the pure
components. In kinetic hard-modelling, these concentration profiles
are usually obtained by numerical integration of the rate laws
describing the underlying kinetic hard model.
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Maeder and Zuberbühler [2] suggested that the associated
kinetic parameters are adjusted by non-linear optimisation, so
that the residuals between the measured absorbances and those
modelled by Beer's law become minimal in the least-squares sense.
In this calibration free method, sometimes referred to as kinetic
fitting by implicit direct calibration [16,17], the pure component
spectra, which are linear parameters, are eliminated from the non-
linear optimisation and determined at each iteration by linear
regression using the pseudo-inverse of the matrix comprising the
concentration profiles. If the number of reactive species equals the
rank of the concentration matrix, all concentration profiles are
linearly independent and pure component spectra can be resolved.
However, if the rank of the concentration matrix is lower than the
number of species, i.e. if some concentration profiles are linearly
dependent, the pseudo-inverse and thus the pure component
spectra cannot be directly computed. In such cases, there are at
least five different strategies, as described in Table 1, to treat rank
deficiency problems in the concentration matrix and to allow the
fitting of pure component spectra [18].

The rank of the spectral measurement matrix has been studied by
Kankare [19], Cochran et al. [20], Amrhein et al. [21] and Garland
et al. [22] under batch and semi-batch conditions (strategy 3) and for
the concatenation of experiments measured under different initial
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Table 1
Five strategies to treat linear dependencies in the kinetic concentration profiles without affecting the non-linear optimisation, and their effects on the fitted pure component spectra

Strategy Effect on the fitted pure component spectra

1) Model reduction by defining some absorbing species as uncoloured a) for
data analysis [10]

Only partial spectral resolution. Linear combinations of the true pure component
spectra are obtained.

2) Model reduction by providing known pure component spectra for data analysis [10,32] Complete spectral resolution if the appropriate pure component spectra are provided.
3) Rank augmentation by dosing one or more species [20,21] Complete spectral resolution if the appropriate species are dosed.
4) Rank augmentation by varying initial concentrations and performing a 3-way or

second-order global analysis [14,33–35]
Complete spectral resolution if appropriate experiments are performed.

5) Perform a tri-linear experiment and treat the linear dependencies, for example, with
strategy (1) [18]

Complete spectral resolution due to an additional dimension of resolution, e.g.
chromatography.

a) The term uncoloured is borrowed from UV–Vis spectroscopy. In this context, uncoloured means that, although a species is a true absorber, it is treated as non-absorbing for
mathematical reasons.

Fig. 1. Matrices E, P and N for a mechanism including nr=2 reactions and ns=4 species.
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conditions (strategy 4). However, the effects of defining a specific
absorbing species as uncoloured (strategy 1), of providing a specific
component spectrum (strategy 2), of dosing a specific species
(strategy 3) or of varying the initial concentrations (strategy 4) on
the rank of the kinetic concentration matrix have not yet been
studied in literature. These effects are of importance for the
experimental design of kinetic experiments as they will reveal the
required information to be provided or the additional experiments to
be performed in order to allow a hard kinetic analysis according to
the method of Maeder and Zuberbühler, and obtain partial or full
spectral resolution. Until now, the appropriate species to be included
in these strategies are usually selected by experience, intuition, or
trial and error. If the computation of the pseudo-inverse of the
concentration matrix generates an error, it indicates a still rank
deficient model and a wrong species selection within the corre-
sponding strategy.

In this article, we propose a method for a systematic experimental
and data analytical design of bi-linear spectroscopic kinetic measure-
ments that allows identifying the species to be incorporated in
strategies (1) to (4). In this contribution, we do not consider the kinetic
analysis of tri-linear data – strategy (5) – as this has been discussed in
literature as a special case of strategy (1), leading to full spectral
resolution due to an additional dimension of resolution [18]. If
strategy (1) is used, the method optionally includes the calculation of
the linear combinations of the true pure component spectra, i.e. the
coefficients by which the true (resolved) pure component spectra
need to be weighted in order to obtain a reduced set of fitted
(unresolved) component spectra of the species treated as coloured (i.e.
not uncoloured).

The proposed method is based on the analysis of the kernel of an
augmented matrix that has the same kernel as the original concentra-
tionmatrix. This augmentedmatrix can bededuced froma generalmass
balance, which is identical to the general equationproposed byAmrhein
et al and published as the factorisation of concentration data [23]. In
contrast toAmrheinet al that assume independent reactions,whichmay
be difficult to identify for complex mechanisms, our systematic method
is based on the entire set of kinetic reactions. The proposedmethod only
requires the reduction of the entire set of kinetic reactions to its
independent reactions if the linear combinations of the true pure
component spectra are desired, as an option with strategy (1). For this
reduction, we also propose a systematic method.

The analysis of this augmented matrix avoids unnecessary and
time-consuming numerical integrations to determine the whole
concentration matrix and allows the experimental design of
chemical reactions, even if the associated rate constants are not
yet known, i.e. before they are optimised. The proposed method
is presented using three kinetic examples of increasing complex-
ity. From this, appropriate experimental designs (strategies) are
suggested.
2. Theory

In kinetic modelling of spectroscopic data, Beer's law is used,
under the assumption of bi-linearity, to decompose a measured
absorbance signal into the concentrations and the molar spectra of
the pure components. This law can elegantly be written in matrix
notation.

Y = CA + R ð1Þ

Y (nt×nw) denotes the measured time and wavelength re-
solved spectroscopic data, C (nt×ns) the concentration profiles and
A (ns×nw) the pure component spectra. The matrix dimensions are
defined using nt as the number of reaction times, nw as the number of
wavelengths and ns as the total number of species. The deviations
from the product of C and A defined by Beer's law are captured in a
matrix R (nt×nw) of residuals. For details regarding the notation, we
refer to Section 5.

Kinetic hard-modelling involves a chemical hardmodel to describe
the concentration profiles of the reactive species. This chemical model
can be uniquely defined by matrices E (nr×ns) and P (nr×ns), both
comprised of positive integers, describing the coefficients for
reactants and products involved at each elementary reaction step
[24]. In this notation, nr stands for the number of reactions. The
matrix of stoichiometric coefficients denoted N (nr×ns), containing
negative coefficients for reactants and positive ones for products, can
be calculated from the difference P–E. Matrices E, P and N are
illustrated in Fig. 1 for an example mechanism, thoroughly discussed
in Section 3.2.

Using initial and dosing conditions, as well as thematrices E andN,
the matrix of concentration profiles C can be calculated for a given set
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of rate constants by numerical integration of the corresponding
system of ordinary differential equations describing the kinetic model.
We refer to [14,25] for details about the integration of these
differential equations expressed in concentration terms.

However, expressed in concentration terms, these ns differential
equations often comprise redundant terms, as several of these
equations can be expressed as a linear combination of others. The
number of differential equations to integrate can be substantially
reduced if the matrix of extents of reaction X (nt×nr) is used
instead of C [26]. The extents of reaction X, expressed in con-
centration units, can be defined as the integrated rate of each
reaction step at time t, i.e. the amount consumed or generated by
each reaction normalised to unity stoichiometry [27]. An equation
to calculate C from X can be deduced from the definition of X under
batch conditions.

C =XN + C0 ð2Þ

The matrix of initial concentrations C0 (nt×ns) is obtained by nt-
times identical vertical stacking of the row vector of initial con-
centrations c0 (1×ns). This stacking operation can be formally per-
formed by left multiplying c0 with a column vector of ones, denoted 1,
of dimensions (nt×1).

C0 = 1c0 ð3Þ

Performing a mass balance on the kinetic process, Eq. (2) can be
extended to also cover semi-batch conditions leading to an expression
that is identical to the one proposed by Amrhein et al., known as the
factorisation of concentration data [23].

C =XN +DC0 + I–Dð ÞCdos ð4Þ
where Cdos (nt×ns) denotes the matrix of dosing concentrations for
all species at any time. It is calculated from a matrix Cin (nf×ns)
comprising the dosing concentrations associated with each dosing
step. The row dimension is indicated by nf, the number of dosing
steps. Cdos is generated by identical vertical stacking of each row of
Cin over the time domain corresponding to the start time and the end
time of each single dosing step. Cdos contains zeros at times (rows)
when no species is dosed. The stacking procedure leading to Cdos is
visualised in Fig. 2.

In Eq. (4), I denotes the identity matrix of dimensions (nt×nt),
and D (nt×nt) the diagonal matrix of dilutions calculated from the
Fig. 2. Setup of Cdos (nt×ns) by identical vertical stacking of each row of Cin (nf×ns).
initial volume v0 and the vector of time resolved reaction
volumes v (nt×1). Note that v0 is also v1, i.e. the first element
of the vector v.

D = v0DIAG vð Þ−1 ð5Þ

The DIAG operator generates a diagonal matrix from the
corresponding vector argument [28]. Note that in batch conditions
(assuming constant density during the reaction), D= I and Eq. (4)
collapses to Eq. (2).

The matrix of extents of reaction, X, can be calculated by inte-
grating nr differential equations, with initial conditions x0 (1×nr)=0.
However, since kinetic rate laws are intrinsically defined in concen-
tration terms (not considering activity coefficients), calculating the
derivative of X at each integration step t requires the concentrations C
to be recalculated from X. This procedure is described in Eqs. (6)–(8)
for a constant density.

dxt; j
dt

= kj ∏
ns

i = 1
cej;it;i −

ft
vt

xt; j for j = 1 to nr ð6Þ

dvt
dt

= ft ð7Þ

With,

ct;i = ∏
nr

j = 1
xt; jnj;i + dt;tc0 t;i + 1−dt;t

� �
cdos t;i for i = 1 to ns and dt;t =

v0
vt

ð8Þ

and ft, the element of the vector of dosing rates f (nt×1) at time t, and
ej,i being the corresponding reactant coefficients (elements of E). For
each time t, ct,i is calculated according to Eq. (8) (see also Eq. (4)) and
substituted into Eq. (6) to allow integrating the system of differential
equations described by Eqs. (6) and (7).

Note, if a mechanism is comprised by reversible reactions, matrixN
can be simplified by keeping only the rows corresponding to the
forward reactions and C can be calculated by computing the net
forward extent of reaction defined as the difference between the
forward and backward extents for each single reversible reaction.

In themethod proposed byMaeder and Zuberbühler for the kinetic
hard-modelling of spectroscopic data, the product of the integrated
concentration profiles C and the pure component spectra A is
compared to the measured data matrix Y, and results in the residuals
R=Y−CA, which capture the differences between the measured and
the modelled absorbances. In least-squares analysis, the sum of all
squared residuals R is used as the objective function to be minimised
by iteratively optimising the non-linear kinetic parameters, i.e. the
rate constants defining the concentration profiles in C. As A is
comprised of linear parameters only, it can be eliminated in each
iteration from the non-linear optimisation and can be replaced by its
linear least-squares estimate [10,14].

A = C + Y = CTC
� �−1

CTY ð9Þ

Where C+ denotes the Moore–Penrose left pseudo-inverse of C.

2.1. Rank deficiencies in the concentration matrix C

A frequent problem in the method of Maeder and Zuberbühler for
the kinetic hard-modelling of spectroscopic data is encountered when
the matrix of concentration profiles C (nt×ns) is rank deficient and
thus C+ cannot be computed. Consequently, A cannot be eliminated
from the non-linear optimisation using Eq. (9), except if one of the
strategies mentioned in Table 1 is used. In order to understand the
origin of possible rank deficiencies in C and to elaborate a systematic
method to select the appropriate strategy, the kernel of C and some
other related concepts are briefly defined.
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2.1.1. Kernel of C
The dimension of C (nt×ns), denoted dim(C), is the minimum

number of coordinates required to define a point in the space
spanned by the columns or the rows of C. Thus, the dimension is
the smaller of the number of rows (nt) or columns (ns). As in
kinetic experiments nt is generally greater than ns, the dimension
of C is ns.

dim Cð Þ = ns ð10Þ

The image of C, denoted im C, is the vector space spanned by the
linearly independent columns of C, which form a vector basis. The
(chemical) rank of C, denoted rank(C) or dim(im C), is the dimension of
its image and is used to calculate the number of species with linearly
independent concentration profiles, nc.

nc = rank Cð Þ ð11Þ

The kernel of C, denoted ker C, is the vector space of dimension
dim(ker C) spanned by the vectors forming the null space 0 when
left-multiplied by C, i.e. C(ker C)=0 [29]; this can also be seen as
the mass balance (or closure). Note that the kernel is a basis that
defines a vector space, and thus any linear combinations of the
kernel also form a basis for this vector space (rotational ambiguity).
As a vector basis, the kernel always contains the trivial solution (0).
The kernel of C describes the linear dependencies between the ns
concentration profiles (columns of C) and thus a row in the kernel
only comprised by zeros indicates that the corresponding species is
linearly independent from the others. The kernel of C can be
calculated from its reduced row echelon form (rref). However, for
stability reasons, Singular Value Decomposition (SVD) is preferred.
In Matlab, an orthonormal basis for the kernel of C can be
computed with the null command [30]; it performs SVD and re-
turns the ns–nc eigenvectors of CTC, for which the corresponding
eigenvalues are zero within the numerical accuracy. The null
command can also be used within the symbolic toolbox of Matlab
in order to obtain an analytical expression for the kernel. As will be
shown in Section 3, this can have an advantage to describe the
effect of different experimental conditions.

The rank-nullity theorem states that the dimension of the kernel
plus the dimension of the image of C equals the dimension of C [29],
i.e. equals ns under the condition that nt ≥ ns. A rank deficiency in C
occurs if nc is lower than ns, i.e. if the kernel of C is comprised of more
than the trivial solution (0). The dimension of the kernel of C is also
referred to as the defect of C.

nc + dim ker Cð Þ = ns ð12Þ

Finally, we define the property of pseudo-equivalence denoted ∼ of
two matrices of different row but identical column dimension that
share the same kernel. The terminology ‘pseudo' has been introduced
as mathematical equivalence would require identical matrix dimen-
sions. As an example, the property of pseudo-equivalence between C
and any matrix Ω implies:

CfΩfker C = ker Ω ð13Þ

2.1.2. A pseudo-equivalent matrix for C under semi-batch conditions
The prediction of the rank of C has been discussed in literature

[15,19–22] and requires defining the number of independent reactions
[15,21]. According to Amrhein et al., the number of independent
reactions, here denoted nri, is the number of reactions that have
(i) constant and linearly independent stoichiometric coefficients
(rows of N), and (ii) linearly independent rate laws (columns of X).
The number of independent reactions, which is also the minimum
number of differential equations to be integrated, can be used to
determine the rank of matrix C.

rank Cð Þ =min nri + 1;nsð Þ ð14Þ

Identifying the independent reactions can be a difficult task when
the kinetic model is complex. Thus, here we propose to analyse the
linear dependencies in C based on the full kinetic model introducing a
pseudo-equivalent matrix, Ω, that covers possible rank deficiencies
in X (generally due to parallel reactions) and in N (generally due
to reversible reactions). Based on Eq. (4), an augmented matrix
Ω (3·nt×ns) can be built by vertically stacking matrices XN, DC0 and
(I−D)Cdos, as shown in Eq. (15).

Ω =
XN
DC0

I−Dð ÞCdos

" #
fC under semi−batch conditionsð Þ ð15Þ

This time variant matrix Ω (3·nt×ns) can be reduced to a time
invariant matrix Ω (ns+nf+1×ns) (see Appendix 6.1) so that the
system of differential equations no longer needs to be integrated. For
the sake of simplicity, the same matrix symbol (Ω) is used in Eqs. (15)
and (16).

Ω =

μ1ð Þ•ET DIAG kð ÞN
c0
Cin

2
664

3
775fC under semi−batch conditionsð Þ ð16Þ

With μ being an arbitrary positive scalar different from 1, matrix 1
(ns×nr) comprised of ones only and the superscript •ET representing
the element-wise raise to the power of ET.

If vector k is unknown, e.g. the rate constants are to be optimised,
it can be omitted in the calculation of Ω, i.e. k=1, leading to a
simplified augmented matrix that is not strictly pseudo-equivalent to
C. However, the rank of this simplified matrix is still identical to the
rank of C and its kernel has the identical rows comprised by zeros
only as has the kernel of C. Note that strict pseudo-equivalence
between Ω and C (and the inclusion of DIAG(k) in Eq. (16)) is re-
quired for an explicit determination of the relationship between the
appearance of zero entries in ker C and the stoichiometric conditions.
A discussion of ker C depending on stoichiometric conditions is given
in Examples 2 and 3 (see Section 3) using the symbolic toolbox of
Matlab [30].

2.2. A systematic method for selecting the appropriate strategy to treat
rank deficiencies in C

Based on the analysis of the kernel of matrix Ω, a systematic
method is developed for selecting the appropriate strategy to treat
rank deficiencies in C, i.e. to select which absorbing species to set
uncoloured (strategy 1), which known pure component spectra to
provide (strategy 2), which species to dose (strategy 3), or which
initial concentrations to vary (strategy 4). As dosing is just one
strategy amongst the four presented here, the proposed method is
initialised with an augmented matrix Ω of dimensions (ns+1×ns)
comprised of the first two segments in Eq. (16). The third segment
(Cin) is included only if dosing is performed, i.e. if strategy (3) is
applied.

Ω =
μ1ð Þ•ET

DIAG kð ÞN
c0

" #
fC under batch conditionsð Þ ð17Þ

The method relies on the following seven assumptions: (i) the
kinetic model is correct; (ii) no reactions are identical, i.e. no two
reactions share the same rate law and rate constants, and form the
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same products; (iii) all species required to initiate the reactions are
present initially or are dosed (strategy 3); (iv) the true pure com-
ponent spectra of the absorbing species are linearly independent;
(v) each true pure component spectrum provided in strategy (2) is
correct, e.g. no baseline shift or the baseline shift is corrected by an
appropriate method [16,31]; (vi) all species absorb or the truly non-
absorbing species are known and strategy (2) can be applied (a pure
component spectrum comprised by zeros only is provided); (vii) the
time resolution in Y is such that all reaction steps defined by the
kinetic model are covered.

In the following, we describe the different steps required for our
systematic approach as outlined in Figs. 3 and 4.

2.2.1. Prediction of the uncoloured species to include in strategy (1)
This strategy is a mathematical treatment to reduce the matrix

of concentration profiles C such that its pseudo-inverse is defined
(see Eq. (9)), while keeping the same least-squares optimum for
the rate constants. It consists in reducing Beer's law (Eq. (1)) by
defining a set of ns−nu coloured and nu uncoloured species, and
by eliminating from the matrix C (nt×ns) the columns corre-
Fig. 3. Description of the different steps involved in the proposed systematicmethod for selectin
sponding to these nu uncoloured species, thus keeping only
linearly independent concentration profiles. In this context, we
define a species as uncoloured if it is a true absorber but set to
non-absorbing in order to avoid a rank deficiency in C. Note that
if a species is known a priori to be truly non-absorbing, it should
not be defined uncoloured but rather treated by strategy (2),
providing a known pure component spectrum containing zeros
only.

This reduction in the spectroscopic model leads to a concentration
matrix, denoted Cc (nt×ns−nu), comprised of ns−nu coloured species
only. This affects the rank-nullity theorem, as the dimension of the
image plus the dimension of the kernel of Cc equals now the reduced
number of species, i.e. ns−nu.

nc + dim ker Ccð Þ = ns−nu ð18Þ

AmatrixΩ of dimensions (ns+1×ns−nu) that is pseudo-equivalent
to Cc (nt×ns−nu) can be obtained by eliminating from the original
augmented matrix Ω (ns+1×ns), see Eq. (17), the columns corre-
sponding to the nu uncoloured species in the same way C (nt×ns) is
g the appropriate strategy to treat rank deficiencies in thematrix of concentration profiles.



Fig. 4. (a) Reduction of matrix Ωwhen strategies (1) and (2) are applied (shaded columns are removed) and (b) expansion ofΩwhen strategies (3) and (4) are used (shaded rows are
appended).
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reduced to Cc (nt×ns−nu). This elimination is presented in Fig. 4a
(strategy 1).

The appropriate set of uncoloured species to be defined in order
to allow the computation of the pseudo-inverse of Cc can be
predicted iteratively (see Scheme 1a) based on the non-zero rows
of ker Ω.

Defining uncoloured species, although they are in fact contributing
to the spectroscopic matrix Y, has the drawback that the missing
spectral contributions of the uncoloured species are linearly transferred
into the pure component spectra of the coloured species. Hence, the
fitted pure component spectra of the coloured species calculated from
Eq. (9) are comprised of linear combinations of the true (resolved)
pure component spectra, and thus are often difficult to interpret.
Since no spectral resolution can be achieved with this strategy, it
should only be employed when no other strategy (2, 3 or 4) can be
applied satisfactory.

Optionally, the underlying linear combinations of the true pure
component spectra can be determined by eliminating the linear
dependencies in the rows of the augmented matrix Ω (ns+1×ns). This
elimination, leading to a matrix Ωind of dimensions (nri +1×ns), is
required as Ω uses the full kinetic model to cover possible simul-
taneous rank deficiencies in X and N.

The appropriate set of linearly independent rows in Ω can be
predicted iteratively based on the non-zero rows of ker ΩT (see
Scheme 2). From this, the number of linearly independent reactions
nri (see Eq. (14)) can also easily be determined.

nri = ns−dimðker ΩT
indÞ ð19Þ

Once coloured species and linearly independent reactions have
been identified, matrix Δ (ns−nu×ns) comprising the coefficients for
the linear combinations of the true (resolved) pure component spectra
can be calculated using Eq. (20).

Δ = Ωindjcomprised of coloured species

� �−1
Ωindjcomprised of all species ð20Þ

With Ωindjcomprised of coloured species, Ωindjcomprised of all species having
dimensions (nri +1×ns−nu) and (nri +1×ns) respectively, and with
nri + 1=ns−nu=nc. Note that a strictly pseudo-equivalent Ω is
required in Eq. (20), i.e. the vector k must be comprised of correct
known rate constants or has to be defined symbolically.

The linear combinations Δ obtained by Eq. (20) are the coefficients
by which the true pure component spectra A have to be weighted to
obtain component spectra Ac (nc×nw) of the coloured species fitted by
Eq. (9).

Ac =Δ A = C +
c

� �
Y ð21Þ

Note that if strategy (1) is combined with strategy (2)
providing nks pure component spectra, A (ns×nw) is replaced in
Eq. (21) by the ns−nks remaining true pure component spectra,
and that nks columns, corresponding to the species of known
spectra, have to be removed from Ω. For details about strategy (2),
see Section 2.2.2.

2.2.2. Prediction of the known pure spectra to provide in strategy (2)
This strategy consists in separating Y (nt×nw) into a known

contribution due to nks provided pure component spectra and into an
unknown contribution due to the ns−nks unknown pure component
spectra. The known contributions, i.e. the product of the provided
pure component spectra and the corresponding concentration
profiles, are subtracted from the overall spectroscopic data matrix Y.
The remaining concentration profiles corresponding to the spe-
cies of unknown spectra are collected in a reduced matrix, denoted
Cuk (nt×ns−nks). See Refs. [10,32] for more details about the sub-
traction of the known contribution from the overall absorbance during
the kinetic fitting process.

This reduction of the spectroscopic model (Beer's law) also affects
the rank-nullity theorem, as the dimension of the image plus the
dimension of the kernel of Cuk must now be equivalent to the reduced
number of species, i.e. ns−nks.

nc + dim ker Cukð Þ = ns−nks ð22Þ

When Cuk is of full rank, the unknown pure component spectra
Auk (ns−nks×nw), i.e. the ones that have not been provided, can be



Scheme 1a. Iterative method for selecting appropriate uncoloured species in strategy (1) in order to enable the calculation of the pseudo-inverse of the concentration matrix.

Step Action

Initial assumption Initially, Ω has dimensions (ns+1×ns) a).
All species are set coloured.
ker Ω is calculated.

Iterative step 1 The uncoloured species is chosen amongst the non-zero rows of ker Ω.
The column corresponding to the chosen species is removed from Ω.

Iterative step 2 ker Ω is recalculated.
Stop criterion Iterative steps 1-2 are repeated until ker Ω=0.

Finally, Ω has dimensions (ns+1×ns-nu)b).
a) Initially Ω has dimensions (ns+1×ns−nks), (ns+nf+1×ns) or (ns+ne+1×ns) respectively if strategies (2), (3) or (4) were applied before strategy (1).
b) Finally Ω has dimensions (ns+1×ns−nu−nks), (ns+nf+1×ns−nu) or (ns+ne+1×ns−nu) respectively if strategies (2), (3) or (4) were applied before strategy (1).

Scheme 1b. Optional iterative method for selecting appropriate linearly independent rows in strategy (1) in order to calculate the linear combinations of the true (resolved) pure
component spectra.

Step Action

Initial assumption Initially, Ω has dimensions (ns+1×ns) a).
All rows are linearly independent ker ΩT is calculated.

Iterative step 1 The linearly dependent row is chosen amongst the non-zero rows of ker ΩT.
The corresponding row is removed from Ω.

Interative step 2 ker ΩT is recalculated.
Stop criterion Iterative steps 1–2 are repeated until ker ΩT=0.

The resulting matrix Ω is denoted Ωind.
Finally, Ω has dimensions (nri +1×ns) b).

a) Initially Ω has dimensions (ns+1×ns−nks), (ns+nf+1×ns) or (ns+ne+1×ns) respectively if strategies (2), (3) or (4) were applied before strategy (1).
b) Finally Ω has dimensions (nri +1×ns−nks), (nri +nf+1×ns) or (nri +ne+1×ns) respectively if strategies (2), (3) or (4) were applied before strategy (1).
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linearly fitted in analogy to Eq. (9). A pseudo-equivalent matrix for Cuk
canbeobtained fromacorresponding reductionofΩ (ns+1×ns) toΩ (ns+
1×ns−nks) following the same procedure as the reduction of C (nt×ns)
to Cuk (nt×ns−nks). This procedure is presented in Fig. 4a (strategy 2).

The appropriate list of species for which pure component spectra
should be provided in order to fully resolve the remaining ns−nks fitted
pure component spectra, can be predicted iteratively (see Scheme 3)
based on the non-zero rows of the kernel ofΩ (ns+1×ns−nks). Note that
iterative Scheme 3 can always be stopped at any point before reaching
kerΩ=0 and in such case, strategy (2) has to be combined with another
strategy of Table 1.

2.2.3. Prediction of the species to dose in strategy (3)
In this strategy, one or more species are dosed in a sequence of nf

dosing steps in order to augment the rank of C to its full rank. A matrix
Ω of dimensions (ns+nf+1×ns) that is pseudo-equivalent to C can be
obtained by expanding Ω (ns+1×ns) with the appropriate rows cor-
responding to the dosed species as presented in Eq. (16). The expan-
sion of Ω (ns+1×ns) to Ω (ns+nf+1×ns) is also outlined in Fig. 4b
(strategy 3).

In order to fully resolve the fitted pure component spectra, the
appropriate set of species to dose can be predicted iteratively using
the non-zeros rows of ker Ω (see Scheme 3). Note that iterative
Scheme 2. Iterative method for selecting appropriate species in strategy (2) to resolve all p

Step

Initial assumption

Iterative step 1

Iterative step 2
Stop criterion

a) Initially Ω has dimensions (ns+nf+1×ns) or (ns+nf+1×ns) respectively if strategies (3) or
b) Finally Ω has dimensions (ns+nf+1×ns−nks) or (ns+ne+1×ns−nks) respectively if strate
Scheme 3 can always be stopped before reaching ker Ω=0 and in such
case, strategy (3) has to be combined with another strategy of Table 1.

2.2.4. Prediction of the initial concentrations to vary in strategy (4)
In this strategy, ne additional kinetic experiments (Yi with i=2,…,

ne+1) are performed under different initial concentrations (c0expi),
appended vertically to the first experiment and subsequently analysed
together by second order global analysis [10,14,33–35]. Each indivi-
dual spectroscopic measurement Yi and each modelled associated
concentration matrix Ci is concatenated vertically to form matrices
Yglob and Cglob respectively, replacing Y and C in Beer's law (Eq. (1)). If
the concatenatedmatrix of concentrations Cglob is of full rank and if one
unique set of pure component spectra is assumed for all experiments
(global mode), the pseudo-inverse of Cglob can be calculated in analogy
to Eq. (9) and leads to fully resolved pure component spectra.

A matrix Ω ((ne+1)·ns+ne+1×ns) that is pseudo-equivalent to Cglob
could be obtained by concatenating vertically as many augmented
matrices Ωi with different initial concentrations as the number of
concentration matrices Ci concatenated in Cglob. In global mode, how-
ever, this vertical augmentation is only possible if one common kinetic
model is assumed between all individual experiments, i.e. the rate laws
and the matrices of stoichiometry are identical between the (ne+1)
experiments. This common property between all the experiments
ure component spectra.

Action

Initially, Ω had dimensions (ns+1×ns) a).
No pure component spectrum is provided.
ker Ω is calculated.
The species for which a pure component spectrum has to be provided
is chosen amongst the non-zero rows of ker Ω.
The column corresponding to the chosen species is removed from Ω.
ker Ω is recalculated.
Iterative steps 1-2 are repeated until ker Ω=0.
The resulting matrix Ω is denoted Ωind.
Finally, Ω has dimensions (ns+1×nks)b).

(4) were applied before strategy (2).
gies (3) or (4) were applied before strategy (2).



Scheme 3. Iterative method for selecting appropriate dosing species in strategy (3) to resolve all pure component spectra.

Step Action

Initial assumption Initially, Ω has dimensions (ns+1×ns) a).
No species is closed.
ker Ω is calculated.

Iterative step 1 The species to be closed is chosen amongst the non-zero rows of ker Ω.
The closed species adds a row in Cin and thus in Ω.

Iterative step 2 ker Ω is recalculated.
Stop criterion Iterative steps 1-2 are repeated until ker Ω=0.

Finally, Ω has dimensions (ns+nf+1×ns) b).

a) Initially Ω has dimensions (ns+1×ns−nks) or (ns+ne+1×ns) respectively if strategies (2) or (4) were applied before strategy (3).
b) Finally Ω has dimensions (ns+nf+1×ns−nks) or (ns+nf+ne+1×ns) respectively if strategies (2) or (4) were applied before strategy (3).
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allows reducing the dimensionality of thematrixΩ to (ns+ne+1×ns) by
keeping only once the product (μ1)•E

T
DIAG(k)N. Therefore, a pseudo-

equivalentmatrix forCglob canbeobtainedbyaugmenting just the initial
Ω (ns+1×ns) with ne rows corresponding to the different vectors of
initial concentrations of the additional experiments, collected in a
matrix C0ne (ne×ns), as shown in Fig. 4b (strategy 4).

Cne
0 =

cexp2
0
c
exp3
0
v

c
expne + 1
0

2
6664

3
7775 ð23Þ

The appropriate list of species for which the initial concentration
should be varied in order to fully resolve the fitted pure component
spectra can be predicted iteratively using the non-zeros rows of ker Ω
(see Scheme 4). Note that iterative Scheme 4 can always be stopped
before reaching ker Ω=0 and in such case, strategy (4) has to be
combined with another strategy of Table 1.

3. Examples

The systematic method for selecting the appropriate strategy to
treat rank deficiencies in the concentration profiles and thus to allow
the fitting of the pure component spectra according to Eq. (9) is
applied to three different mechanisms of increasing complexity. In the
first example, the effect of dosing on the rank of C is presented for a
second order reaction (A+B→C). The dosed species leading to a rank
augmentation of C (strategy 3) are also discussed as a function of their
initial concentrations. As a second example, two parallel consecutive
second order reactions (A+B→C and A+C→D) are studied under
batch conditions in order to show the impact on the rank of C defining
a species uncoloured (strategy 1) or providing a known pure
component spectrum (strategy 2). For the last example, three parallel
consecutive reactions (A+B→C, A+C→D and A+C→E), all strategies
(1) to (4) are analysed.
Scheme 4. Iterative method for selecting appropriate species for which the initial concentr

Step Action

Initial assumption Initially, Ω has dim
Only one experim
ker Ω is calculated

Iterative step 1 The species whose
The new set of ini

Iterative step 2 ker Ω is recalculat
Stop criterion Iterative steps 1-2

Finally, Ω has dim

a) Initially Ω has dimensions (ns+1×ns−nks) or (ns+nf+1×ns) respectively if strategies (2) o
b) Finally Ω has dimensions (ns+ne+1×ns−nks) or (ns+nf+ne+1×ns) respectively if strateg
3.1. Example 1: a second order reaction

In this example, we apply the proposed systematic method to a
second order reaction in which a species A reacts with a species B to
form a third species C. The number of reactions is nr=1 and the
number of species is ns=3. As only one reaction is considered, several
matrices and vectors collapse to vectors and scalars respectively. For
the sake of simplicity, however, the boldface capital and boldface
lowercase notations for matrices and vectors respectively are main-
tained.

A + BY
k1

C with k = 0:5 Lmol−1min−1 ð24Þ

E = A B C
½1 1 0 � ; P = A B C

½0 0 1 � ; N = P� E = A B C
½ �1 �1 1 � ð25Þ

Using Eqs. (6)–(8), the ns=3 differential equations describing the
mechanism of Eq. (24) in concentration terms (A, B, and C) are
replaced by nr=1 differential equation expressed in terms of one
extent of reaction.

dxt;1
dt

= k1 ∏
ns = 3

i = 1
ce1;it;i −

ft
vt
xt;1 = k1ct;Act;B−

ft
vt
xt;1 ð26Þ

Note that the term (ft/vt)xt,1 related to dilution in Eq. (26) is zero
under batch conditions (assuming constant density), as ft=0 and
vt =v0 for all t.

Differential Eq. (26) is integrated with initial conditions x0=0. The
related vector of initial concentrations c0 (1×3), in mol L−1, is defined
as a function of the initial concentration of species A, denoted c0,A, and
ation should be varied in strategy (4) in order to resolve all pure component spectra.

ensions (ns+1×ns) a).
ent with initial concentrations c0 (1×ns) is considered.
.
initial concentration should be varied is chosen amongst the non-zero rows of ker Ω.

tial concentrations adds a row C0
ne and thus in Ω.

ed.
are repeated until ker Ω=0.
ensions (ns+ne+1×ns) b).

r (3) were applied before strategy (4).
ies (2) or (3) were applied before strategy (4).



Fig. 5. Time resolved concentration profiles for the mechanism described in Eq. (24)
(k=0.5 L mol−1 min−1) under batch (a) and semi-batch (b) conditions. In (a) and (b),
species A (●) and B (□) are initially mixed with c0,A=0.5 mol L−1, c0,B=1 mol L−1 (α=2)
and v0=25·10−3 L, and lead to the product C (○). In (b) species A is subsequently dosed
at t=10 min during 5 min with a dosing rate of 2·10−3 L min−1 and a dosing
concentration cin, A=0.5 mol L−1.
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of the stoichiometric ratio between the initial concentrations of B and
A, denoted α=c0,B/c0,A.

c0 =
A B C
½ c0;A �c0;A 0 � ð27Þ

Under batch conditions, Cin is 0 (nf=0) and the augmented matrix
Ω (4×3) is obtained by vertical stacking of (μ1)•E

T
DIAG(k)N (3×3) with

c0 (1×3).

ΩjF=F

F=F
=

ðμ1Þ•ET

DIAGðkÞN
c0

" #
=

A B C
−1 −1 1
−1 −1 1
−0:5 −0:5 0:5
c0;A �c0;A 0

2
664

3
775 ð28Þ

With μ arbitrarily fixed to a value of 2, and 1 a vector of ones of
dimensions (3×1), and k=0.5 L mol−1 min−1.

In the notation for Ω used in Eq. (28), the superscripts indicate the
species that have been removed fromΩ to perform a model reduction
(strategy 1 or 2). The first superscript (before the slash) indicates
which species have been defined uncoloured in strategy 1 (Ø=no
uncoloured species), whereas the second superscript (after the slash)
denotes which pure spectra have been provided in strategy 2 (Ø=no
pure spectrum provided). The subscripts indicate the species that have
been added toΩ in order to augment its rank (strategy 3 or 4). The first
subscript (before the slash) indicates which species have been dosed
in strategy 3 (Ø=batch conditions) and the second subscript (after the
slash) denotes the species for which initial concentrations have been
varied in strategy 4 (Ø=no additional experiment).

As the second row of Ω|Ø/ØØ/Ø (4×3) is identical to the first one and
the third one is a multiple of the first one, the rank of Ω|Ø/ØØ/Ø and thus
of C is two (nc=2). This is in agreement with the prediction of
Amrhein et al. (Eq. (14)). Fig. 5a presents the rank deficient
concentration profiles of the three species involved in the mechan-
ism of Eq. (24) (k=0.5 L mol−1 min−1) for initial conditions c0,A=
0.5 mol L−1 and c0,B=1 mol L−1 (α=2).

According to the rank-nullity theorem (Eq. (12)) and the property
of pseudo-equivalence (Eq. (13)), the dimension of the kernel of Ω|Ø/ØØ/Ø

and of C is ns−nc=3−2=1. The kernel ofΩ|Ø/ØØ/Ø is computed by SVD and
results in an orthonormal basis of dimension 1 that depends on the
stoichiometric ratio α.

ker C = ker ΩjF=F

F=F
=

A B C
½ −� 1 1−� �T ð29Þ

Eq. (29) can be verified with Fig. 5a (α=2), as all three
concentration profiles at any time t are related by Eq. (30), which is
deduced from the definition of the kernel (see Section 2.1.1).

C ker Cð Þ = −�ct;A + 1ct;B + 1−�ð Þct;C = −2ct;A + ct;B−ct;C = 0 ð30Þ

Based on ker Ω|Ø/ØØ/Ø (3×1) (Eq. (29)) and on the value of the
stoichiometric ratio α, the species to be dosed in order to reach a full
spectral resolution can be identified.

3.1.1. Rank augmentation by dosing (strategy 3)
The element in the kernel corresponding to species C is zero

only when α=1, i.e. under stoichiometric conditions (see Eq.
(29)). This indicates that under these conditions, only species A
or B can be dosed in order to break the rank deficiency in matrix
C. Under non-stoichiometric conditions (α≠1), however, any of
the three species could be dosed in order to augment the rank of
Ω|Ø/ØØ/Ø (or C).
For the particular example of Fig. 5a, if species A is dosed, matrix
Ω|Ø/ØØ/Ø is augmented by an additional row containing only the
concentration of the dosed species (cin,A). The rank of the resulting
matrix, denoted Ω|A/ØØ/Ø (5×3), is augmented to full rank (see Eq. (31))
and its kernel only contains the trivial solution (0). Fig. 5b presents the
linearly independent concentration profiles of the three species
involved in the mechanism of Eq. (24) for the same initial conditions
as in Fig. 5a but under semi-batch conditions (species A is dosed with
a concentration cin,A=0.5 mol L−1).

ΩjF=F
A=F =

ðμ1Þ•ETDIAGðkÞN
c0
Cin

2
4

3
5 =

A B C

�1 �1 1
�1 �1 1
�0:5 �0:5 0:5
c0;A �c0;A 0
cin;A 0 0

2
666664

3
777775; ker ΩjF=F

A=F
= ker C = 0

ð31Þ

3.2. Example 2: a mechanism with two parallel consecutive reactions

The mechanism presented in Example 1 (A+B→C) is coupled to a
second parallel and consecutive reaction in which species A reacts
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with C to form a product D (see Fig. 1). The number of species is ns=4
(A, B, C and D) and the number of reactions is nr=2. Vector k is
comprised of two rate constants that are to be determined by non-
linear optimisation.

The mechanism of Fig. 1 can be translated in nr=2 differential
equations. Thus, differential Eq. (26) of Example 1, without the term
(ft/vt)xt,1 as only batch conditions are considered here, is coupled to a
second differential equation.

dxt;2
dt

= k2 ∏
ns = 4

i = 1
ce2;it;i = k2ct;Act;C ð32Þ

Differential Eqs. (26) and (32) are integrated simultaneously
with initial conditions x0=0. As before, the related vector of initial
concentrations c0 (1×4), in mol L−1, is defined as a function of the
initial concentration of A.

c0 =
A B C D

½ c0;A �c0;A 0 0 � ð33Þ

The augmented matrix Ω|Ø/ØØ/Ø (5×4) is obtained by vertical stacking
of (μ1)•E

T
DIAG(k)N (4×4) with c0 (1×4). Note that, as the rate

constants are not a priori known, Eq. (17) is used with a symbolic
vector k of dimensions (2×1), i.e. k=[k1; k2].

ΩjF=F

F=F
=

μ1ð Þ•ET

DIAG kð ÞN
c0

" #
=

A B C D
−μk1−μk2 −μk1 −μk1−μk2 μk2
−μk1−k2 −μk1 −μk1−k2 k2
−k1−μk2 −k1 k1−μk2 μk2
−k1−k2 −k1 k1−k2 k2

c0;A �c0;A 0 0

2
66664

3
77775
ð34Þ

With μ any positive scalar different from 1, and 1 a matrix of ones
of dimensions (4×2).

The rank of C, as predicted by Eq. (14) and calculated from Ω|Ø/ØØ/Ø,
is nc=3, i.e. at most three species are allowed to be set to coloured in
order to circumvent rank deficiency. Using the rank-nullity theorem
(Eq. (12)), the dimension of the kernel of C is ns−nc=4−3=1.
Accordingly, the orthonormal basis for the kernel of Ω|Ø/Ø

Ø/Ø,
computed by SVD, results in a vector space of dimension 1 which
depends on α

ker ΩjF=F

F=F
=

A B C D
½ −� 1 1−� 1−2� �T ð35Þ

Note that for this example the kernel ofΩ neither depends on μ nor
on k.

The few Matlab lines that are required for the setup of Ω|Ø/ØØ/Ø and
the calculation of its kernel (Eq. (35)) are provided in the Appendix 6.2
for this example. The kernel of Ω|Ø/ØØ/Ø (Eq. (35)) can be used to
determinewhich species to define uncoloured (Section 3.2.1) or which
pure component spectrum to provide in order to reach full spectral
resolution (Section 3.2.2). As ker Ω|Ø/ØØ/Ø (4×1) is a function of the
stoichiometric ratio α, the species to include in strategies (1) and (2)
will depend on the ratio of the initial concentrations.

3.2.1. Model reduction by defining uncoloured species (strategy 1)
As shown by the rank of Ω|Ø/ØØ/Ø (Eq. (34)), nc=3 appropriate

coloured species have to be chosen in order to compute the pseudo-
inverse of Cc and so to optimise the two unknown rate constants. The
ns−nc=nu=1 uncoloured species can be chosen amongst the non-zero
rows of kerΩ|Ø/ØØ/Ø (see Scheme 1a and Eq. (35)), i.e. amongst the species
A, B or D under stoichiometric conditions (α=1), amongst A, B or C
under two fold excess of A (α=1/2) or amongst any of the four species
outside from these two particular conditions. For example, if species A
is set uncoloured, the column corresponding to A is removed from the
augmented matrix Ω|Ø/ØØ/Ø, leading for any value of α to a matrix Ω|Ø/ØA/Ø

that is of full rank and an associated kernel only comprised of the
trivial solution (0).

In order to predict the impact of defining A uncoloured on the
linear combinations of the true pure component spectra (inherent
problem in the fitted component spectra when strategy (1) is used),
the linear dependencies in the rows of Ω|Ø/ØØ/Ø are removed. For this,
iterative Scheme 2 is employed and all five rows are first considered
linearly independent (initialisation step). The first linearly dependent
row is identified amongst the non-zero rows of ker ΩT|Ø/ØØ/Ø (5×2), as
shown in the first matrix from the left of Eq. (36).

ker ΩTjF=F
F=F =

1 0
0 1
0 1
−μ − μ + 1ð Þ
0 0

2
66664

3
77775Z

n=a
1
1

− μ + 1ð Þ
0

2
66664

3
77775Z 0 ð36Þ

According to ker ΩT|Ø/ØØ/Ø (first matrix (5×2) in Eq. (36)), any row
except the last one (corresponding to c0) can be removed. If, for
example, the first row is removed, the kernel computed from this
augmented matrix is shown in the second matrix (4×1) of Eq. (36).
Note that n/a denotes the entry corresponding to the 1st row that does
not exist anymore in the kernel.

Subsequently, based on the zero entries of the second matrix (i.e.
vector) in Eq. (36), any row except the last one can be removed. If, for
example, the second row is removed, the kernel of the augmented
matrix is only comprised by the trivial solution (0). Removing the first
and the second row in Ω|Ø/ØØ/Ø (5×4) leads to a matrix denoted Ωind|Ø/ØØ/Ø

of dimensions (3×4) that can be used in Eq. (20) in order to predict the
coefficients for the linear combinations of the true pure component
spectra. These linear combinations are calculated, based on the fact
that species A was set uncoloured, i.e. eliminating the column
corresponding to species A in Ωind|Ø/ØA/Ø, leading to Ωind|Ø/ØØ/Ø.

Δ = ΩindjA=FF=F

� �−1
ΩindjF=F

F=F =

A B C D
�−1

�−1−1
�−1−2

1
0
0

0
1
0

0
0
1

2
4

3
5 0B0

0C0
0D0

ð37Þ

With the rows ′B′, ′C′ and ′D′ indicating the coloured species for
which fitted component spectra are obtained, and the columns A, B, C,D
denoting the true absorbing species for which true pure component
spectra exist. Note that, for this example, Δ neither depends on μ nor
on k.

Eq. (37) indicates the linear combinations of the true pure
component spectra A that lead to the fitted pure component spectra
Ac. To illustrate Eq. (37), four true pure component spectra A were
generated usingGaussian functions as shown in Fig. 6a. Thesewere used
to simulate a kinetic data matrix Y, using a set of concentration profiles
(α=2) corresponding to themechanism given in Fig.1. Fig. 6b shows the
linear combinations inherent to the fitted component spectra of the
coloured species after optimisation (including Eq. (9)) and Eq. (37) can
be interpreted as follows: the fitted component spectrum of the
coloured species ′B′ is a linear combination of 0.5×true pure component
spectrum of A with 1×true pure component spectrum of B; the fitted
spectrumof the coloured species ′C′ is a linearcombinationof−0.5×true
Awith 1×true C; and the fitted spectrum of the coloured species ′D′ is a
linear combination of −1.5×true Awith 1×true D).

3.2.2. Model reduction by providing a pure spectrum (strategy 2)
When α=1, i.e. under stoichiometric conditions, the element in

the kernel of Ω|Ø/ØØ/Ø corresponding to species C becomes zero (see



Fig. 6. Simulated true pure (a) and fitted (b) component spectra for the mechanism
described in Fig. 1 with α=2. The ns=4 simulated pure component spectra (a) were
generated using Gaussian functions centred at 440 nm (species A ●), 480 nm (B □),
520 nm (C ○), 560 nm (D ■) with a constant half width of 20 nm and a maximum
intensity of 1. The fitted component spectra (b) of ′B′, ′C ′ and ′D′ were obtained by
defining species A uncoloured and applying Eq. (9).
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Eq. (35)) and thus either the pure component spectrum of species
A, B or D can be provided in order to obtain full resolution of
all component spectra. However, when α=1/2 (a two fold excess
of A), the entry for D in the kernel of Ω|Ø/ØØ/Ø becomes zero and only
incorporating the pure component spectrum of A, B or C leads to
Table 2
Dimension of the image and of the kernel of Ω (mechanism of Eq. (39)) when strategies (1)

Ω|Ø/ØØ/Ø1) Ω|Ø/ØB/Ø Ω|Ø/Ø
B,E/Ø Ω|Ø/ØØ/A Ω|Ø/ØD/A

Strategy None (1) (1), (1) (2) (1), (2)
nc=rank(Ω) 3 3 3 3 3
dim(ker Ω) 2 1 0 1 0
Number of species 5 4 3 4 3
Resolved pure spectra n/a 2) n/a C 3) n/a A, B, C

1)
Ωj uncoloured species in strategy 1ð Þ=pure spectra provided in strategy 2ð Þ

dosed species in strategy 3ð Þ=initial concentrations varied in strategy 4ð Þ
.

2) n/a indicates that the pseudo-inverse of the concentration matrix cannot be computed
performed.
3) The pure spectrum of species C is resolved when α=1.
a full spectral resolution. Apart from these two particular
conditions (α=1 or α=1/2), the pure component spectrum of
any of the four species can be provided. For example, if the
spectrum of B is provided, the column corresponding to B is
removed.

Ωj F=B
F=F

=

A C D

−μk1−μk2 μk1−μk2 μk2
−μk1−k2 μk1−k2 k2
−k1−μk2 k1−μk2 μk2
−k1−k2 k1−k2 k2

c0;A 0 0

2
666664

3
777775

ð38Þ

The kernel of Ω|Ø/ØØ/B only contains the trivial solution (0) and thus,
all fitted component spectra are resolved. In other words, matrix Δ for
the linear combinations of the true pure component spectra equals the
identity matrix I.

3.3. Example 3: a mechanism with three parallel consecutive reactions

Finally, a complex kinetic scheme is studied in a systematic way
and different experimental conditions are discussed in order to reach
full spectral resolution. The mechanism presented in Example 2 is
coupled to a third parallel reaction in which species A reacts with C
to form a product E, as shown in Eq. (39). This kinetic scheme
involves nr=3 reactions and ns=5 species (A, B, C, D and E), and
results in matrices E, P and N, all of dimensions (3×5), which are
defined in Eq. (40). The three associated rate constants are
considered as unknown and may be determined by non-linear
optimisation.

A + BY
k1 C; A + CY

k2 D; A + CY
k3 E ð39Þ

E =

A B C D E
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0

2
4

3
5; P =

A B C D E
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
4

3
5; N =

A B C D E
−1 −1 1 0 0
−1 0 −1 1 0
−1 0 −1 0 1

2
4

3
5

ð40Þ

The mechanism of Eq. (39) can be written in nr=3 differential
equations. Thus, differential Eq. (26) (Example 1) and differential
Eq. (32) (Example 2) are coupled to a third differential equation.

dxt;3
dt

= k3 ∏
ns = 5

i = 1
ce3;it;i −

ft
vt
xt;3 = k3ct;Act;C−

ft
vt
xt;3 ð41Þ

As batch and semi-batch (i.e. strategy 3) conditions are both
considered in this third example, differential Eqs. (26), (32) and (41)
are defined including a possible dosing. If batch conditions are desired,
, (2), (3) and (4) are applied

Ω|Ø/ØØ/A,D Ω|A/ØØ/Ø Ω|A/ØD/Ø Ω|A,D/ØØ/Ø Ω|Ø/BØ/Ø Ω|Ø/BE/Ø Ω|Ø/B,EØ/Ø

(2), (2) (3) (1), (3) (3), (3) (4) (1), (4) (4), (4)
3 4 4 5 4 4 5
0 1 0 0 1 0 0
3 5 4 5 5 4 5
all n/a A, B, C all n/a A, B, C all

and thus the linear regressing step to calculate the component spectra A cannot be



Table 3
Orthonormal basis for the kernel of Ω (mechanism of Eq. (39)) when strategies (1), (2), (3) and (4) are applied

Species ker Ω|Ø/ØØ/Ø1) ker Ω|Ø/ØB/Ø ker Ω|Ø/ØB,E/Ø ker Ω|Ø/ØØ/A ker Ω|Ø/ØD/A ker Ω|Ø/ØØ/A,D ker Ω|A/ØØ/Ø ker Ω|A/ØD/Ø ker Ω|A,D/ØØ/Ø ker Ω|Ø/BØ/Ø ker Ω|Ø/BE/Ø ker Ω|Ø/B,EØ/Ø

A −α 0 0 0 n/a 4) n/a 4) n/a 4) 0 0 0 0 0 0
B 1 0 n/a 3) n/a 3) 0 0 0 0 0 0 0 0 0
C 1−α 0 0 0 0 0 0 0 0 0 0 0 0
D (1+k′) (1−2α) 2) −k′ −k′ 0 −k′ n/a 3) n/a 4) −k′ n/a 3) 0 −k′ 0 0
E 0 1 1 n/a 3) 1 0 0 1 0 0 1 n/a 3) 0

1)
Ωj uncoloured species in strategy 1ð Þ=pure spectra provided in strategy 2ð Þ

dosed species in strategy 3ð Þ=initial concentrations varied in strategy 4ð Þ
.

2) k′=k3/k2.
3) n/a indicates that the species was excluded from Ω, as it was set uncoloured.
4) n/a indicates that the species was excluded from Ω, as its pure spectrum was provided.
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the flow rate ft is set to zero for all times (vt=v0) and in such case the
terms (ft/vt)x t,1, (ft/vt)x t,2 and (ft/vt)x t,3 vanish.

Differential Eqs. (26), (32) and (41) are integrated simultaneously
with initial conditions x0=0. The related vector of initial concen-
trations c0 (1×5), in mol L−1, is defined as a function of the initial
concentration of A.

c0 =
A B C D E
c0;A �c0;A 0 0 0

� � ð42Þ

As the vector of rate constants is unknown, Eq. (16) is used with a
symbolic vectorkof dimensions (3×1), leading to anaugmentedmatrixof
dimensions (6×5), obtained by stacking column-wise (μ1)•E

T
DIAG(k)N

(5×5) and c0 (1×5).

ΩjF=F

F=F
=

μ1ð Þ•ET

DIAG kð ÞN
c0

" #
=

A B C D E
−2k1−2k2−2k3 −2k1 2k1−2k2−2k3 2k2 2k3
−2k1−k2−k3 −2k1 2k1−k2−k3 k2 k3
−k1−2k2−2k3 −k1 k1−2k2−2k3 2k2 2k3
−k1−k2−k3 −k1 −k1−k2−k3 k2 k3
−k1−k2−k3 −k1 −k1−k2−k3 k2 k3

c0;A �c0;A 0 0 0

2
6666664

3
7777775

ð43Þ

With 1 a matrix of ones of dimensions (5×3), k=[k1; k2; k3] and μ
arbitrarily fixed to a value of 2.

As presented in Eq. (43) and in Table 2,Ω|Ø/ØØ/Ø and thus C (nt×ns) are
rank deficient under batch conditions, i.e. (nc=3)b (ns=5), and the
dimension of their kernels is ns−nc=5−3=2. An orthonormal basis
of dimension 2 for ker Ω|Ø/ØØ/Ø (5×2) (and ker C) is computed by SVD
depending on α and k, as presented in Table 3. For this example,
the agreement between the kernel of Ω|Ø/ØØ/Ø and kernel of C is also
presented in the Appendix 6.3. Due to the rank deficiency in Ω|Ø/ØØ/Ø

(and in C), C+ in Eq. (9) cannot be computed and the ns pure
component spectra cannot be calculated. In the following, some
options, summarised in Tables 2 and 3, are presented in order to
circumvent this mathematical drawback, e.g. by applying each
strategy (1, 2, 3 or 4) individually or combining strategy (1) with
strategies (2, 3 or 4). Note that many more permutations are
possible (strategies 2 & 3, 2 & 4, or 3 & 4) and other species can be
chosen within the individual strategies. The best strategy some-
what depends on the experimental constraints, such as accessi-
bility of known spectra or feasibility of dosing a certain species.
Importantly, their outcome can all be predicted (see Appendix 6.4).

3.3.1. Model reduction by defining uncoloured species (strategy 1)
According to the method described in Scheme 1a, first all five

species are considered coloured. All rows of ker Ω|Ø/ØØ/Ø (5×2) contain
non-zero entries for any value of α (see Table 3) except for species C
which contain a row full of zeros when α=1. Thus, the first uncoloured
species can be freely chosen amongst the five species if α≠1 or
amongst A, B, D and E if α=1. If e.g. species B is set uncoloured, the
column associated to species B is removed from Ω|Ø/ØØ/Ø (6×5), leading
to a matrixΩ|Ø/ØB/Ø (6×4). Thus the number of coloured species becomes
ns−nu=5−1=4. The dimension of ker Ω|Ø/ØB/Ø (4×1) is only one, as
shown in Table 2. The impact of defining another uncoloured species
(A, C, D or E) on the kernel of Ω is reported in the Appendix 6.4.

A second appropriate uncoloured species, deduced from the non-
zero entries of ker Ω|Ø/ØB/Ø (see Table 3), can be chosen amongst species
D or E. If e.g. species E is set uncoloured, the column corresponding
to species E is removed from Ω|Ø/ØB/Ø (6×4) leading to a matrix Ω|Ø/ØB,E/Ø

(6×3), whose kernel only contains 0. Thus, an appropriate set of ns−
nu=5−2=3 coloured species is ′A′, ′C′ and ′D′.

In order to predict the impact on the fitted component spectra of
defining species B and E uncoloured, three rows need to be removed
sequentially from Ω|Ø/ØØ/Ø (6×5) according to iterative Scheme 1b using
ΩT|Ø/ØØ/Ø (5×6). The first row to be removed is identified amongst the
non-zero rows of ker ΩT|Ø/ØØ/Ø (6×3) (first matrix from the left in
Eq. (44)), i.e. from row one to five.

ker ΩTjF=F
F=F =

−3 −1 −1
2 0 0
2 0 0
0 2 0
0 0 2
0 0 0

2
6666664

3
7777775
Z

n=a n=a
−1 −1
−1 −1
0 3
3 0
0 0

2
6666664

3
7777775
Z

n=a
−1
−1
n=a
3
0

2
6666664

3
7777775
Z0 ð44Þ

Removing for example row one and re-computing the
kernel leads to the second matrix (5×2) in Eq. (44). The second
row to be removed can be chosen amongst rows two to five of
Ω. If, for example, row four is removed and the kernel is re-
calculated, this leads to the third matrix (4×1) in Eq. (44). The
third row to be removed can finally be chosen amongst rows two,
three and five. Removing for example row five of Ω leads to a
kernel only comprised of 0. Thus, rows two, three and six form an
appropriate set of linearly independent rows that can be used to
reduce Ω|Ø/ØØ/Ø (6×5) to Ωind|Ø/ØØ/Ø (3×5), and to calculate the
underlying linear combinations of the true pure component
spectra that form the fitted component spectra.

Δ = ΩindjB;E=FF=F

� 	−1

ΩindjF=F
F=F

=

A B C D E
1 � 0 0 0
0 �−1 1 0 0
0 1 + kVð Þ 2�−1ð Þ 0 1 kV

2
4

3
5 0A0

0C0
0D0

ð45Þ

With k′=k3/k2.
Note that, in contrast to Example 2, Δ now depends on k. As shown

in Eq. (45), whatever the value of α, none of the fitted component
spectra will be resolved except the one of species C when α=1. As
spectral interpretation is very important in order to validate a reaction
mechanism, particularly if it is a complex one, spectral resolution on
the species level is highly desired. In the next sections, we will show
how this can be achieved by an experimental design following our
systematic approach.
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3.3.2. Model reduction by providing known pure spectra (strategy 2)
According to the entries in ker Ω|Ø/ØØ/Ø (see Table 3), any pure

component spectrum can be provided in strategy (2), except the pure
spectrum of C when α=1. Assume for example the pure spectrum of
reactant A is provided. In this case, the column corresponding to
species A is removed from Ω|Ø/ØØ/Ø (6×5), resulting in a matrix Ω|Ø/ØØ/A

(6×4) and in a reduced number of species, i.e. ns−nks=5−1=4. The
rank of Ω|Ø/ØØ/A is nc=3 and the dimension of ker Ω|Ø/ØØ/A (6×1) is 1, as
shown in Table 2. The impact on the kernel of Ω of providing any
other pure component spectrum (B, C, D, or E) is reported in the
Appendix 6.4. An orthonormal basis for the kernel of Ω|Ø/ØØ/A is
calculated in Table 3.

As dim (ker Ω|Ø/ØØ/A) is not zero and the rank of Ω|Ø/ØØ/A (nc=3) is
lower than the number of species (ns−nks=4), rank deficiency in
the concentration matrix is not yet removed. In order to do so,
either another pure component spectrum can be provided, i.e.
continue with strategy (2) or, if none is accessible, an appropriate
species can be defined uncoloured, i.e. combining strategies (1)
and (2).

If, for example, strategy (2) is applied a second time, the species to
supply a pure component spectrum for can be selected amongst the
species D and E in order to reach full spectral resolution.

If, however, strategy (1) is to be followed, Beer's law (Eq. (1))
has to be reduced by defining nc=3 coloured species amongst the
ns−nks=4 species B, C, D and E. Note however that species B and
C cannot be set uncoloured as their corresponding entries in ker
Ω|Ø/ØØ/A are zero. For example, species ′B′, ′C′ and ′E′ form an appro-
priate set of coloured species, and species D can be defined un-
coloured. Another possible set of coloured species is ′B′, ′C′ and ′D′,
with species E uncoloured. The linear combinations of the true
pure component spectra corresponding to the coloured species ′B′,
′C′ and ′E′ can be predicted using Eq. (20) and independent rows of
the augmented matrix (rows two, three and six as discussed in
Section 3.3.1). Recall, as the pure component spectrum of A was
initially provided, the linear combinations predicted in Eq. (46) do
not contain any column related to A.

Δ = ΩindjD=AF=F

� 	−1

Ωindj F=A
F=F

=

B C D E
1 0 0 0
0 1 0 0
0 0 kVð Þ−1 1

2
4

3
5

0B0
0C0
0E0

ð46Þ

With k′=k3/k2.
Note that the fitted pure component spectra of B and C are always

resolved, as ′B′ is only a linear combination with itself (B) and so does
′C′ with itself (C). In addition, the fitted spectrum of the coloured
species ′E′ is always a linear combination between the true spectrum
of D and itself (E).

3.3.3. Rank augmentation by dosing (strategy 3)
Based on the method described in Scheme 3 and on the kernel

of Ω|Ø/ØØ/Ø (see Table 3), any species could potentially be dosed in
order to augment the rank of matrix C, except species C when α=1.
Assuming, for example, reactant A is dosed (with a dosing
concentration cin,A), this leads to an augmented matrix Ω|A/ØØ/Ø of
dimensions (7×5). The impact on the kernel of Ω of dosing any
other species (B, C, D or E) is reported in the Appendix 6.4.

ΩjF=F

A=F
=

μ1ð Þ•ET

DIAG kð ÞN
c0

" #
=

ΩjF=F
F=F
Cin

2
664

3
775 =

A B C D E

ΩjF=F
F=F

cin;A 0 0 0 0

2
4

3
5
ð47Þ
The rank ofΩ|A/ØØ/Ø (7×5) is nc=4 and the dimension of its kernel is 1,
as shown in Table 2. An orthonormal basis for ker Ω|A/ØØ/Ø (5×1) is
calculated by SVD and given in Table 3. As A has been dosed, this
species is not linearly dependent on any other species and its entry is
zero in the kernel. Due to the parallel reactionwith B forming product
C, dosing A also breaks the linear dependency between B and C.

As dim (kerΩ|A/ØØ/Ø) is not zero and the rank ofΩ|A/ØØ/Ø (nc=4) is lower
than the number of species (ns=5), the fitted component spectra are
not fully resolved. Two options (among others) to allow computing
the pseudo-inverse of C could be to dose another species (strategy 3
again) or to define one uncoloured species (strategy 1).

When strategy (3) is applied again, in order to reach full spectral
resolution, the next species to be dosed has to be chosen amongstD or E.

When strategy (1) is applied in combinationwith strategy (3), Beer's
law (Eq. (1)) is reduced by defining nc=4 coloured species amongst the
ns=5 species A, B, C, D and E. Due to the previous dosing of A, species A,
B and C cannot be set uncoloured. A possible set of coloured species
is thus ′A′, ′B′, ′C′ and ′E′, species D being set uncoloured. Another
possible set of coloured species could be ′A′, ′B′, ′C′ and ′D′ (i.e. species
E uncoloured). If species D is defined uncoloured, the linear combina-
tions of the true pure component spectra can be predicted using Eq. (20)
and independent rows of the augmented matrix (in addition to the
independent rows two, three and six discussed in Section 3.3.1, row
seven is also independent from theothers as it corresponds to thedosing
of species A).

Δ = ΩindjD=FA=F

� �−1
ΩindjF=F

A=F =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 k0ð Þ−1 1

2
664

3
775

A B C D E
0A0
0B0
0C0
0E0

ð48Þ

With k′=k3/k2.
As predicted, the fitted component spectra of species A, B and C

are resolved whereas the component spectrum of the coloured
species ′E′ has a contribution due to species D, the one that was set to
uncoloured.

3.3.4. Rank augmentation by varying initial concentrations (strategy 4)
Based on the method described in Scheme 4 and on the kernel

of Ω|Ø/ØØ/Ø (see Table 3), in order to augment the rank of C the
additional ne=1 experiment can be performed by varying the initial
concentration of either species except the concentration of species C
when α=1. If the ratio of the initial concentrations of B and A is
varied from α to β, one additional row of initial conditions is added
to Ω|Ø/ØØ/Ø (6×5) leading to a matrix Ω|Ø/BØ/Ø of dimensions (7×5). The
impact on the kernel of Ω of varying other initial concentrations (for
A, C, D or E) is reported in the Appendix 6.4.

ΩjF=F

F=B
=

μ1ð Þ•ET DIAG kð ÞN
c
exp1
0

cexp2
0

2
64

3
75 =

A B C D E

μ1ð Þ•ET

DIAG kð ÞN
c0;A �c0;A 0 0 0
c0;A βc0;A 0 0 0

2
64

3
75 ð49Þ

Where c0exp1 and c0exp2 denote the vectors of initial concentrations
for the first and the second experiment respectively.

The rank of Ω|Ø/BØ/Ø is 4 and the dimension of its kernel is 1, as shown
in Table 2. An orthonormal basis for ker Ω|Ø/BØ/Ø (5×1) is calculated by
SVD in Table 3. As the stoichiometric ratio between species A and B
was varied, their corresponding stacked concentration profiles are
now linearly independent, i.e. their respective entries are zero in the
kernel. Note that the kernel does not depend on the stoichiometric
ratios α or β and that the linear dependencies in the concentration
profiles only involve species D and E.

As the dimension of the kernel is not zero and the rank of the
augmented matrix (nc=4) is lower than the number of species
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(ns=5), the pseudo-inverse of C cannot be computed. Two options
(among others) to allow computing the pseudo-inverse of C could be
an additional experiment (ne=2)with different initial concentrations
(strategy 4 again) or to define one uncoloured species (strategy 1).

If strategy (4) is applied once again, the initial concentrations to
be varied must be selected amongst the species that have non-zero
entries in the kernel, i.e. species D and E. An alternative is to define
one uncoloured species (strategy 1) amongst species D and E. Note
that species A, B and C cannot be set uncoloured as their related
concentrations are now linearly independent from the others. If, for
example, species E is defined uncoloured, the linear combinations of
true pure component spectra are given by Eq. (20) with the
independent rows of the augmented matrix (rows two, three and
six as discussed in Section 3.3.1, and row seven corresponding to the
additional experiment varying ratio from α to β).

Δ = ΩindjE=FF=B

� �−1
ΩindjF=F

F=B
=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 k0

2
664

3
775

A B C D E
0A0
0B0
0C0
0D0

ð50Þ

With k′=k3/k2.
Species A, B and C are spectroscopically resolved (rows one, two

and three) and the fitted component spectrum of the coloured species
′D′ is subject to linear combinations with the spectrum of the
uncoloured species E.

4. Conclusion

The determination of a reaction mechanism based on spectroscopic
kinetic investigations is an evolutionary process requiring a constant
adaptation of the postulated kinetic model in order to comply with the
main experimental observations made by chemists. When the under-
lying kinetic model is known (as it was assumed here in the presented
examples), more attention has to be given to the determination of
accurate related kinetic parameters, as this information is then used by
chemical engineers in order to optimise the reaction conditions. For this
two-fold task, kinetic hard-modelling is a particularly suitable techni-
que. It allows the validation of the postulated model and of its related
optimised kinetic parameters, on one hand by statistical means (e.g.
goodness of thefit, analysis of the residuals or uncertainty estimation on
the optimised parameters), but more importantly by comparing the
optimised rate constants and the fitted component spectra with the
experimenter's chemical knowledge or expectations.

For this purpose,wedeveloped anovelmethodapplicable to any type
of bilinear spectroscopic data to be analysed by the kinetic hard-
modelling technique proposedbyMaeder andZuberbühler. Thismethod
identifies in a systematic way, under ideal conditions, the minimum
requirements in terms of mathematical pre-treatment (strategy 1), a
priori information (strategy 2), or experimental design (strategies 3 and
4) in order to allow optimising the rate constants of a kinetic model. The
methodalso predicts the conditions forwhich full spectral resolution can
be expected. In case of partial spectral resolution (strategy1), themethod
determines thecomplex linearcombinations of the truepure component
spectra leading to the fitted (unresolved) component spectra.

This systematic method is based on the kernel of a time invariant
augmented matrix Ω that is pseudo-equivalent to the time variant con-
centration matrix C and covers rank deficienies due to the stoichiometry
(matrixN) and to the rate laws (matrix E). Compared tomatrix C, setting
upmatrixΩ is a simple task that can be quickly performed at theMatlab
prompt, as it does not require any numerical integration of the
differential equations. The kernel of matrix Ω can be easily computed
with Matlab's null command, based on Singular Value Decomposition
(SVD). Symbolic calculation of the kernel allows detecting particular
stoichiometric conditions leading to spectral resolution of some species.
For the common mechanism of Example 2 (A+B→C, A+C→D), we have
shown, for example, that the fitted pure component spectra of species C
andD are only fully resolved under stoichiometric (c0,B/c0,A=1) and half-
stoichiometric (c0,B/c0,A=1/2) conditions respectively.

Themethod relies on the strict assumption that the rank deficiency
in the measured spectroscopic data is due to a rank deficiency in the
concentration matrix and not in the true pure component spectra of
the absorbing species. The validity of this hypothesis depends on the
spectroscopic nature of the signal. This assumption generally holds for
mid-IR spectroscopywith a fairly high resolution and a low probability
of linear dependent component spectra. For UV–Vis spectroscopy,
however, the absorption peaks are generally much broader and linear
dependencies cannot be totally excluded. The method also assumes
that all absorbing species contribute to the measured spectroscopic
data, i.e. in time as well as in wavelength direction. In time direction,
this assumption only depends on the technical capabilities of the
instrument in terms of acquisition time, certain fast reactions requiring
for example stopped-flowequipment ormodel reduction byapplying a
steady state approximation. In wavelength direction, the fulfilment of
this assumption depends on the absorbing nature (absorptivities) of
the reactive species with respect to the signal to noise ratio.

Although some of the underlying assumptions mentioned in
Section 2.2 are rather idealised, knowing the optimal design to
perform a kinetic analysis under ideal conditions is the first step to
successfully complete this analysis under real conditions.
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5. Notation

As a convention for the notation, matrices are written in boldface
capitals (e.g. R), vectors in boldface lowercase (r) and scalars in italics
(r). For indices, lowercase characters are used. Elements of a matrix R
are denoted as ri,j and elements of a vector r as ri.
Symbol
 Dimensions
 Units
 Description
Y
 (nt×nw)
 Time and wavelength resolved
spectroscopic data
C
 (nt×ns)
 mol L−1
 Concentration profiles of all species

Cc
 (nt×ns−nu)
 mol L−1
 Concentration profiles of coloured species

Cuk
 (nt×ns−nks)
 mol L−1
 Concentration profiles of the species

for which no pure component spectra
have been provided
C0
 (nt×ns)
 mol L−1
 Matrix of initial concentrations

C0
ne
 (ne×ns)
 mol L−1
 Initial concentrations of the ne

additional experiments

Cdos
 (nt×ns)
 mol L−1
 Matrix of time resolved dosing

concentrations

Cin
 (nf×ns)
 mol L−1
 Matrix of time invariant dosing

concentrations

A
 (ns×nw)
 L mol−1
 Pure component spectra of all species

Ac
 (nc×nw)
 L mol−1
 Fitted pure component spectra of the

coloured species

Auk
 (ns−nks×nw)
 L mol−1
 Fitted pure component spectra of the

species for which
no known spectra have been provided
R
 (nt×nw)
 Residuals

E
 (nr×ns)
 Coefficients for the reactants

P
 (nr×ns)
 Coefficients for the products

N
 (nr×ns)
 Stoichiometric coefficients

X
 (nt×nr)
 mol L−1
 Extents of reaction

D
 (nt×nt)
 Diagonal matrix of dilution

Ω
 (ns+nf+

ne+1×ns)

Augmented matrix pseudo-equivalent
to C
Ωind
 (nri +nf+
ne+1×ns)
Augmented matrix containing linearly
independent rows
Δ
 (ns−nu−
nks×ns)
Coefficient matrix defining the linear
combinations of the true (resolved)
pure component spectra
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Symbol
 Dimensions
 Units
 Description

Φ
 (nt×nr)
 Matrix of rate laws

x0
 (1×nr)
 mol L−1
 Initial extents of reaction

c0
 (1×ns)
 mol L−1
 Vector of initial concentrations

c0expi
 (1×ns)
 mol L−1
 Vector of initial concentrations of the ith

additional experiment (i=2, 3,…, ne+1)

f
 (nt×1)
 L min−1
 Dosing (flow) rate

v
 (nt×1)
 L
 Time resolved reaction volumes

k
 (nr×1)
 Rate constants

1
 Matrix or vector of ones of appropriate

dimensions

I
 Identity matrix of appropriate dimensions

0
 Matrix or vector of zeros of appropriate

dimensions

Θ
 Diagonal or triangular matrix of

appropriate dimensions

Ω|c)/d)a)/b)
 a) Uncoloured species in strategy (1), Ø:

no uncoloured species. b) Pure component
spectra in strategy (2), Ø:
no pure component spectra. c) Dosed
species in strategy (3), Ø: batch conditions.
d) Varied initial concentrations in strategy
(4), Ø: no additional experiment performed.
∼
 Pseudo-equivalence between two matrices

DIAG
 Operator
 Operator generating a diagonal matrix

from a vector argument

•ET
 Operator
 element-wise raise to the power of ET
dim
 Operator
 Dimension of a matrix
Symbol
 Dimensions
 Units
 Description

im
 Operator
 Image of a matrix

ker
 Operator
 Kernel of a matrix

rank
 Operator
 Rank of a matrix

A, B, C, D, E
 Chemical species

′A′, ′B′, ′C′, ′D′, ′E
′

Coloured species
nt
 Scalar
 Number of reaction times

nw
 Scalar
 Number of wavelengths

ns
 Scalar
 Total number of species

nc
 Scalar
 Rank of matrix C

nu
 Scalar
 Number of uncoloured species

nr
 Scalar
 Total number of reactions

nri
 Scalar
 Number of independent reactions

nf
 Scalar
 Number of different dosing steps

nks
 Scalar
 Number of a priori known pure

component spectra

ne
 Scalar
 Number of additional kinetic

experiments

v0
 Scalar
 L
 Initial volume

k′
 Scalar
 k3/k2 (Example 3)

c0,A, c0,B,
c0,C, c0,D, c0,E
Scalars
 mol L−1
 Initial concentration of species
A, B, C, D, E
cin,A, cin,B, cin,C,
cin,D, cin,E
Scalars
 mol L−1
 Dosing concentrations of species
A, B, C, D, E
α, β
 Scalars
 Different ratios c0,B/c0,A

μ
 Scalar
 Any positive number different

from 1
6. Appendix

6.1. Reduction of the time variant Eq. (15) to the time invariant Eq. (16)

In this section, we describe the different steps required to simplify time variant Eq. (15), i.e.Ω (3·nt×ns), into time invariant Eq. (16), i.e.Ω (ns+
nf+1×ns), while keeping the property of pseudo-equivalence with matrix C, i.e. C∼Ω. Note that if C and Ω share the same kernel, they also share
the same image, and their respective dimension, i.e. their defect and their rank, are the same between C and Ω.

The central point of this simplification is to apply row elementary operations on the time variant matrix Ω, e.g. left-multiplication by a
diagonal or triangular matrix Θ, as these operations do not modify the matrix properties of Ω, i.e. its kernel and its image.

6.1.1. Elimination of diagonal matrices D and (I−D)

AsD and (I−D) are invertible diagonalmatrices, an appropriate diagonalmatrixΘ of dimensions (3·nt×ns) can be designed to removeD and (I−D)

from Ω without modifying its matrix properties.

C nt×nsð ÞfΘΩ =
I 0 0
0 D−1 0
0 0 I−Dð Þ−1

2
4

3
5 XN

DC0
I−Dð ÞCdos

2
4

3
5 =

XN
C0
Cdos

2
4

3
5 =Ω 3dnt×nsð Þ

6.1.2. Substitution of time variant C0 and Cdos by time invariant c0 and Cin

As C0 (nt×ns) and Cdos (nt×ns) are identical vertical stackings of c0 (1×ns) and Cin (nf×ns) respectively, it is possible to multiply C0 and Cdos by

an appropriate lower triangular matrix Θ without affecting their respective matrix properties. For this, also note that removing rows only
comprised by zeros does not change the properties of a matrix either.

C0 nt×nsð ÞfΘC0 =

1 0 0 0 : : : 0
−1 1 0 0 : : : 0
−1 0 1 0 : : : 0
v v v v O v
−1 0 0 0 : : : 1

2
66664

3
77775

c0
c0
c0
v
c0

2
66664

3
77775 =

c0
0
0
v
0

2
66664

3
77775 = c0½ � = c0 1×nsð Þ

Cdos nt×nsð ÞfΘCdos =

1 0 : : : 0 0 : : : 0 0 0 : : : 0
0 1 : : : 0 0 : : : 0 0 0 : : : 0
v v O v v : : : v v v O v
0 0 : : : 1 0 : : : 0 0 0 : : : 0
0 0 : : : −1 1 : : : 0 0 0 : : : 0
v v O v v O v v v O v
0 0 : : : 0 0 : : : 1 0 0 : : : 0
0 0 : : : 0 0 : : : −1 1 0 : : : 0
0 0 : : : 0 0 : : : −1 0 1 : : : 0
v v O v v O v v v O v
0 0 : : : 0 0 : : : 0 0 0 : : : 1

2
66666666666666664

3
77777777777777775

0
0
v

cin1; :
cin1; :

v
cin2; :
cin2; :
cin2; :

v
0

2
66666666666666664

3
77777777777777775

=

0
0
v

cin1; :
0
v

cin2; :
0
0
v
0

2
66666666666666664

3
77777777777777775

=
cin1; :
cin2; :

v

2
4

3
5 = Cin nf×nsð Þ
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The replacement of the time variant matrices C0 (nt×ns) and Cdos (nt×ns) by their respective time invariant vector c0 (1×ns) and matrix Cin
(nf×ns) leads to a matrix Ω of dimensions (nt+nf+1×ns).

C nt×nsð Þf
XN
c0
Cin

2
4

3
5 =Ω nt + nf + 1×nsð Þ

6.1.3. Pseudo-equivalence between the reaction extent and its derivative
The matrix of extents of reaction X (nt×nr) is calculated by numerical integration of a set of first order ordinary differential equations, i.e.

involving the first derivative of X, denotedX(nt×nr). Derivation of X (nt×nr) with respect to time t (nt×1) leading to Ẋ(nt×nr) can be described by
a set of matrix multiplications involving a lower triangular matrix Θ(nt×nt).

:
X = DIAG Θtð Þ−1ΘX = DIAG Θ

t1
t2
t3
t4
v
tnt

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

−1

Θ

x1;:
x2;:
x3;:
x4;:
v

xnt;:

2
6666664

3
7777775
with Θ =

1 0 0 0 : : : 0
−1 1 0 0 : : : 0
0 −1 1 0 : : : 0
0 0 −1 1 : : : 0
v v v v O 0
0 0 0 0 : : : 1

2
6666664

3
7777775

As DIAG(Θt)−1Θ is a lower triangular matrix, it can be omitted without affecting the matrix properties of X. This implies that ker X=ker Ẋ and
thus,

:
X nt×nrð ÞfX nt×nrð Þ

6.1.4. Pseudo-equivalence between the reaction extent and the rate law
The system of first order ordinary differential equations leading toX can be elegantly written inmatrix notation, introducing thematrix of rate
laws denoted Φ (nt×nr).

:
X =Φ−DIAG fð ÞDIAG vð Þ−1X

Using the definition of the kernel of Ẋ, i.e. Ẋ(ker Ẋ)=0, one can write:

:
X ker

:
X

� �
= Φ−DIAG fð ÞDIAG vð Þ−1X
� �

ker
:
X =Φ ker

:
X

� �
−DIAG fð ÞDIAG vð Þ−1X ker

:
X

� �
= 0

As the product of DIAG(f) and DIAG(v)−1 is a diagonal matrix, this left-multiplier can be omitted without affecting the matrix properties of X.
Using the result of Section 6.1.3, i.e. ker X=ker Ẋ, and the definition of the kernel of X, i.e. X(ker X)=0, one can write:

Φ ker
:
X

� �
−X ker

:
X

� �
=Φ ker

:
X

� �
−X ker Xð Þ =Φ ker

:
X = 0

The last equality implies that ker X=ker Ẋ=ker Φ, and thus:

C nt×nsð Þf
ΦN
c0
Cin

" #
=Ω nt + nf + 1×nsð Þ

6.1.5. Simplification of the time variant rate law into a time invariant rate law
The matrix of rate laws, Φ (nt×nr), is calculated according to the first term on the right-hand side of Eq. (6).

Φ =

ce1;11;1 c
e1;2
1;2

: : :ce1;ns1;ns ce2;11;1 c
e2;2
1;2

: : :ce2;ns1;ns
: : : cenr;11;1 cenr;21;2

: : :cenr;ns1;ns

ce1;12;1 c
e1;2
2;2

: : :ce1;ns2;ns ce2;12;1 c
e2;2
2;2

: : :ce2;ns2;ns
: : : cenr;12;1 cenr;22;2

: : :cens;ns2;ns
v v O v

ce1;1nt;1c
e1;2
nt;1

: : :ce1;nsnt;ns ce2;1nt;1c
e2;2
nt;2

: : :ce2;nsnt;ns
: : : cenr;1nt;1c

enr;2
nt;2

: : :cenr;nsnt;ns

2
6664

3
7775DIAG kð Þ

Matrix Φ is based on a complex non-linear operation (see Eq. (6)) that formally requires defining three dimensional arrays of
dimensions (nt×ns×nr), obtained by nr-times identical stacking matrix C (nt×ns) and nt-times identical stacking matrix E (nr×ns). An
anti-clockwise rotation along the time axis (equivalent to a transposition of matrix E) and an unfolding in the time direction allows
then reducing these three dimensional arrays into two dimensional arrays and the calculation of the matrix of rate laws, Φ, as
presented just above.

Under the condition that rank deficiency in Φ only occurs for strictly parallel elementary reactions whose rate laws have the same partial
integer orders but different rate constants, the linear dependencies in the time variant Φ are captured by the following time invariant matrix:

μ1ð Þ•ET

DIAG kð Þ ns×nrð ÞfΦ nt×nrð Þ

With μ being an arbitrary positive scalar different from 1, matrix 1 (ns×nr) being comprised of ones and the superscript •ET representing the
element-wise raise to the power of ET, as also used in the calculation of the matrix of rate laws Φ. Note, while the multiplication with DIAG(k) is
not required to ensure the pseudo-equivalence in the abovementioned equation, it is convenient to see the analogy with the equation definingΦ,
and also necessary to ensure strict pseudo-equivalence between Ω and C.

A time invariant power base (μ1) is introduced to mimic the time variant power base comprised by the product of concentrations without
affecting the matrix properties, in particular the kernel. Importantly, μ must not be equal to 0 or 1, as raising a base of 0 or 1 to the power of ET,



Table 4
Setup and calculation of the kernel of Ω under batch conditions for the kinetic scheme of Fig. 1

Particular solution with α=c0,B/c0,A=1 General solution

≫ mu=0.33; ≫ syms c0A alpha mu k1 k2
≫ N=[−1 −1 1 0; −1 0 −1 1]; ≫ N=[−1 −1 1 0; −1 0 −1 1];
≫ E=[1 1 0 0; 1 0 1 0]; ≫ E=[1 1 0 0; 1 0 1 0];
≫ k=[1; 2]; ≫ k=[k1; k2];
≫ c0=[1, 1, 0, 0]; ≫ c0=[c0A, alpha⁎c0A, 0, 0];
≫ one=ones(size(E′)); ≫ one=ones(size(E′));
≫ omega=[(mu⁎one).^(E')⁎diag(k)⁎N; c0]; ≫ omega=[(mu⁎one).^(E')⁎diag(k)⁎N; c0];
≫ null(omega) ≫ null(omega)
ans = ans =

0.5774 −alpha
−0.5774 1
0.0000 1−alpha
0.5774 1–2⁎alpha

Table 5
Kernel of Ω (for the kinetic scheme of Eq. (39)) when one column is removed from Ω (strategy 1 or 2) or when one row is added to Ω (strategy 3 or 4)

Species Species A used in strategy
(1, 2, 3 or 4)

Species B used in strategy
(1, 2, 3 or 4)

Species C used in strategy
(1, 2, 3 or 4)

Species D used in strategy
(1, 2, 3 or 4)

Species E used in strategy
(1, 2, 3 or 4)

A n/a or 0 1) 0 0 −ε(α) 3) −α −α
B 0 n/a or 0 1) 0 ε(α) 1 1
C 0 0 n/a or 0 1) n/a or 0 1) (1−α) (1−α)
D −k′ 2) −k′ −k′ −ε(α)(1+k′) n/a or 0 1) (1+k′)(1−2α)
E 1 1 1 0 (1+(k′)−1)(1−2α) n/a or 0 1)

1) n/a if strategy (1) or (2) is applied, 0 if strategy (3) or (4) is used.
2) k′=k3/k2.
3) ε=0 for α≠1, ε=1 for α=1.

186 J. Billeter et al. / Chemometrics and Intelligent Laboratory Systems 95 (2009) 170–187
i.e. to the partial reaction orders, leads to the loss of the information contained in ET and thus breaks the pseudo-equivalence between (μ1)•E
T

and Φ.
The pseudo-equivalence between Φ and (μ1)•E

T
finally allows to write a time invariant Ω (ns+nf+1×ns), as presented in Eq. (16), that is

pseudo-equivalent to the time variant Ω (3·nt×ns) of Eq. (15) and to the matrix C (nt×ns).

Ω ns + nf + 1×nsð Þ =
μ1ð Þ•ET DIAG kð ÞN

c0
Cin

2
4

3
5fC nt×nsð Þ

6.2. Matlab example for the setup of Ω applied to the kinetic scheme of Fig. 1 and the calculation of its kernel under batch conditions (Table 4)

6.3. Comparison of ker Ω with ker C for the kinetic scheme of Eq. (39) under batch conditions

Assuming experimental conditions c0A=1 mol L−1, α=1 and rate constants k=[0.5; 0.4; 0.3], both ker C (5×2) and ker Ω (5×2) can be
calculated using Singular Value Decomposition (SVD).

ker C =

−0:5015 0:0322
0:5015 −0:0322

0 0
−0:5232 0:6349
0:4726 −0:7713

2
66664

3
77775; ker Ω =

−0:4986 0:0625
0:4986 −0:0625

0 0
−0:6331 −0:5254
−0:3194 0:8463

2
66664

3
77775

where values are rounded to the fourth digit.
The kernel is a basis for a vector space and thus any linear combination of this basis, i.e. linear transformation, spans the same vector space

(rotational ambiguity). In particular, Singular Value Decomposition (SVD) delivers a set of orthogonal vectors and in this case this linear
transformation is called a rotation. The agreement between ker C and ker Ω is demonstrated by showing that ker Ω can be obtained by linear
combinations of ker C.

ker Ω = ker C 0:9822 −0:1878
−0:1878 −0:9822


 �
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The analytical kernel Ω|Ø/ØØ/Ø, as calculated in Table 3, is also in agreement with the kernel of C, as a rotation of ker C leads to ker Ω|Ø/ØØ/Ø.

ker ΩjF=F
F=F =

� 0
1 0
1� 0

1 + kVð Þ 12�ð Þ kV
0 1

2
66664

3
77775 =

1 0
1 0
0 0

1:75 0:75
0 1

2
66664

3
77775 = ker C 1:9187 −0:0802

−1:1756 −1:2474


 �

With α=1 and k′=k3/k2=0.75.

6.4. Kernel of Ω when strategies (1) to (4) are applied to the kinetic scheme of Eq. (39) (Table 5)
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