
Noname manuscript No.
(will be inserted by the editor)

Model Checking Transactional Memories

Rachid Guerraoui · Thomas A. Henzinger · Vasu Singh

Received: date / Accepted: date

Abstract Model checking transactional memories (TMs)
is difficult because of the unbounded number, length,
and delay of concurrent transactions, as well as the un-
bounded size of the memory. We show that, under cer-
tain conditions satisfied by most TMs we know of, the
model checking problem can be reduced to a finite-state
problem, and we illustrate the use of the method by
proving the correctness of several TMs, including two-
phase locking, DSTM, and TL2. The safety properties
we consider include strict serializability and opacity; the
liveness properties include obstruction freedom, livelock
freedom, and wait freedom.

Our main contribution lies in the structure of the
proofs, which are largely automated and not restricted
to the TMs mentioned above. In a first step we show
that every TM that enjoys certain structural properties
either violates a requirement on some program with two
threads and two shared variables, or satisfies the re-
quirement on all programs. In the second step, we use
a model checker to prove the requirement for the TM
applied to a most general program with two threads
and two variables. In the safety case, the model checker
checks language inclusion between two finite-state tran-
sition systems, a nondeterministic transition system rep-

This research was supported by the Swiss National Science Foun-
dation. This paper is an extended and revised version of our pre-

vious work on model checking transactional memories [11,12].

Rachid Guerraoui

LPD (Station 14), I&C, EPFL CH 1015 Lausanne, Switzerland

E-mail: rachid.guerraoui@epfl.ch

Thomas A. Henzinger
MTC (Station 14), I&C, EPFL CH 1015 Lausanne, Switzerland

E-mail: tah@epfl.ch

Vasu Singh

MTC (Station 14), I&C, EPFL CH 1015 Lausanne, Switzerland
E-mail: vasu.singh@epfl.ch

resenting the given TM applied to a most general pro-
gram, and a deterministic transition system represent-
ing a most liberal safe TM applied to the same program.
The given TM transition system is nondeterministic be-
cause a TM can be used with different contention man-
agers, which resolve conflicts differently. In the liveness
case, the model checker analyzes fairness conditions on
the given TM transition system.

Keywords Transactional memories · Model checking

1 Introduction

Transactional memory (TM) has recently gained much
interest due to the advent of multicore architectures.
A TM allows to structure an application in terms of
coarse-grained code blocks that appear to be executed
atomically [20,26]. A TM provides the illusion of se-
quentiality to a programmer and maximal flexibility to
the underlying hardware. However, behind the appar-
ent simplicity of the TM abstraction, lie challenging
algorithms that seek to ensure transactional atomicity
without restricting parallelism.

Inspired by how databases manage concurrency, TM
was first introduced by Herlihy and Moss [20] in multi-
processor design. Later Shavit and Touitou [26] intro-
duced STM, a software-based variant of the concept.
Despite the large amount of experimental work on TMs [21],
little effort has been devoted to their formalization [15,
25]. Two safety properties, strict serializability [22] and
opacity [15], have been considered for TMs. The for-
mer requires committed transactions to appear as if
executed at indivisible points in time during their life-
time. Opacity goes a step further and also requires
aborted transactions to always access consistent state.
The notion of opacity conveys an emerging consensus

2

about correctness in the TM community [7,19]. The
liveness requirements we consider are the standard no-
tions of obstruction freedom [18], livelock freedom [2],
and wait freedom [17]. Obstruction freedom requires
that if a transaction executes in isolation, then it even-
tually commits. Livelock freedom requires some trans-
action to eventually commit. Wait freedom requires ev-
ery transaction to eventually commit.

Precisely because TMs encapsulate the difficulty of
handling concurrency, the potential of subtle errors in
their implementation is enormous. This makes TM a
ripe and important proving ground for formal verifica-
tion. However, three major challenges need to be tack-
led to model check TMs.

1. Transactional memories, being highly performance
oriented, employ sophisticated techniques to ensure cor-
rectness in the face of conflicts due to concurrency.
Moreover, TMs generally rely on a separate module,
called a contention manager, to resolve conflicts when
they occur, and to guarantee liveness. A first step to-
wards verification is to create a formalism to express
different TMs and contention managers in a uniform
framework.

2. While model checking is the verification technique
that is best equipped to find concurrency bugs, model
checking is severely handicapped by several sources of
unbounded state in TM: memory size, thread count,
and transaction length cannot be bounded, and nei-
ther can the delay until a transaction commits, nor the
number of times that a transaction aborts. Special care
is needed in formulating a verification problem that is
both relevant and solvable, as some problems about se-
quentializing concurrent systems are undecidable [1].

3. The specification of a TM universally quantifies
over all possible application programs, requiring the de-
sired safety and liveness conditions for all programs
that are executed on the TM.

We present in this paper a new technique for veri-
fying TM safety and liveness properties. We first pro-
vide a framework to formalize TM together with spe-
cific contention mangers as TM algorithms, as well as
TM safety and liveness properties. Then, we exploit
the structural symmetries that are inherent in TM al-
gorithms to reduce the verification of unbounded TM
state spaces to a problem that involves only a small
number of threads and shared variables. Specifically,
we show that every TM that enjoys certain structural
properties either violates any of the considered safety
and liveness requirements with two threads and two
shared variables, or always satisfies the requirement.
Basically, these structural properties expect all threads
to be treated equally. They are fulfilled by most TMs,
including for instance, two-phase locking, DSTM [19],

and TL2 [7]. Similar techniques for reducing unbounded
instances of model-checking tasks to small, character-
istic instances have been used for verifying protocols
with an unbounded number of identical processes [3]
and cache-coherence protocols [16].

Finally, we define two finite-state deterministic tran-
sition systems, called TM specifications that generate
exactly the strictly serializable (resp. opaque) execu-
tions of programs with two threads and two shared vari-
ables. These transition systems are obtained by apply-
ing the most liberal TM safe with respect to strict seri-
alizability (resp. opacity) to a most general program.
The finite size of the transition systems is achieved
by a careful choice of state, which encompasses for ev-
ery thread a set of read variables (at most two), a set
of written variables (at most two), a set of variables
not allowed to be read (at most two), a set of vari-
ables not allowed to be written (at most two), a set
of threads with commit-dependent predecessor trans-
actions (at most one), and a set of independent pre-
decessor transactions (at most one). As it is difficult
to directly prove the correctness of the deterministic
TM specifications, we provide more natural nondeter-
ministic TM specifications for strict serializability and
opacity, and prove their correctness. Then, we use an
antichain-based tool [28] and show automatically that
these nondeterministic TM specifications are language
equivalent to their deterministic counterparts.

Putting all steps together, we reduce the problem of
verifying the safety of transactional memories, which is
unbounded in many dimensions (memory size, thread
count, transaction delay, etc.), to a language inclusion
check between a nondeterministic and a deterministic
finite-state system. Since the TM specification is de-
terministic, language inclusion can be checked in time
linear in the size of the systems: For two-phase lock-
ing, DSTM [19], and TL2 [7], we obtain transition sys-
tems with up to 20,000 states for the most general pro-
gram with 2 threads and 2 variables. We implemented
a checker that automatically verifies strict serializabil-
ity and opacity for two-phase locking, DSTM, and TL2
in less than a minute. The liveness properties guaran-
teed by a TM depend on the specific contention man-
ager used with the TM. Generally a TM, by itself, does
not guarantee any interesting liveness properties. So,
for liveness, we model check a TM together with a spe-
cific contention manager to determine which liveness
property is satisfied. We again prove a structural re-
duction theorem to check the desired liveness require-
ment on the finite-state transition system that results
from a given TM algorithm applied to a most general
program with two threads and one variable. Our tool
checked the different liveness properties. In the case of

3

obstruction freedom, this amounts to checking a Streett
condition [27]. For instance, the check goes through
for DSTM with the aggressive contention manager. For
two-phase locking and TL2 with the polite contention
manager, the model checker automatically generates
counterexamples to obstruction freedom.

Our methodology is applicable to any TM algorithm
that satisfies the structural properties. We find that cor-
rectness is not self-evident in many TM algorithms. For
example, we found an ambiguity in ordering of two par-
ticular operations in the published TL2 algorithm [7].
One of the orderings makes TL2 unsafe. In this case,
the check for language inclusion provides as counterex-
ample an execution that is not strictly serializable (and
thus not opaque). We therefore expect our verification
tool to be useful to TM designers when they develop or
modify TM algorithms.

2 Framework

We present a framework to express transactions and
their correctness properties.

Preliminaries. Let V be a set {1, . . . , k} of k variables,
and let C = {commit}∪({read,write}×V) be the set of
commands on the variables V . Also, let Ĉ = C∪{abort}.
Let T = {1, . . . , n} be a set of n threads. Let Ŝ = Ĉ×T
be the set of statements. Also, let S = C × T . A word
w ∈ Ŝ∗ is a finite sequence of statements. Given a word
w ∈ Ŝ∗, we define the thread projection w|t of w on
thread t ∈ T as the subsequence of w consisting of all
statements s in w such that s ∈ Ĉ×{t}. Given a thread
projection w|t = s0 . . . sm of a word w on thread t, a
statement si is finishing in w|t if it is a commit or an
abort. A statement si is initiating in w|t if it is the first
statement in w|t, or the previous statement si−1 is a
finishing statement.

Transactions. Given a thread projection w|t of a word
w on thread t, a consecutive subsequence x = s0 . . . sm

of w|t is a transaction of thread t in w if (i) s0 is initiat-
ing in w|t, and (ii) sm is either finishing in w|t, or sm is
the last statement in w|t, and (iii) no other statement
in x is finishing in w|t. The transaction x is committing
in w if sm is a commit. The transaction x is aborting
in w if sm is an abort. Otherwise, the transaction x is
unfinished in w. Given a word w and two transactions
x and y in w (possibly of different threads), we say that
x precedes y in w, written as x <w y, if the last state-
ment of x occurs before the first statement of y in w. A
word w is sequential if for every pair x, y of transactions
in w, either x <w y or y <w x. We define a function
com : Ŝ∗ → S∗ such that for all words w ∈ Ŝ∗, the word
com(w) is the subsequence of w which consists of every

statement in w that is a part of a committing transac-
tion. A transaction x of a thread t writes to a variable
v if x contains a statement ((write, v), t). A statement
s = ((read, v), t) in x is a global read of a variable v if
there is no statement ((write, v), t) before s in the trans-
action x. A transaction x of a thread t globally reads a
variable v if there exists a global read of variable v in
transaction x.

Safety properties of TM. We consider two safety
properties for transactional memories: strict serializ-
ability and opacity. Intuitively, strict serializability [22]
requires that the order of conflicting statements from
committing transactions is preserved, and the order of
non-overlapping transactions is preserved. Opacity [15],
in addition to strict serializability, requires that even
aborting transactions do not read inconsistent values.
The motivation behind the stricter requirement for abort-
ing transactions in opacity is that in TMs, inconsistent
reads may have unexpected side effects, like infinite
loops, or array bound violations.

We define that a statement s1 of transaction x and a
statement s2 of transaction y (where x is different from
y) conflict in a word w if (i) s1 is a global read of some
variable v, and s2 is a commit, and y writes to v, or (ii)
s1 and s2 are both commits, and x and y write to some
variable v. This notion of conflict corresponds to the
deferred update semantics [21] in transactional memo-
ries, where the writes of a transaction are made global
upon the commit. Our methodology can be adapted for
direct update semantics by changing the definition of a
conflict.

A word w = s0 . . . sm is strictly equivalent to a word
w′ if (i) for every thread t ∈ T , we have w|t = w′|t, and
(ii) for every pair si, sj of statements in w, if si and sj

conflict and i < j, then si occurs before sj in w′, and
(iii) for every pair x, y of transactions in w, where x is a
committing or an aborting transaction, if x <w y, then
it is not the case that y <w′ x.

We define the safety property strict serializability
πss ⊆ Ŝ∗ as the set of words w such that there exists
a sequential word w′, where w′ is strictly equivalent to
com(w). Furthermore, we define opacity πop ⊆ Ŝ∗ as
the set of words w such that there exists a sequential
word w′, where w′ is strictly equivalent to w. We note
that πop ⊆ πss , that is, if a word is opaque, then it is
strictly serializable.

Liveness properties of TM. We define two differ-
ent notions of liveness, obstruction freedom and livelock
freedom, as discussed in the TM literature. A third no-
tion, wait freedom [17], implies livelock freedom. Since
we will show that none of our TM examples satisfy live-
lock freedom, they do not satisfy wait freedom either.

4

We consider infinite words on Ŝω. An infinite word
w ∈ Ŝω is obstruction free [18] if for all threads t, if
the word w has an infinite number of aborts of t, then
w has an infinite number of commits of t, or there
are infinitely many statements of some thread u 6= t.
Formally, w is obstruction free if

∧
t∈T (�♦(abort, t) →

�♦((commit, t) ∨
∨

c∈Ĉ,u∈T\{t}(c, u))), where the tem-
poral operation � denotes ‘always’ and the temporal
operation ♦ denotes ‘eventually’. Obstruction freedom
is a Streett condition [27].

An infinite word w ∈ Ŝω is livelock free [2] if the
word has an infinite number of commits, or there is
a thread t such that t has infinitely many statements
and finitely many aborts in w. Formally, w is livelock
free if �♦(

∨
t∈T (commit, t)) ∨

∨
t∈T (�♦(

∨
c∈C(c, t)) ∧

♦�¬(abort, t)). Note that livelock freedom implies ob-
struction freedom. This is because if a word w has an
infinite number of commits, or if w has infinitely many
statements and finitely many aborts in w, then w is
obstruction free.

TM specifications for safety. We capture safety prop-
erties of TM using TM specifications. A TM specifica-
tion is a 3-tuple 〈Q, qinit , δ〉, where Q is a set of states,
qinit is the initial state, and δ ⊆ Q×((Ĉ∪{ε})×T)×Q
is a transition relation. A finite word s0 . . . sm in Ŝ∗

is a run of the TM specification if there exist states
q0 . . . qm+1 in Q such that q0 = qinit , and for all i such
that 0 ≤ i ≤ m, we have either (qi, si, qi+1) ∈ δ, or
(qi, (ε, t), qi+1) ∈ δ. The language L of a TM specifi-
cation is the set of all runs of the TM specification.
A TM specification Σ defines a correctness property
π if L(Σ) = π. A TM specification is deterministic if
for every state q ∈ Q, we have (i) for every statement
s ∈ Ŝ, there is at most one state q′ ∈ Q such that
(q, s, q′) ∈ δ, and (ii) there is no state q′ ∈ Q such that
(q, (ε, t), q′) ∈ δ.

We shall provide both nondeterministic and deter-
ministic TM specifications for strict serializability and
opacity.

Transactional memories. We characterize a TM by
the set of infinite words it can produce. Formally, a
transactional memory (TM) M is a subset of Ŝω. We
say that M ensures (n, k) strict serializability (resp.
(n, k) opacity) if for every prefix w of every word in M
such that w has at most n threads and at most k vari-
ables, we have w ∈ πss (resp. w ∈ πop). Moreover, M
ensures strict serializability (resp. opacity) if M ensures
(n, k) strict serializability (resp. (n, k) opacity) for all
n and k. A TM M ensures (n, k) obstruction freedom
(resp. (n, k) livelock freedom) if every word w ∈M such
that w has at most n threads and at most k variables is
obstruction free (resp. livelock free). Moreover, M en-
sures obstruction freedom (resp. livelock freedom) if M

ensures (n, k) obstruction freedom (resp. (n, k) livelock
freedom) for all n and k.

In practice, TMs may employ a separate module,
called a contention manager, to enhance liveness [14,
24]. A contention manager resolves conflicts on the ba-
sis of the past behavior of the transactions. Various con-
tention managers have been proposed in the literature.
For example, the Karma contention manager prioritizes
transactions according to the number of objects opened,
whereas the Backoff contention manager backs off con-
flicting transactions for a random duration [24]. When
the transactional memory detects a conflict, it requests
the contention manager to resolve the conflict. The con-
tention manager proposes the TM the next statement
to be executed. A TM M and a contention manager cm
define a new transactional memory Mcm ⊆ Ŝω.

3 TM Algorithms

We now present a formalism to express various TMs
using TM algorithms. A TM algorithm consists of a set
of states, an initial state, an extended set of commands
depending on the underlying TM, a conflict function, a
pending function, and a transition relation. A command
is executed as a sequence of extended commands, all
of which execute atomically. Thus, the extended com-
mands include the set C of commands, as well as TM
specific additional commands. For example, a given TM
may require that a thread locks a variable before writ-
ing to the variable. The conflict function captures the
statements in a state, when the TM algorithm may con-
sult a contention manager for a decision. The pending
function represents the pending command of a thread
in a state, and ensures that if a thread has not finished
the execution of all extended commands corresponding
to a particular command, then no other command is
executed by the thread.

We define a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉,
where

– Q is a set of states,
– qinit is the initial state,
– D ⊇ C is the set of extended commands,
– φ : Q× S → B is the conflict function,
– γ : Q× T → C ∪ {⊥} is the pending function, and
– δ ⊆ Q×C×ŜD×Resp×Q is the transition relation,

where ŜD = (D∪{abort})×T and Resp = {⊥, 0, 1}
is the set of responses.

For a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉, the fol-
lowing rules hold:

– No command is pending in the initial state for all
threads. For all threads t ∈ T , we have γ(qinit , t) =⊥.

5

– If there is an incoming transition to state q′ of thread
t with command c and response ⊥, then c is pending
in q′ for t. For all states q, q′ ∈ Q such that there is
an incoming transition (q, c, (d, t), r, q′) to q′ in δ, if
r =⊥, then γ(q′, t) = c, otherwise γ(q′, t) =⊥.

– On a transition of a thread, the pending command of
other threads does not change. For all states q, q′ ∈ Q

s.t. there is an incoming transition (q, c, (d, t), r, q′)
to q′ in δ, we have γ(q′, u) = γ(q, u) for all threads
u 6= t.

– If a command is pending in a state for a thread
t, then all outgoing transitions from the state by t

are for the pending command. For all states q and
all threads t, if γ(q, t) = c with c 6=⊥, then for all
outgoing transitions (q, c1, (d, t), r, q′) from q in δ,
we have c1 = c.

– If no command is pending in a state for a thread t,
then there is an outgoing transition from the state
by thread t for every command. For all states q and
all threads t, if γ(q, t) =⊥, then there is an outgo-
ing transition (q, c, (d, t), r, q′) from q in δ for every
command c ∈ C.

– For all transitions with the extended command as
abort, the response is 0. For all q ∈ Q, for all transi-
tions (q, c, (d, t), r, q′) in δ, we have d = abort if and
only if r = 0.

– For all states, there is at most one transition corre-
sponding to a given command c, a given extended
command d, and a given thread t. For all q ∈ Q,
if (q, c, (d, t), r1, q′) ∈ δ and (q, c, (d, t), r2, q′′) ∈ δ,
then r1 = r2 and q′ = q′′.

– For all states, if a statement s does not conflict
in the state, then there is at most one outgoing
transition corresponding to s from the state. For
all q ∈ Q and c ∈ C, if (q, c, (d1, t), r1, q′) ∈ δ

and (q, c, (d2, t), r2, q′′) ∈ δ, then either d1 = d2,
or φ(q, (c, t)) = true.

Note that the rules above restrict the transition rela-
tion δ and the pending function γ such that γ is unique.
A command c is enabled in a state q for thread t if
γ(q, t) ∈ {⊥, c} (i.e., either no command is pending, or
c itself is pending). A command c is abort enabled in
a state q for thread t if c is enabled in q for thread t

and there is no transition (q, c, (d, t), r, q′) ∈ δ such that
d ∈ D. Note that a transition (q, c, (abort, t), 0, q′) ∈ δ
from a state q can exist in two cases. First, if the com-
mand c is abort enabled for thread t in state q, which
implies that the TM algorithm does not allow to con-
tinue the execution of command c for thread t in the
state q. Second, if φ(q, (c, t)) = true, which implies that
the TM algorithm can nondeterministically choose to
abort the thread t in state q, if the command c is is-
sued.

3.1 Contention managers

A contention manager cm on a set D of commands is
a tuple 〈P , pinit , δcm〉, where P is a set of states of
the contention manager, pinit ∈ P is the initial state of
the contention manager, and δcm ⊆ P × D × P is the
transition relation.

We now formalize a TM which uses a contention
manager. Let a transactional memory M be represented
by a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉. Let
cm = 〈P, pinit , δcm〉 be a contention manager. Then,
Mcm is represented by a TM algorithm Acm = 〈Q×,
(qinit , pinit), D, φ×, γ×, δ×〉, where

– the set of states is Q× = Q× P ,
– the conflict function φ× is such that for all states
q× ∈ Q×, for all commands c ∈ C, and for all
threads t ∈ T , we have φ×(q×, (c, t)) = φ(q, (c, t))
where q× = (q, p) for some state p ∈ P ,

– the pending function γ× is such that for all states
q× ∈ Q× and all threads t ∈ T , we have γ×(q×, t) =
γ(q, t) where q× = (q, p) for some state p ∈ P ,

– the transition relation δ× is such that for all states
q×, q

′
× ∈ Q×, for all commands c ∈ C, for all state-

ments (d, t) ∈ ŜD, and for all responses r ∈ Resp,
we have (q×, c, (d, t), r, q′×) ∈ δ× if and only if
(i) there exists a transition (q, c, (d, t), r, q′) ∈ δ,
(ii) if φ(q, (c, t)) = true, then there exists a transi-
tion (p, (d, t), p′) ∈ δcm , and
(iii) if there does not exist a transition (p, (d, t), p′) ∈
δcm , then p = p′, else (p, (d, t), p′) ∈ δcm ,
where q, q′ ∈ Q and p, p′ ∈ P such that q× = (q, p)
and q′× = (q′, p′).

3.2 Languages of TM algorithms

A TM algorithm interacts with a scheduler. The sched-
uler chooses the next thread to be executed. A com-
mand of the chosen thread is given to the TM algo-
rithm. The TM algorithm decides whether the com-
mand can be executed in a single or several atomic
steps, or the command is in conflict. The TM algorithm
makes a transition according to the transition relation,
and gives back to the program a response. The response
is ⊥ if the TM algorithm needs additional steps to com-
plete the command, 0 if the TM algorithm needs to
abort the transaction of the scheduled thread, and 1 if
the TM algorithm has completed the command. Given a
scheduler and a TM algorithm, we get a set of runs. Pro-
jecting a run to the set of successful statements (that
is, aborts, and statements that get response 1) gives a
finite word. The language of a TM algorithm is the set

6

Alg. 1 getSequential(Status, c, d, t, r)
if c = (read, v) or c = (write, v) then

if d = c and r = 1 then

if Status(u) = finished for all threads u 6= t then
Status(t) := started
return Status

if c = commit then

if d = c and r = 1 then

if Status(u) = finished for all threads u 6= t then
Status(t) := finished
return Status

if d = abort and r = 0 then
if c is abort enabled in q for thread t then

Status(t) := finished
return Status

return ⊥

of finite words that the TM algorithm can produce for
any scheduler.

Formally, a scheduler σ on T is a function σ : N →
T . A run ρ = 〈q0, c0, (d0, t0), r0〉 . . . 〈qn, cn, (dn, tn), rn〉
of a TM algorithm A with scheduler σ is a finite se-
quence of tuples of states, commands, statements, and
responses, where the following hold: (i) q0 = qinit, and
(ii) for all j ≥ 0, there exists a transition (qj , cj , (dj , tj), rj , qj+1) ∈
δ, and (iii) tj = σ(j). A statement si = (di, ti) ∈ Ŝ is
successful in the run ρ = 〈q0, c0, s0, r0〉 . . . 〈qn, cn, sn, rn〉
if (i) ri ∈ {0, 1}, or (ii) rk = 1 with i < k and for all j
such that i < j < k, if tj = ti, then rj =⊥. We define
the language L(A) of a TM algorithm A as the set of
all finite words w ∈ Ŝ∗ such that w is the sequence of
all successful statements in a run of A with some sched-
uler. A TM algorithm A defines a TM M if every finite
prefix w of every word in M is in L(A), and every word
w in L(A) can be extended to an infinite word in M .

3.3 TM examples

We now describe different transactional memories as
TM algorithms. To keep our first example simple, we
describe a sequential TM.

3.3.1 The sequential TM

The sequential TM executes the transactions se-
quentially (as ideally suited for a uniprocessor). We do
not use a contention manager for the sequential TM,
and hence set the conflict function to be always false.
We define the sequential TM algorithm Aseq as 〈Q, qinit ,
D, φ, γ, δseq〉. A state q ∈ Q is defined as a function
Status : T → {finished, started}. The initial state is
qinit = Status0, such that for all threads t ∈ T , we have
Status0(t) = finished. The set of extended commands is
D = C. For all states q and all statements (c, t), the

Alg. 2 get2PL(〈rs,ws〉, c, d, t, r)
if c is not enabled in q for thread t then return ⊥
if c = (read, v) then

if d = c and r = 1 and v ∈ ws(t) ∪ rs(t) then
return 〈rs,ws〉

if d = (rlock, v) and r =⊥ then

if v /∈ ws(u) for all threads u 6= t then
rs(t) := rs(t) ∪ {v}
return 〈rs,ws〉

if c = (write, v) then
if d = c and r = 1 and v ∈ ws(t) then

return 〈rs,ws〉
if d = (wlock, v) and r =⊥ then

if v /∈ (ws(u) ∪ rs(u)) for all threads u 6= t then

ws(t) := ws(t) ∪ {v}
return 〈rs,ws〉

if c = commit then

if d = c and r = 1 then
rs(t) := ∅; ws(t) := ∅
return 〈rs,ws〉

if d = abort and r = 0 then
if c is abort enabled in q for thread t then

rs(t) := ∅; ws(t) := ∅
return 〈rs,ws〉

return ⊥

conflict function φ(q, (c, t)) = false. The transition rela-
tion δseq is obtained using the procedure getSequential
shown in Algorithm 1. For all states q ∈ Q, all com-
mands c ∈ C, all extended commands d ∈ D ∪ {abort},
all threads t ∈ T , and all responses r ∈ Resp, we have

– if getSequential(q, c, d, t, r) =⊥, then there does not
exist a state q′ ∈ Q such that (q, c, (d, t), r, q′) ∈ δseq ,
and

– if getSequential(q, c, d, t, r) = q′ for some state q′ ∈
Q, then (q, c, (d, t), r, q′) ∈ δseq .

For all TM examples we present in this section, we use
a similar notation.

3.3.2 The two-phase locking TM

Our second TM example is based on two-phase lock-
ing (2PL) protocol, commonly used in database trans-
actions. Every transaction locks the variables it reads or
writes before accessing them, and releases all acquired
locks during the commit. A shared lock is acquired for
reading, and an exclusive lock is acquired for writing.
We do not use a contention manager with two-phase
locking, and hence define the conflict function to be
always false.

We define the 2PL TM algorithm A2PL as 〈Q, qinit ,
D, φ, γ, δ2PL〉. A state q ∈ Q is represented as the pair
〈rs,ws〉, where rs : T → 2V is the shared lock set, and
ws : T → 2V is the exclusive lock set. The initial state
qinit = 〈rs0,ws0〉, where for all threads t ∈ T , we have
rs0(t) = ws0(t) = ∅. The set of extended commands

7

Alg. 3 getDSTM (〈Status, rs, os〉, c, d, t, r)
if c is not enabled in q for thread t then return ⊥
if Status(t) = aborted and d 6= abort then return ⊥
if c = (read, v) then

if d = c and r = 1

if v ∈ os(t) then

return 〈Status, rs, os〉
if v /∈ os(t) and Status(t) = finished then

rs(t) := rs(t) ∪ {v}
return 〈Status, rs, os〉

if c = (write, v) then

if d = c and v ∈ os(t) and r = 1 then

return 〈Status, rs, os〉
if d = (own, v) and r =⊥ then

os(t) := os(t) ∪ {v}
for all threads u 6= t such that v ∈ os(u) do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs, os〉

if c = commit then

if d = validate and r =⊥ and Status(t) = finished then

Status(t) := validated
for all threads u 6= t such that rs(t) ∩ os(u) 6= ∅ do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs, os〉

if d = c and r = 1 and Status(t) = validated then

Status(t) := finished rs(t) := ∅ os(t) := ∅
for all threads u 6= t such that rs(u) ∩ os(t) 6= ∅ do

Status(u) := invalid
return 〈Status, rs, os〉

if d = abort and r = 0 then

Status(t) := finished rs(t) := ∅ os(t) := ∅
if c is abort enabled in q for thread t then

return 〈Status, rs, os〉
if φ(q, (c, t)) = true then

return 〈Status, rs, os〉
return ⊥

is D = C ∪ ({rlock,wlock} × V). For all states q and
all statements (c, t), the conflict function φ(q, (c, t)) =
false. The transition relation δ2PL is obtained using the
procedure get2PL shown in Algorithm 2.

3.3.3 The dynamic software transactional memory

Dynamic software transactional memory (DSTM) [19]
is one of the most popular transactional memories. DSTM
faces a conflict when a transaction wants to own a vari-
able which is owned by another thread. DSTM is our
first example that uses a contention manager. Thus, we
identify pairs of states and statements that lead to a
conflict, and set the conflict function as true at those
places.

We define the DSTM algorithm Adstm as 〈Q, qinit ,
D, φ, γ, δdstm〉. A state q ∈ Q is defined as a 3-tuple
〈Status, rs, os〉, where Status : T → {aborted, validated,
invalid, finished} is the status function, rs : T → 2V is
the read set, and os : T → 2V is the ownership set.
The initial state qinit = 〈Status0, rs0, os0〉, where for
all threads t ∈ T , we have Status0(t) = finished and

Alg. 4 getTL2 (〈Status, rs,ws, ls,ms〉, c, d, t, r)
if c is not enabled in q for thread t then return ⊥
if c = (read, v) then

if d = c and v ∈ ws(t) and r = 1 then
return 〈Status, rs,ws, ls,ms〉

if d = c and v /∈ ws(t) ∪ms(t) and r = 1 then

rs(t) := rs(t) ∪ {v}
return 〈Status, rs,ws, ls,ms〉

if c = (write, v) then

if d = c and r = 1 then
ws(t) := ws(t) ∪ {v}
return 〈Status, rs,ws, ls,ms〉

if c = commit then
if d = (lock, v) and r =⊥ then

if Status(t) = finished and v ∈ ws(t) then
ls(t) := ls(t) ∪ {v}
for all threads u 6= t such that v ∈ ls(u) do

Status(u) := aborted
return 〈Status, rs,ws, ls,ms〉

if d = validate and r =⊥ and Status(t) = finished then

if rs(t) ∩ms(t) = ∅ and ws(t) = ls(t) then
Status(t) := validated
for all threads u 6= t such that rs(t) ∩ os(u) 6= ∅ do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs,ws, ls,ms〉

if d = c and r = 1 and Status(t) = validated then

for all threads u 6= t such that rs(t) ∪ ws(t) 6= ∅ do
ms(u) := ms(u) ∪ ws(t)

rs(t) := ∅ ws(t) := ∅ ls(t) := ∅ ms(t) := ∅
Status(t) := finished
return 〈Status, rs,ws, ls,ms〉

if d = abort and r = 0 then
Status(t) := finished
rs(t) := ∅ ws(t) := ∅ ls(t) := ∅ ms(t) := ∅
if c is abort enabled in q for thread t then

return 〈Status, rs,ws, ls,ms〉
if φ(q, (c, t)) = true then

return 〈Status, rs,ws, ls,ms〉
return ⊥

rs0(t) = os0(t) = ∅. The set of extended commands is
D = C∪ ({own}×V)∪{validate}. The conflict function
φ(q, (c, t)) = true if and only if (i) c = (write, v) and
for some thread u 6= t we have v ∈ os(u), or (ii) c =
commit and Status(t) = finished and for some thread
u 6= t we have rs(t)∩os(u) 6= ∅. The transition relation
δdstm is obtained using the procedure getDSTM shown
in Algorithm 3.

We define an aggressive contention manager as aggr =
〈{pinit}, pinit , δ〉 such that for all threads t ∈ T and for
all extended commands d ∈ D such that d 6= abort,
we have (pinit , (d, t), pinit) ∈ δ. Intuitively, the aggres-
sive contention manager does not allow a transaction
to abort itself in case of conflict.

3.3.4 The TL2 TM

Transactional locking 2 (TL2) [7] is a TM that uses
global version numbers to ensure correctness. Version
numbers allow efficient read set validation in a dis-

8

Table 1 Examples of runs and words in the language of different TM algorithms. Notation: r = read, w = write, c = commit, a = abort,
rl = rlock, wl = wlock, l = lock, o = own, v = validate, and k = chklock. Command (c, t) is written as ct.

TM Scheduler output The sequence s0s1 . . . in the run of L(A) The word for the run of L(A)

seq 11122 . . . (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . .

112122 . . . (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . .

2PL 111112 . . . (rl, 1)1, (r, 1)1, (wl, 2)1, (w, 2)1, c1, (wl, 2)2 . . . (r, 1)1, (w, 2)1, c1 . . .

1211112 . . . (rl, 1)1, a2, (r, 1)1, (wl, 2)1, (w, 1)1, c1, (wl, 2)2 . . . a2, (r, 1)1, (w, 2)1, c1 . . .

dstm 12211112 . . . (r, 1)1, (o, 1)2, (w, 1)2, (o, 2)1, (w, 2)1, v1, c1, a2 . . . (r, 1)1, (w, 1)2, (w, 2)1, c1, a2 . . .

12222111 . . . (r, 1)1, (o, 1)2, (w, 1)2, , v2, c2, (o, 2)1, (w, 2)1, a1 . . . (r, 1)1, (w, 1)2, c2, (w, 2)1, a1 . . .

TL2 112112212 . . . (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, v1, (l, 1)2, v2, c1, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, c1, c2 . . .

11212122 . . . (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, (l, 1)2, a1, v2, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, a1, c2 . . .

tributed setting. We model version numbers using mod-
ified sets for each thread. When a transaction commits,
it adds its write set to the modified set of every thread
with an unfinished transaction.

We define the TL2 TM algorithm MTL2 as the tuple
〈Q, qinit , D, φ, γ, δTL2 〉. A state q ∈ Q is defined as
a 5-tuple 〈Status, rs, ws, ls, ms〉, where Status : T →
{validated, finished, aborted}, rs : T → 2V is the read
set, ws : T → 2V is the write set, ls : T → 2V is the
lock set, and ms : T → 2V is the modified set. The ini-
tial state is given by qinit = 〈Status0, rs0,ws0, ls0,ms0〉,
where for all threads t, we have Status0(t) = finished,
and rs0(t) = ws0(t) = ls0(t) = ms0(t) = ∅. The set of
extended commands is D = C∪({lock}×V)∪{validate}.
The conflict function φ(q, (c, t)) = true if and only if
c = commit and for some v ∈ ws(t) we have v ∈ ls(u)
for some thread u 6= t. The transition relation δTL2 is
obtained using the procedure getTL2 shown in Algo-
rithm 4.

We define a polite contention manager for the TL2
TM algorithm as pol = 〈{pinit}, pinit , δ〉, where δ =
{(pinit , (abort, t), pinit) | t ∈ T}. Intuitively, the po-
lite contention manager always requires a transaction
to abort in case of conflict.

Table 1 shows runs with different schedules for each
TM algorithm described above.

4 Reduction Theorem for Safety

We wish to prove the safety of TMs for any number of
threads and variables. Also, the safety of a TM should
not depend on the choice of the contention manager,
i.e., a TM should be safe with any contention manager.
Modeling contention managers explicitly in our formal-
ism is not a feasible option. Contention managers may
blow up the state space as the decisions of a contention
manager may depend intricately on past behavior. For
example, a simple random backoff contention manager,
which asks a conflicting thread to back off for an arbi-

trarily long period of time would require an unbounded
number of states. Moreover, we shall show that some of
the structural properties break when we model a TM
algorithm in conjunction with a particular contention
manager.

We observe that a TM algorithm, without a con-
tention manager, nondeterministically chooses a tran-
sition at the point of conflict. On the other hand, when
the TM algorithm is used with a contention manager,
the transition should exist in the transition relation of
the TM algorithm and that of the contention manager.
In other words, a contention manager restricts the set of
runs of a TM algorithm. Thus, given a TM algorithm A

and a contention manager cm, we have L(Acm) ⊆ L(A).
Thus, it is sufficient to prove the safety of a TM

without a contention manager, in order to show that
the TM using any contention manager is safe. We shall
present a reduction theorem for strict serializability and
opacity. The theorem states that if a TM ensures (2, 2)
strict serializability (resp. (2, 2) opacity), then the TM
ensures strict serializability (resp. opacity). The reduc-
tion theorem relies on certain structural properties of
TMs.

We now define four structural properties for TMs.
These properties are satisfied by sequential TM, two-
phase locking TM, DSTM, and TL2 TM. For every
property, we also explain why the mentioned TMs sat-
isfy that property. Note that the properties are suffi-
cient (and not necessary) conditions for the reduction
theorem to hold.

Let M be a transactional memory, and let w be a
finite prefix of a word in M .

P1. Transaction projection. Aborting and unfinished
transactions can influence other transactions only by
forcing them to abort. Thus, removing all aborting trans-
actions and some of the unfinished transactions do not
change the response of the TM to the remaining state-
ments. Formally, let X be the set of transactions in w.
We define the transaction projection of w on X ′ ⊆ X as
the subsequence of w that contains every statement of

9

all transactions in X ′. The property P1 states that the
transaction projection of w on X ′, where X ′ contains
all committing transactions, no aborting transactions,
and any subset of the unfinished transactions in w, is in
M . For instance, a TM satisfies P1 if for every thread
t: (i) whenever a statement of an aborting or unfin-
ished transaction of thread t changes the state of an-
other thread u, then u cannot commit, and (ii) upon an
abort, the state of t is reset to the initial state of t. All
TMs (without contention managers) we know of satisfy
P1. But, a TM with a contention manager that prior-
itizes transactions according to the number of times it
has aborted in the past, does not satisfy the structural
property of transactional projection. This is because,
an abort of a transaction of thread t may be the reason
why the next transaction of thread t commits.

P2. Thread symmetry. For non-overlapping transactions,
the TM is oblivious to the identity of the thread exe-
cuting the transaction. The property P2 states that if
(i) w have no aborting transactions, and (ii) there exist
two threads u and t such that for all committing trans-
actions x of u and y of t in the word w, either x <w y

or y <w x, then the word w′ obtained by renaming all
transactions of thread u to be from thread t is a finite
prefix of a word in M . For instance, a TM satisfies P2 if
(i) the state of a thread is set to its initial state upon a
commit, and (ii) the transition relation is identical for
all threads. All TMs we know of satisfy P2.

P3. Variable projection. If a transaction can commit,
then removing all statements that involve some partic-
ular variables does not cause the transaction to abort.
We define the variable projection of w on V ′ ⊆ V as the
subsequence of w that contains all commit and abort
statements, and all read and write statements to vari-
ables in V ′. The property P3 states that if w has no
aborting transactions, then for all V ′ ⊆ V , the variable
projection of w on V ′ is in M . For instance, a TM satis-
fies P3 if reading or writing a variable does not remove
a conflict on other variables. All TMs we know of sat-
isfy P3 as they track every variable accessed by every
thread independently.

P4. Monotonicity. If a word is allowed by the TM, then
more sequential forms of the word are also allowed. For-
mally, let F ⊆ S∗ be the set of opaque (resp. strict
serializable) words with exactly one unfinished transac-
tion. We define a function seq : F → 2F such that if
w2 ∈ seq(w1) and y is the unfinished transaction in w1,
then (i) com(w2) is sequential and strictly equivalent
to com(w′1), and (ii) all statements of y in w′1 occur
in w2 in some order such that order of all conflicts of
global reads in y with other transactions in w′1 is pre-
served, where w′1 is obtained from w1 by adding for

every transaction x that commits before y in w, a write
of an auxiliary variable vxy to x, and a read of vxy to y.
(These variables are introduced to maintain the order
of transactions.) The monotonicity property for opac-
ity (resp. strict serializability) states that if w = w′ · s,
where w′ ∈ F , and s is not an abort, and s is a state-
ment of the unfinished transaction in w′, then for every
word w2 ∈ seq(w′), the word w2 · s is a finite prefix of a
word in M . For instance, a TM satisfies P4 if it is unfin-
ished commutative and commit commutative. A TM is
unfinished commutative if for all words wp, wq, ws ∈ S∗,
if the word wp · wq · s · ws is a finite prefix of a word
in M , where s is a global read and no statement in wq

conflicts with s, then wp · s ·wq ·ws is a finite prefix of
a word in M . A TM is commit commutative if for all
words wp, wq, ws ∈ S∗, if wp ·wq · s ·ws is a finite prefix
of a word in M , where s is a commit of some transac-
tion x and no statement in wq conflicts with s, then the
word wp · x · w′q · ws is a finite prefix of a word in M ,
where w′q is the word obtained by removing transaction
x from wq. These commutativity rules allow to make
an interleaved word sequential. The TMs, sequential,
2PL, DSTM, and TL2 are unfinished commutative and
commit commutative, and thus satisfy monotonicity.

Now, we shall use these four structural properties
to prove the reduction theorem. The idea of the proof
is as follows. We assume that a TM ensures the cor-
rectness property for two threads and two variables,
but does not ensure the correctness property for more
threads or variables. We start with an incorrect word
in the language of the TM. We consider the shortest
incorrect prefix of this word. We remove all aborting
and all pending transactions except one pending trans-
action using the transaction projection property. Using
the monotonicity property, we sequentialize this pre-
fix. Using the thread symmetry property, we rename
the word to be with two threads. Using the variable
projection property, we get an incorrect word with two
threads and two variables, which is in the language of
the TM. This leads to a contradiction.

Theorem 1 If a TM M ensures (2, 2) strict serializ-
ability (resp. (2, 2) opacity) and satisfies the properties
P1, P2, P3, and P4 for strict serializability (resp. opac-
ity), then M ensures strict serializability (resp. opac-
ity).

Proof We prove the theorem for strict serializability. A
similar proof holds for opacity. The proof is by con-
tradiction. Let w ∈ M be not strictly serializable. Let
wp be the longest finite prefix of w such that wp is
strictly serializable and let w1 = wp · s, where s = (c, t)
is a statement of transaction x. Let X be the set of
committed transactions in wp. By property P1, there

10

exists a word w2 generated by projecting w1 to X∪{x}
such that w2 is a finite prefix of a word in M . We note
that w2 = w′p · s and w′p is strictly serializable and w2

is not strictly serializable. So, using property P4 for
strict serializability, there exists a word w′′p ∈ seq(w′p)
such that the word w3 = w′′p · s is a finite prefix of a
word in M . In w3 only one transaction, x, does not ex-
ecute sequentially. We note that the last statement of
x is a commit. This is because strict serializability con-
cerns only committed transactions, and the word w′′p is
strictly serializable while w3 is not. Using property P2,
we rename the threads for the transactions in w3. We
let all transactions except x to be executed by thread
u. Let this renaming give word w4. As w4 is not strictly
serializable, we know (by the definition of conflict) that
one of the following holds: (i) s1 = ((read, v1), t) and
s2 = ((read, v2), t) are global reads of transaction x such
that some transaction y of thread u writes to v1 and
some transaction y′ of u with y′ = y or y <w4 y

′ writes
to v2 and both commit between s1 and s2, (note that
y and y′ cannot overlap due to the structure of w4,) or
(ii) s1 = ((read, v1), t) is a global read of transaction x

such that some transaction y of thread u writes to v1
and commits after s1, and there is a committing trans-
action y′ with y′ = y or y <w4 y

′ which has a command
(read, v2) or (write, v2), and x also writes to v2. (Note
that v1 may be same as v2). Let w5 be a variable pro-
jection of w4 on {v1, v2}. We know that w5 is a finite
prefix of a word in M on two threads and two variables,
by property P3. Also, we note that w5 is not strictly se-
rializable. As we know that all words w ∈ M on two
threads and two variables are strictly serializable, we
get a contradiction. ut

5 TM Specifications for Safety

Using the reduction theorem mentioned above, our safety
verification problem reduces to checking the safety prop-
erty for two threads and two variables. We now de-
scribe TM specifications for strict serializability and
opacity. Suitable TM specifications can also be defined
for stronger notions of safety, such as the notions de-
scribed by Scott [25], by modifying the semantics of
conflict.

Our verification technique relies on the fact that the
TM specifications for strict serializability and opacity
for two threads and two variables can be defined using
a finite number of states. This is not obvious, as threads
may be delayed arbitrarily, transactions may contain ar-
bitrarily many statements and may be aborted arbitrar-
ily often. The classical approach to checking whether a
word is strictly serializable is to construct a directed
graph G = (V,E), called the conflict graph [22], of the

committing transactions in the word. The conflict graph
captures the precedence of the committing transactions
based on the conflicts. Given a word w = s0 . . . sn, the
transactions in w form the set V of vertices in the con-
flict graph. There exists an edge from a vertex v1 to a
vertex v2 if v2 commits or aborts before v1 starts, or a
statement si of v1 conflicts with a statement sj of v2
and i > j. The conflict graph G is acyclic if and only
if the word w is strictly serializable. We note that the
size of this construction is unbounded. The following
parametrized word illustrates the point: wm =((read,
v1), t1), (((write, v1), t2), (commit, t2))m, (commit, t1).
The number of vertices in the conflict graph of wm is
m + 1. Thus, we cannot aim to create a finite-state
TM specification for strict serializability using conflict
graphs.

We look at the issues we face in creating TM speci-
fications for strict serializability and opacity.

Analysis of strict serializability. We look at two
words and reason whether they are strictly serializable.

(r, v2)3

(r, v1)3

c3

z
x (r, v1)1

(w, v2)1

c1

time

y (w, v1)2

c2

(a)

c3

(r, v3)3

(w, v2)3

z
x (r, v1)1

c1

(w, v3)1

time

y (w, v1)2
(r, v2)2

c2

(b)

Fig. 1 Examples for strict serializability. The words are frag-

mented into transactions of different threads. We use the nota-

tion: w for write, r for read, c for commit, and a for abort.

– Consider the word w = ((write, v1), t2), ((read, v1),
t1), ((read, v2), t3), (commit, t2), ((write, v2), t1),
((read, v1), t3), (commit, t1), (commit, t3). The word
w is illustrated in Figure 1(a). The transaction x

has to serialize before y due to a conflict on v1 (as
x reads v1 before y commits and y writes to v1).

11

(r, v1)3

z (r, v2)3

x (r, v1)1

(w, v2)1

c1

time

y (w, v1)2

c2

(a)

z (r, v2)3

a3

y (w, v1)2

c2
x (r, v1)1

c1

(w, v2)1

time

(b)

Fig. 2 Examples for opacity. The words are fragmented into
transactions of different threads.

Similarly, the transaction z has to serialize before x
due to a conflict on v2. However, z has to serialize
after y due to a conflict on v1 (z reads v1 after v1 is
written and committed by y). So, w is not strictly
serializable. On the other hand, if one of the trans-
actions had not committed, the word would have
been strictly serializable.

– Consider the word w = ((write, v1), t2), ((read, v2),
t2), ((read, v3), t3), ((read, v1), t1), (commit, t2),
((write, v2), t3), ((write, v3), t1), (commit, t1), (com-
mit, t3). The word is illustrated in Figure 1(b). The
transaction x has to serialize before y due to a con-
flict on v1. Similarly, the transaction z has to seri-
alize before x due to a conflict on v3. Also, z writes
to the variable v2 which is read by transaction y be-
fore z commits. Thus, z has to serialize after y. This
makes w not strictly serializable.

These examples show that strict serializability is a
property concerned with committing transactions.

Analysis of opacity. Designing a TM specification for
opacity requires even further care. This is because even
aborting transactions should be prevented from read-
ing inconsistent values. To demonstrate the intricacies
involved, we again give two examples.

– Consider the word w = ((write, v1), t2), ((read, v1),
t1), ((read, v2), t3), (commit, t2), ((write, v2), t1),
((read, v1), t3), (commit, t1). The word is illustrated
in Figure 2(a). Transaction x has to serialize before

y due to a conflict on v1. Also, z has to serialize
after y due to a conflict on v1, and before x due
to a conflict on v2. Note that although z does not
commit, opacity requires that transaction x does not
commit. So, w is not opaque.

– Consider the word w = ((write, v1), t2), ((read, v1),
t1), (commit, t2), ((read, v2), t3), (abort, t3), ((write,
v2), t1), (commit, t1). The word is illustrated in Fig-
ure 2(b). Transaction x has to serialize before y due
to a conflict on v1. Transaction z has to serialize
after y as they do not overlap in w. Also, z has
to serialize before x due to the conflict on v2. This
makes w not opaque. This shows how a read of an
aborting transaction may disallow a commit of an-
other transaction, for the sake of opacity.

The key idea to get around the problem of infi-
nite states is to maintain sets called prohibited read and
write sets for every thread. These sets allow to handle
unbounded delay between transactions, as committing
transactions store the required information in the sets
of other threads. Once a transaction commits or aborts,
we need not remember it (unlike conflict graphs). Thus,
we need to store information of at most one transaction
per thread.

We now present TM specifications for strict serial-
izability and opacity, and manually prove their correct-
ness. Later, we give deterministic TM specifications,
and use an antichain-based tool to prove that the lan-
guage of deterministic TM specifications for two threads
and two variables is indeed equivalent to that of the
nondeterministic counterparts.

5.1 Nondeterministic specifications

Nondeterminism allows a natural construction of the
TM specifications, where a transaction nondeterminis-
tically guesses a serialization point during its lifetime.
A branch of the nondeterministic TM specification cor-
responds to a specific serialization choice of the trans-
actions, which makes the construction simple and intu-
itive, though redundant.

Nondeterministic TM specification for strict se-
rializability. The TM specification for strict serializ-
ability is based on the observation that every commit-
ting transaction serializes at some point during its exe-
cution. The TM specification makes a nondeterministic
guess of when a transaction serializes. Depending upon
the guess, the TM specification checks upon the commit
of a transaction, whether the commit can be executed,
or the transaction needs to abort.

Formally, we define the nondeterministic TM speci-
fication for strict serializability Σss for n threads and k

12

variables as the tuple 〈Q, qinit , δss〉. A state q ∈ Q is a
6-tuple 〈Status, rs, ws, prs, pws, sp〉, where Status :
T → {started, invalid, serialized, finished} is the sta-
tus, rs : T → 2V is the read set, ws : T → 2V is
the write set, prs : T → 2V is the prohibited read
set, pws : T → 2V is the prohibited write set, and
sp : T → 2T is the serialization predecessor set for the
threads. If v ∈ prs(t) (resp. v ∈ pws(t)), then the status
of the thread t is set to invalid if t globally reads (resp.
writes to) v. A thread u is in the weak predecessor set
of thread t if the unfinished transaction of u is a weak
predecessor of the unfinished transaction of t. The ini-
tial state qinit is 〈Status0, rs0, ws0, prs0, pws0, sp0〉,
where Status0(t) = finished for all threads t ∈ T , and
rs0(t) = ws0(t) = prs0(t) = pws0(t) = sp0(t) = ∅ for
all threads t ∈ T . We express the transition function δss
using the procedure nondetSpec shown in Algorithm 5.
For all states q ∈ Q and all statements s ∈ Ŝ, the fol-
lowing hold: (i) if nondetSpec(q, s, πss) =⊥, then there
is no state q′ ∈ Q such that (q, s, q′) ∈ δss , and (ii) if
nondetSpec(q, s, πss) = q′ for some state q′ ∈ Q, then
(q, s, q′) ∈ δss .

Given a state q and a thread t ∈ T , the procedure
ResetState(q, t) makes the following updates: (i) sets
Status(t) to finished, (ii) sets rs(t), ws(t), prs(t), pws(t),
and sp(t) to ∅, and (iii) for all threads u 6= t, removes t
from sp(u).

Nondeterministic TM specification for opacity.
Apart from the requirements of the above mentioned
TM specification for strict serializability, opacity re-
quires that even global reads of aborting transactions
observe consistent values.

The nondeterministic TM specification for opacity
is based on the observation that every committing and
aborting transaction should serialize at some point dur-
ing its execution. As for Σss , the TM specification Σop

makes a nondeterministic guess of when a transaction
serializes. Upon every global read and every commit of
a transaction, Σop checks whether the command can
be executed or the transaction needs to be aborted.
The nondeterministic TM specification for opacity Σop

is given by the tuple 〈Q, qinit , δop〉. The set Q of states
and the initial state qinit are identical to that of Σss .
The only difference comes in the transition relation δop .
As for strict serializability, we obtain δop using the pro-
cedure nondetSpec with property πop , instead of πss .

Theorem 2 Given a word w on n threads and k vari-
ables, the word w is strictly serializable (resp. opaque)
if and only if w ∈ L(Σss) (resp. w ∈ L(Σop)).

Proof We prove the theorem for strict serializability
here. The TM specification Σss for strict serializabil-
ity guarantees by construction, that a transaction x

Alg. 5 nondetSpec(〈Status, rs,ws, prs, pws, sp〉, s, π)
if s = ((read, v), t) then

if v ∈ ws(t) then return 〈Status, rs,ws, prs, pws, sp〉
if Status(t) = finished then

sp(t) := {u ∈ T | Status(u) = serialized}
Status(t) := started

rs(t) := rs(t) ∪ {v}
if π = πop then

if v ∈ prs(t) then return ⊥
for all threads u 6= t do

if Status(u) = serialized and t /∈ sp(u) then

if v ∈ ws(u) then
Status(u) := invalid

else

pws(u) := pws(u) ∪ {v}
if π = πss then

if Status(t) = serialized and v ∈ prs(t) then

Status(t) := invalid
if s = ((write, v), t) then

if Status(t) = finished then
sp(t) := {u ∈ T | Status(u) = serialized}
Status(t) := started

else if Status(t) = serialized and v ∈ pws(t) then
Status(t) := invalid

ws(t) := ws(t) ∪ {v}
if s = (commit, t) then

if Status(t) ∈ {started, invalid} then return ⊥
for all threads u 6= t do

if u ∈ sp(t) then
prs(u) := prs(u) ∪ ws(t)

pws(u) := pws(u) ∪ rs(t) ∪ ws(t)

if (ws(u) ∩ (ws(t) ∪ rs(t)) 6= ∅ then
Status(u) := invalid

if u /∈ sp(t) then
if ws(t) ∩ rs(u) 6= ∅ then

Status(u) := invalid
ResetState(q, t)

if s = (ε, t) then

if Status(t) 6= started then return ⊥
Status(t) := serialized
sp(t) := {u ∈ T | Status(u) = serialized}
if π = πop then

for all threads u 6= t do
if Status(u) = started then

if rs(u) ∩ ws(t) 6= ∅ then Status(t) := invalid
pws(t) := pws(t) ∪ rs(u)

if Status(u) = serialized then

if ws(u) ∩ rs(t) 6= ∅ then Status(u) := invalid
pws(u) := pws(u) ∪ rs(t)

if s = (abort, t) then ResetState(q, t)

return 〈Status, rs,ws, prs, pws, sp〉

does not commit iff one of the conditions, C1–C4, holds
(graphically shown in Figure 3):

C1. there exists a transaction y such that x serializes
before y and y writes to a variable v and commits,
and then x reads v

C2. there exists a transaction y such that x serializes
before y and x writes to v and y reads v before x
commits, and y commits

13

(r, v)2

(w, v)1

ε2

ε1

c2

c1

C4

ε1

ε2

c2

c1

C3

(w, v)2

ε1

C2

ε2
(r, v)1

(w, v)2

c1

ε2
c2

ε1

(r, v)1
c1

C1

(w, v)1

(w, v)2

c2

Fig. 3 The commits inside ovals are disallowed by the TM spec-

ification for strict serializability. Each condition shows various
cases. The arrows represent different possible positions for a com-

mand to occur in a given condition. We write w for write, r for

read, and c for commit. We write the statement ((w, v), tk) as
(w, v)k. Thread t1 executes transaction x and thread t2 executes

transaction y.

C3. there exists a transaction y such that x serializes
before y and both x and y write to a variable v, and
y commits before x does.

C4. there exists a transaction y such that x serializes
after y and y writes to v and x reads v before y

commits, and then y commits

The TM specification Σss makes a guess of when ev-
ery committing transaction serializes. Depending upon
the guess, each committing transaction follows certain
restrictions on the commands which can be executed.
Consider a run w of Σss . Let X be the set of finished
transactions in w. Let w′ be the sequential word such
that w′ is transaction equivalent to w and for all trans-
actions x, y ∈ X, we have x <w′ y if the ε command of
x comes before that of transaction y in w (Note that ev-
ery non-empty transaction has the ε command exactly
once.) Then, com(w′) is strictly equivalent to com(w),
as for every transaction x ∈ X, the transaction x com-
mits in w only if none of the conditions C1 - C4 holds for
x. Hence, every word in L(Σss) is strictly serializable.

Conversely, let w be strictly serializable. As w is
strictly serializable, there is a sequential word ws such
that com(ws) is strictly equivalent to com(w). Let the
committing transactions in the sequential word ws be
given by the sequence x1x2 . . . of transactions. We claim
that w is a run of the TM specification Σss such that
for all i and j such that i < j, the transaction xi seri-
alizes before xj in the run. This is because (i) the TM
specification nondeterministically guesses every possi-
ble serialization for every transaction during its execu-
tion, and (ii) given that w is strictly serializable, there
is no transaction x in the sequence x1x2 . . . that sat-
isfies any of the conditions C1–C4, and commits in w.
Thus, the word w is in the language L(Σss). ut

5.2 Deterministic specifications

In nondeterministic TM specifications, we consider a
particular order of serialization of transactions in a given
branch. This allows us to argue individually for different

serialization orders, which in turn, allows us to locally
reason for every pair of transactions. On the other hand,
in a deterministic TM specification, we have to consider
all possible serialization orders at the same time, which
complicates the specification.

We use two different predecessor notions for creat-
ing deterministic TM specifications. We define that a
transaction x is a weak predecessor of transaction y in a
word w if y must serialize after x for both x and y to be
committing transactions. Note that the relation, weak
predecessor, is not a transitive relation. But, when a
transaction y commits, all weak predecessors of y be-
come weak predecessors of the transactions of which y

is a weak predecessor. We say that a transaction x is
a strong predecessor of transaction y in a word w if y
must serialize after x in w. Unlike weak predecessor,
strong predecessor is a transitive relation.

We now present the formal definitions of the deter-
ministic TM specifications for strict serializability and
opacity.

Deterministic TM specification for strict serial-
izability. The deterministic TM specification for strict
serializability Σd

ss is given by the tuple 〈Q, qinit , δ
d
ss〉.

A state q ∈ Q is a 7-tuple 〈Status, rs, ws, prs, pws,
wp, sp〉, where Status : T → {started, invalid, pending,
finished} is the status, rs : T → 2V is the read set,
ws : T → 2V is the write set, prs : T → 2V is the
prohibited read set, pws : T → 2V is the prohibited
write set, wp : T → 2T is the weak predecessor set,
and sp : T → 2T is the strong predecessor set for the
threads. If v ∈ prs(t) (resp. v ∈ pws(t)), then the status
of the thread t is set to invalid if t globally reads (resp.
writes to) v. A thread u is in the weak predecessor set
of thread t if the unfinished transaction of u is a weak
predecessor of the unfinished transaction of t. The ini-
tial state qinit is 〈Status0, rs0, ws0, prs0, pws0, wp0,
sp0〉, where Status0(t) = finished for all threads t ∈ T ,
and rs0(t) = ws0(t) = prs0(t) = pws0(t) = wp0(t) =
sp0(t) = ∅ for all threads t ∈ T . We express the tran-
sition function δd

ss using the procedure detSpec shown
in Algorithm 6. The notation of detSpec is similar to
that of the procedure nondetSpec. Given a state q and
a thread t ∈ T , the procedure ResetState(q, t) makes
the following updates: (i) sets Status(t) to finished, (ii)
sets rs(t), ws(t), prs(t), pws(t), wp(t), and sp(t) to ∅,
and (iii) for all threads u 6= t, removes t from wp(u)
and sp(u).

Deterministic TM specification for opacity. The
deterministic TM specification for opacity builds upon
the deterministic TM specification for strict serializabil-
ity. The difference comes in the strong predecessor set.
We exploit the relation of strong predecessors in such a
way that even aborting transactions see consistent val-

14

ues. For example, if a thread u is a strong predecessor
of t, and t is a weak predecessor of u, then u cannot
commit but t can. Many similar cases of conflict have
to be carefully considered to capture the exact notion
of opacity. The deterministic TM specification for opac-
ity Σd

op is given by the tuple 〈Q, qinit , δ
d
op〉. The set of

states and the initial state are the same as those for
Σd

ss . Also, the transition relation δd
op can be similarly

obtained from Algorithm 6 using the property πop in-
stead of πss .

5.3 Equivalence checking of nondeterministic and
deterministic TM specifications

We build nondeterministic and deterministic TM spec-
ifications for two threads and two variables. We observe
that the nondeterministic TM specifications presented
are too large to be automatically determinized. How-
ever, surprisingly enough, the deterministic TM spec-
ifications we present turn out to be much smaller in
size. Using an antichain-based tool [28], we establish
that for two threads and two variables, the language
of our deterministic TM specification for strict serializ-
ability (resp. opacity) is equivalent to the language of
the nondeterministic specification for strict serializabil-
ity (resp. opacity).

For strict serializability, our deterministic TM speci-
fication Σd

ss has only 3520 states, whereas the nondeter-
ministic one Σss has 12345 states. Similarly, for opacity,
Σd

op has 2272 states, while the nondeterministic specifi-
cation Σop consists of 9202 states. The antichain-based
tool can prove both equivalences within 5 seconds. This
leads us to the following theorem.

Theorem 3 L(Σss) = L(Σd
ss) and L(Σop) = L(Σd

op).

5.4 Safety verification results

The reduction theorem for safety states that if we prove
that an TM ensures (2, 2) strict serializability (resp. (2, 2)
opacity), then the TM ensures strict serializability (resp.
opacity). This in turn implies that the TM using any
contention manager ensures strict serializability (resp.
opacity). We now check the safety (strict serializabil-
ity or opacity) of different TMs by checking whether
the language of the TM algorithm is included in the
language of the deterministic TM specification for the
safety property. Table 2 shows our results and leads to
the following theorem.

Theorem 4 The sequential TM, two-phase locking TM,
DSTM, and TL2 ensure opacity.

Alg. 6 detSpec(〈Status, rs,ws, prs, pws,wp, sp〉, s, π)
if s = ((read, v), t) then

if v ∈ ws(t) then return 〈Status, rs,ws, prs, pws,wp, sp〉
if π = πop then
U := {u ∈ T | v ∈ prs(u) or v ∈ prs(u′) s.t. u ∈ sp(u′)}
if t ∈ U then return ⊥

if Status(t) = finished then

U := {u ∈ T | Status(u) = pending}
U ′ := {u′ ∈ T | ∃u · u′ ∈ sp(u) and Status(u) = pending}
wp(t) := wp(t) ∪ U
sp(t) := sp(t) ∪ U ∪ U ′

Status(t) := started
rs(t) := rs(t) ∪ {v}
if v ∈ prs(t) then Status(t) := invalid
for all threads u ∈ T do

if v ∈ ws(u) then wp(u) := wp(u) ∪ {t}
if v ∈ prs(u) then wp(t) := wp(t) ∪ {u}

if π = πss then return 〈Status, rs,ws, prs, pws,wp, sp〉
for all threads u ∈ T such that u = t or t ∈ sp(u) do

sp(u) := sp(u) ∪ U
for all threads u ∈ T such that u ∈ sp(t) do

pws(u) := pws(u) ∪ {v}
if v ∈ ws(u) then

Status(u) := invalid
if s = ((write, v), t) then

if Status(t) = finished then
U := {u ∈ T | Status(u) = pending}
U ′ := {u′ ∈ T | ∃u · u′ ∈ sp(u) and Status(u) = pending}
wp(t) := wp(t) ∪ U
sp(t) := sp(t) ∪ U ∪ U ′

Status(t) := started
ws(t) := ws(t) ∪ {v}
if v ∈ pws(t) then Status(t) := invalid
for all threads u 6= t do

if v ∈ rs(u) then
wp(t) := wp(t) ∪ {u}
if π = πop and t ∈ sp(u) then Status(t) := invalid

if v ∈ pws(u) then wp(t) := wp(t) ∪ {u}
if s = (commit, t) then

if t ∈ wp(t) then return ⊥
if Status(t) = invalid then return ⊥
if π = πop then

U := {u | u ∈ wp(t) or u ∈ sp(u′) for some u′ ∈ wp(t)}
if t ∈ U then return ⊥

for all threads u ∈ T such that u ∈ wp(t) do

if ws(u) ∩ ws(t) 6= ∅ then Status(u) := invalid
else Status(u) := pending
prs(u) := prs(u) ∪ prs(t) ∪ ws(t)

pws(u) := pws(u) ∪ pws(t) ∪ ws(t) ∪ rs(t)
for all threads u′ ∈ T such that t ∈ wp(u′) do

wp(u′) := wp(u′) ∪ {u}
for all threads u′ ∈ T such that ws(u′) ∩ ws(t) 6= ∅ do

wp(u′) := wp(u′) ∪ {u}
for all threads u ∈ T such that u = t or t ∈ sp(u) do

sp(u) := sp(u) ∪ U
ResetState(q, t)

if s = (abort, t) then ResetState(q, t)
return 〈Status, rs,ws, prs, pws,wp, sp〉

Our tool discovered a subtle point in TL2. In the de-
scription of the published TL2 algorithm, we found the
order of two operations, validating the read set (rvali-
date), and checking whether a variable in the read set

15

Table 2 Time for checking language inclusion for TM algorithms
on a dual core 2.8 GHz PC with 2 GB RAM. In case the language

inclusion holds, we write Y followed by the time required for find-

ing it. Otherwise, we write N followed by the counterexample pro-
duced, followed by the time required to find the counterexample.

TM Size L(A) ⊆ L(Σss) L(A) ⊆ L(Σop)

seq 3 Y, 0.01s Y, 0.01s

2PL 99 Y, 0.01s Y, 0.01s
dstm 1846 Y, 0.16s Y, 0.13s

TL2 21568 Y, 3.2s Y, 2.4s

mod TL2pol 17520 N, w1, 9s N, w1, 8s

Counterexamples

w1 (w, 2)1, (w, 1)2, (r, 2)2, (r, 1)1, c2, c1

is locked (chklock), ambiguous. We refined the TL2 al-
gorithm shown in Algorithm 4 such that the extended
command validate executes as two separate atomic op-
erations, chklock and rvalidate, where chklock happens
after rvalidate. We call this new TM algorithm as the
modified TL2 TM algorithm. We use the polite con-
tention manager with the modified TL2 TM algorithm.
We found that the language of the TL2 TM algorithm
with the polite contention manager is not included in
the language of the TM specification for strict serializ-
ability. We obtain a counterexample. In the published
TL2 algorithm, the authors maintain the version num-
ber and the lock bit of every variable in the same mem-
ory word. This ensures that the two operations chklock
and rvalidate execute atomically, and thus they can be
executed in any order. So, our experiments discover that
the correctness of TL2 is based on the subtle fact that
either the version number and the lock bit have to be
accessed atomically, or rvalidate has to occur after chk-
lock.

6 Model Checking Liveness

Unlike the safety properties, the liveness properties guar-
anteed by a TM may depend on the contention man-
ager used with the TM. This is because the decision
of a contention manager may require a thread to wait
for an arbitrarily long period of time, or may require
a thread to abort any conflicting transaction. Thus, we
need to prove the liveness property of an TM using a
specific contention manager.

We use the formalism of TM algorithms to verify
liveness properties of TMs. We define a loop l in a TM
algorithm A as a finite word s0 . . . sm such that there
exists a run 〈q0, c0, s0, r0〉 . . . 〈qm, cm, sm, rm〉 of A such
that q0 = qm.

Note that we defined obstruction freedom using a
Streett condition in Section 2 as

∧
t∈T (�♦(abort, t) →

�♦((commit, t) ∨
∨

c∈Ĉ,u∈T\{t}(c, u))).
Note that every word w that is not obstruction free

violates at least one of the conjuncts of the Streett con-
dition stated above. Each conjunct (Streett pair) cor-
responds to one thread. A word w can violate the con-
dition for thread t, only if w has from some point on
only statements of t. Note that in this case w trivially
satisfies the Streett pairs for other threads. This fact
allows us to use a simple model checking procedure,
even though obstruction freedom is formally a Streett
condition.

In particular, a TM defined by a TM algorithm A

ensures obstruction freedom iff there is no loop l in A

such that all statements in l are from the same thread,
and l contains no commit, and l contains an abort. Sim-
ilarly, a TM ensures livelock freedom iff there is no loop
l in A such l contains no commit, and every thread that
has a statement in l, has an abort in l.

6.1 Reduction theorem for liveness

As we did for safety, we state a reduction theorem that
proves that it is sufficient to verify liveness of a TM on
words with two threads and one variable to generalize
the result to all words. For this purpose, we describe two
more structural properties of TMs. These properties are
again satisfied by all TMs that we have discussed. Let
w = w1 ·w2 be an infinite word such that w is in TM M ,
and no unfinished transaction in w1 has a statement in
w2, and all statements in w2 are from the same thread,
and there is no commit command in w2. For i ∈ {1, 2},
let Vi be the variables accessed in wi.
P5. Transaction projection. A thread t running in iso-
lation (no interleaved step from other threads) shall
abort repeatedly only if it conflicts with some unfin-
ished transaction. As the number of threads is finite,
and a thread can have at most one unfinished trans-
action, there are infinitely many aborts of t due to a
particular thread. The property P5 states that (i) the
word w′1 · w2 is in M , where w′1 is obtained by taking
the transaction projection of w1 on non-aborting trans-
actions, and (ii) if w1 has no aborting transactions and
w2 reads or writes only one variable, then there exists
a word w′ = w′′1 · w2 in M , where w′′1 is obtained by
projecting w1 to transactions of some thread t that has
statements in w1. For instance, a TM satisfies P5 if the
state of a thread is reset to the initial state upon an
abort command, and every variable accessed by every
thread is tracked independently.

16

P6. Variable projection. A thread t running in isola-
tion shall abort repeatedly only if some commands cor-
responding to some variables are not allowed. As the
number of variables is finite, there are infinitely many
aborts of t due to a particular variable. The property
P6 states that (i) there exists a word w1 ·w′2 ∈M such
that w′2 is the variable projection of w2 on {v} for some
variable v ∈ V2, and (ii) if w1 has no aborting transac-
tions, then the word w′ = w′1 · w2 is in M , where w′1 is
the variable projection of w1 on V2. For instance, a TM
satisfies P6 if the TM tracks every variable accessed by
every thread independently.

Theorem 5 If a TM M ensures (2, 1) obstruction free-
dom and satisfies the properties P5 and P6, then M

ensures obstruction freedom.

Proof Let M be a TM that ensures (2, 1) obstruction
freedom but not (n, k) obstruction freedom for some
arbitrary n and k. Let w ∈M be a word such that w is
not obstruction free. As w is not obstruction free, it can
be written in the form w1·w2, such that (i) no unfinished
transaction in w1 has a statement in w2, and (ii) all
statements in w2 are from the same thread, and (iii)
there is no commit instruction in w2. Let w3 = w1 · w′2
be a word such that w′2 is the projection of w2 on one
variable v. Using the variable projection property (P6
(ii)), we have w3 ∈ M . We take a word w4 = w′1 · w′2
such that w′1 has no aborting transactions and w′1 is
on v. Using transaction projection (P5 (i)) and variable
projection (P6 (i)), we get w4 ∈ M . We now take a
word w5 = w′′1 · w′2 such that all commands in w′′1 are
from one thread. From transaction projection (P5 (ii)),
we get w5 ∈ M . As w5 is not obstruction free and w5

is a word on two threads and one variable, we get a
contradiction. ut

6.2 Liveness verification results

We built a verification tool to check obstruction free-
dom and livelock freedom properties of TM algorithms.
To check obstruction freedom, our tool tries to find a
loop l in the TM transition system such that all state-
ments in l are from the same thread, and l has no com-
mit, and l has an abort. If the tool finds such a loop,
the loop is a counterexample to obstruction freedom. If
the tool does not find a loop, we know that the TM en-
sures obstruction freedom. Similarly, to check livelock
freedom, our tool tries to find a loop l in the TM tran-
sition system such that there is no commit in l, and
every thread that has a statement in l, has an abort in
l.

In this way, our tool provides a platform for TM de-
signers to check which liveness properties are ensured. If

Table 3 Results of model checking liveness on a dual core

2.66GHz desktop PC with 2 GB RAM. The notation is simi-

lar to Table 2. The time denotes the time required to prove a
liveness property or find a counterexample. The counterexamples

obtained are of the form a · bω . We write the looping part b here.

TM algorithm Obstruction freedom Livelock freedom

seq N, w1, 0.1s N, w1, 0.1s

2PL N, w1, 0.1s N, w1, 0.1s
dstmaggr Y, 2s N, w2, 0.2s

TL2pol N, w1, 0.4s N, w1, 0.4s

Counterexamples

w1 a1

w2 a1, (r, 1)1, (o, 1)1, a2, (o, 1)2

the liveness property fails, then the tool provides feed-
back in the form of a word that represents a counterex-
ample. Our results are shown in Table 3 and lead to the
following theorem.

Theorem 6 DSTM with the aggressive contention man-
ager ensures obstruction freedom but does not ensure
livelock freedom. The sequential TM and two-phase lock-
ing TM do not ensure obstruction freedom. TL2 with
the polite contention manager does not ensure obstruc-
tion freedom.

7 Related Work

There has been recent independent work on the formal
verification of TMs [5]. Cohen et al. model checked TMs
applied to programs with a small number of threads and
variables against the strong safety criteria of Scott [25].
They do not offer a reduction theorem and do not con-
sider liveness properties. Cohen et al. later extended
their safety verification technique [6] to programs with
both transactional and non-transactional operations.

Our construction of the TM specifications is related
to the work of Fle and Roucairol [8]. They investigated
the set of concurrent traces that are generated by a fi-
nite set of iterating transactions. They proved that the
language consisting of all traces that are conflict equiva-
lent to a sequential trace is regular. Their results cannot
be applied in the presence of aborting transactions, as
they require the transitivity of conflicts, which does not
hold when transactions may abort.

There has been much research on the formal verifi-
cation of relaxed memory models and cache-coherence
protocols for modern multi-processors, e.g., [4,10,16,
23]. In this work, the semantics of a shared memory is
generally given by a memory consistency model, which
defines the possible outcomes of executing a concurrent
program.

17

8 Conclusion

We presented a new technique for verifying TM safety
and liveness properties. The cornerstones of our tech-
nique are finite-state representations for the languages
of strictly serializable and opaque executions, a theorem
that reduces the general verification problem to one for
2 threads and 2 variables, and a model-checking tool for
TMs. Our method applies to all TM protocols that sat-
isfy certain structural properties, and we successfully
verified opacity for two-phase locking TM, DSTM, and
TL2, and the obstruction freedom of DSTM.

To verify the correctness of a new TM using our
methodology, one would proceed as follows. First, one
needs to manually express the TM as a transition sys-
tem, and manually check that the structural properties
hold for the TM. Then, our tool automatically checks
the desired safety or liveness property.

Limitations. Currently, our framework does not
apply when transactions help each other. For instance,
we cannot model Fraser’s STM [9] where threads help
each other in order to ensure livelock freedom. Also,
our liveness properties capture deterministic notions. It
will be interesting to account for probabilistic means to
deal with contention, such as random exponential back-
off. We assumed that the commands in the extended
alphabet, like read, write, validate, and commit, exe-
cute atomically. So, TM algorithms have to guarantee
this level of atomicity to ensure correctness using our
methodology. We have extended our verification tech-
nique to hardware level atomicity [13]. Also, currently
our framework does not support non-transactional code
and nested transactions.

References

1. R. Alur, K. L. McMillan, and D. Peled. Model-checking of

correctness conditions for concurrent objects. Information
and Computation, pages 167–188, 2000.

2. J. H. Anderson, Y. Kim, and T. Herman. Shared-memory

mutual exclusion: Major research trends since 1986. Dis-
tributed Computing, pages 75–110, 2003.

3. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning

about networks with many identical finite state processes.
Information and Computation, pages 13–31, 1989.

4. S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence:
Checking consistency of concurrent data types on relaxed
memory models. In PLDI, pages 12–21, 2007.

5. A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. Zuck.

Verifying correctness of transactional memories. In FMCAD,
pages 37–44, 2007.

6. A. Cohen, A. Pnueli, and L. D. Zuck. Mechanical verifica-

tion of transactional memories with non-transactional mem-
ory accesses. In CAV, pages 121–134. Springer, 2008.

7. D. Dice, O. Shalev, and N. Shavit. Transactional locking II.

In DISC, pages 194–208. Springer, 2006.

8. M. Flé and G. Roucairol. Maximal serializability of iter-

ated transactions. Theoretical Computer Science, pages 1–

16, 1985.
9. K. Fraser and T. Harris. Concurrent programming without

locks. ACM Transactions on Computer Systems, 2007.

10. G. Gopalakrishnan, Y. Yang, and H. Sivaraj. QB or Not QB:
An efficient execution verification tool for memory orderings.

In CAV, pages 401–413. Springer, 2004.

11. R. Guerraoui, T. A. Henzinger, B. Jobstmann, and V. Singh.
Model checking transactional memories. In PLDI, pages 372–

382, 2008.

12. R. Guerraoui, T. A. Henzinger, and V. Singh. Completeness
and nondeterminism in model checking transactional memo-

ries. In CONCUR, pages 21–35, 2008.
13. R. Guerraoui, T. A. Henzinger, and V. Singh. Software trans-

actional memory on relaxed memory models. In CAV, pages

321–336, 2009.
14. R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic con-

tention management. In DISC, pages 303–323, 2005.

15. R. Guerraoui and M. Kapalka. On the correctness of trans-
actional memory. In PPoPP, pages 175–184, 2008.

16. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verify-

ing sequential consistency on shared-memory multiprocessor
systems. In CAV, pages 301–315. Springer, 1999.

17. M. Herlihy. Wait-free synchronization. ACM Transactions

on Programming Languages and Systems, pages 124–149,
1991.

18. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In

ICDCS, pages 522–529. IEEE Computer Society, 2003.

19. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer.
Software transactional memory for dynamic-sized data struc-

tures. In PODC, pages 92–101, 2003.

20. M. Herlihy and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In ISCA,

pages 289–300. ACM Press, 1993.

21. J. R. Larus and R. Rajwar. Transactional Memory. Synthe-
sis Lectures on Computer Architecture. Morgan & Claypool,

2007.

22. C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM, pages 631–653, 1979.

23. S. Qadeer. Verifying sequential consistency on shared-
memory multiprocessors by model checking. IEEE Trans-

actions on Parallel and Distributed Systems, pages 730–741,

2003.
24. W. N. Scherer and M. L. Scott. Advanced contention man-

agement for dynamic software transactional memory. In

PODC, pages 240–248, 2005.
25. M. L. Scott. Sequential specification of transactional memory

semantics. In TRANSACT, 2006.

26. N. Shavit and D. Touitou. Software transactional memory.
In PODC, pages 204–213, 1995.

27. Robert S. Streett. Propositional dynamic logic of looping and

converse is elementarily decidable. Information and Control,
pages 121–141, 1982.

28. M. De Wulf, L. Doyen, T.A. Henzinger, and J.-F. Raskin.

Antichains: A new algorithm for checking universality of fi-
nite automata. In CAV, pages 17–30. Springer, 2006.

