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a b s t r a c t

We investigate the problem of distributed sensors’ failure detection in networks with a

small number of defective sensors, whose measurements differ significantly from the

neighbor measurements. We build on the sparse nature of the binary sensor failure

signals to propose a novel distributed detection algorithm based on gossip mechanisms

and on Group Testing (GT), where the latter has been used so far in centralized

detection problems. The new distributed GT algorithm estimates the set of scattered

defective sensors with a low complexity distance decoder from a small number of

linearly independent binary messages exchanged by the sensors. We first consider

networks with one defective sensor and determine the minimal number of linearly

independent messages needed for its detection with high probability. We then extend

our study to the multiple defective sensors detection by modifying appropriately the

message exchange protocol and the decoding procedure. We show that, for small and

medium sized networks, the number of messages required for successful detection is

actually smaller than the minimal number computed theoretically. Finally, simulations

demonstrate that the proposed method outperforms methods based on random walks

in terms of both detection performance and convergence rate.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the past years we have witnessed the emergence of
simple and low cost sensors. This has led to wide deploy-
ment of robust sensor networks for monitoring signals in
numerous applications, for example in medical applications
or natural hazard detection. Most of the previous detection
methods are analyzed in centralized settings, where one or
more nodes have the additional functionality for directing
the failure detection. In practice, sensor networks have a
dynamic architecture with loose coordination in order to
minimize the communication costs. This raises a demand for
novel distributed data processing algorithms that are effec-
tive under network topology and communication constraints.
In particular, it is important to perform failure detection in a
ll rights reserved.

þ41 21 693 76 00.
distributed way to decrease high communication costs of the
centralized algorithm.

In this paper, we propose a novel distributed sensors’
failure detection method that employs a simple distance
decoder for sparse and binary signals. We consider a sensor
network that is represented as a connected graph G¼ ðV,EÞ,
where vertices V ¼ fsig

S
i ¼ 1 stand for the S sensors in the

network and edges E determine sensors’ connectivity (see
Fig. 1). For instance, if two sensors si and sj lie within each
other’s communication range, the edge ei,j 2 E has a non-
zero value. We assume that the function measured by
sensors is smooth, so the neighbor sensors typically have
similar measurements as long as sensors work correctly. At
most K out of S sensors are defective, where K5S and the
defective sensors are scattered in the network. Therefore,
the defective sensor identification problem boils down to a
sparse binary signal recovery, where non-zero signal values
correspond to defective sensors. Our novel distributed
detection approach builds on ideas used in GT methods
[1] that are commonly applied for centralized systems. The
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Fig. 1. Ad hoc sensor network measuring a smooth physical phenomenon.
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core idea is to perform low-cost experiments in the net-
work, called tests, in order to detect the defective sensors.
The tests (detection) are performed on pools of sensors by a
set of sensors called master sensors. Each master sensor
compares the sensor measurements based on a similarity
measure (e.g., threshold) to detect the presence of defective
sensors in its vicinity. The result of this test takes a binary
value, which might be possibly altered by noise. Probabil-
istically designed tests and their outputs at master sensors
together build messages. They are communicated between
the master nodes and their direct neighbors. Next, the
messages are disseminated in the network with a gossip
algorithm (rumor mongering) [2] that follows a pull proto-
col [3], where every sensor randomly picks a sender
amongst its direct neighbors. Each time a new message
reaches a sensor, its value is linearly combined with the
current message at this sensor. This increases the diversity
of information in the network, which is important for an
accurate decoding. The message design and dissemination
phases are repeated for several rounds. The specific pro
babilistic test design described later in this paper ensures
the successful detection with high probability with a simple
distance decoder (e.g., Hamming decoder), as long as the
number of messages exceeds a given threshold. Due to the
distributed nature of our algorithm, the detection can be
performed in any sensor and not only at a master node. We
analyze the detection failure bounds and derive the condi-
tions needed for successful failure detection in the case
of a single defective sensor. Then, we provide the error
bounds for detection of multiple defective sensors in the
network. We show that the number of linearly independent
messages required for detection is smaller in practice than
given by the theoretical bounds obtained in our worst case
analysis. We finally provide simulation results for regular
and irregular networks. The experiments outline the advan-
tages of the proposed detection method compared to other
binary signal detection algorithms based on the random
walk measurements gathering. Our algorithm outperforms
random walk detection methods both in terms of the
detection accuracy and the convergence rate, because it
creates the innovative messages with the higher rate and
disseminates them faster.

This paper is organized as follows. Section 2 over-
views related works in the detection literature and
Section 3 reviews the centralized Group Testing
framework. Section 4 proposes a novel distributed detec-
tion method. It describes the message formation and
dissemination processes in sensor networks and dis-
cusses the detection problem for single and multiple
defective sensors. Section 5 presents the simulation
results.

2. Related works

In general, the detection literature can be mostly classi-
fied into fully centralized and semi-distributed methods. In
the latter, nodes are grouped into static clusters that
independently perform failure detection. Detection algo-
rithms generally employ statistical decoders [4] and often
assume that the signal probability distribution and the
network connectivity are known. For example, a Bayesian
approach in [5] proposes to compute a detection score for a
priori defined sets of hypothesis, which depends on the
received messages. The hypothesis with the highest score
drives the final decision. The binary event detection pro-
blem for hierarchically clustered networks is proposed in
[6] where the cluster decisions are fused centrally to make
a final decision. Surveys on similar methods can be found in
[7,8]. For more details on malicious detection, interested
readers are referred to the detailed survey [9] and refer-
ences within.

Another family of detection methods is based on
Group Testing (GT) ideas, which originates from the work
[1] that targets detection in medical applications. In
particular, it proposes a simple idea of pooling blood
samples to observe the viral presence in a set, instead of
performing tests on every single blood sample separately.
Typically, the main target is to minimize the number of
tests required to identify all the infected samples, while
keeping the detection procedure as simple as possible. GT
has been studied more recently in the context of sensor
networks for detection of malicious events. In summary,
the GT literature can be divided into two main algorithm
types, combinatorial and probabilistic. Both approaches
aim to minimize the number of tests for detection. The
combinatorial GT [10] uses a deterministic test design,
while the probabilistic GT applies the knowledge of
probability distribution of defective elements for this
purpose. From the defect type perspective, detection
approaches differ in scenarios with errors, inhibitors or
combinations of them and they can be rather naive [11].
In some works detection is performed by iterative elim-
ination of identified non-defective items from the test
outcomes. The detection time is typically of order OðSBÞ,
where B is the number of tests and S is the total number of
sensors. Particular test design methods improve the
effective time for detection in centralized systems. For
example, a useful test matrix property called K-disjunctness
(i.e., the Boolean sum of every K columns does not result in
any other column), speeds up the decoding process. This
property is used in code designs, e.g., for superimposed
codes [12,13] or in detection of malicious users [14].
Finally, a random efficient construction of disjunct
matrices is proposed in [15] with a decoding time of
OðpðBÞ � B log2 BþOðB2

ÞÞ, where B¼OðK2 log SÞ is the num-
ber of tests and pð�Þ denotes a polynomial. In our knowledge,



Fig. 2. Noise effect on binary symbols in the test message: non-zero

values in the test matrix are flipped with probability 1�p.
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this represents the state-of-the-art decoding performance for
centralized detection of an arbitrary sparse signal.

Finally, even if the test designs are contingent to the
communication limitations in sensor networks, not many
works have considered connectivity constraints imposed
by the network topology in GT methods. The authors in
[16] propose to form tests by a random walk process on
well-connected graphs. The minimal number of tests
required for detection in this case depends on the random
walk mixing time. A bipartite graph structure is consid-
ered in [17] with a two-stage hybrid detection method.
Here, a subset of defective items in the first stage is
determined by pre-designed tests, while the remaining
items are tested individually in the next step. Data
retrieval for topology-adaptive GT is studied in [18] where
a binary tree splitting algorithm is proposed. The above
methods however use centralized decision algorithms
which are not appropriate for large-scale sensor networks
or networks with a dynamic topology because of the high
communication costs.

Not many works actually address the detection problem
in a distributed way. Moreover, we should emphasize that
the term ‘‘distributed’’ in earlier detection works generally
refers to the information transmission process between
neighboring nodes towards the fusion center that performs
detection. In our work, we however consider the problem of
distributed detection, where each sensor in the network is
able to perform detection task. In other words, motivated by
works that address distributed signal processing tasks (e.g.,
[19]), we target a framework where nodes both transmit and
process data in a distributed manner. Our paper specifically
focuses on a resource effective distributed failure detection
algorithm, which can be deployed in robust monitoring
networks. To the best of our knowledge, no former analysis
has been proposed for distributed detection methods of
sparse binary test signals as proposed in this paper. The
proposed algorithm may be used in general distributed
sparse detection problems, like for instance, for determining
data outliers or abnormalities in networks.

3. Centralized detection with probabilistic group testing

We first review the centralized detection of sensor
failures with methods based on GT and then describe
our novel distributed detection method. We adopt the
following notation. Script letters denote sets, 9 � 9 repre-
sents the number of elements in a set and the i-th column
and row of the matrix W are represented with W:,i and
Wi,:, respectively.

GT aims at detecting defective items in the set based
on the outcome of binary tests. Non-zero entries of an
S-dimensional binary vector f 2 FS

2 indicate the defective
sensors. F2 is a finite field of size two and f is a K-sparse
signal, where K5S and defective sensors are scattered in
the network. The tests preformed on sensor measure-
ments are represented with a B� S dimensional matrix W,
where B stands for the number of tests. The non-zero
entries of Wi,: 2 F

S
2 refer to sensors that participate in the

i-th test. The Boolean matrix multiplication operator is
denoted with �. Then, the binary test results are denoted
with the test outcome vector g¼W� f, where g 2 FB

2.
The design of the matrix W is crucial for reducing the
number of required tests for the detection of defective
sensors. This design resembles the design of generator
matrices of LDPC codes [20]. Motivated by this similarity,
the test matrix W is constructed as [21]

Wi,j ¼
1 with probability q,

0 otherwise:

(
ð1Þ

The sensor participates in a test with a probability q. Such a
test matrix design assures that it is disjunct with high
probability [21, Section IV, Definition 1]. In other words, a
matrix W is called K-disjunct if no column W:,i of W lies in
the sub-space formed by any set of K columns W:,j with jai.
This property enables detection [21, Section IV, Proposition 2]
with a distance decoder (i.e., Hamming distance). The dis-
junct matrix parameter E represents the distance decoder
threshold for detection. We define the support of the vector
with the operator suppð�Þ. For any column W:,i of the test
matrix W that is ðK ,EÞ-disjunct, the decoder verifies if

9suppðW:,iÞ\suppðgÞ9rE: ð2Þ

In other words, the decoder counts the number of positions
in the column W:,i that are different to the outcome vector g.
To remind, the non-zero values of the vector f denote the
defective elements. Then, the elements of f are inferred as
non-zero (marked as defective) iff the inequality (2) holds. In
[21, Theorem 4], the required number of measurements for
successful decoding is equal to B¼OðK logðSÞ=p3Þ for cen-
tralized detection in noisy settings and any single set of
defective sensors. The noise alternates the non-zero entries in
W with probability 1�p, as represented in Fig. 2.

4. Distributed detection method

4.1. Sensor network message design and dissemination

In this section, we propose a novel distributed failure
detection algorithm and analyze its performance. The algo-
rithm is based on a novel test design and message dissemi-
nation strategy in a distributed GT framework. The sensors
iteratively create and disseminate messages in two-phases,
denoted by tI and tII. One algorithm round consists of these
two phases. During the first phase tI, the sensors obtain
messages that estimate the presence of defective sensors in
their neighborhood. In the second phase tII, the sensors
linearly combine messages and exchange them employing
a gossip mechanism. They are illustrated in Fig. 3 and
described below in more detail.

The first phase tI in round t represents the message
construction process illustrated in Fig. 3(a). L master sensors
cluster the network into disjoint subsets V l � V, l¼ 1, . . . ,L.
Clustering is used to bound the search space of the decoder,



Fig. 4. The message formation at sensor s2 in round t. We assume that s2

pulls sensor s1 to send its previous round values (round t�1). We

assume that the sensor s3 is defective f ¼ ½0010 . . .	. The outcome value

and the test identifier vector are formed by bitwise OR.

T. Tošić et al. / Signal Processing 93 (2013) 399–410402
as explained in the following subsections. Measurements of
neighbor sensors do not vary significantly when the sensors
are not defective and when the signal under observation is
smooth over the sensor field. The master sensors locally
gather the readings or measurements from neighbor sensors.
Each sensor randomly participates in the test with prob-
ability q, as given in Eq. (1). The master sensor estimates the
presence of defective sensors within its neighborhood and
then attributes a binary value f ðskÞ 2 f to each sensor in the
neighborhood. The value f ðskÞ ¼ 1 denotes that the sensor sk

is defective and K marks the set of defective sensors. Noise
influence in the test is given as in Fig. 2. The test outcome at
master node l is finally computed as

gl ¼Wl,: � f ¼
1 sk 2 K,

0 otherwise,

(
ð3Þ

where the binary matrix operator � is composed of the
bitwise OR � and the bitwise addition � operators. The
matrix W¼ ½W1,:ðtÞ; . . . ;WB,:ðtÞ	 that marks sensors that
participated in tests is of size B� S. The message formed
by a master sensor l during the phase tI consists of the
outcome gl and the test participation identifier Wl,:. The
message ðglðt

�Þ,Wl,:ðt
�ÞÞ is sent to the neighbor sensors,

which concludes the phase tI.
During the phase tII the messages are disseminated within

the network as illustrated in Fig. 3(b). Every sensor si 2

f1, . . . ,Sg requests the message formed at the previous round
from its neighbor sj, chosen uniformly at random, following a
gossip mechanism with pull protocol. Next, sj responds to the
message request by sending its message created in the
previous round. This process is performed only once per
round. The sensor si further combines these messages as

giðtÞ’giðt
�Þ � gjðt�1Þ,

Wi,:ðtÞ’Wi,:ðt
�Þ �Wj,:ðt�1Þ, ð4Þ

where gjðt�1Þ denotes the sensor outcome value of the
neighbor sj at the previous round ðt�1Þ. The vector Wi,:ðtÞ

represents the test indicator vector at the sensor si in round t.
Since the messages are created probabilistically, the message
combination in the different rounds assures that an innova-
tive message reaches sensors at every round with high
Fig. 3. Illustration of the message design and dissemination through the sensor

and dashed arrows correspond to the steps of the message design, respectively. I

its neighbor sensors fs1 , . . . ,s4g and forms the message ðglðt
�Þ,Wl,:ðt

�ÞÞ. In the

neighbor sensors (phase tI: Message design). (b) Message dissemination based

messages from their neighbors chosen uniformly at random (phase tII: Message

algorithm consist of the message design (tI) and the message dissemination (tI
probability. A toy example of the dissemination phases is
illustrated in Fig. 4. In this example the sensor s2 at round t

pulls the message from the sensor s1 and constructs a new
message according to Eq. (4).

In a matrix form, the process of message formation and
transmission in B rounds at any sensor in the network is
represented as

g¼W� f: ð5Þ

This equation resembles to the outcome computation in the
centralized GT case. However, in the distributed GT the
tests represent linear combinations of test vectors that
build disjunct matrix with high probability, as given in
Eq. (1). We provide here an example to make a clear
distinction between test matrices in proposed and centra-
lized setup. We assume that an oracle has a direct access to
the readings of the master nodes. A vector representation of
tests performed at master nodes observed by an oracle at
the round t¼ i we denote with Ci,:. Then, the matrix
C¼ ½C1,:;C2,:; . . .CB,:	 represents the test matrix over B

collection rounds. Observe that the matrix C is by construc-
tion disjunct, while W is built on the Boolean addition of
rows of C as in Eq. (4). The values in W thus depend on the
random message propagation path, which is obviously
not the case in the centralized GT algorithm. Note that,
for an arbitrary network, the number of network rounds
required for collecting a particular number of linearly
independent tests varies and depends on the network
topology, the number of master nodes L and the test
participation probability q. Once every sensor has gathered
test messages, it independently computes the binary vector
network. (a) Message formation based on local sensor measurements: full

n the first step, the master sensor collects the sensor measurements from

second step, the message is propagated from the master sensor to its

on a gossip algorithm with pull protocol, where the sensors request the

dissemination). (c) Rounds of communication in our iterative detection

I) phases (communication phases).
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f that satisfies the tests in Eq. (5). This process is analyzed
in more detail below.

4.2. Detection of one defective sensor in the network

We first analyze the case of a single defective sensor
(case K¼1) in the network and study the detection
probability of our distributed algorithm. To recall, the
distance decoder used for detection computes the Ham-
ming distance between vectors. The element-wise distance
is equal to one if element values differ, otherwise is zero. To
avoid false alarms, the decoder threshold E is set to a value
higher than the expected number of noise-induced bit flips
per columns in the disjunct matrix C [21]

E¼ ð1þdÞð1�pÞqB, ð6Þ

where d40 is a small constant and B is the number of rows
in C. Columns of C have in average qB non-zero elements
and non-zero elements are flipped with probability ð1�pÞ,
so the expected number of flips per column is

m¼ ð1�pÞqB: ð7Þ

Recall that the matrix C is by construction a disjunct matrix.
The detection problem is resolved for tests that form a
disjunct test matrix [21, Proposition 2]. However, the mes-
sages available at sensors in the network form a test matrix
that is obtained by linear combinations of disjunct matrix
rows and not disjunct matrix rows itself. Nevertheless, we
show below that the distance decoder detects a defective
sensor with high probability under certain conditions.

The formal propositions for detection with high prob-
ability are given below. Proposition 1 and the first part of
Proposition 2 that refer to designing a ðK ,EÞ-disjunct
matrix with high probability are similar to Proposition 2
of [21], which is however derived for centralized detec-
tion. They represent the starting point of the analysis of
our distributed algorithm and we include them here
because they were not used previously in the context of
distributed detection in sensor networks. First we show
that for networks with a single master node the proposed
algorithm designs a ðK ,EÞ-disjunct matrix C during the
phase tI. Next we show that linear combinations of rows
of C preserve distances between the test outcome and the
column of the defective sensor in the test matrix. We then
build on the first two propositions to analyze the number
of messages needed for the distributed detection of a
single defective sensor, which is given in Proposition 5.

Below we show that networks with a single master
node (L¼1) and probabilistic message design in tI build a
ðK ,EÞ-disjunct matrix C with high probability. This case
boils down to the centralized collection of data given in
Proposition 2 in [21].

Proposition 1. For a single-cluster network, the message

design over the phase tI of our proposed method builds a

ðK ,EÞ-disjunct matrix C with high probability for an arbitrary

K and E defined as in Eq. (6).

Proof. We show that the probability that the number of
rows with a good disjunctness property G of C is smaller
than E and we follow the development proposed in [21].
The sensor participation probability q in a test is defined
as in Eq. (1). A row of the matrix Ci,: is considered to have
a good disjunctness property if a single symbol ‘‘1’’ occurs,
while the rest K�1 values are equal to zero. The prob-
ability of such an event is equal to m1 ¼ qð1�qÞK�1. The
random variable that marks the total number of rows
with such a property is denoted with G. The distribution
of G is binomial with a mean value m2 ¼ m1B. We show
that the probability of having less than E rows with a good
disjunctness property is small under the assumption that
Eom2. We limit this probability by a Chernoff bound

PðGoEÞre�ð1=2Þðm2�EÞ
2=m2 ¼ e�qB½ð1�qÞK�1

�ð1�pÞð1þdÞ	2=2ð1�qÞK�1

:

ð8Þ

We mark the exponential term as g¼ ½ð1�qÞK�1
�ð1�pÞ

ð1þdÞ	2=2ð1�qÞK�1. Since 2oeo3, 2�m
Ze�m

Z3�m and
constant mZ0, g is bounded. For the parameter choice in
[21] ðd,mÞ ¼ ðp=2,p=8Þ, the value g¼Oðp3Þ. Therefore this
probability can be designed to be arbitrarily small:
PðGoEÞre�Bg=K ¼ e�OðBp3=KÞ. &

Next, we show that linear combinations of rows of C
for network with one master node preserve the Hamming
distance only between the column of matrix W:,k that
corresponds to the defective sensor sk and the outcome
vector g.

Proposition 2. Let C be the ðK ,EÞ-disjunct matrix created

over B consecutive rounds in a single-cluster network during

the phase tI. Linear combinations of messages generated

during the phase tII, performed as in Eq. (4), preserve the

Hamming distance between the column of obtained matrix

W:,k that corresponds to the defective sensor sk and the

outcome vector g.

Proof. We first analyze the number of value flips which
leads to a decoding failure for ðK ,EÞ-disjunct matrices,
following a development similar to [21]. Next, we prove
that linear combinations of rows in such matrices pre-
serve vector distances between the outcome vector and
the column of W that corresponds to the defective sensor.

A decoding failure with a distance decoder occurs in a
ðK ,EÞ-disjunct matrix when the number of flips of column
elements of C is higher than E. The probability of an
occurrence of a single flip is equal to m3 ¼ qð1�pÞ. Let F

denotes the number of flips in the columns of the matrix.
Hence, the expected number of flips per column is given
in Eq. (7). We want to compute the lower bounds for the
event that more than ð1þdÞm flips occurred in the column
of the matrix, for d40. Applying the Markov inequality
PðFZ ð1þdÞmÞr infd40

QS
i ¼ 1 E½edFi 	=edð1þdÞm for a constant

d40 and plugging the probability of the single flip event:

PðFiÞ ¼
1 with probability ð1�pÞq,

0 with probability 1�ð1�pÞq,

(
ð9Þ

to the expectation term of the previous equation leads to

PðFZ ð1þdÞmÞr inf
d40

QS
i ¼ 1½ð1�pÞqðed�1Þþ1	

edð1þdÞm : ð10Þ
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Using simple computations and setting x¼ ð1�pÞqðed�1Þ,
d¼ logð1þdÞ and 1þxoex we finally obtain

PðFZð1þdÞmÞre�md
2=ð2þdÞ: ð11Þ

The outcome value g depends on the presence of a
defective sensor sk in the test. We prove next that the
distance between g and the k-th column W:,k does not
increase more than E during tII, while this is not true for
the rest of the columns. When sensor sj sends its message
to sensor si during the round t, we have

distðgiðtÞ,Wi,kðtÞÞ ¼ distðgiðt
�Þ � gjðt�1Þ,Wi,kðt

�Þ �Wj,kðt�1ÞÞ

¼ distðgiðt
�Þ,Wi,kðt

�ÞÞ � distðgjðt�1Þ,Wj,kðt�1ÞÞ,

ð12Þ

where the first equality results from Eq. (4). The second
equality follows directly from the fact that the values of
gðt�Þ and the columns W:,kðt

�Þ are identical for the
defective sensor due to Eq. (5). Since these two columns
initially may differ at E positions due to noise flips, the
overall distance between the vectors gðt�Þ and W:,kðt

�Þ is
at maximum E defined by Eq. (6). &

We now consider networks with L master sensors and
a hypothetical centralized data collection. We assume
that L master nodes cluster the sensor network in disjoint
subsets, where every sensor belongs to exactly one
cluster. The master nodes perform message design over
the rounds tI as proposed by our algorithm. We show that
the tests gathered from the L different clusters build a
disjunct matrix, where each cluster relates a ðK ,EÞ-disjunct
matrix.

Proposition 3. The diagonal matrix C¼ diagðC1, . . . ,CLÞ

obtained from ðK ,EÞ-disjunct matrices C¼ fCig
L
i ¼ 1 is at least

ðK ,EÞ-disjunct.

Proof. The proof follows directly from the disjunctness
property of matrices in C (Propositions 1 and 2). &

We analyze now the influence of message gathering
over successive rounds of our detection algorithm. Uni-
form gathering of linearly combined messages at L clus-
ters by a hypothetical centralized decoder enables the
detection of the defective sensor with high probability
when the number of received messages is sufficient.

Proposition 4. When the ðK ,EiÞ-disjunct matrices C¼
fCig

L
i ¼ 1 are linearly combined as in Eq. (4), where E¼PL

i ¼ 1 Ei and q¼
PL

i ¼ 1 qi, the resulting test matrix permits

detection by a distance decoder with high probability as long as

BZOðK logðSÞ=p3Þ messages collected from randomly chosen

clusters build this matrix.

Proof. We first show that a diagonal matrix constructed
from ðK ,EiÞ-disjunct matrices of the set C is ðK ,EÞ-disjunct.
Next, we recall Proposition 2 and finally, we show that the
B measurements assure a good disjunct property of
cluster matrices. Let the number of rows for all matrices
be B¼OðK logðSÞ=p3Þ. The parameters E and Ei are defined
in Eq. (6) and E¼

PL
i ¼ 1 Ei ¼ ð1þdÞð1�pÞBq, so the diagonal

matrix built out of ðK ,EiÞ matrices is ðK ,EÞ disjunct. The
next part of the proof follows from Proposition 2 which
states that a matrix whose rows are formed by linear
combinations of rows of ðK ,EÞ-disjunct matrix permits
detection with a distance decoder. Finally, we prove that
for a given matrix C the disjunct property holds if at least
B messages are available. For this purpose, we follow a
development similar to [21] and consider that the number
of sensors in clusters is equal to the total number of
sensors n¼S. The probability bound given in Proposition 1
should hold for all possible choices of a fixed set of T out
of S columns:

S
T PðGrEÞrSe�Bqg. This probability can be

arbitrarily small, e.g., in case BZK log S=mg¼OðK log
S=p3Þ. Further on, the condition in Eq. (11), which gives
the probability bound that the number of flips in any K

out of T columns exceeds a threshold value E is also
bounded. It reads[

K
PðFZð1þdÞmÞrKeð�d

2=ð2þdÞÞm
¼ Keð�d

2=ð2þdÞp3Þð1�pÞqK logðSÞ,

where the last equality is obtained from Eq. (7). This
probability is small for the sufficiently large value of
B¼OðK logðSÞ=p3Þ. &

We now analyze the proposed distributed algorithm and
consider the detection requirements for every sensor in
the network. We show that the test messages collected by
the sensors during the transmission rounds enable failure
detection by the distance decoder with high probability if
the number of messages is sufficient, where the decoder
operations are performed locally at sensors.

Proposition 5. We assume that L master sensors partition

the sensor network into disjunct parts. Test realizations

within a cluster form test vectors. Over the rounds, these

vectors create ðK ,EÞ-disjunct matrices C¼ fCig
L
i ¼ 1 whose

elements

ci,j ¼
1 with probability qi ¼ ai,

0 otherwise,

(
ð13Þ

where q¼
PL

i ¼ 1 qi. Messages ðgi,Wi,:Þ arrive at all the
sensors in the network in our proposed algorithm, as
described in the previous section. If the above assump-
tions hold and if the number of linearly independent
messages received per cluster at every sensor in the
network is at least B=L, where BZOðK logðSÞ=p3Þ, the
probability that sensors fail to detect the defective sensor
by the distance decoder tends to zero as S-1.

Proof. The message collection method does not influence
the decoder performance, since the number of per-cluster
measurements is sufficient for decoding with high proba-
bility. Therefore, the proof follows from the proof of
Proposition 4. &

4.3. Detection of multiple defective sensors in the network

We analyze now the distributed detection of multiple
defective sensors where K5S holds. We propose here to
slightly modify our distributed algorithm and to limit the
decoder search space to be able to apply the Hamming
distance decoder. The protocol modification and the
adaptation of the distance decoder are described below.
We assume that sensors completely differentiate between
sensors in the network that belong to particular clusters
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and that at most one defective sensor is located in a given
cluster. This knowledge limits the size of the decoder
search space.

The proposed protocol is first modified as follows to deal
with multiple defective sensors. A decoder error occurs
when two or more messages with positive test outcomes
are combined together during the phase tII, since the
distance preserving property defined in Eq. (12) is not
guaranteed in this case. Since the number of defective
sensors is very small compared to the total number of
sensors, this event however occurs rarely. We explain the
protocol modification with a simple example. Let the sensor
si pull the message from the sensor sj, where both sensor
test outcomes have non-zero values. Instead of combining
the messages as in Eq. (4), we simply buffer the new
message of si and consider the message from sj at previous
round as the final outcome of the phase t:

giðtÞ ¼ gjðt�1Þ,

Wi,:ðtÞ ¼Wj,:ðt�1Þ: ð14Þ

At the first subsequent round tZtþ1 of our distributed
algorithm where both messages giðtÞ and gjðt�1Þ
have non-zero values, giðtÞ is replaced by the message
buffered in the node si. The rest of the protocol remains
unchanged.

The decoding proceeds in two main steps. First, the
appropriate unions of test matrix columns are created to
form the search set space and second, the Hamming
distance between the test outcome vector and the vectors
of the search set is computed. The minimum Hamming
distance indicates the solution of the detection problem.
The outcomes g¼ ½g0 g1	

T collected at some sensor are
divided into two sets, i.e., the negative and positive
outcome vectors g0 and g1, respectively. Subsequently,
the rows of the test matrix W form two sub-matrices W0

and W1 and Eq. (5) is rewritten as

g0

g1

" #
¼

W0 0

0 W1

" #
f0

f1

" #
: ð15Þ

We eliminate non-defective sensors from W1 using the
knowledge from W0 and obtain W0

1. To remind, master
nodes partition sensors into clusters. The columns of
interest are those columns of W0

1 which contain at least
one non-zero value, since they mark the participation of
the potential defective sensors in tests. We build the total
search space U by taking into account the total or partial
knowledge of sensor cluster partition.

If the full cluster partition is known, the columns of the
sensors that belong to the same cluster l are grouped
together in a set Hl, l¼ f1, . . . ,Lg, where L is the total
number of clusters (master nodes). Given a partial knowl-
edge about the sensor cluster partition, the cardinality of
the set 9H9¼ 9fHlg

Ln

l ¼ 19 is Ln4L. The search space U
consists of vectors that are obtained by element-wise
OR addition of up to K vectors that are picked from
different sets Hl, because of the assumption that at most
one defective sensor exists in each cluster. For instance,
let the number of defective sensors and clusters be
ðK ,LÞ ¼ ð2,2Þ. LetH1 contain h1 andH2 contain h2 columns.
Then the search space size has in total 9U9¼ h1h2þh1þh2
elements, where h1h2 ¼ ð
h1
1 Þ � ð

h2
1 Þ denotes the number of

unions of K¼2 columns and single column subsets are
chosen in h1þh2 ways. Distance decoding is performed
between g1 and elements of the set U , starting from the
vectors that are created as unions of K columns towards
the smaller number of column unions. If no solution exists
for a particular value of K, we perform the decoding for
vectors built from K�1 column unions of Hi. If no unique
solution is found, we encounter a decoding failure.

We now analyze the number of messages that are
required for detection of multiple defective sensors with
high probability.

Proposition 6. Under the assumption that at most one

defective sensor is present in each cluster, that the number

of available linearly independent messages at all sensors is at

least B=L per cluster with BZOðK logðSÞ=p3Þ and that

sensors know membership identifiers of all the clusters in

the network, the distance decoder detects defective sensors at

all sensors in the network with high probability.

Proof. To recall, the transmission protocol ensures that the
assumptions imposed by Proposition 5 hold for one defec-
tive sensor. Then, due to the assumption that at most one
defective sensor is present in one cluster and that there is at
most one defective sensor active in the test, we form the set
of solutions for the multiple defective case, which has a
unique solution. Distance decoder between the outcome
vector and a limited set of vectors that forms a full search
space can therefore find the appropriate solution. In other
words, this procedure is identical to per-cluster decoding,
where each cluster has at most one defective element, so
Proposition 5 can be applied. &

Proposition 7. Under the assumption that at most one

defective sensor is present in each cluster, that the number of

available linearly independent messages at all sensors in the

network is at least B=L per cluster, where BZOðK logðSÞ=p3Þ

and sensors know the partial set of identifiers of the clusters in

the network, the distance decoder detects defective sensors at

all sensors in the network with high probability.

Proof. The search space U created in this case is larger,
but it contains the solution. Now the proof is identical to
that in the previous proposition. &

The assumption that at most one defective sensor
occurrence per cluster is reasonable when K5S and it is
easy to bound the probability that at least two defective
sensors occur within any cluster with the particular
combination of ðS,L,KÞ parameters. We drop this analysis
due to space limitations. Details can be found in our
Technical Report [22, Section III.C].

5. Performance evaluation

5.1. Setup

In this section, we investigate the performance of our
distributed detection method denoted as GP in various
scenarios. We first examine the influence of different
network parameters on the rate of message dissemina-
tion. Next, we examine the decoding probability for
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defective sensor(s) detection. The number of system
rounds required to collect the necessary number of
messages for accurate decoding varies with the network
topology. The simulations are performed for fully con-
nected, k-connected and irregular graphs. Finally, we
discuss the number of required linearly independent
measurements for successful detection and compare it
with the theoretical value.

We also analyze the performance of several alternative
schemes, namely a random walk method that employs a
gossip mechanism with pull protocol (RWGP) and a
classical random walk (RW) detection. A random walk
determines the path of successive random dissemination
message exchanges between neighbor sensors. In the
RWGP method, the random walk is initiated at L sensors
(equivalent to the master sensors in the GP method) and
terminates after a pre-determined number of rounds. The
sensors create messages from the sensor measurements
collected along the random walk path. These messages
are transmitted with the gossip algorithm that uses a pull
protocol. Note that, for identical choice of the sensors over
rounds, RWGP and GP are identical. The RW method
initiates the raw (uncompressed) measurements collec-
tion in L random sensors and completes it in a given
number of rounds. Every sensor that lays along the
random walk path stores the values of all sensors along
the transmission path. When all the sensors receive all
data, the process terminates.

The proposed GP algorithm is also compared with a store-
and-forward (SF) and a greedy store-and-forward (GSF)
method that employs pull protocol. Both algorithms disse-
minate raw sensor measurements. For the SF method, upon
receiving a message request, a node responds by forwarding
randomly chosen messages from the available set of mes-
sages. In GSF, each sensor randomly requests the innovative
measurements in a greedy manner from its randomly chosen
neighbor sensor. This procedure involves the additional
message exchange among sensors in every round.

We analyze the performance of these algorithms in fully
connected, k-regular and irregular networks. We randomly
position sensors in a unit square area to obtain irregular
topologies. Sensors that lay within a certain radius may
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Fig. 5. Simulation results for fully connected (FG), k¼16-regular connected (RG

constant a¼ qK with S¼20 sensors, K¼1 and a random selection (RM) of L¼5

Average rank of messages received per sensor.
exchange messages directly. In each case, we build 10
different network realizations and for each such realization
we perform 100 independent simulations. The results of all
the sensors in the network are averaged over all the
simulations. Detection failure is encountered when at least
one sensor value in the network is decoded wrongly.

5.2. Detection performance

We first consider the case of a single defective sensor
(K¼1). The detection probability and the average rank
evolution over rounds are examined for fully connected
(FG) and k-connected regular networks (RG) with sensors
degree k 2 f6,16g. Here, the network consists of S¼20
sensors. From Fig. 5, we see that networks with higher
number of connections achieve faster dissemination of
the innovative messages. We also note that high connec-
tivity value k is beneficial, but it cannot drive by itself the
performance of our detection scheme. It should be com-
bined with the appropriate choice of network parameters,
discussed in more detail in Technical Report [22]. For
example, RM master sensor selection for k¼16 achieves
better detection performance, compared to that of fully
connected graphs.

In Fig. 6, we illustrate the detection probability for
random graphs (100 simulations per different graph) with
S¼70, K¼1 defective sensor and minimum sensors’
degree kZ3. We observe that random graphs require
more rounds in average for successful detection, as
expected. Also, we observe that the detection perfor-
mance decreases because of the limited message diversity
(smaller probability of receiving innovative messages)
and the lower connectivity.

We then consider the case of multiple defective
sensors. In Fig. 7, we present results for the cases with
K¼2 defective sensors in networks with 70 sensors. The
results are given in terms of the average detection prob-
ability (for 10 different network realizations, we perform
100 independent simulations and calculate their average)
over dissemination rounds, for both fully and irregularly
connected graphs. The master sensors are selected deter-
ministically (DM) due to the decoder design for multiple
10 15 20 25 30 35 40
System rounds

FG, α = 0.7
FG, α = 0.3
RG, k = 16, α = 0.7
RG, k = 16, α = 0.3
RG, k = 6, α = 0.7
RG, k = 6, α = 0.3

, k¼16) and k¼6-connected graphs (RG, k¼6) and sensor participation

master sensors. (Left) Probability of defective sensor detection. (Right)
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Fig. 6. Probability of defective sensor detection; simulation results for irregular graphs (k43) and random selection (RM) of S¼70 sensors, K¼1. (Left)

L¼5 master sensors. (Right) Sensor participation constant a¼ qK ¼ 0:7.
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Fig. 7. Probability of defective sensor detection for fully connected (FG) and irregular graphs (IG), d43 with S¼70 sensors, K¼2 and deterministic

selection (DM) of master sensors. (Left) Fixed number of clusters L¼10. (Right) Fixed sensor participation constant a¼ qK ¼ 0:3.

Table 1
The theoretical measurement requirements for networks with S sensors.

S¼20 S¼70

K¼1 K¼2 K¼1 K¼2

p 2 ð0:921Þ 130 (115–244) (174–217) (125–284)
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defective sensors identification. We focus on the evolu-
tion of the decoding probability and the average number
of messages collected over rounds. From the evaluation it
is clear that the detection performance is reasonable
when the selected parameter values ðL,aÞ favor diverse
message generation.

In [21], a centralized system has been proposed, which
can be considered as dual to fully connected networks
with centralized tests (single master sensor that covers all
the network). For comparison reasons, we compute the
required number of measurements for networks with
S 2 f20;70g sensors and parameters (q, pf1, pf2) ¼
((0.15�0.3), 0.01, 0.01). The results are reported in
Table 1. We observe that the worst case analysis leads
to a higher number of dissemination rounds than the real
ones. However, these values decrease relatively to the
growth of number of sensors in the network. Simulations
show that in practice the required measurements are
significantly fewer.

Detection probability comparison of the proposed
method with several random walk detection methods is
illustrated in Fig. 8 for S¼70 sensors. The proposed
scheme outperforms all other comparison methods. Note
that the number of required rounds in RWGP scheme
for a high probability detection is large compared to the
other schemes, while RW needs higher communication
overhead for dissemination due to the transmission of
raw sensor measurements. Average rank values over the
network rounds are illustrated in Fig. 9. We observe that
for the fixed detection probability p¼0.9 for the network
with S¼70 sensors the average number of system rounds
required for the proposed method is approximately
f17,20g. The number of system rounds required by the
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Irregular sensor network.

0

5

10

15

20

Av
er

ag
e 

ne
tw

or
k 

ra
nk

 v
al

ue

0

10

20

30

40

50

60

70

System roundsSystem rounds

Av
er

ag
e 

ne
tw

or
k 

ra
nk

 v
al

ue

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GP ,RM
RWGP, RM
RW
SF
GSF

GP ,RM
RWGP, RM
RW
SF
GSF

Fig. 9. Average rank value for irregular sensor networks with L¼5 master sensors: (Left) S¼20 sensors. (Right) S¼70 sensors. Abbreviations: GP: proposed

method, RWGP: random walk gossip dissemination algorithm with pull protocol, RW: random walk in the network initiated at L sensors, SF: pull store-and-

forward algorithm with a random message transmission, GSF: pull store-and-forward algorithm with a greedy message transmission.
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other algorithms to reach the same probability of perfor-
mance is higher.

We note here that the class of defective sensor signals
which can be successfully detected is smaller in GP than
in the centralized GT method because of the additional
assumption that the defective sensors are scattered in the
network. Those sparse signals whose non-zero values are
localized may be only partially recovered with the pro-
posed approach due to the partitioning into clusters.
However, the cardinality of the class of locally distributed
sparse signals is much smaller than the number of
realizations of scattered sparse signals that this algorithm
detects. Also, we highlight that the main advantages of
the proposed distributed algorithm compared to the
centralized one are reflected in lower communication
costs and higher robustness. We finally note that any
sensor can act as a decoder, which is useful in scenarios
with one or more mobile decoders.

We do not attempt to optimize the parameter values in
this work but we briefly discuss the influence of the
parameter choice in the paper. Details are provided in
Technical Report [22], where we discuss the parameter
values which increase the novelty probability of messages
for different master node selection cases. The number of
message exchanges in the network depends on the network
connectivity and the number of master nodes L. This
parameter can be optimized for each mode of the master
node selection (deterministic/probabilistic) when the topol-
ogy and sensor positions are known. These details are
omitted because of the space limitations.

5.3. Communication overhead

For the sake of completeness, we analyze the commu-
nication costs of the proposed gossiping protocol and com-
pare it with all other schemes under comparison. Let Rd and
Id denote the number of bits needed for raw measurements
transmission and sensor identifier, respectively. Recall that
the tuple ðS,L,Ln,n,tÞ stands for the number of sensors in the
network, the number of master sensors (clusters), the
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number of neighbors that each master is connected with, the
average number of sensors per cluster (n¼S/L) and the total
number of transmission rounds, respectively.

During the first phase of GP, the master sensors receive
raw measurements from their neighbors. Thus, Ln � Rd bits
are used for communicating these values. Further, the
master sensors create binary messages and send them to
their neighbors. Every neighbor requires knowledge about
the test sensor identifiers, thus the cost is Id � dqðLþLnÞe

bits, plus an additional bit in each message for sending
the outcome result. Hence, the overall bit consumption is
LnRdþLnðIddqðLþLnÞeÞþ1Þ. ðSþ1Þ bits out of required
SðSþ1Þ bits in the message exchange phase are reserved
for the test outcome and the test matrix row. Note that
this analysis includes the full vector size and it can be
further compressed. The overall number of transmitted
bits over t rounds is

nb
GP ¼ t½LnfRdþ IddqðLþLnÞeþ1gþSð1þSÞ	: ð16Þ

We compare the GP communication costs with the one of
RWGP that also has two phases. The first phase represents
the random walk message collection, while the second is
equivalent to the GP algorithm. Note that the identical
decoding performance of RWGP and GP occurs in a special
case, when both of these algorithms collect exactly the same
data. However, if in RWGP data collection from some sensors
occurs multiple times (more probable in irregular networks
with a smaller connectivity degree), it performs worse than
GP. In typical simulations, a random walk of RWGP termi-
nates after n-th transmission round, where n is the number
of elements per cluster in GP. RWGP transmits raw measure-
ments, which results in ð1þnÞRd=2 bits. Therefore, the
communication cost for RWGP is given by

nb
RWGP ¼ t

ðnþ1ÞRd

2
LþSð1þSÞ

� �
: ð17Þ

The bit transmission requirements for the RW algorithm
is equivalent to that of the first step of RWGP, since it also
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Fig. 10. (Left) Comparison of the communication overhead for several

ð70,5,50,0:7,7,7,80Þ. Graph is fully connected. Abbreviations: GP: proposed

protocol dissemination, RW: random walk in the network initiated at L sensors

detection scheme.
transmits raw data. The detection is performed at nodes by
comparison of known sensor values at that moment,
excluding the message design step. The number of trans-
mitted bits is equal to: nb

RW ¼ tððnþ1ÞRd=2ÞL. Recall that one
requires log S transmissions for a message dissemination to
all the nodes in a fully connected graph. Therefore, SF
algorithm requires in total nb

SF ¼ tRd log S bits.
The comparison between the proposed method and all

other schemes regarding the bits spent on communication
is illustrated in Fig. 10 for a fully connected graph. Note
that the proposed algorithm in this setup requires only
t¼15 rounds for detection, but it consumes approxi-
mately three times more communication overhead com-
pared to that of RWGP algorithm. However, due to the
specific collection approach (hops), the duration of one
transmission round of RWGP lasts 10 times longer than
that of the proposed algorithm. From the figure we can
observe that the RW algorithm has very small commu-
nication overhead. However, it requires significantly
higher number of rounds (S log S
 130 rounds) compared
to the detection time of the proposed GP algorithm.
Overall, the proposed GP scheme is able to compete with
the other schemes in terms of used bits until detection.
6. Conclusion

In this work, we have addressed the problem of
distributed failure detection in sensor networks. We have
proposed a novel distributed algorithm that is able to
detect a small number of defective sensors in networks.
We have designed a probabilistic message propagation
algorithm that allows the use of a simple and efficient
distance decoder at sensors. The transmitted messages
are formed from local sensor observations and they are
communicated using a gossip algorithm. For the worst
case scenario we have derived the lower bound on the
required number of linearly independent messages per
cluster that sensors need to collect to ensure detection of
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one defective sensor with high probability. We have
shown experimentally that this number is quite smaller
in practice, even for the small size networks, which
confirms the validity of the theoretical bound. The experi-
mental results have shown that the proposed method
outperforms other detection schemes in terms of success-
ful detection probability. The convergence rate is very
fast, which largely compensates for the higher commu-
nication overhead.
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