Low-Symmetry Phases in Ferroelectric Nanowires

Ferroelectric nanostructures have recently attracted much attention due to the quest of miniaturizing devices and discovering novel phenomena. In particular, studies conducted on two-dimensional and zero-dimensional ferroelectrics have revealed original properties and their dependences on mechanical and electrical boundary conditions. Meanwhile, researches aimed at discovering and understanding properties of one-dimensional ferroelectric nanostruccures are scarce. The determination of the structural phase and of the direction of the polarization in one-dimensional ferroelectrics is of technological importance, since, e.g., a low-symmetry phase in which the polarization lies away from a highly symmetric direction typically generates phenomenal dielectric and electromechanical responses. Here, we investigate the phase transition sequence of nanowires made of KNbO3 and BaTiO3 perovskites, by combining X-ray diffraction, Raman spectroscopy, and first-principles-based calculations. We provide evidence of a previously unreported ferroelectric ground state of monoclinic symmetry and the tuning of the polarization's direction by varying factors inherent to the nanoscale.


Published in:
Nano Letters, 10, 1177-1183
Year:
2010
Keywords:
Laboratories:




 Record created 2011-12-16, last modified 2018-01-28


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)