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We present a theoretical stability analysis of the flow after the sudden release of a
fixed mass of fluid on an inclined plane formally restricted to relatively long time
scales, for which the kinematic regime is valid. Shallow-water equations for steep
slopes with bed stress are employed to study the threshold for the onset of roll
waves. An asymptotic solution for long-wave perturbations of small amplitude is
found on background flows with a Froude number value of 2. Small disturbances are
stable under this condition, with a linear decay rate independent of the wavelength
and with a wavelength that increases linearly with time. For larger values of the
Froude number it is shown that the basic flow moves at a different scale than the
perturbations, and hence the wavelength of the unstable modes is characterized as a
function of the plane-parallel Froude number Frp and a measure of the local slope of
the free-surface height φ by means of a multiple-scale analysis in space and time. The
linear stability results obtained in the presence of small non-uniformities in the flow,
φ > 0, introduce substantial differences with respect to the plane-parallel flow with
φ = 0. In particular, we find that instabilities do not occur at Froude numbers Frcr

much larger than the critical value 2 of the parallel case for some wavelength ranges.
These results differ from that previously reported by Lighthill & Whitham (Proc. R.
Soc. A, vol. 229, 1955, pp. 281–345), because of the fundamental role that the non-
parallel, time-dependent characteristics of the kinematic-wave play in the behaviour
of small disturbances, which was neglected in their stability analyses. The present
work concludes with supporting numerical simulations of the evolution of small
disturbances, within the framework of the frictional shallow-water equations, that are
superimposed on a base state which is essentially a kinematic wave, complementing
the asymptotic theory relevant near the onset. The numerical simulations corroborate
the cutoff in wavelength for the spectrum that stabilizes the tail of the dam-break
flood.

1. Introduction and motivation
This study is motivated by a wish to characterize the threshold for the onset of roll

waves arising in dam-break water floods on a uniformly sloping bed for long time
scales (see figure 1; Logan & Iverson 2007). Development of rollwaves about pure
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(a) (b)

(c)

Figure 1. Photographs of a dam-break water flood descending the US Geological Survey
debris-flow flume in the H. J. Andrews Experimental Forest, Oregon (Logan & Iverson 2007):
front view (a) of a 6 m3 flood surge (the person in the foreground on the left-hand side
provides an indication of scale), oblique view (b) from the right-bank platform of roll waves
close to the depth sensor at a distance of 66 m from the gate and plan view (c) of water
discharging at the end of the flume, showing many of the surface features of strong turbulence.
The flume is a reinforced concrete channel 95 m long, 2 m wide and 1.2 m deep that slopes
31◦ (60 %).

clear-water dam-break flows is an exceptional physical phenomenon that uniquely
happens when the flood wave spreads over extremely long distances: the steeper
the bed slopes, the shorter the distance required. Figure 1(a) shows a front view of
the final stage of a water dam-break flood at the US Geological Survey debris-flow
flume (95 m long, 60 % slope), where hydrodynamic instabilities developed at late
time. A closer view of the water surface at a distance of 66 m from the gate is
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Competition between kinematic and dynamic waves in floods on steep slopes 377

depicted in figure 1(b), which shows details of roll waves that are distorted because of
strong turbulence. Complex structures at the free surface are better illustrated further
downstream, where the Reynolds number is maximum, as shown in figure 1(c).
Understanding how roll waves arise in dam-break flows is important because of
practical implications for sediment transport. However, details of the circumstances
under which roll waves occur are not understood, and such understanding forms
the main aim of the current paper. As the problem is not solvable analytically, we
restrict attention to a simple hydraulic model that illustrates the basic ideas. The
theoretical analysis will be based on the one-dimensional shallow-water equations for
steep slopes with bed stress.

The influence of bed slope for large Reynolds numbers is of great interest for
the obvious reason that catastrophic flooding associated with the sudden drainage
of glacier- or moraine-impounded lakes as well as the break of man-made concrete
dams occurs over topographies that are not horizontal (e.g. Bohorquez & Darby
2008; Denlinger & O’Connell 2008). The bed slope effect, in the dam-break problem
of a finite mass of fluid on an inclined plane, was analysed by Dressler (1958) without
considering bed stress. After establishing that one can determine analytically the exact
wavefront celerity (neglecting resistance) for the case where the bottom is inclined
below the horizontal’ (Dressler 1952, p. 217), he presented in 1958 an exact solution
for ideal (frictionless) dam-break floods on an inclined plane ‘for slopes which are
not excessive’. Later, Hunt (1987) presented a similar solution. Since the earlier work
of Dressler other solutions valid for steep slopes have been obtained (Fernandez-
Feria 2006; Ancey et al. 2008). However, similar to the horizontal problem (e.g.
Schoklistsch 1917; Eguiazaroff 1935; Dressler 1952; Martin & Moyce 1952; Dressler
1954; Whitham 1955; Lauber & Hager 1998a; Hogg & Pritchard 2004; Jánosi et al.
2004), hydraulic resistance cannot be neglected in floods over inclined planes (e.g.
Lauber & Hager 1998b). This fact was originally noted by Lighthill & Whitham
(1955), who established that flood waves on inclined planes can be described as
kinematic waves (i.e. waves in which a balance is struck between frictional and
gravitational forces) for subcritical floods. In this case, hydraulic resistance affects
not only the advancing of the forward wave but also the bulk of the flow when
the flood travels approximately four times its initial extent (Hunt 1982). Moreover,
kinematic waves and dynamic waves are both possible together in supercritical floods
(Lighthill & Whitham 1955). In supercritical streams, kinematic and dynamic waves
can play equally important parts, as in the case of ‘roll waves’ observed in mountain
streams (e.g. Dressler 1954). This behaviour is essentially different from that of an
ideal (frictionless) wave, which constitutes a purely dynamic wave. Therefore, the
importance of considering frictional effects in floods on inclines (e.g. Lauber & Hager
1998b) questions the applicability of ideal solutions to real scenarios. The hydraulic
effect in a dam-break flood over an incline of shallow slope was studied analytically
by Hunt (1982) and later in floods of a point source of mass by Weir (1983) and Hunt
(1984). Weir and Hunt claimed that the resulting flow at late time does not depend on
its initial configuration. This was corroborated by comparison of theoretical solutions
with laboratory data.

As commented above, a thin layer of water flowing down an inclined surface may
undergo, in some circumstances, a transition to an oscillatory movement, where a train
of surface waves propagates downstream. The development of roll waves happens for
large Reynolds numbers, typically above 400 for quasi-two-dimensional roll waves
and above 1200 for roll waves for turbulent flow. In this region of fairly large
Reynolds numbers the velocity can be assumed to be independent of the cross-stream
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378 P. Bohorquez

coordinate, leading to the shallow-water or Saint-Venant equations (Saint-Venant
1871; Whitham 1974). The evolution of the surface is governed by a sequence of
transitions starting from the primary instability of the plane-parallel flow, filtering
mechanism of the linear instability and secondary modulation instability that converts
the primary wave field into a roll wave (e.g. Prokopiou, Cheng & Chang 1991; Ruyer-
Quil 2006). These hydrodynamic instabilities have been observed in laboratory flumes
(Brock 1969; Brauner & Maron 1982). Two main approaches can be followed to
establish the stability criteria of the plane-parallel flow: first, the hydraulic one, which
finds long travelling-wave solutions for Froude numbers above 2 by means of the
shallow-water equations (e.g. Jeffreys 1925; Dressler 1949; Needham & Merkin 1984;
Hwang & Chang 1987; Yu & Kevorkian 1992; Chang, Demekhin & Kalaidin 2000);
second, on the basis of the linearized Reynolds equations for a turbulent flow, with
critical Froude numbers varying between 1.1 and 1.4 as the Reynolds number is

varied over the realistic range of values 2 × 103–105 (Demekhin, Kalaǐdin & Shapar’
2005). The effect of bottom topography on the stability of a turbulent flow over
uneven surfaces was recently explored by Balmforth & Mandre (2004) following the
hydraulic approach, who found that low-amplitude topography destabilizes turbulent
roll waves and lowers the critical value of the Froude number required for instability.
In a general case concerning curved solid walls, roll waves are possible, and the
slope of the wave profile is no longer constant but varies slowly in the streamwise
direction (Kluwick 2006). Roll waves are also observed in clear-water dam-break
floods over man-made channels of uniform, steep slope (Logan & Iverson 2007). In
the experiments conducted on 30 August 1994, 28 August 2002 and 7 June 2006 at the
US Geological Survey debris-flow flume, it was found that instabilities develop at late
time when the bulk of the flood wave reaches a quasi-uniform and quasi-steady state.
Roll waves in floods on inclines were also found by Bohorquez & Fernandez-Feria
(2008) in the numerical computations of sediment transport associated with this flow,
which were not taken into account in the analytical predictions by Pritchard (2005).
This behaviour, termed ‘competition between kinematic and dynamic waves’, is that
which was figured out by Lighthill & Whitham (1955) more than half a century ago.
The flow changes from a quasi-uniform and quasi-steady state to a highly unsteady
one.

Apart from their interest in hydraulic and environmental engineering, in which
turbulent roll waves enhance the transport of sediment and the risk of infrastructure
damage, the development of hydrodynamic instabilities in kinematic waves constitutes
a non-modal stability problem of great interest, in which the non-parallel time-varying
characteristics of the base flow may affect significantly the stability criterion for the
onset of roll waves and the wavelength behaviour of small disturbances (Schmid
2007). Therefore, this paper is aimed at reviewing and extending the linear stability
criteria in combination with validating numerical simulations for the inception of
roll waves in floods on uniform slopes in the kinematic regime – the study of the
dynamics of roll waves about kinematic waves is outside the scope of the current
work. We start with the formulation of the problem and the definition of the basic
flow (§ 2). Next in § 3.1, the particular case with a Froude number of 2, which
represents the stability criterion for the parallel case, is analysed. Subsequently, we
perform a linear stability analysis by means of multiple scales for Froude numbers
larger than 2 and draw out the connections between this analysis and the previous
one by Lighthill & Whitham (§ 3.2). The main new features are that non-parallel
time-varying effects originating from the slow streamwise variations of the background
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Competition between kinematic and dynamic waves in floods on steep slopes 379

flow are taken into account. Then, we present some numerical simulations for
the perturbations based on the shallow-water equations (§ 3.3) and compare the
numerical growth rate with the asymptotic predictions, showing the applicability
of our theoretical findings. The link between the asymptotic analysis and the case
with actual release of a fixed mass of fluid is made in § 3.4. Finally, we draw some
conclusions.

2. Formulation of the problem
In the shallow-water approximation, the dimensionless equations for the mass

conservation and momentum in the direction of the flow over a constant slope bed
can be written as (Dressler 1978)

∂η

∂t
+

∂ηU

∂X
= 0, (2.1)

∂U

∂t
+ U

∂U

∂X
+ cos θ

∂η

∂X
= sin θ − sf

η
, (2.2)

where θ is the angle between the bed and the horizontal; t is time; X is the
coordinate along the bed; η is the depth of the water measured along the coordinate
Y perpendicular to the bed; U is the depth-averaged velocity component along X;
and sf is a dimensionless bed friction (see below). All the variables in these equations
have been non-dimensionalized with respect to a length scale η0, corresponding to
some initial depth, and a velocity scale U0 ≡ √

gη0, where g is the acceleration because

of gravity. To compute the friction term sf ≡ (τb/ρU 2
0 ), where τb is the scaled bed

stress and ρ the fluid density, we shall use the Darcy–Weisbach friction factor f , so
that sf may be written as

sf =
f

8
|U |U. (2.3)

The factor f is a function of the local Reynolds number, based on the velocity U

and the hydraulic radius of the channel, and of the relative height roughness of the
bed. We shall assume that the friction factor f is constant to make the analytical
treatment feasible.

The initial conditions for the flood wave that results after the rupture of a dam on
an incline may be idealized as a point source of mass initially at rest located at X =0
(Weir 1983; Hunt 1984):

U (X, 0) = 0, η(X, 0) = Aδ(X), 0 < X, (2.4)

where A is the non-dimensional released volume of water per unit width and δ(X) is
the Dirac delta function.

Whilst the non-dimensional variables X and t are appropriate to describing the
evolution of dynamic waves, as in the absence of hydraulic resistance, kinematic
waves vary on a much slower scale:

x̂ = εX, t̂ = εt with ε ≡ η0

l
� sin θ and 0 < θ < π/2, (2.5)
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380 P. Bohorquez

where l is the characteristic streamwise extent occupied by the flood wave and ε is
the shallowness parameter. In these new variables, (2.1)–(2.3) read

∂η

∂t̂
+

∂ηU

∂x̂
= 0, (2.6)

ε

(
∂U

∂t̂
+ U

∂U

∂x̂
+ cos θ

∂η

∂x̂

)
= sin θ − f U 2

8η
, (2.7)

allowing the solution of the flood wave (i.e. the basic flow, hereafter denoted by the
subscript b) to be written in powers of ε:

ηb(x̂, t̂) = H0(x̂, t̂) + εH1(x̂, t̂) + O(ε2), (2.8)

Ub(x̂, t̂) = V0(x̂, t̂) + εV1(x̂, t̂) + O(ε2). (2.9)

Substituting expansion (2.8)–(2.9) into (2.7), and grouping terms of order unity, one
obtains the algebraical relation that follows between H0 and V0:

H0 =
f V 2

0

8 sin θ
. (2.10)

Analogously, taking into account (2.10), order unity of (2.6) provides the well-known
kinematic-wave equation

∂V0

∂t̂
+

3V0

2

∂V0

∂x̂
= 0, (2.11)

showing that H0 and V0 remain constant for characteristics propagating with velocity
(3/2)V0. Substituting (2.10) into (2.7) and using (2.11), one obtains the following
condition for the validity of this approximation:

ε

∣∣∣∣∂H0

∂x̂

∣∣∣∣ �
∣∣∣∣∣ sin θ

cos θ − 2
f

sin θ

∣∣∣∣∣ . (2.12)

Equation (2.11) is exactly the same as that considered by Lighthill & Whitham
(1955) on the prediction of flood movement in man-made channels. Later on, Weir
(1983) and Hunt (1984) provided the solution of this equation, together with the
initial conditions given by (2.4) but starting their analyses from the traditional Saint-
Venant equations. Since their studies idealize the initial volume of water at rest as a
point mass source initially located at the origin x̂ = 0 (see the initial condition (2.4)),
both solutions can certainly be reformulated to steep slopes by rewriting them in the
appropriate set of non-dimensional variables (Dressler 1978). On the one hand, Weir
(1983) and Hunt (1984) provided the so-called leading-order outer solution of the
dam-break wave, that is the solution to (2.11) for the initial condition (2.4),

U (x̂, 0) = 0, η(x̂, 0) = A∗δ(x̂), A∗ ≡ εA, 0 < x̂. (2.13)

Conservation of mass is imposed by means of a shock x̂s(t̂) inserted in the dam-break
wavefront, i.e. ∫ x̂s (t̂)

0

H0(x̂, t̂)dx̂ = A∗. (2.14)

To be consistent with volume conservation (see Ancey, Cochard & Andreini 2009),
we select the aspect-ratio number ε as A∗ = εA= 1, that is

ε =
1

A
=

η2
0

Ã
, (2.15)
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Competition between kinematic and dynamic waves in floods on steep slopes 381

in which Ã is the dimensional volume of fluid per unit width released at t̂ = 0. The
value of the characteristic water depth η0 is discussed below. Hence, the outer solution
is given by

V0(x̂, t̂) =
2x̂

3t̂
for 0 � x̂ � x̂s(t̂) ≡

(
54 sin θ

f
t̂2

)1/3

, 0 < t̂. (2.16)

On the other hand, Hunt (1984) improved Weir’s study matching the outer solution
with that within the tip region of the dam-break flood, referred to as ‘inner’ solution,
whose relative length remains small as the current lengthens (see the original work
by Hunt 1984 for further details).

Higher-order terms of the outer expansion (2.8)–(2.9) can be integrated recursively
along the family of characteristic curves x̂/t̂ = constant (see Appendix A), with Vj and
Hj (1 � j ) vanishing as t̂ → ∞, whilst V0 and H0 remain constant. Furthermore, the
leading-order terms in (2.8) and (2.9) that satisfy the kinematic-wave equations (2.10)
and (2.11) are exact solutions to the full shallow-water equations (2.6) and (2.7) when
f =2 tan θ . This is due to the fact that the left-hand side of (2.7) vanishes. Conversely,
for f 
= 2 tan θ , the left-hand side of (2.7) introduces higher-order corrections in ex-
pansion (2.8)–(2.9), and the characteristic time necessary to neglect higher-order-terms
can be estimated by means of (2.12) at the shock x̂s(t̂). Indeed, the non-dimensional
characteristic time t̂c is defined as function of a tolerance Φ which describes how well
(2.12) is satisfied: it is obtained by setting the left-hand side of (2.12) equal to the
product of Φ and the right-hand side of (2.12), substituting in the kinematic-wave
solution (2.10)–(2.16), evaluating it at the front of the wave x̂s(t̂) and solving for t̂ ,

t̂c < t̂ with t̂c ≡
( ε

Φ

)3/4
√

1

sin θ

(
2|f − 2 tan θ |3
27f (tan θ)3

)1/4

. (2.17)

Evaluating the outer solution (2.10)–(2.16) at x̂s(t̂c), taking into account the definition
of ε, given by (2.15) and posing H0(x̂s(t̂c), t̂c) = 1 yields the dimensional characteristic
water depth:

η0 =

(
3Ã Φ f tan θ

2|f − 2 tan θ |

)1/2

. (2.18)

The local Froude number of the base state [ηb(x̂, t̂), Ub(x̂, t̂)]T (the superscript T

denotes transposed vector) is defined by

Fr ≡ Ub√
ηb cos θ

=
V0√

H0 cos θ
+ ε

cos θ(2H0V1 − H1V0)

2(H0 cos θ)3/2
+ O(ε2). (2.19)

Under condition (2.17), it tends to the constant value of the plane-parallel flow,
denoted hereafter by Frp . In fact, substituting (2.10) into (2.19), we find

Fr = Frp + O(ε) ≈ Frp with Frp ≡ V0√
H0 cos θ

=

√
8

f
tan θ for t̂c < t̂ . (2.20)

Finally, we make a definition for the measure of the local slope of the free-surface
height (φ) that is employed in the multiple-scale stability analysis (see § 3.2),

φ ≡ ε
4

f

∂H0

∂x̂
= ε

V0

sin θ

∂V0

∂x̂
. (2.21)

Therefore, using the definition of Frp , given by (2.20), and the local free-surface slope
of the base state (2.21), the local-validity condition (2.12) for the kinematic-wave
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approximation reads

|φ| � φ∗ ≡
∣∣∣∣ 2

4� − 1

∣∣∣∣ with � ≡ 1

Fr2
p

. (2.22)

Notice that φ∗ decreases from ∞ to the limiting value of 2 as Frp varies in the range
of values [2, ∞).

As problems of physical significance are rather involved and not solvable
analytically, for instance because of non-uniform time-varying friction factors, we
restrict attention to the present simple model that illustrates the basic ideas: for
instance, we shall see below that roll waves develop in the bulk of the near-equilibrium
dam-break wave, far from the tip region, when the friction factor f takes a constant
value, about a background flow that is essentially a kinematic wave; and thus, in the
next section (§ 3), we perform the linear stability analysis of the outer solution (2.16).

In order to check the correctness of the kinematic-wave approximation for
predicting flood waves, the initial configuration for a dam-break flow on an inclined
plane sketched in figure 2(a):

U (X, 0) = 0, η(X, 0) =

⎧⎪⎨
⎪⎩

0 for X < −Υ/e,

eX + Υ for − Υ/e � X � 0,

−X/e + Υ for 0 < X � eΥ,

0 for X > eΥ,

e ≡ tan θ, Υ ≡

√
eÃ

(1 + e2)η2
0

,

(2.23)

is considered as the benchmark case and is solved with the numerical technique
detailed in Bohorquez & Fernandez-Feria (2008). Without losing generality, we have
chosen Φ = 0.3769 to make the variables dimensionless. Figure 2(b) shows the velocity
profiles at the inception of roll waves (t > 4408) for a volume of water per unit width
Ã= 57.31 m2, a plane inclined at an angle of 1◦ with respect to the horizontal
and a flow with plane-parallel Froude number Frp =2.5. In doing so, the ensuing
friction factor takes a plausible physical value (f = 0.0223), and the present numerical
experiment can be reproduced in (laboratory) reality: for instance, instead of releasing
a finite volume of water (which requires a extremely long channel), one can first create
a uniform stream, attaining the desired Froude number by controlling the flume
roughness, flow discharge and water depth at the flow inlet, closing progressively
the inlet gate and reducing both the flow discharge and the water depth with the
temporal law fixed by the kinematic-wave solution (2.10)–(2.16). This last experiment
would require a shorter (cheaper) channel of shallow slope – notice that steep slope
flumes are rather involved and thus scarce, and we hope that this work motivates new
experiments on turbulent roll waves about kinematic waves. Moreover, as we shall
see in the next sections, the most noticeable results are observed for Froude numbers
slightly larger than 2.

A general view of the velocity profiles at several instants after the rupture of the
dam is shown in figure 2(c). As time proceeds, the agreement between the numerical
(continuous line) and the outer solution (stars), given by (2.16), continues to become
better. In addition, the asymptotic solution that accounts for the initial profile of
the water height (2.23) is also shown in the same figure (circles). The latter solution,
which was provided originally by Hunt (1982) for small bottom slopes, cannot be
reformulated to arbitrary (constant) slopes of the bottom with a simple change of
variables but is to be obtained for our specific initial conditions (see Bohorquez
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Figure 2. (a) Coordinates and sketch of the initial conditions for η(X) in the dam-break
problem on an inclined plane, given by (2.23); (b) onset of roll waves at t ≈ 4408; and
(c) velocity profiles at several instants of time for Ã = 57.31 m2, Φ = 0.3769, θ = 1◦ and
f = 0.0223 (Frp =2.5). The numerical solution is plotted in the continuous line and in the
circles and the stars the velocity profile corresponding to the outer solution given by Hunt (1982,
1984), generalized to steep slopes, and given by (2.16) and Bohorquez (2008, pp. 356–357),
respectively. The computations were conducted with a uniform mesh size, ΔX = 0.2 and a
Courant-Friedrichs-Lewy member of CFL = 0.45. The dots in (b) show the computational
nodes within the range 1585<X < 1660, indicating that jiggles are well resolved.

2008, pp. 356–357). It is corroborated that the flow forgets its initial configuration
at late time (i.e. t ≈ 4044), when the two asymptotic solutions and the numerical
one are almost indistinguishable. Subsequently, reliable estimates of Φ in (2.17) can
be derived from the characteristic time for the present scenario: substituting the
values {Φ =0.3769, Ã =57.31 m2, f = 0.0223, θ = 1◦} into (2.15), (2.17) and (2.18),
and taking into account (2.5), yields tc ≈ 45.81; however, as shown in figure 2(c), we
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have to wait until t � 45 for the deviation between the numerical and asymptotic
solution (2.16) to drop to zero; in order to establish a criteria for the election of
Φ , we impose that the relative deviation between the slope of the asymptotic and
numerical velocity profiles at tc should be lower than 4.5 %; in the present numerical
simulation this deviation occurs at tc ≈ 4000, and by setting Φ ≈ 4.25 × 10−3 (instead
of Φ = 0.3769) one obtains approximately such value of tc. So it is found that the
numerical solution converges rather slowly towards the outer solution (as for the
dam-break flow for viscous fluids in the high-capillary-number limit for non-zero bed
slopes; see Ancey et al. 2009). However, the main feature of real flood waves on steep
inclines in relation to the predictions of the asymptotic solutions is the appearance
of roll waves. For long times, the balance between friction and gravity in the bulk
of the flood wave is more and more exact. The more exact friction–gravity balance
makes instabilities more likely, as in the case of a uniform stream with Frp > 2. So we
observe the formation of instability at the free surface. The onset of these roll waves
is located in the bulk of the flow, far from the tip region, and their amplitudes grow,
ultimately developing hydraulic jumps, which are convected towards the wetting front.
The possible sources of numerical error that induce the appearance of roll waves are
various, namely the convergence error measure (Castro, Gallardo & Parés 2008), the
stiffness of the hyperbolic balance laws (2.1) and (2.2) with non-trivial moving-water
solution determined by the asymptotic balance of the source term for long time scales
(e.g. Dumbser, Enaux & Toro 2008), the critical point (Fr =1) moving from X = 0
at t = 0 towards the drying front (X = −Υ/e at t → ∞) (we notice that although the
entropy correction for transonic rarefactions attenuates numerical discontinuities at
critical points, they never vanish) and the forcing of the round-off numerical noise.

Lighthill & Whitham (1955) established the stability criterion for kinematic waves
by means of a linear stability analysis of the nonlinear shallow-water equations and
also by introducing discontinuities in the first derivatives of U and η as typical
disturbances. Their results are based on the plane-parallel Froude number Frp , which
equals the Froude number Fr when an exact balance is struck between the bottom
friction and the streamwise component of gravity. As discussed above, this particular
case is only possible for kinematic waves when Frp =2, for which Hj =Vj = 0 for
j � 1, or as t̂ → ∞ when Frp 
= 2. Their linear stability analysis does not account
for non-parallel time-dependent effects originating from slow streamwise variations
of the base flow on the stability criterion (see Lighthill & Whitham 1955, p. 292,
simplification (iv): ‘In the undisturbed flow, we suppose that ηb and Ub take constant
values . . . ’) and establishes that background flows with Frp = 2 are unstable (see
Lighthill & Whitham 1955, equation (23)). This result differs from that for turbulent
uniform flow on an inclined plane, which is critically stable for Frp = 2 but unstable
at all wavenumbers when the Froude number is greater than 2 (Jeffreys 1925).

The next section is devoted to exploring non-parallel time-varying effects
(originating from the slow streamwise variations of the background flow) on linear,
local stability results of the kinematic base state (2.16) for long time scales (i.e. t̂ � t̂c).
To that end, the kinematic-wave solution (2.10)–(2.16) is rewritten as

V0(x̂, t̂∗) =
ϑ̂ x̂

1 + 3
2
ϑ̂ t̂∗

, H0 =
f V 2

0

8 sin θ
, 0 � x̂ � x̂s(t̂

∗ + t̂c), 0 � t̂∗, (2.24)

in which ϑ̂ is the slope of the velocity profile at time t̂ = t̂c,

ϑ̂ ≡ 2

3t̂c
, (2.25)
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and the temporal coordinate is redefined as t̂∗ ≡ t̂ − t̂c. In doing so, the influence of
the streamwise variation of the background-flow velocity profile ϑ̂ is included in the
results of the stability analysis, and it will ease the comparison of the asymptotic
results (§§ 3.1 and 3.2) with the nonlinear numerical simulation of the disturbance
evolution (§ 3.3) with initial conditions (3.45). The main drawback of this approach
is that the influence of higher-order corrections of the base flow are neglected in the
stability analysis, restricting the applicability of the stability results to long times,
t̂ � t̂c. In addition, for the physical reasons previously discussed, the numerical results
in § 3.3 correspond to shallow slopes of the bottom bed, although the asymptotic
study presented in §§ 3.1 and 3.2 is valid for steep slopes. Finally, in the analyses
that follow (for notational clarity) the asterisk notation is dropped, and the stability
results henceforth correspond to those of a dam-break flow at long times.

3. Results
3.1. Asymptotic solution for Frp = 2

As stated in § 2, the leading-order terms in expansion (2.8)–(2.9) that satisfy the
kinematic-wave equations (2.10) and (2.11) are exact solutions to the full shallow-water
equations (2.6) and (2.7) when Frp = 2, because the left-hand side of (2.7) vanishes. In
order to analyse the stability of the background flow (2.24) with Frp = 2 and capture
the non-modal behaviour of small disturbances, avoiding the misrepresentation of the
disturbance transient behaviour, we express the basic flow (2.24) in the rapid scale
variables X and t ,

Ub(X, t) =
2

3
B ξ (X, t), ηb =

f U 2
b

8 sin θ
, B ≡ 3

2
ϑ, ϑ ≡ εϑ̂,

0 � X � Xs(t + tc), 0 � t. (3.1)

In the equation shown above, we have introduced a new variable, namely

ξ (X, t) ≡ X

1 + Bt
, (3.2)

and to simplify the notation, it is also convenient to redefine the temporal coordinate
as

τ (t) ≡ 1 + B t. (3.3)

Notice that (3.1)–(3.3) are an exact solution to the shallow-water equations (2.1)–
(2.3) for Frp = 2 at all positive value of ϑ̂ (2.25). Dimensionally or in relation to the
kinematic-wave approximation, this means that t̂c is not required to be large.

Now, the perturbed flow is decomposed, as usual, as the sum of the basic flow
solution, ηb and Ub, plus a small perturbation, h(X, t) and u(X, t),

η = ηb + h, U = Ub + u, (3.4)

with the initial conditions

h(X, 0) =
∑
j=1

υj pj (X), u(X, 0) =
∑
j=1

υj qj (X), 0 � X � Xs(tc), (3.5)

in which υ is a positive small parameter that measures the relative amplitude of the
initial disturbance. The shape of the initial condition [pj (X), qj (X)]T compatible with
solutions to the system of partial differential equations governing the evolution of
small disturbances is discussed below.
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To find out the asymptotic solution to the linear and nonlinear evolution of small
disturbances, the (non-dimensional) perturbation s ≡ [h(X, t), u(X, t)]T is expanded
in the form

s(X, t) =
∑
j=1

υj sj . (3.6)

The first term in the expansion must satisfy

υ ||s1|| � ||(ηb, Ub)
T ||, (3.7)

whilst the subsequent terms must satisfy υ ||sj || � ||sj−1|| (1 <j ). We shall also assume
that the streamwise variation of the basic flow is small,∣∣∣∣∂ηb

∂X

∣∣∣∣ � 1,

∣∣∣∣∂Ub

∂X

∣∣∣∣ � 1. (3.8)

Substituting (3.4) into (2.1)–(2.3), taking into account that [ηb, Ub]
T is a solution to

the equations and that Frp = 2 and neglecting the second-order terms in both the
small perturbations and the streamwise derivatives of the basic flow, one is left with
the following set of linear equations for the perturbations:

∂s1

∂t
+ A · ∂s1

∂X
+ (B + C) · s1 = 0, 0 � X � Xs(t + tc), 0 � t, (3.9)

with homogeneous upstream (supercritical) boundary conditions (BCs)

s1(0, t) = 0, 0 < t, (3.10)

where

A ≡

⎛
⎝ Ub

f U 2
b

8 sin θ

cos θ Ub

⎞
⎠, B ≡

⎛
⎜⎝

0 0

−8(sin θ)2

f U 2
b

2 sin θ

Ub

⎞
⎟⎠, C ≡

⎛
⎜⎜⎝

∂Ub

∂X

f Ub

4 sin θ

∂Ub

∂X

0
∂Ub

∂X

⎞
⎟⎟⎠.

(3.11)

Matrices A–C are functions of X and t , and therefore the linear perturbation s1 does
not admit a decomposition in normal modes. Instead, we seek solutions of the form
s1 = M1(τ )[h1(ξ ), u1(ξ )]T . The general solution to (3.9) reads

s1 =
F (ξ )

τ

⎛
⎝ f Ub(ξ )

4 sin θ

1

⎞
⎠ , F (0) = 0, (3.12)

which allows us to set a disturbance with arbitrary shape as the initial condition,
F (ξ ). No approximation regarding the disturbance shape has been introduced so
far. However, it should be pointed out that the eigenvector in (3.12) imposes a
specific relation between the amplitude of the perturbation velocity and height, whose
physical meaning is readily figured out: curiously, the perturbed flow also satisfies
the kinematic-wave approximation,

h1 =
1

M1

[
f

8 sin θ
(Ub + M1u1)

2 − ηb

]
≈ f Ub

4 sin θ
u1.

Hence, the base flow contains stable small disturbances, and their dynamics is given by
the regular expansion (2.8)–(2.9), propagating and attenuating with the kinematic wave
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Competition between kinematic and dynamic waves in floods on steep slopes 387

itself. Indeed, small disturbances (3.12) are attenuated as the first-order corrections of
the base flow ((A 5) and (A 7)).

In general, one can find nonlinear corrections to this solution as

sj ≡ Mj (τ )

(
hj (ξ )

uj (ξ )

)
, 1 < j. (3.13)

For instance, the second- and third-order corrections are

s2 =
F

τ 2

⎛
⎜⎜⎝

1

4 cos θ
(F + 2ξF ′)

3

2B
F ′

⎞
⎟⎟⎠ , (3.14)

s3 =
3F

8Bτ 3

⎛
⎜⎜⎝

1

cos θ

[
2ξ (F ′)2 + F (2F ′ + ξF ′′)

]
3

B

[
2(F ′)2 + FF ′]

⎞
⎟⎟⎠ , (3.15)

where the prime denotes the differential operator with respect to ξ . As in the linear
case, higher-order eigenvectors impose a specific relation between the amplitude of
the perturbation velocity and height at τ =1. Therefore, the initial condition (3.5)
compatible with the actual solution is uniquely determined by substituting (3.12), (3.14)
and (3.15) into (3.6), evaluating the ensuing expressions at τ = 1 and identifying
coefficients of the same order in υ with those in expansion (3.5). We omit the details
here for the sake of brevity.

In order to give a criterion for the validity of the present linear stability analysis,
we enforce the condition ||s1|| � υ||s2|| in the velocity field at τ = 1, i.e.

2B � 3 υ |F ′|. (3.16)

In such a case, from (3.12), (3.14) and (3.15), we find that the perturbation s,
independent of its initial shape, is attenuated along the ray ξ = constant. Otherwise,
nonlinear effects become important during the initial stage, and the linear decay rate
is not an accurate measure of the attenuation factor except at late time.

The simplest case, a small sinusoidal disturbance with amplitude υ at τ = 1, defined
by the function

F (ξ ) = ea0ξi , 0 � ξ � Xs(tc), (3.17)

exhibits, according to its linear solution (3.12), a decay rate independent of its initial
wavelength λ0 = 2π/a0. Its amplitude decreases as time proceeds at the rate 1/τ , and
its wavelength increases linearly with time. Substituting (3.17) into (3.16), we find that
this conclusion is valid when the initial wavelength of the disturbance is large enough,
i.e. λ0 � 3πυ/B .

We notice that non-uniform time-dependent effects of the background flow stabilize
the kinematic wave. The well-known stability criterion for plane-parallel flows at high
Reynolds number – ‘the basic flow is critically stable for any wavelength when
Frp = 2’ (Jeffreys 1925) – differs abruptly from that resulting for kinematic waves,
which shows that small disturbances are stable independent of their initial shape.
Furthermore, stable waves lengthen as they are convected downstream, whilst they
remain with constant wavelength in the plane-parallel case (e.g. Jeffreys 1925). These
results also differ from that previously reported by Lighthill & Whitham (1955)
because of the influence of base-flow spatio-temporal gradients on the behaviour of
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388 P. Bohorquez

small disturbances. Finally, the present solution serves in the next sections to quantify
the accuracy of near-parallel stability results (§ 3.2) and to validate a numerical code
that solves the full shallow-water equations (§ 3.3).

3.2. Linear stability analysis by means of multiple scales

We have seen in § 2 how the basic flow, constituted by the kinematic wave, travels
along one family of characteristic curves defined in the {x̂, t̂}-plane. The hydrodynamic
instabilities that develop under such base state move however along two families of
real characteristic curves, defined by the partial differential equations (2.1)–(2.3) in
the {X, t}-plane:

dX

dt
= U ±

√
η cos θ. (3.18)

In order to include these phenomena in the formulation of the stability problem, it
is necessary to apply the multiple-scale technique (e.g. Schmid & Henningson 2001).
This approach derives an evolution equation for the slowly varying amplitude of the
perturbations going at high order (i.e. the order next to the linear one), and it is
likely to be valid in the vicinity of a neutral state. In this section, we derive a linear
stability criterion based on multiple scales with corrections to the first order coming
from the second-order linear terms. So, we avoid the tedious task of solving the full
second-order correction term. Formally, a near-parallel stability formulation results
from this approach that is no longer restricted to the case Frp = 2.

To this end, we expand the perturbed flow [η, U ]T with respect to its ε-dependence
in the form

η(X, t; ε) = H0(x̂, t̂) + εh(x̂, t̂ , X, t; ε) + O(ε2), (3.19)

U (X, t; ε) = V0(x̂, t̂) + εu(x̂, t̂ , X, t; ε) + O(ε2). (3.20)

Substituting (3.19)–(3.20) into (2.1)–(2.2), taking into account (2.5) and (2.8)–(2.11),
and neglecting terms O(ε2) except those involving gradients of the base flow, one is
left with the following linear equations for the perturbations:

∂s1

∂t
+ A · ∂s1

∂X
+ (B + εC) · s1 = F, (3.21)

where

A ≡

⎛
⎝ V0

f V 2
0

8 sin θ

cos θ V0

⎞
⎠ , B ≡

⎛
⎜⎝

0 0

−8(sin θ)2

f V 2
0

2 sin θ

V0

⎞
⎟⎠ , (3.22)

C ≡

⎛
⎜⎜⎝

∂V0

∂x̂

f V0

4 sin θ

∂V0

∂x̂

2 cos θ(f − 2 tan θ)

f V0

∂V0

∂x̂

∂V0

∂x̂

⎞
⎟⎟⎠ , F ≡

⎛
⎜⎝

0

2 tan θ − f

4 tan θ
V0

∂V0

∂x̂

⎞
⎟⎠ . (3.23)

The systems of partial differential equations (3.9)–(3.11) and (3.21)–(3.23) are exactly
the same, with the only difference that converse to the former case, matrices A–C
do not depend on X and t . The analogy between both analyses is possible, since
we have retained the higher-order correction εC in the multiple-scale formulation.
If one neglects this term (see below), one obtains the same stability result as for
the plane-parallel flow, which is qualitatively different from the exact one (§ 3.1). As
a matter of fact, this is what Lighthill and Whitham did when they derived the
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‘telegraph equation’ (see Lighthill & Whitham 1955, pp. 294–295). So the main new
features of the present analysis are that non-parallel time-varying effects originating
from the slow streamwise variations of the background flow are taken into account.

Since matrices A–C do not depend on the independent variables X and t , the
solution to the linear equations (3.21) now admits a decomposition in normal modes
in the rapid scale {X, t}. Hence, we apply the Laplace transform in X ∈ [0, ∞) to
(3.21), which yields

∂S1

∂t
+ D · S1 =

1

s
F with D ≡ As + B + εC (3.24)

and

S1(s, t) =

∫ ∞

0

e−sXs1(X, t) dX, s ∈ �. (3.25)

The solution to (3.24) can be written as

S1(s, t) = (V · E · V−1) · So
1 + s−1 V · (E − I) · Λ−1 · V−1 · F, (3.26)

where So
1(s) denotes the initial condition at t = 0; E ≡ exp(tΛ) arises from the

eigenvalue decomposition of D (i.e. D = −V · Λ · V−1); and V are the eigenfunctions of
D in columns. We start analysing the response to the initial conditions, and later we
shall study the particular solution that includes the constant vector F.

3.2.1. Response to initial conditions

To characterize the stability of the response to the initial condition So
1, a measure

of the amplification G(s, t) is required (Schmid & Henningson 2001),

G(s, t) =
‖S1(s, t)‖2

‖So
1(s)‖2

= ‖V · E · V−1‖2. (3.27)

In the present study, to characterize the amplification of disturbances, we use the least
stable mode of −D, which gives

G(s, t) = ‖V · E · V−1‖2 = exp{2 max[Re(λ̂±)]t}. (3.28)

Thus, the stability of our dynamic system is governed by the real part of the least
stable eigenvalue that appears in the diagonal matrix Λ,

Λ =

(
λ̂+ 0

0 λ̂−

)
, λ̂± ≡ sin θ

2V0

λ±, (3.29)

with

λ± = −{2(1+a+φ)±
√

2
√

2 + 2a2� − 4φ + (8� − 2)φ2 + a[(8� − 1)φ − 2]}, (3.30)

in which φ is the local free-surface slope of the base solution defined by (2.21); �

is a measure of the plane-parallel Froude number, given by (2.22); and the non-
dimensional, complex, wavenumber a is defined as

a ≡ sV 2
0

sin θ
= γ + iα. (3.31)

The real and imaginary parts of λ̂± are the exponential growth rate and the temporal
frequency, respectively. On the other hand, the real part γ is the spatial growth rate
(we set γ = 0 hereafter in order to perform a temporal stability analysis; Gaster
1962), and the imaginary part α is the local wavenumber. The reader must note that
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1 2 3 4 5 6 7 8 9 10

100

101

10–1

10–2

102

103

104

Frp

α

G > 1G = 1

G < 1

Figure 3. The contour lines of the constant growth/decay rate in the {Frp , α}-plane for the
plane-parallel flow. Continuous lines: Re(λ−) = 0, 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 2, 3.
Dashed lines: Re(λ−) = − 0.001, −0.01, −0.05, −0.1, −0.15, −0.2, −0.25.

Re(λ−) > Re(λ+), and thus λ− must define the operator G(s, t). Hence, the neutral
curve for instability, corresponding to Re(λ−) = 0 (i.e. G(s, t) = 1), is easily obtained
by substituting a = iαcr into (3.30). Solving for αcr , it yields

α2
cr =

32φ(1 + φ)2(2 + φ − 2�φ)

64�2φ2 + (2 + φ)2 − 16�(1 + 4φ + 2φ2)
. (3.32)

Before undertaking the analysis of the near-parallel stability results of a kinematic
wave down an open inclined channel, it is convenient to consider first the simplest
case of a uniform flow, thus reproducing previously known stability results. This
analysis will also serve as a reference that will help to understand the near-parallel
results. For a uniform and steady basic flow, H0 = constant and V0 = constant, one
has ∂V0/∂x̂ =0 in (3.23) and φ = 0. Hence, C and F vanish. The eigenvalues λ± for
this simplified case are obtained setting φ = 0 in (3.30), which yields

λ± = −2[(1 + a) ±
√

1 + a2� − a]. (3.33)

The neutral curve for instability is readily obtained by following the same procedure
as indicated above. Indeed, setting a = iα in (3.33), it reads

λ± = −2

{
1 ±

√
2

√
1 − �α2 +

√
α2 + (�α2 − 1)2

+ i
[
α ∓

√
2

√
�α2 − 1 +

√
α2 + (�α2 − 1)2

]}
. (3.34)

It is an easy exercise to show that the real part of λ− vanishes at all wavenumbers
α when � = 1/4 (i.e. Frp = 2). The flow is stable (G(s, t) < 1) for � > �cr = 1/4
(i.e. Frp < 2), whilst it is (convectively) unstable (G(s, t) > 1) for any value of the
wavenumber α if � < 1/4 (i.e. Frp > 2). The convective nature of the instability is due to
the supercritical regime of the background flow. This obviously reproduces the
instability condition Frp > 2 of Jeffreys (1925): any perturbation is unstable above
the critical Froude number that is equal to 2. Figure 3 depicts the neutral curve
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2.00 2.05 2.10 2.15 2.20

Frp

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

G = 1

G > 1

G < 1

(b)

(a)

100

101

10–1

10–2

102

5 × 10–2

1 × 10–2

1 × 10–3

1 × 10–4

α

100

101

10–1

10–3

10–2

α

Figure 4. (a) Neutral curves for different values of φ > 0; (b) the contour lines of the constant
growth/decay rate Re(λ−) in the {Frp , α}-plane for φ = 10−4. Continuous lines: Re(λ−) = 0,

0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 1, 1.2. Dotted lines: Re(λ−) = − 0.0001, −1.985 × 10−4, −0.001,
−0.01, −0.05, −0.1, −0.15, −0.2, −0.25.

in the {Frp , α}-plane, which is just the vertical straight line Frp = 2, together with
some contour lines for the constant growth/decay rate. Note that for Frp close to
the critical value Frcr =2 the growth rate is so small that an extremely long channel
would be required for the developments of the unstable waves.

Figure 4(a) shows the neutral curves in the {Frp , α}-plane for several values of
φ > 0. As is observed in this figure, there are marked differences with the neutral
curve for the parallel flow case φ = 0 (i.e. with the vertical line Frp = 2 in figure 3).
Firstly, the flow is always stable independent of the Froude number for very small
wavenumbers, i.e. for α <α∞(φ):

α∞ ≡ lim
�→0

αcr =

√
32φ(1 + φ)2

2 + φ
. (3.35)
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2.00

2.05

2.10

2.15

2.20

2.25

2.30

Frcr
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φ

(b)

(a)

Figure 5. (a) Frcr and (b) α∞ as functions of φ > 0.

Secondly, the minimum, or critical, Froude number for instability (which defines the
vertical asymptotes in figure 4a),

Fr cr (φ) ≡
[

8φ2

1 + 4φ + 2φ2 − (1 + φ)
√

1 + 6φ + 3φ2

]1/2

, (3.36)

is always larger than 2 when φ > 0. This critical Froude number tends to 2 as φ → 0,
though the wavenumber α∞ also vanishes. As in the parallel case, the flow is unstable
for almost any wavenumber when Frp >Fr cr (except for very small wavenumbers, as
commented above). To have an idea of the most unstable wavenumbers, figure 4(b)
shows the contour lines of the constant growth/decay rate for a particular value of
φ. It is observed that the critical Frp is much larger than 2 for low wavenumbers,
and the growth rate is quite small, bordering the neutral curve for Frp >Fr cr . For
very high wavenumbers, the critical Frp may also be larger than 2, with a growth
rate not so large. But these very high wavenumbers, like the very small ones, are too
extreme to be physically meaningful. Thus, the critical values {Frcr , α∞} are the most
significant physical results. Figure 5 shows these critical values as functions of φ � 0.
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Figure 6. The contour lines of constant growth rate Re(λ−) in the {φ, α}-plane for Frp = 2.

For α <α∞ the flow is stable for any Froude number, even Froude numbers larger
than 2.

The present result qualitatively agrees with that obtained in the previous section:
the flow is stable for any wavenumber when the Froude number of the background
flow is 2, i.e. f = 2 tan θ . In this case, the vector F vanishes (see (3.23)), and there is
no particular solution to be found. The stability of the system is therefore governed
purely by the response to the initial conditions already analysed. Going further to
quantify the influence of the multiple-scale hypothesis in the linear stability results, the
solution of the particular case Frp = 2 may serve as the benchmark case to compare
with the exact results in § 3.1.

Setting � = 1/4 in (3.30), the exponential decay rate corresponding to the real part
of λ− (the least stable mode) reads

Re(λ−) = − 1√
2

[√
8(1 + φ) −

√
4 − α2 − 8φ +

√
α4 + 16(1 − 2φ)2 + 4α2(2 + φ2)

]
,

(3.37)

which is plotted in figure 6. Its dependence on the wavelength is negligible for very
small and high wavelengths, as is shown by the vertical asymptotes for α → ∞ and 0,
respectively. For wavelengths of order unity, the decay rate is influenced substantially
by the value of α; the larger the φ, the stronger the dependence. Regarding (2.22),
the near-parallel results are likely to become increasingly valid as φ decreases
towards zero. For this reason, the focus of the comparison with the exact results
is next done in this limit. Expanding (3.37) with respect to φ = 0, neglecting terms
O(φ2), taking into account (3.29) and substituting into (3.28), the amplification factor
reads

G(α, t) ≈ exp

[
−m(α) sin θ

2V0

φt + O(φ2)

]
with m(α) ≡ 32 + 6α2

4 + α2
. (3.38)

Substituting the definition of φ (2.21) into the equation shown above, and expanding
in powers of T ≡ − Bt/(1 + Bt) with respect to T = 0, the amplification factor is
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rewritten as

G(α, t) ≈ 1 − m(α)

3

Bt

1 + Bt
+ O

[(
Bt

1 + Bt

)2
]

. (3.39)

Besides, the Laplace transform in X of F [ξ (X, t)], denoted by �[F ](s, t), is related
with its Laplace transform in ξ , denoted by �[F ](s), by the following relation:

�[F ](s, t) ≡
∫ ∞

0

F (ξ )e−sXdX = τ

∫ ∞

0

F (ξ )e−sτξdξ = τ�[F ](sτ ). (3.40)

Thus, the amplification factor associated to the exact solution s1 (see (3.12)) is

G(α, t) =
‖�[s1](s, t)‖2

‖�[s1](s, 0)‖2
=

∣∣∣∣ �[F ](sτ )

τ�[F ](sτ )

∣∣∣∣
2

= 1 − 2Bt

1 + Bt
+

(
Bt

1 + Bt

)2

. (3.41)

Comparing (3.39) and (3.41), and regarding that the value of m(α) ranges between
6 and 8 when the wavenumber α varies from 0 to ∞, the error intrinsic to the
multiple-scale analysis in the prediction of the linear decay rate at the initial stage
(t � 1/B) decreases from 33 % to 0 % for wavenumbers varying between 0 and ∞,
respectively.

3.2.2. Response to forcing

Once we have established the stability criterion of the homogeneous part of solution
(3.26), i.e. the first term on the right-hand side of (3.26), we proceed to analyse the
particular solution Sp , i.e. the second term on the right-hand side of (3.26). This last
term can be decomposed into two contributions:

Sp = Spa + Spb (3.42)

with

Spa ≡ −V · Λ−1 · V−1 · F

s
, Spb ≡ V · E · Λ−1 · V−1 · F

s
. (3.43)

The first one, Spa , arises from the non-homogeneous part of (3.21) and can be
readily rewritten in the original variables (X, t):

spa = (B + εC)−1 · F. (3.44)

Since all the terms involved in this equation depend on neither X nor t , Spa is a
steady, uniform solution. Therefore, it is stable.

The second contribution to the particular solution, i.e. Spb, corresponds to a
homogeneous solution that was introduced in (3.26) to differentiate the response of
the system to the initial conditions So

1, i.e. to cancel the contribution of Spa at t =0.
Hence, it represents the temporal evolution of a constant, uniform disturbance. The
wavelength of this perturbation is obviously ∞, or α = 0, which is, according to the
previous analysis, stable for any Froude number.

3.3. Numerical simulation

The most significant result found in the previous sections is that the behaviour
of small disturbances superimposed on a kinematic wave differs qualitatively from
their evolution on a plane-parallel flow under two specific scenarios: first, with
Frp = 2, small-amplitude long-wave disturbances are stable, with a linear decay rate
independent of the wavelength and with wavelengths that increase linearly with time;
second, for larger Froude numbers (i.e. Frp > 2) small-amplitude perturbations with
wavenumber values below α∞ are stable. In the first scenario, the asymptotic solution
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of nonlinear perturbations is already known, and so we do not need to corroborate the
result. Furthermore, the error arising from the multiple-scale analysis has also been
quantified. Hence, this case is next used to show the capabilities of the numerical code
to compute with accuracy the amplitude, wavelength and phase speed of nonlinear
perturbations. Once we have validated the numerical code to solve the nonlinear
evolution of small perturbations, we proceed to verify the second result.

We are interested here in solving (2.1)–(2.3) for the flow whose initial condition
(t = 0) is given by

U (X, 0) =

⎧⎪⎪⎨
⎪⎪⎩

ϑX if Xb0 � X � Xb1,

ϑX + υ sin

[
2π

λ0

(X − Xb1)

]
if Xb1 � X � Xb2,

ϑX if Xb2 � X � Xb3,

η(X, 0) =
f

8

U 2

sin θ
,

(3.45)

where λ0 is the initial wavelength of the disturbance; Xb0 = Xb1 −3λ0 > 0; Xb2 = Xb1 +
nλ0; and n represents the number of waves introduced as perturbations.

The nonlinear set of equations (2.1)–(2.3) is solved with SharpClaw, the new
incarnation of WENOCLAW (Ketcheson & LeVeque 2008), in the computational
domain with cells Ci = (Xi−1/2, Xi+1/2), i = 1, . . . , Nx. The computational variables
are Qn

i , which approximate the average value over the ith interval at time tn:

Qn
i ≡

(
ηn

i

ηU
n

i

)
≈ 1

ΔXi

∫
Ci

(
η

ηU

)
(X, tn)dX, ΔXi = Xi+1/2 − Xi−1/2, (3.46)

where the centre of the cell is Xi =(Xi+1/2 + Xi−1/2)/2. For simplicity we assume a
uniform grid with cell size ΔXi = ΔX. A component-wise weighted essentially non-
oscillatory (WENO) scheme is adopted in the current work. Left- and right-going flux
differences are computed using Roe’s approximate Riemann solver with entropy fix
for transonic rarefactions. The gravitational source term in the momentum balance
equation is discretized according to Črnjarić Žic, Vuković & Sopta (2004; note that
there is a misprint in the sign of the first component of l(2) of equation (42) in their
paper). To preserve a well-balanced scheme in the kinematic regime, we apply the
same source term decomposition to the friction force, which is evaluated from the
known values at the cell centres, by using the WENO reconstruction procedure with
the smoothness indicators of the water depth variable η. This scheme is only second-
order accurate for general solutions based on truncation error analysis (Xing &
Shu 2005). However, to the author’s knowledge, the code of WENO methods for
non-homogeneous problems and moving water (that maintains fifth-order accuracy)
is a tedious task, and its formulation has currently been carried out only for ideal
flows (Castro, Gallardo & Parés 2006; Noelle, Xing & Shu 2007). Finally, in order to
complete the definition of the scheme, we need to introduce the temporal discretization,
which has been chosen to be a third-order accurate, strong stability-preserving Runge–
Kutta method (denoted by SSPRK(3,3) in Gottlieb, Ketcheson & Shu 2009).

Taking into account that we are interested in analysing supercritical regimes
(in particular, Frp � 2), two physical BCs are to be imposed at the inlet, and
thus no physical outflow BCs are to be applied (e.g. Blayo & Debreu 2005;
Bohorquez & Darby 2008). However, additional numerical BCs are required by
the numerical scheme (e.g. Shu 2009): for a fifth-order WENO scheme, the five-cell
stencil (C−1, C0, C1, C2, C3) built using the six-cell interfaces (X−3/2, X−1/2, X1/2, X3/2,

X5/2, X7/2) is employed at the inlet, whilst the five-cell stencil (CNx−2, CNx−1,
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CNx, CNx+1, CNx+2) built using the six-cell interfaces (XNx−5/2, XNx−3/2, XNx−1/2,

XNx+1/2, XNx+3/2, XNx+5/2) is employed at the model outlet; since our WENO imple-
mentation deals with BCs at the cell interfaces, inflow BCs are obtained by evaluating
(3.1) at X = X−3/2, X−1/2, X1/2; although numerical outflow BCs have usually been
undertaken using the characteristic variable extrapolation (CVE) method (e.g. Blayo &
Debreu 2005; Bohorquez & Darby 2008), we find that extrapolation based on asymp-
totic solutions of the problem under consideration, i.e. (3.1), supersedes CVE, and thus
both the water depth η and the flow rate ηU are extrapolated following a linear and a
cubic law in the streamwise coordinate, respectively, at X = XNx+1/2, XNx+3/2, XNx+5/2.
Next, as discussed in § 3.1, the amplitude of the perturbation must satisfy the relation
υ � ϑ λ0/2π in order to avoid nonlinear effects. So, the multiple-scale results for
Frp > 2 can be compared with the nonlinear numerical simulations.

One should note that the main difference of this numerical technique with respect to
that applied by Brook, Falle & Pedley (1999) lies in the BC. Traditionally, roll waves
are numerically studied by using their periodicity properties, and so periodic BCs
are frequently employed. Hence, in the plane-parallel flow one just needs to solve the
physical domain occupied by disturbances. However, in order to analyse the stability
of the more general basic flows (which are not periodic) we have to adopt a different
approach. This fact introduces an additional difficulty for Frp > 2, since the exact
solution for the background flow is unknown in this case. This requires us to solve
at each time step the whole domain travelled by the waves. Close to criticality, i.e.
for small growth rate, the length of the domain (Xb2, Xb3) necessary for us to observe
a significant change in the wave amplitude is extremely large, and we shall require
unreachable computational resources in order to run such numerical simulations. In
addition, the unperturbed background flow is to be computed in order to isolate
the nonlinear disturbance from the perturbed flow. The set-up for the background
flow is obviously exactly the same as for the perturbed flow but setting υ =0 in
(3.45). Therefore, both the perturbed and unperturbed background flows are solved
for Frp > 2 in the entire domain that waves travel, and nonlinear perturbations are
obtained by extracting the second solution from the first one.

On the other hand, the case Frp = 2 is much easier to compute. First, the exact
solution is known, and so we just need to solve the perturbed flow. Nonlinear
disturbances are then obtained by subtracting the asymptotic background flow (3.1)-
(3.2) from the numerical simulation. Second, in order to reduce the computational
time, we initially solve in a small region I1, i.e. Xb3 ≈ Xb2. Before the wavetrain reaches
the end of I1, a new domain I2 is defined that contains the subregion in which waves
exist (denoted as I∩ in figure 7), and it is enlarged downward adding new nodes
(subdomain I3) which are initialized to the values defined by (3.1)–(3.2). This process
is repeated several times during the numerical simulation. Thus, we solve at nearly
each time step the small domain in which the waves are located.

Before undertaking the analysis of the numerical results, we notice that the initial
value of α for the base state, i.e. for (3.45) with υ = 0, which is obtained by setting
s = i 2π/λ0 in (3.31), is

αo(X) ≡ α(X, 0) =
2π

λ0

U (X, 0)2

sin θ
=

2π

λ0

(ϑX)2

sin θ
(3.47)

and varies between

αo
min ≡ 2π

λ0

(ϑXb1)
2

sin θ
and αo

max ≡ 2π

λ0

[ϑ(Xb1 + nλ0)]
2

sin θ
. (3.48)
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I1

I2

I3
I∩

Xb1 Xb2 X

U

t = 0

t > 0

Figure 7. Sketch of the initial condition at t = 0 for the velocity field U according to the
numerical experiment defined in § 3.3.

Similarly, the initial value of φ,

φo(X) ≡ φ(X, 0) =
U (X, 0)

sin θ

∂U

∂X
(X, 0) =

ϑ2X

sin θ
, (3.49)

varies between the range of values

φo
min ≡ ϑ2Xb1

sin θ
and φo

max ≡ ϑ2(Xb1 + nλ0)

sin θ
. (3.50)

Therefore, the local, linear growth rate (3.28)–(3.30) varies when it is evaluated for
the pair of values {αo

min,φ
o
min} and {αo

max ,φ
o
max}, although this effect is negligible when

2πυ/ϑ � λ0 � Xb1. Furthermore, as the disturbance is convected, the values of φ and
α, as well as the wavelength, change because of low spatio-temporal variations of the
background flow. We observe below that the predictions of the multiple-scale theory
based on the initial values {αo

min,φ
o
min} and {αo

max ,φ
o
max} are in close agreement with

the numerical growth rates, and we shall conclude that smooth variations of φ and
α during the numerical simulation do not affect significantly the predictions of the
multiple-scale theory.

The result of the numerical simulation for Frp = 2 is in close agreement with the
asymptotic solutions obtained in previous sections (see figure 8). By definition, the
numerical wavelength shown in figure 8(b) has been determined by considering
the distance between consecutive corresponding points of the same phase, such as
crests, troughs or zero crossings. Figures 8(a) and 8(b) depict the evolution of the
amplitude and wavelength of the disturbances, respectively, normalized with respect
to their initial values, which reproduce with accuracy the asymptotic solution (3.12)
for

F (ξ ) =

⎧⎨
⎩sin

[
2π

λ0

(ξ − Xb1)

]
if Xb1 � ξ � Xb2,

0 otherwise.

(3.51)

Moreover, by comparison of the simulated perturbations (figure 8c) and their
asymptotic solution (figure 8d ), we find out that the phase speed of the waves is
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Figure 8. Comparison between nonlinear numerical and linear analytical solutions of the
disturbance velocity: (a) amplitude and (b) wavelength, normalized with respect to their initial
values, as a function of time t; isocontours of (c) nonlinear numerical and (d ) linear analytical
perturbations in the {τ , ξ}-plane, normalized with respect to υ; (e) shows the difference
between (c) the computed and (d ) the analytical solution; finally, (f ) depicts the error in
the computation of the background flow with respect to the analytical solution (3.1)–(3.2),
i.e. (Ub,num − Ub)/Ub. The numerical experiment is defined by the values: ϑ ≈ 4.1 × 10−4,
Xb1 = 9.425, Xb2 = 12.425, υ ≈ 2 × 10−6, λ0 = 1, θ =1◦ and Frp = 2. The computations

were conducted with 75 × 103 nodes (corresponding to 1000 nodes per wave at t =0)
and CFL =0.4.

also computed with precision. Indeed, absolute errors in the normalized waves are
lower than 5 × 10−3 during the simulation (see figure 8e). To conclude the validation,
we point out the accuracy of our computations of the base flow, since relative errors
lie below 10−9 (as shown in figure 8f ) – note the noisy aspect of the signal because
of the inevitable truncation in the data storage.
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Figure 9. Numerical results of the normalized (a) amplitude and (b) wavelength of the
velocity perturbation for three values of the Froude number (Frp =2, 3, 4). The retrodicted
disturbance of the velocity is also shown in (c), as well as the values of φ (d ) based on the
numerical simulation in the particular case Frp = 4. The numerical experiments were conducted
under the same conditions as in figure 8.

We are now in a condition to verify that waves with αo < α∞ are also stable for
Frp > 2. To this end, the Froude number is increased up to 4, maintaining constant
the values of the other parameters. Substituting the values that define the numerical
simulations shown in figures 8 and 9 (i.e. λ0 = 1, θ = 1◦, ϑ = 4.1 × 10−4, Xb1 = 9.425,
n= 3) into (3.48), we obtain that αo varies in the narrow range 0.0054–0.0093. From
(2.22), for these values of the Froude number the base flow can be approximated
by a kinematic wave if φ � 2.7. This restriction is readily satisfied in the present
scenario where φ ≈ O(10−4) (see below). Hence, the value of φ does not depend on
the Froude number, and the stability diagram (figure 4b) is common to the three
simulations. So we have marked the near-parallel stability diagram (figure 4b) with
a filled square in order to depict the initial location of the numerical experiment
for Frp = 2, whilst we have marked in filled stars the cases Frp = 3, 4. A check of
the normalized amplitude of the wave for Frp = 2, 3, 4 (see figure 9a) shows that the
decay rate decreases very slowly when the Froude number grows above 2. Figures 9(b)
and 9(c) illustrate that the wavelength of the perturbation and the wave trajectories
evolve identically in the three simulations; i.e. stable disturbances are convected along
the expansion fan ξ = constant. As a matter of fact, this result is in agreement with
the asymptotic solution (A 7). Therefore, the leading-order velocity of the background
flow (2.24) and its gradient can be written as functions of ξ and τ as for Frp =2
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(see (3.1)–(3.3)),

V0(ξ, τ ) = ϑξ = V0(ξ ),
∂V0

∂X
(ξ, τ ) =

ϑ

τ
=

1

τ

∂V0

∂X

∣∣∣∣
τ=1

.

Substituting these expressions into the definition of a (3.31) and φ (2.21) and taking
into account that s = i2π/λ and λ(τ ) = λ0τ (e.g. see figure 9b or set C1 = F into (A 7)
with F given by 3.51) yields

α(ξ, τ ) =
2π[V0(ξ )]2

λ(τ ) sin θ
=

αo(ξ )

τ
, (3.52)

φ(ξ, τ ) =
V0(ξ )

sin θ

∂V0

∂X
(τ ) =

V0(ξ )ϑ

τ sin θ
=

φo(ξ )

τ
, (3.53)

in which αo(ξ ) and φo(ξ ) are given by (3.47) and (3.49), respectively. For completeness,
the numerical values of φ(ξ, τ ) calculated a posteriori according to its definition (2.21)
are drawn in figure 9(d ), verifying the law φ(ξ, τ ) ≈ φo(ξ )/τ as stated above. Given
these temporal tendencies of φ(ξ, τ ) and α(ξ, τ ), the proof of α(ξ, τ ) < α∞ (with
αo(ξ ) < α∞) is straightforward (see Appendix B). Finally, we observe from figure 4(b)
that the decay rate has a limiting value when increasing Frp above 2 with α = constant,
which introduces a cutoff in wavenumber for the spectrum, as found in our
simulations. The trends are the same for both the multiple-scale stability analysis
and the numerical results.

To quantify the accuracy of the linear stability results for the onset of roll
waves, we finally present results for disturbances with αo >α∞. The same values
of the Froude number as before are simulated but decreasing the initial slope of
the velocity profile and displacing the location of the waves further downstream,
as indicated in the caption of figure 10. This configuration results in αo (3.48)
varying between 5.915 and 5.919, marked with the filled circles in figure 4(b), as
φo (3.50) varies over the range 0.9988 × 10−4 to 0.9992 × 10−4. A rough estimation
of the growth rate, based on the initial conditions of the perturbations, gives (see

§ 3.2) Re(2λ̂−) = 0.0489 with Frp = 3 and Re(2λ̂−) = 0.0758 with Frp = 4. Fitting the
amplitude of the simulated perturbations (see figures 10(a) and 10(c), with the law
log(G(t)) = mt + n, it follows that m =0.0482 for Frp = 3 and m = 0.0752 for Frp =4.
The coefficient of determination in both cases is 0.9999. This difference amounts to a
1.5 % discrepancy between the growth rate estimated using the linear theory versus
nonlinear simulations. This satisfactory result is, in part, due to the smooth variation
of φ during the numerical simulation (as shown in figure 10d ).

3.4. Closure

The aim of this section is to tie the multiple-scale stability results (§ 3.2) to the
appearance of roll waves in the numerical simulation of the dam-break problem (§ 2).
In the original non-dimensional variables {X, t}, which are related to the slow scale
{x̂, t̂} by (2.5), the base flow (2.10)–(2.16) and the free-surface slope φ (2.21) read

H0 =
f V 2

0

8 sin θ
, V0(X, t) =

2X

3t
for 0 � X � Xs(t) ≡

(
27AFr2

p cos θ

4
t2

)1/3

, 0 < t,

(3.54)

and

φ(X, t) =
V0

sin θ

∂V0

∂X
=

4X

9t2 sin θ
for 0 < X < Xs(t), 0 < t. (3.55)
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Figure 10. The isocontours of the numerically computed perturbations in the {τ , ξ}-plane,
normalized with respect to υ , for Frp = (a) 2, (b) 3 (c) 4, respectively. The values of φ are
also shown in a similar diagram (d ), where the trajectories of the wave crests are drawn
as the circle, square and asterisk, respectively. The numerical experiment is defined by the
values: ϑ ≈ 1.36 × 10−5, Xb1 = 9.4248 × 103, Xb2 = 9.4278 × 103, υ ≈ 3 × 10−8, λ0 = 1, θ =1◦.
The computations were conducted with 75 × 103 nodes (corresponding to 1000 nodes per wave
at t = 0) and CFL =0.2.

The maximum value of φ(X, t) at a given time t is attained at the flow front
Xs(t),

φs(t) =
V0

sin θ

∂V0

∂X

∣∣∣∣
X=Xs (t)

=
4

9t2 sin θ

(
27AFr2

p cos θ

4
t2

)1/3

, 0 < t. (3.56)

Now, setting Frcr = Frp in (3.36) and writing φ as a function of Frp , one obtains the
critical value of φ (denoted hereafter by φcr ) that makes the dam-break flow critically
stable for a given plane-parallel Froude number Frp ,

φcr =
2
(
Fr2

p − 2Frp

)
8 + 4Frp − Fr2

p

. (3.57)

It is worth noting that the validity of this result is limited by the kinematic-wave
approximation considered to describe the base flow. As stated just below (2.22), the
kinematic-wave equation (2.11) by Lighthill & Whitham (1955) is an approximate
solution to the shallow-water equations (2.6) and (2.7) only when φ � φ∗(Frp). For
instance, substituting the values of Frp = {2.078, 2.25, 2.814, 5} into (2.22) and (3.57)
yields φ∗ = {27.15, 9.53, 4.04, 2.38} and φcr = {0.027, 0.09, 0.40, 10}, respectively. We
observe that the condition φcr � φ∗ is satisfied just for Froude numbers slightly
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larger than 2, and so the kinematic-wave approximation imposes a strong limitation
in the applicability of the stability results. These limitations are further described
below.

The critical instant of time (tcr ) at which the entire dam-break flow becomes
critically stable is obtained by identifying φcr with φs at t = tcr :

φs(tcr ) = φcr ⇒ tcr =

[
2A

(
8 + 4Frp − Fr2

p

)3

27Frp(Frp − 2)3 tan θ(sin θ)2

]1/4

for 2 < Frp � 5.4641.

(3.58)

This result is likely to be valid for restricted values of the Froude number Frp . As a
matter of fact, since it is based on the kinematic-wave approximation, (2.22) should
be satisfied. Introducing the same tolerance Φ as for the characteristic time tc (see
(2.17)), (2.22) reads

φcr (Frp) < Φ

∣∣∣∣∣ 2Fr2
p

Fr2
p − 4

∣∣∣∣∣ . (3.59)

Substituting (3.57) into (3.59), identifying the left- and right-hand sides and solving
for Frp with several values of the tolerance yields Frp = {2.078, 2.25, 2.814} for
Φ−1 = {1000, 100, 10}, respectively. Similarly, for the value of Φ =4.25 × 10−3 set in
§ 2, we find that the critical time (3.58) is just valid for Froude numbers slightly larger
than 2, say 2 <Frp � Fr∗

p ≡ 2.1626. Conversely, for Frp >Fr∗
p the linear theory predicts

the formation of roll waves in the entire dam-break flow before the kinematic regime
is approached. In particular, for Frp =5.4641 the critical time is tcr = 0. However, we
have to wait until tc (see (2.17)),

tc = Φ−3/4

√
1

sin θ

(
2A

( ∣∣Fr2
p − 4

∣∣ )3
tan θ

27Fr2
p

)1/4

, (3.60)

to approach the kinematic-wave solution and thus to apply the linear stability analysis.
As commented on in § 2, this is the main mathematical drawback of the present
results that might be caused by neglecting both higher-order terms of the base
flow (2.8)–(2.9) and the non-modal nature of instability waves in the stability analysis.
Furthermore, the panorama becomes much more complex in the absence of analytical
(or asymptotic) solutions for the frictional dam-break problem on an inclined plane
at short and moderate times. On the other hand, from the physical point of view,
roll waves in floods on inclines have been uniquely observed in extremely steep slope
channels but not over shallow slopes that would require, according to actual results,
an extremely long distance for the developments of the waves.

The ratio between tcr (3.58) and tc (3.60), shown in figure 11 for Φ = 4.25 × 10−3, is

tcr

tc
=

(
Φ3

tan2 θ

)1/4
[

Frp

(
Fr2

p − 4Frp − 8
)3

(Frp − 2)6(Frp + 2)3

]1/4

for 2 < Frp � 5.4641. (3.61)

As stated above, this result is formally valid for 2 <Frp � Fr∗
p – the limiting value is

illustrated in figure 11 with the vertical straight line Frp = Fr∗
p . Dam-break flows over

shallow slopes of the bottom bed, θ < 15◦, may first approach the kinematic-wave
solution during the period of time tc < t < tcr , later attaining the unstable regime at
t � tcr . Therefore, from the present hydraulic linear theory we figure out that when
2 <Frp � Fr∗

p , the kinematic-wave solution would be observed in reality only on
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Figure 11. The ratio between the critical (tcr ) and characteristic (tc) time, given by (3.61), for
Φ = 4.25 × 10−3 and several bottom slopes.

shallow-slope terrains. Conversely, for larger values of the bed slope, i.e. θ > 15◦, we
find that the entire flow field can be unstable at t < tc, and so the growth could arise
from developments in the time before tc. The present study predicts the critical time
for the onset of roll waves only in the former case.

The next point to address is the characterization of unstable wavelengths. The
dam-break wave is unstable for t � tcr at all wavenumbers within the range (see § 3.2)

α∞(φ) < α < ∞ with α =
2π

λ0

V 2
0

sin θ
, (3.62)

in which α∞(φ) is given by (3.35). Substituting (3.35) into (3.62), and taking into
account (3.54) and (3.55), one has

0 < λ0 < λ∞ ≡ 2πV0(X, t)2

α∞(φ(X, t)) sin θ
= π

X3/2
√

2X + 9t2 sin θ

4X + 9t2 sin θ
, 0 < X < Xs(t), tcr < t.

(3.63)

The dependence of λ∞ with X and t is a relevant result. Firstly, we observe at a fixed
location X that λ∞ decreases as time proceeds, and so we expect the stabilization
of small-amplitude unstable disturbances. This fact is corroborated by plotting the
velocity U at the gauge station X = 1500 in the dam-break numerical simulation
already described in § 2. Figure 12(a) is such a plot starting from t = 4500, the instant
at which one begins to observe the formation of small-amplitude instability at the free
surface. The velocity perturbation has a temporal frequency of 0.1925 (see the power
spectral density, denoted by PSD, in figure 12b) which remains almost constant until
the flow becomes stable (t =7000). The wavelength in the numerical simulation can
be estimated from figure 2(b) as the ratio between the space domain length to the
number of crests to be 10.71, which falls within the range of the theoretical predictions
(3.63) with λ∞ = 65.75 at t = 7000. Taking into account that during the period of time
considered in figure 12(a) U and its gradient vary, in the location considered, in the
ranges 0.15–0.24 and 9.5 × 10−5–1.5 × 10−4, respectively, that wavelength corresponds
to 0.76 < α < 1.94, approximately. The ensuing values of φ are 0.00128–0.00131. For
these values of α, φ and Frp = 2.5, the multiple-scale stability analysis predicts that the
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Figure 12. Velocity probes at three locations downstream from the gate of the dam:
(a) X = 1500, (c) X = 2500 and (d ) X =4500. The numerical solution is plotted in a continuous
line and in the circles the asymptotic solution given by (3.54). (b) Power spectral density of
the signal (a) after removing the base flow. The numerical simulation corresponds to the same
configuration as for figures 2(b) and 2(c).

eigenvalue λ̂− ranges between 0.0157–0.1987i (t = 4500) and 0.0058–0.1299i (t = 7000).
Therefore, the growth rate cannot be too small in order to observe the spontaneous
formation of instabilities in the numerical simulation, as in the experiments by Brock
(1969), who did not observe the formation of roll waves for Froude numbers below
3.5 for a uniform flow in an inclined channel. On the other hand, the temporal
frequency given by the stability analysis agrees quite well with the temporal frequency
in the numerical simulation.

Further downstream the amplitude of the instability waves eventually grows to reach
the stage at which the velocity signal has the aspect of the classical roll waves (see the
inset of figures 12c and 12d ). Even nonlinear, large-amplitude hydraulic jumps are
attenuated for long times (t > {1.4 × 104, 2.5 × 104} at X = {2500, 4500}, respectively)
because of the upstream stabilization of small-amplitude disturbances. Finally, we
observe that λ∞ (3.63) increases as we move downstream, and therefore instability
waves may continue developing closer to the flow front, as illustrated in figure 2(c).

4. Summary and conclusions
In this paper, we have considered the stability analysis of the flow after the sudden

release of a fixed mass of fluid on an inclined plane formally restricted to relatively long
time scales, for which the kinematic regime is valid (t > tc). An asymptotic solution for
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long-wave perturbations of small amplitude about kinematic waves with Frp = 2 has
been presented. For larger values of the Froude number, we have accounted for the
influence of near-parallel effects on the linear stability criterion by means of a multiple-
scale analysis in space and time, and we have found an asymptotic solution for the
neutral curve as a function of the plane-parallel Froude number (Frp) and a measure of
streamwise gradient of the base flow (φ). Subsequently, we have designed a numerical
experiment, which allows us to compute the nonlinear evolution of small-amplitude
perturbations, and so the asymptotic results were checked with those arising from
nonlinear numerical simulations, showing a satisfactory agreement between solutions.

We have found that non-uniform time-dependent effects of the background flow
stabilize the kinematic wave and raise the critical Froude number required for
instability. The well-known stability criterion for plane-parallel flows at high Reynolds
number – ‘the basic flow is unstable for any wavelength and Froude number larger
than 2’ (Jeffreys 1925) – differs abruptly from that which results for kinematic waves.
These results also differ from that previously reported by Lighthill & Whitham (1955)
because of the fundamental role that the non-parallel time-dependent characteristics of
the kinematic wave play in the behaviour of small disturbances, which was neglected
in their stability analyses. The most noticeable effects are as follows: stabilization
of disturbances about basic flows with Frp = 2; for larger values of the Froude
number, the existence of a cutoff wavenumber (α∞) for the unstable spectrum; and
for positive values of φ (2.21), the increase of the critical Froude number (Frcr )
required for instability. It is also found that stable waves lengthen as they are
convected downstream (see figure 9), and this behaviour also differs from the plane-
parallel one, in which waves remain with constant wavelength even when hydraulic
jumps are developed. Finally, when applying the asymptotic results to the stability of
the dam-break flow (with a tolerance value of Φ = 4.25 × 10−3) we have established
the following conclusions, which are formally valid just for 2<Frp � Fr∗

p ≡ 2.1626:
dam-break flows over shallow-slope beds, θ < 15◦, may first approach the kinematic-
wave solution during the period of time tc < t < tcr , subsequently attaining the
unstable regime at t � tcr ; on steeper bed slopes, θ > 15◦, the entire flow field can
be unstable at t < tc, and the growth could arise from developments in the time before
tc. The present study predicts the critical time tcr for the onset of roll waves only in
the former case. For larger values of the Froude number, Fr∗

p <Frp � 5.4641, though
we cannot establish an accurate approximation of tcr , we would expect at a
fixed location first the developments of free-surface instabilities, followed by their
attenuation until their ultimate extinction (see figure 12), which stabilizes the tail
of the dam-break wave, though instability waves may continue developing closer
to the flow front, as shown in figure 2(c). The limitations of these results might
be caused by neglecting higher-order terms of the base flow (2.8)–(2.9) as well as
the non-modal nature of instability waves in the stability analysis. Furthermore, the
panorama becomes much more complex in the absence of analytical (or asymptotic)
solutions for the frictional dam-break problem on an inclined plane at short and
moderate time scales.

We conclude by pointing out the applicability of our stability analysis to more
complex rheologies (Ancey 2007), as floods of debris might be approximated by
kinematic waves (Arattano & Savage 1994) and usually exhibit the development of
surges (Zanuttigh & Lamberti 2007).

This study was funded by the Ministerio de Educación y Ciencia of Spain (under
grant no. AP-2004-3719) and by EPFL (vice-présidence à la recherche). The author
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Appendix A. Integration of higher-order-terms of the base state
In this paper, the leading-order term in (2.8) and (2.9) was employed to analyse

the inception of roll waves in floods on steep inclines. This assumption is likely to be
valid under the specific condition t̂ → ∞, as discussed in § 2. Substituting expansion
(2.8)–(2.9) into (2.7), grouping terms O(ε) and using (2.10) and (2.16), one obtains the
algebraical relation that follows between H1 and V1:

H1 =
1

8 sin θ

[
4f x̂

3t̂
V1 +

4f x̂3

81t̂4 sin θ

(
f

tan θ
− 2

)]
. (A 1)

Analogously, taking into account (A 1), order ε of (2.6) provides for V1 the equation

∂V1

∂t̂
+

x̂

t̂

∂V1

∂x̂
+

V1

t̂
=

4x̂2

81t̂4 sin θ

(
f

tan θ
− 2

)
, (A 2)

which can be readily integrated along the family of characteristics

dx̂

dt̂
=

x̂

t̂
. (A 3)

For an arbitrary initial condition V1(x̂, t̂ = t̂0) = V 0
1 (x̂), t̂0 > 0, the general solution to

(A 2) reads

V1(x̂, t̂) =
t̂0

t̂
V 0

1

(
x̂ t̂0/t̂

)
+

(
f

tan θ
− 2

)
4x̂2 log(t̂/t̂0)

81t̂3 sin θ
. (A 4)

The limit t̂ → ∞ of (A 1) and (A 4) along the ray x̂/t̂ = constant is zero, and thus it is
now evident that both V1 and H1 vanish when t̂ � t̂0.

In general, Vj and Hj (2 � j ) can be determined following the same procedure as
for j = 0 (see § 2) and j =1 (see above). As a matter of fact, order εj of (2.7) provides
a linear relation between Hj and Vj of type

Hj =
f V0

4 sin θ
Vj + κj

(
Vi,

∂kVi

∂x̂k
,
∂kVi

∂t̂ k
; f, θ

)
with 0 � i < j, 0 < j, k � i.

(A 5)

It is an easy exercise to show that κj -function vanishes along (A 3) as time infinity.
Subsequently, (A 5) is substituted into O(εj ) of (2.6) to yield a linear non-homogeneous
hyperbolic first-order partial differential equation, given by

∂Vj

∂t̂
+

3

2
V0

∂Vj

∂x̂
+

(
1

V0

∂V0

∂t̂
+ 3

∂V0

∂x̂

)
Vj = ζj

(
Vi,

∂kVi

∂x̂k
,
∂kVi

∂t̂ k
; f, θ

)
. (A 6)

For t̂ → ∞, ζj vanishes as κj does. Finally, substituting (2.16) into (A 6), and neglecting
both κj and ζj , it follows the general solution

Vj (x̂, t̂) =
Cj (x̂/t̂)

t̂
, 1 � j, (A 7)
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in which Cj depends on the initial condition. For any Cj , Vj is attenuated as time
increases along the ray x̂/t̂ =constant. This result is corroborated by the numerical
simulation described in § 2 (see figure 2), which shows that the leading-order term V0

(2.16) approaches the numerical solution to the full nonlinear shallow-water equations
(2.1) and (2.2) in an increasingly better manner as time proceeds.

Appendix B. Cutoff in wavelength for the spectrum
In § 3.3 we have stated that when a disturbance is initially stable (at τ =1) for

Frp > 2, it remains in the stable region of the stability diagram as time proceeds,

α(ξ, τ ) < α∞(φ(ξ, τ )), 1 � τ, 0 � ξ, (B 1)

in which α, φ and α∞ are given by (3.52), (3.53) and (3.35), respectively.
At τ =1, (B 1) can be written as

μ2 < q(φo) ≡ 32(1 + φo)2

φo(2 + φo)
with μ ≡ αo

φo
. (B 2)

Notice that when φo varies from 0 to ∞, q(φo) decreases from ∞ to 32.
Taking into account the definition of α∞, given by (3.35), and substituting (3.52)

and (3.53) into (B 1) yields

0 < 32τ̃ 2 + (32 − μ2)(2τ̃ + 1) ≡ p(τ̃ , μ) with τ̃ ≡ τ

φo
� (φo)−1 > 0. (B 3)

Obviously, p(τ̃ , μ) > 0 at all τ̃ when μ2 � 32. So (B 1) and (B 2) are readily satisfied,
and there is cutoff in wavelength for the spectrum.

Conversely, when 32 < μ2, we find that p(τ̃ , μ) = 0 for τ̃ = τ̃cr ,

τ̃cr ≡ 1

32
(μ2 − 32 +

√
μ4 − 32μ2),

p(τ̃ , μ) < 0 for τ̃ < τ̃cr and 0 <p(τ̃ , μ) for τ̃cr < τ̃ . Since a disturbance that is initially
stable satisfies the condition 0 <p(1/φo, μ), we conclude that τ̃cr < (φo)−1 � τ̃ . This
implies that the wave remains in the stable region, and so there is cutoff in wavenumber
for the spectrum, as we wanted to prove.

REFERENCES

Ancey, C. 2007 Plasticity and geophysical flows: a review. J. Non-Newton. Fluid Mech. 142, 4–35.

Ancey, C., Cochard, S. & Andreini, N. 2009 The dam-break problem for viscous fluids in the
high-capillary-number limit. J. Fluid Mech. 624, 1–22.

Ancey, C., Iverson, R. M., Rentschler, M. & Denlinger, R. P. 2008 An exact solution for ideal
dam-break floods on steep slopes. Water Resour. Res. 44, W01430.

Arattano, M. & Savage, W. Z. 1994 Modelling debris flows as kinematic waves. Bull. Intl Assoc.
Engng Geol. 49, 3–13.

Balmforth, N. J. & Mandre, S. 2004 Dynamics of roll waves. J. Fluid Mech. 514, 1–33.

Blayo, E. & Debreu, L. 2005 Revisiting open boundary conditions from the point of view of
characteristic variables. Ocean Model. 9, 231–252.

Bohorquez, P. 2008 On the wavefront shape and the advancing of the wetting front of a dam-
break flood over an inclined plane of arbitrary bottom slope. Roll waves in floods on inclines.
In Numerical Modelling of Hydrodynamics for Water Resources (ed. P. Garcia-Navarro &
E. Playan), pp. 355–366. Taylor and Francis.

Bohorquez, P. & Darby, S. E. 2008 The use of one- and two-dimensional hydraulic modelling to
reconstruct a glacial outburst flood in a steep Alpine valley. J. Hydrol. 361, 240–261.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

27
6X

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
11

 Ju
l 2

01
7 

at
 0

8:
11

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

:/w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/S002211200999276X
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


408 P. Bohorquez

Bohorquez, P. & Fernandez-Feria, R. 2008 Transport of suspended sediment under the dam-break
flow on an inclined plane bed of arbitrary slope. Hydrol. Process. 22 (14), 2615–2633.

Brauner, N. & Maron, D. M. 1982 Characteristics of inclined thin films, waviness and the
associated mass transfer. Intl J. Heat Mass Transfer 25 (1), 99–110.

Brock, R. R. 1969 Development of roll-wave trains in open channels. J. Hydraul. Div. 95, 1401–1427.

Brook, B. S., Falle, S. A. E. G. & Pedley, T. J. 1999 Numerical solutions for unsteady gravity-
driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J. Fluid
Mech. 396, 223–256.

Castro, M., Gallardo, J. M. & Parés, C. 2006 High order finite volume schemes based
on reconstruction of states for solving hyperbolic systems with nonconservative products.
Applications to shallow-water systems. Math. Comput. 75, 1103–1134.

Castro, M., Gallardo, J. M. & Parés, C. 2008 Why many theories of shock waves are necessary:
convergence error in formally path-consistent schemes J. Comput. Phys. 227, 8107–8129.

Chang, H. C., Demekhin, E. A. & Kalaidin, E. 2000 Coherent structures, self-similarity, and
universal roll wave coarsening dynamics. Phys. Fluids 12 (9), 2268–2278.

Črnjarić Žic, N., Vuković, S. & Sopta, L. 2004 Balanced finite volume WENO and central WENO
schemes for the shallow water and the open-channel flow equations. J. Comput. Phys. 200,
512–548.
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