000172779 001__ 172779
000172779 005__ 20181203022604.0
000172779 02470 $$2ISI$$a000276243500004
000172779 0247_ $$2doi$$a10.2140/agt.2010.10.87
000172779 037__ $$aARTICLE
000172779 245__ $$aBar constructions and Quillen homology of modules over operads
000172779 269__ $$a2010
000172779 260__ $$c2010
000172779 336__ $$aJournal Articles
000172779 520__ $$aWe show that topological Quillen homology of algebras and modules over operads in symmetric spectra can be calculated by realizations of simplicial bar constructions. Working with several model category structures, we give a homotopical proof after showing that certain homotopy colimits in algebras and modules over operads can be easily understood. A key result here, which lies at the heart of this paper, is showing that the forgetful functor commutes with certain homotopy colimits. We also prove analogous results for algebras and modules over operads in unbounded chain complexes.
000172779 6531_ $$aModel Categories
000172779 6531_ $$aHomotopy-Theory
000172779 6531_ $$aSymmetric Spectra
000172779 6531_ $$aAlgebras
000172779 6531_ $$aCohomology
000172779 700__ $$aHarper, John E.
000172779 773__ $$j10$$q87-136$$tAlgebraic And Geometric Topology
000172779 909C0 $$0252139$$pUPHESS$$xU10968
000172779 909CO $$ooai:infoscience.tind.io:172779$$pSV$$particle
000172779 917Z8 $$x105396
000172779 937__ $$aEPFL-ARTICLE-172779
000172779 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000172779 980__ $$aARTICLE