The application of pressure to elemental bismuth reduces its conduction-valence band overlap, and results in a semimetal-semiconductor (SMSC) transition around 25 kbar. This transition is nominally of the topological "Lifshitz'' Fermi surface variety, but there are open questions about the role of interactions at low charge densities. Using a novel pressure cell with optical access, we have performed an extensive study of bismuth's infrared conductivity under pressure. In contrast to the expected pure band behavior we find signatures of enhanced interaction effects, including strongly coupled charge-plasmon (plasmaron) features and a plasma frequency that remains finite up to the transition. These effect are inconsistent with a pure Lifshitz bandlike transition. We postulate that interactions play a central role in driving the transition.