Abstract

HPL SA report the modification of the electrochemical performance of lithium manganese phosphate (LiMnPO4) via Mn-site bivalent substitution. Manganese (10%) is substituted with iron, nickel, magnesium, or zinc. These substituents are shown via an X-ray to form solid solutions. The choice of substituent is demonstrated to have a strong influence on the electrochemical performance. The optimum performance improvement was achieved when 10% of Fe is substituted. This is ascribed to a smaller crystallite and a higher electronic conductivity observed in this material: Presumably Fe plays a role in hindering the crystallite growth and in increasing the carrier's transportation. Electronic structures were calculated by density function theory to understand the different influences of substitute cations.

Details

Actions