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Measurement of Fast Electron
Spin Relaxation Times with

1628

Atomic Resolution

Sebastian Loth,™* Markus Etzkorn,? Christopher P. Lutz,* D. M. Eigler,* Andreas J. Heinrich™*

Single spins in solid-state systems are often considered prime candidates for the storage of
quantum information, and their interaction with the environment the main limiting factor for the
realization of such schemes. The lifetime of an excited spin state is a sensitive measure of this
interaction, but extending the spatial resolution of spin relaxation measurements to the atomic
scale has been a challenge. We show how a scanning tunneling microscope can measure electron
spin relaxation times of individual atoms adsorbed on a surface using an all-electronic pump-probe
measurement scheme. The spin relaxation times of individual Fe-Cu dimers were found to vary
between 50 and 250 nanoseconds. Our method can in principle be generalized to monitor the

temporal evolution of other dynamical systems.

hen a magnetic atom is placed in a
‘ ’s / solid or onto a surface, it can exchange
energy and angular momentum with
the local environment, giving a finite lifetime to
its excited spin states. For non-itinerant (localized)
electron systems, these interactions occur on the
atomic length scale and on a time scale generally
in the pico- to microsecond range. Magnetic res-
onance techniques are widely used to measure
spin relaxation times (/), but achieving high
spatial resolution of individual spins rather than
ensembles has remained a challenge (2—4). Spin-
polarized scanning tunneling microscopy (STM),
by contrast, can probe static magnetic properties
on the atomic scale, such as complex magnetic
order (3), g-values (6), anisotropy (7, 8) and ex-
change energies (9, /0). However, the bandwidth
of conventional STM current amplifiers (/7) is
insufficient to directly access typical spin relaxa-
tion times. Efforts to enhance the STM’s temporal
resolution through faster current amplifiers (/2) or
pulsed laser techniques (/3, /4) have so far lacked
atomic spatial resolution.

Here we show that the combination of an all-
electronic pump-probe scheme with a spin-sensitive
contrast mechanism (75, 16) allows the STM to
measure electron spin relaxation times of indi-
vidual atoms with nanosecond time resolution. In
this pump-probe scheme (Fig. 1), we apply a
strong voltage pulse (the pump pulse) across the
tunnel junction to create spin excitations of the
surface atom and a weaker voltage pulse (the probe
pulse) to interrogate the state of the atom’s spin at
a time At after the pump pulse (/7). Integrating
the probe-pulse current over many pump-probe
cycles and slowly varying At allows us to map
out the average dynamical evolution of the atom’s
spin.
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Atomic-scale structures having long spin re-
laxation times may have applications in infor-
mation storage or quantum information processing
(18). It was shown that large easy-axis magnetic
anisotropy can lead to long spin relaxation times
(19) that are sufficient for coherent spin manip-
ulation (20). Fe atoms placed on a Cu,N over-
layer on a Cu(100) surface have shown considerable
magneto-crystalline anisotropy (8). Cu,N binds
the Fe atoms in a polar-covalent network that
enables large anisotropy and decouples the adat-
oms from the Cu conduction electrons (10, 21, 22),
allowing Fe to retain its free atom spin of S =2
(8). Here we increased the easy-axis anisotropy
of an Fe atom by placing it adjacent to a Cu
adatom (Fig. 2A). We probed the dimer using
spin-excitation spectroscopy (Fig. 2B) and found
the first excitation at a threshold voltage of Vy,, =
16.7 mV, a factor of 4 higher than for the in-
dividual Fe atom. This indicates an unusually
large easy-axis anisotropy, and indeed we find
spin relaxation times that exceed 200 ns.

Spin excitations of the surface atom are driv-
en by inelastic scattering of the tunneling elec-
trons (6). In this process, the pump voltage must
exceed the threshold voltage, Vy,, required to
drive the atom’s spin from the ground state to an
excited state. In general, the magnetic orientation
of an excited spin state will be different from that
of the ground state. We can sense the orientation
of the surface atom’s spin by magneto-resistive
tunneling with a spin-polarized tip (Fig. 1) (/7).
The tunnel current that flows during the probe
pulse then depends on the projection of the sur-
face atom’s spin along the spin-polarization axis
of the tip.

A pump-probe measurement of an Fe-Cu
dimer at 0.6 K temperature and 7 T magnetic
field is shown in Fig. 2C. In our experiments, we
record the probe-pulse current, which can be ex-
pressed as the number of electrons per probe
pulse, N. We plot AN = N(Af) — N(—600 ns), the
change in N with respect to its value when the
probe pulse precedes the pump pulse, a condition
in which the spin is in its ground state during the

probe pulse. The behavior of AN for positive
delay times reveals the dynamical evolution of
the Fe-Cu dimer after the end of the pump pulse.
Between pump and probe pulse, no voltage was
applied that could disturb the free evolution of
the surface atom's spin. We observe AN to be
negative and to exponentially decay to zero as At
is increased. AN is expected to be negative: In the
ground state, the surface spin is aligned nearly
parallel to the spin-polarization axis of the tip.
Any spin excitation reduces the projection of the
surface spin along the polarization axis of the tip
and hence reduces the conductance of the tunnel
junction. The exponential decay of AN is charac-
teristic for a system with a single rate-limiting
relaxation mechanism. Fitting an exponential to
the time dependence of AN yields a relaxation
time of 77 =87 £ 1 ns.

To demonstrate that the observed exponential
decay is indeed due to spin relaxation, we per-
formed two control experiments. First, we re-
peated the measurement on the same Fe-Cu
dimer but with a non—spin-polarized tip (Fig.
2C). We switched between spin-polarized and
non-spin-polarized STM tips by means of the
reversible transfer of a Mn atom from the surface
to the apex of the tip (15). Without spin polar-
ization of the tip, the conductance of the tunnel
junction is insensitive to the orientation of the
dimer spin, and we correspondingly observe AN
to be zero. Second, we repeated the measurement
with a spin-polarized tip but on a Cu adatom,
which has no features in its spin excitation spec-
trum (Fig. 2B), consistent with having no net
spin. As expected, we observe AN to be zero in
this case (Fig. 2C).
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Fig. 1. Spin-sensitive pump-probe measurement
scheme. The conductance of the STM tunnel junc-
tion varies according to the alignment of the sam-
ple spin with the tip spin. A series of fast voltage
pulses with voltage V,ym, for the pump pulse and
Vorobe for the probe pulse is sent to the tip. Mea-
surement of the time-averaged probe-pulse cur-
rent as a function of the delay time between the
pulses, At, reveals the dynamical evolution of the
sample spin.
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Fig. 2. Measurement of spin re-
laxation time. (A) STM topograph of
an Fe-Cu dimer and a Cu adatom
(yellow: high; blue: low). (B) Spin ex-
citation spectra di/dV versus voltage,
of an Fe-Cu dimer and a Cu adatom
measured with a non—spin-polarized
tip at magnetic field B=7T. Steps in
dl/dV indicate spin excitation ener-
gies. (C) Pump-probe measurements,
AN versus At, at B =7 T. Region I
probe pulse precedes the pump pulse;
region Il: pump and probe pulses
overlap (fig. S1) (17); region Il
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We tested whether the pump-probe measure-
ment was itself affecting the spin relaxation time
and found that 7 does not change under var-
iation of the amplitude and widths of the pump
and probe pulses and the tip-sample separation
(Fig. 3B and fig. S2). However, the magnitude of
the pump-probe signal, AN, depends strongly on
the pump voltage, with a distinct onset at Vy,,
below which the pump pulse does not lead to a
detectable spin relaxation signal (Fig. 3A). This
observation agrees with the spin excitation spec-
trum, where the first spin excitation is observed at
the same threshold voltage (Fig. 2B). The po-
larity of the pump pulse is not crucial, but neg-
ative voltages help in exciting the Fe-Cu dimer’s
spin by spin-momentum transfer from the spin-
polarized tip (15).

The pump-probe measurements corroborate
the finding of large easy-axis magnetic anisotro-
py for the Fe-Cu dimers. Such anisotropy gives
rise to a spin state distribution with two low-lying
states, [+2) and |-2), that are separated by an energy
barrier (Fig. 3C). In a magnetic field along the
easy axis, [+2) is the ground state and |-2) a long-
lived excited state. Excitation of the Fe-Cu dimer
over the barrier starts with a transition from [+2)
to [+1) and requires at least eV, energy (Fig. 3C,
red arrow), which results in the threshold be-
havior found in the pump-probe measurement
(Fig. 3A). Once excited to the |[+1) state, succes-
sive excitations and de-excitations (Fig. 3C, light
red arrows) are immediately possible as none re-
quire energy exceeding eVy,.. Upon termination
of the pump pulse, the spin can be in any of the
states but relaxes to either [+2) or |-2) on a time
scale that is as yet too rapid for us to observe (15).
The time-dependent signal recorded in the pump-
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Fig. 3. Threshold dependence of spin
B excitation at B = 7 T. (A) Pump-probe sig-
100 = 1 nal AN versus pump voltage Vyymo, for

m (] 86 ns s pump
£ sof . - .T = At =50 ns, exhibiting the same threshold
W voltage observed in the spin excitation
ok | spectrum (Fig. 2B). The solid line is a fit to
= 20 0 20 0 o the data with a two-state model (29). (B)

Pump voltage (mV)

Spin relaxation time, T, is independent of
the pump voltage. (C) Energy-level dia-

gram of the spin states of the Fe-Cu dimer as a function of the magnetic quantum number, m. The
measured relaxation time, T;, corresponds to the Im = —=2) — |+2) transition.

probe measurement for ¢ > 0 (Fig. 2C, region III)
then corresponds to the relaxation from the long-
lived |-2) state (Fig. 3C, green arrow). At 0.6 K
the thermal energy is insufficient to relax over the
energy barrier, and indeed no thermally activated
relaxation is observed for temperatures between
0.6 and 10 K (fig. S3). Hence, the relaxation out of
|-2) is likely due to magnetic tunneling (23, 24),
as we discuss next.

Figure 4A shows that AN decays as a single
exponential for all values of magnetic field, but
the relaxation time varies strongly with magnetic
field. 7 first grows with magnetic field, but de-
clines rapidly above ~6 T (Fig. 4B). A similar non-

monotonous field dependence of 7} was recently
observed for quantum tunneling of magnetization
in molecular magnets (/9). Finite transverse an-
isotropy makes magnetic tunneling possible for
Fe-Cu dimers by mixing the |[-2) and [+2) states.
As the magnetic field is increased from zero, the
Zeeman energy increasingly splits these states,
which reduces the tunneling matrix element be-
tween them and thereby increases 7' (23). The
reduction in 7} above 6 T indicates a nonzero
angle between the magnetic field and the easy
magnetic axis of the Fe-Cu dimer. A transverse
component of the magnetic field increases mix-
ing of the spin states and shortens 7 (25).
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Fig. 4. Field and site dependence of the spin relaxation time. (A) Pump-probe measurements for different magnetic fields on an Fe-Cu dimer; solid
lines are exponential fits. (B) T as a function of magnetic field for the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.

One of the Fe-Cu dimers in Fig. 4B always
exhibits a larger 7 than the other. We speculate
that this variation is due to differences in the
nearby surface features as seen in the accompany-
ing topographs. This observation emphasizes the
capability of the all-electronic pump-probe tech-
nique presented here to resolve local variations in
the spin relaxation time with atomic precision.

The pump-probe scheme we have described
can be used to monitor the temporal evolution of
any excitation provided (i) the excitation can be
driven by tunneling electrons; (ii) the conduct-
ance of the tunnel junction exhibits a postexcita-
tion time dependence; and (iii) the system evolves
on an accessible time scale. Excitations fulfilling
these requirements include long-lived vibrational
excitations, conformational changes of molecules
(26) such as in molecular motors (27), or fast
localized heating (28). We emphasize that this
pump-probe scheme can in principle be used to
monitor the dynamical evolution of the excited
state, not just its relaxation; with sufficient tem-
poral resolution it should be possible to monitor
the vibration of an atom or molecule and even the
precession of a spin.
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Optical Clocks and

Relativity

C. W. Chou,* D. B. Hume, T. Rosenband, D. ]. Wineland

Observers in relative motion or at different gravitational potentials measure disparate clock
rates. These predictions of relativity have previously been observed with atomic clocks at high
velocities and with large changes in elevation. We observed time dilation from relative speeds of
less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter
length of optical fiber. We can now also detect time dilation due to a change in height near
Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with
applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

Ibert Einstein’s theory of relativity forced
us to alter our concepts of reality. One of
the more startling outcomes of the theory
is that we have to give up our notions of simul-

taneity. This is manifest in the so-called twin
paradox (7), in which a twin sibling who travels on
a fast-moving rocket ship returns home younger
than the other twin. This “time dilation” can be

quantified by comparing the tick rates of identical
clocks that accompany the traveler and the sta-
tionary observer. Another consequence of Ein-
stein’s theory is that clocks run more slowly near
massive objects. In the range of speeds and
length scales encountered in our daily life,
relativistic effects are extremely small. For
example, if two identical clocks are separated
vertically by 1 km near the surface of Earth, the
higher clock emits about three more second-ticks
than the lower one in a million years. These
effects of relativistic time dilation have been
verified in several important experiments (2—6)
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