Files

Abstract

We investigate the effects of Na adsorption on the electronic structure of bare and Ir cluster superlattice-covered epitaxial graphene on Ir(111) using angleresolved photoemission spectroscopy and scanning tunneling microscopy. At Na saturation coverage, a massive charge migration from sodium atoms to graphene raises the graphene Fermi level by ∼1.4 eV relative to its neutrality point. We find that Na is adsorbed on top of the graphene layer, and when coadsorbed onto an Ir cluster superlattice, it results in the opening of a large band gap of ΔNa/Ir/G = 740 meV, comparable to the one of Ge and with preserved high group velocity of the charge carriers.

Details

Actions

Preview