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Abstract Contour parallel tool paths are among the most
widely used tool paths for planer milling operations. A
number of exact as well as approximate methods are
available for offsetting a closed boundary in order to
generate a contour parallel tool path; however, the
applicability of various offsetting methods is restricted
because of limitations in dealing with pocket geometry with
and without islands, the high computational costs, and
numerical errors. Generation of cusps, segmentation of
rarefied corners, and self-intersection during the offsetting
operations and finding a unique offsetting solution for
pocket with islands are among the associated problems in
contour tool path generation. Most of methods are
inherently incapable of dealing with such problems and
use complex computational routines to identify and rectify
these problems. Also, these rectifying techniques are
heavily dependent on the type of geometry, and hence, the
application of these techniques for arbitrary boundary
conditions is limited and prone to errors. In this paper, a
new mathematical method for generation of contour parallel
tool paths is proposed which is inherently capable of
dealing with the aforementioned problems. The method is
based on a boundary value formulation of the offsetting
problem and a fast marching method based solution for tool
path generation. This method handles the topological
changes during offsetting naturally and deals with the
generation of discontinuities in the slopes by including an

“entropy condition” in its numerical implementation. The
appropriate modifications are carried out to achieve higher
accuracy for milling operations. A number of examples are
presented, and computational issues are discussed for tool
path generation.
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1 Introduction

One of the most common operations in machining of metal
parts is pocket milling. In pocket milling, all the material is
removed inside a closed arbitrary boundary on a flat surface
of a workpiece to a fixed depth [1]. Most of mechanical
parts consist of faces parallel or normal to a single plane,
and free-form objects require a 2.5D rough milling
operation of the raw workpiece, making 2.5D pocketing
one of the most important milling operations. Almost 80%
of the milling operations to produce mechanical parts are
produced by NC pocket milling [2]. There are two main
tool path patterns commonly used in 2.5D end milling
operations: direction parallel tool paths and contour parallel
tool paths. The relative merits of direction parallel and
contour tool paths for minimum machining time have long
been studied, and according to a recent study [3], the best
tool path depends upon the geometry of the part, the
machining characteristics, and cutting conditions. The
contour parallel tool paths are known to be coherent as
the tool is always in contact with the material and thus
reduces idle time spent in lifting, positioning, and plunging
of the tool. Also, they maintain the consistent use of either
up-cut or down-cut milling strategy. Contour parallel tool
paths are, therefore, widely used as cutting tool paths
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especially for the large-scale material removal in 2.5D end
milling.

The generation of contour parallel tool path in a
pocketing operation requires an offsetting operation of
the inner boundary of the pocket and outer boundary of
the island. Given a simple, closed planar curve C0ðsÞ ¼
xðsÞ; yðsÞ½ �T , where s is an arbitrary curve parameteriza-
tion, the offset Cd(s) with constant distance d is defined
as:

CdðsÞ ¼ C0ðsÞ þ N s; 0ð Þd ð1Þ

Where, N(s, 0) is the unit normal to the original curve at
the parametric point s and is given by:

N s; 0ð Þ ¼ 1

x2s ðsÞ þ y2s ðsÞ
� �1=2 �ysðsÞ; xsðsÞ½ �T ð2Þ

Where, xs(s) and ys(s) denote the partial derivatives with
respect to arc length s.

This approach could be generalized for finding a whole
class of offset curves. However, this mathematical formu-
lation has some drawbacks. These drawbacks can be
summarized as follows:

& If the original curve has corner points, where the
derivative is not defined, the problem of determining
the intersection of propagating lines arises (see Fig. 1a,
the ambiguity at the singular point produces two
normals). In case of expansion of the corner point, the
insertion of an additional arc is required (see Fig. 1b,
dotted line denotes the additional arc).

& The geometry of curve could give rise to self-intersection
features in the offsetting curve (see Fig. 1c, the shrinking
offset of the outer curve produces the self-intersecting
feature).

& Cusps or points of local curvature discontinuity could
form at the offset distance d if the local maximum
curvature at the original curve is 1=k < d (see Fig. 1d).

& The topology of the closed region may change with the
offsetting, i.e., a single bounded region could be
divided into multiple bounded regions or vice-versa
(see Fig. 1e, the shape is divided into two regions).

& If there are islands in the pocket, then a unique solution
may not exist when the offsets of the pocket and island
intersect each other (see Fig. 1f, for the same offset of
pocket and island boundary the offset curve may
intersect at more than one point).

2 Literature review

Offsetting is a general operation used in a variety of
engineering applications such as computer-aided design
(CAD), finite element modeling and analysis, robot path
planning, tolerance analysis, mold design, computer
graphics, and electrical circuit design. The literature over
the offsetting methods could be broadly divided into two
categories: exact methods and approximate methods. The
exact methods are limited in terms of the geometry they
could deal with and are used in some special cases [4–6].
The exact methods are not widely used, as the approximate

Fig. 1 Various problems in off-
setting boundary closed curves
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methods present sufficiently accurate solutions and are
valid for more general cases. A number of approximate
methods are now described as follows:

2.1 Iterative methods for spline offsetting

In CAD systems, in order to represent an arbitrary
geometry, the standard parameterized curves such as line
segments, circular arcs, or splines are widely used.
However, even if the curve is regular or rational, the
offsetting curve is not an exact polynomial or rational in
general because of the denominator in Eq. 2. Thus, the
offset curves of splines are not necessary splines. Thus,
approximate methods are widely proposed to offset these
general curves. Klass [7] offsets the B-spline segments in
an iterative fashion calculating each time the tangent to the
offset curve. The offset curve is checked for the error in the
offset distance at various points, and if a large error is
found, the curve is segmented and the process is repeated
until the error is reduced to the required resolution. Tillar
and Hanson [8] used a “rational B-spline representation”
with control points located on the curve itself. The offset
operation is then carried out by moving these control points
to the offsetting distance. These methods require sophisti-
cated procedures to deal with problems of loops, shocks,
cusps, and self-intersection singularities. In this direction,
Hoschek [9] applied nonlinear optimization techniques to
find the offset approximation. He used an iterative
geometric algorithm to find the self-intersecting portions
and then eliminated the tails and loops that arose in the
offset curves. Elber et al. [10] present a comparison of these
contemporary methods and presented simulation results.
Based on similar developments, Hansen and Arbab [11]
made the pair-wise intersection scheme more efficient for
pocket milling of circular and linear segmented boundaries.
In summary, offsetting of a boundary in this manner is a
two-stage process: (1) determining the offset of the spline
in an iterative manner until the error in the offset is reduced
below a user-defined limit and (2) detecting the singular-
ities and redundant portions and correcting them (see
Fig. 2a).

2.2 Voronoi diagram-based offsetting

The complex task of detection and correction methods has
motivated alternate methods for bypassing the step two
mentioned in the previous section. In this direction,
Persson's approach [6], which is based on finding bisectors
of lines and circular arcs using the Voronoi diagram, is one
the earliest approaches to construct the contour parallel tool
path. Held [2] also utilized the method for creating the tool
path but restricted his approach for linear and circular
segments because these representations can easily be fed to

CNC machines. The polygon boundary of the pocket and
its Voronoi diagram are shown in Fig. 2b; note that the
equidistant offset can be achieved if the Voronoi mountain
is sliced at a particular level. The Voronoi diagram not only
helps in finding the contour offset but also the optimization
of process in terms of multiple-tool selection and machin-
ing time minimization [12]. Seth and Stori [13] have
extended this approach for the tool path generation for
nonlinear segments also. However, the method based on
Voronoi diagram employs costly two-dimensional (2D)
Boolean set operations, relatively expensive distance calcu-
lations and an overhead of extraneous geometry [11].

2.3 Pixel simulation and image processing-based offsetting

Similar to bypassing the step to detect and remove the self-
intersection features, a pixel simulation-based approach for
the offsetting is developed by Choi and Kim [14], where
the tool path is generated by successive sweeping of the
tool. This method is based on the Z-map, and hence, high
computational time and huge memory are required to
achieve a desired level of precision due to its dependence
on the resolution of the Z-map. An interesting alterative
approach was discussed by Saeed et al. [15] which is based
on mathematical morphology. The basic set operations, like
erosion and dilation of mathematical morphology, are
closely related to the offset surface generation and are
shown to prepare the roughing milling paths. Recently,
Molina-Carmona et al. [16] developed a mathematical
morphology method for finding the offset of an arbitrary
shaped tool. It should be noted that the related problems
like skeleton finding, fat curves, and calculation of
Euclidian distance maps for a plane curve in fields like
computer graphics and image processing could make a
significant contribution to the problem of the offsetting in
milling. However, the adaptation of any method requires
some pre-processing as well as post-processing of the

Fig. 2 a Pair-wise intersection and correction b Voronoi diagram
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original method to make the generation of milling path
efficient. For example, the Laplace-based parameterization
and meshing of the domain to be machined produces
smoother contour parallel tool paths [17, 18] than the
conventional contour parallel tool paths, thus making this
method suitable for the tool path generation for the
roughing process; however, a feed rate optimization
program is often required to compensate for the large
variation in engagement conditions due to unequal spacing
of the contours.

2.4 Laplace-based formulation and offsetting

The approach of Bieterman and Sandstrom [17] for a
Laplace-based tool path generation method was motivated
by the mathematical methods used in design and control of
aerospace vehicles. They demonstrated their method for
calculating offsets and then modifying the offsets for the
spiral path generation. But, the capability of the method
was demonstrated for convex pockets and pockets without
islands. Chunag and Yang [18] use a similar approach, but
demonstrated the use of Laplace-based formulation for the
tool path generation for arbitrary geometry with a number
of islands. The Laplace-based methods are suitable for the
tool path generation as they make the contours smoother
and continuous; however, the workpiece is sometimes over-
machined depending upon the shape and the distance
between the two neighboring contours which could not be
controlled.

In this paper, the contour tool path generation based on
a boundary value partial differential equation (PDE)
formulation is presented. The formulation of the problem
is similar to Laplace-based methods. For the solution of
the equation, the modified fast marching method is
utilized. It should also be noted that the initial value
formulation of this problem for milling tool path genera-
tion is already done by Krimmer and Bruckstein [19];
however, the solution based on this formulation is
relatively slow, and also, their method suffers from large
error in the diagonal direction. Although the initial value
formulation and solution using level set method [19] could
be used for both expanding and contracting the moving
fronts, in contour parallel machining, the main objective is
to find the offset which is strictly contracting for the
pocket. This condition of strictly contracting or expanding
could be exploited by the boundary value formation and
fast marching method, which reduces the cost of compu-
tation considerably. The fast marching method based on
the unwinding nature of the solution is developed by
Sethian [20]. Unlike a finite element-based solution for the
Laplace equation, this method utilizes the finite difference
scheme and an appropriate causality condition to guaran-
tee the fast result. The proposed method tries to find out

the minimum distance value from the initial pocket
boundary at each grid point, and hence, the topological
issues are handled naturally as each grid point could have
only one distance value. For example, as the boundary of
the pocket shrinks during offsetting or the boundary of the
island expands during the same offsetting, the offsetting
curves can break into many closed curves or can merge
into one. Furthermore, the intrinsic geometrical properties
of the offsetting curves can be determined easily in the
formulations. The determination of such intrinsic proper-
ties could lead to the generation of smoother contour
profiles such that the dynamics of machine tool could be
respected. Also, the time complexity of the calculation is
less as compared with the other discretized methods which
is made possible by the use of a fast marching method and
the appropriate sorting algorithm. The method is much
faster and very straightforward in higher dimensions also.
But, the method suffers from the inaccuracy in the
diagonal direction in a rectangular grid. Thus, further
modifications inspired by the work of Hassauna and Farag
[21] are implemented in the original fast marching method
proposed by Sethian [20] to prepare a system for contour
parallel milling. In the following sections, the offsetting
problem is formulated as an initial value PDE and for
modeling the contour parallel tool path generation. The
numerical method is demonstrated, and the system
implementation is presented. Some general contour paral-
lel tool paths for a general pocket or a pocket with an
island are demonstrated.

3 Mathematical formulation

In many contour parallel tool path generation methods
mentioned above, the offsetting of the pocket and the
island are considered as different entities, which results in
a problem when the inward offsets of the pocket and
outward offset of the island meet. In the proposed
formulation, both boundaries are treated as a single entity
bounding a closed domain. If the closed domain can be
identified, there is no need to track and correct the
different offset of pocket boundary and the island
boundary [refer case (f) of Fig. 1]. Thus, the method can
consider n-number of islands in pocket machining. The
closed domain interior of the pocket boundary and exterior
to the islands boundary is the region where the milling
should take place (see Fig. 3). The boundary of the closed
domain at any time instant is represented by Ct(s); it is
understood that t=0 represents the original boundary and s
is the curve parameter. Now, in order to offset the closed
boundary, it is needed to travel perpendicular to the
boundary curve. The position of the offsetting curve could
be characterized by the arrival time T(x, y). Then, ∇T will
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be perpendicular to the level sets of T, and its magnitude is
inversely proportional to the speed. Hence,

rTj jF ¼ 1;

where T ¼ 0 on the boundary C t¼0ð ÞðsÞ
ð3Þ

Let scalar F be the speed of the inward normal direction,
hence Ct

0 ðsÞ � n ¼ F where n is the unit normal vector to
the curve and Ct

0 ðsÞ is the derivative of Ct(s) with respect to
time at time t. Using the Lagrangian formulation as the
direct numerical approximation, the solution for a smooth
curve beyond a certain time step could develop swallow-
tails as shown in Fig. 4a [20]. Thus, there is no guarantee of
any order of smoothness if the interface moves with a
constant speed F=1. Even when offsetting with C1

continuity (such as for a sinusoid function), singular points
could quickly develop (as shown in Fig. 4a). However, if a
smoothing term ε is added to the speed function, such that
F ¼ 1� "k, where κ is the curvature of the corresponding
point on the curve, the offsetting curve will always be a
smooth curve. But, even though the swallowtails are
removed from the solution, the formulation does not allow
the production of corner points and smoothens them out.
The generation of singular points could simply be a
property of an original boundary undergoing expansion.
Thus, this form of formulation with a speed function

F ¼ 1� "k, although removing the overlapping portions
(i.e., swallowtails), does violate the condition that the
solution must be derived from the original interface
information only, i.e., it should generate the corner points
if boundary is meant to produce them. This agrees with the
traditional definition of entropy that concerns the amount of
randomness to be added, i.e., the new information to be
added during the evolution. In the case of offsetting, the
entropy condition describes the constraint on the addition of
randomness, i.e., the new information cannot be added
during interface motion.

Thus, if a smoothing term is added, the solution violates
the entropy condition. However, if ε→0, the solution can
be regarded as the correct entropy satisfying solution. This
limit is known as viscosity limit, and the solution which
satisfies this limit is known as viscosity solution.

Eq. 3 is a form of the well-known Eikonal equation, and
the notion of viscosity solutions is intimately connected to
this equation, and according to Sethian [20], the use of
monotone, consistent schemes will lead to schemes that
select the correct viscous limit of the partial differential
equation. In this approach, a rectangular grid is generated
which contains the boundary to be offset. The objective is
to find the distance value at each grid point of this
rectangular domain. The numerical scheme for the appro-
priate solution will be described in the next section.

3.1 Initialization process

Based on the above mathematical formulation, the contour
parallel tool path could be generated once the signed
distance from the pocket boundary to the grid points of the
discretized zone are known. To initiate the solution process,
initialize the grid points neighboring the pocket boundary.
In computer-aided design, a boundary is represented in
parametric form, where the x and y values of the curve are
represented by some function of the scalar parameter s. This
curve can be represented in the form of a signed function
f xðsÞ; yðsÞð Þ ¼ 0, a point inside the curve will have f<0
and outside f>0. As the curve may not always pass through
the grid points and may cross the grid lines instead, there is
a need to initialize the neighboring grid location of the
Cartesian grid with the appropriate value of the distance
function. Thus, as shown in Fig. 5, the green points are the
interior points to the curve, and the red points are the
exterior to the curve. The error during the initialization
depends upon the type of method used to initialize the
neighboring grid point and on the grid spacing (h).

Krimmer and Bruckstein [19] discussed the initialization
for linear and circular segmented boundary by first finding
the intersection points with all the grid lines and then the
linear approximation for the closest grid points and as an
approximation, implemented gray scale image based ini-

Fig. 4 The evolution of curve a Lagrangian approach b entropy-
based construction [20]

Fig. 3 An arbitrary pocket with islands
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tialization which simply assigns to closest grid points the
distance value zero. The initialization could be done by any
of the methods listed above. Although the above procedure
yields a fast result, the error in the initialization is in the
order of grid resolution. In this paper, another method for
initialization of neighboring grid point is developed
considering the tolerance specified by the user. The
following algorithm is devised for this purpose:

& Find neighboring grid points to the pocket boundary
curve: The curve is discretized with a discretization
interval of Δs=(res)h, where res≤1. Each discrete point
on the boundary of pocket belongs to a cell which is
identified by its left-most corner point (for example
ABCD is a cell and B is the left-most point).
Thus, based on the point on the boundary curve (x(s),
y(s)) the coordinate of the grid cell is identified as
floor xðsÞ

h

� �
; floor yðsÞ

h

� �� �
. All the four grid points of

this cell are stored in an array containing the neighbor-
ing grid points.

& Convert to unique set of neighboring grid points: The
duplicate grid points (when a grid point is shared by
two neighboring cells) are removed. Note, by using this
procedure, the grid points are not exactly but approx-
imately arranged according to the arc length parameter
of the pocket boundary curve.

& Initialization of the grid points: Each grid point from the
above-mentioned set of distinct neighboring grid points
is selected, and the grid point distance from the
boundary curve is calculated using Newton–Raphson
method. As the points are approximately arranged with
increasing magnitude of the pocket boundary arc length

parameter s, the good initial value guess in Newton–
Raphson scheme can be estimated. In this way, the
distance value of each neighboring point within a
specific tolerance limit is obtained.

Once the initialization is done, the close neighboring
points to the boundary curve are initialized for signed
distance valued using fast marching formulation. The fast
marching process and various steps involved will now be
discussed in the following sections.

3.2 Updating process

Once the neighboring green grid points are initialized, to
find the value at any grid point inside the domain, the two
stencils of a grid point and its four neighbors are considered
as in Fig. 6. In the original approach of Sethian [20], only
the horizontal and vertical neighboring points in the
Cartesian coordinate system are considered to update the
distance function; however, this procedure produces an
error of the order of 1þ 1=

ffiffiffi
2

p � ffiffiffi
2

p� �
h [20], which

Fig. 5 The closest neighboring
points for initialization of dis-
tance function

Fig. 6 Updating a grid point: multi-stencil approach
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mainly results due to inaccuracy in diagonal direction.
Thus, the accuracy in the diagonal direction could be
improved if another stencil is used in the diagonal direction.
If ∇T in Eq. 3 is approximated by the first-order finite
difference scheme, then the above equation can be written
as:

max
T � T1
Δ x

; 0

� �2

þmax
T � T2
Δ y

; 0

� �2

¼ 1

F2
ij

ð4Þ

Where
T1 ¼ min Ti�1;j; Tiþ1;j

� �
;

T2 ¼ min Ti;j�1; Ti;jþ1

� �
;

and Δx=Δy=h
However, if the solution is based on only the above

stencil, the method suffers from numerical errors along the
diagonal direction as described above. Thus, a solution
along the diagonal direction is sought to make the method
more accurate. The formulation for the first-order scheme is
as follows:

max
T � T1ffiffiffi
2

p
Δ x

; 0

� �2

þmax
T � T2ffiffiffi
2

p
Δ y

; 0

� �2

¼ 1

F2
ij

ð5Þ

Where
T1 ¼ min Ti�1;j�1; Tiþ1;jþ1

� �
;

T2 ¼ min Tiþ1;j�1; Ti�1;jþ1

� �
;

It is observed that the above equation is quadratic in
nature for T, assuming that the neighboring grid values are
given. An iterative algorithm to solve the above equations
is used. For each point (i,j), the arrival time T is calculated
using both stencils approach. The minimum of the two
values was chosen as the value of arrival time.

As it is needed to calculate the arrival at each grid point
in a set of N grid points and again having an optimistic
view of N iterations for a solution to converge, the
complexity of above computation is O(N2) for 2D applica-
tion. To reduce the time complexity, the idea of ordering the
selection of the grid points during the computation of the
solution which is similar to Dijkstra's shortest path solution
was introduced by Sethian [20]. This idea exploits the
upwind difference structure of the above equation that the
information propagates “one way”—from smaller values of
T to larger values. In short, it is causality relationship which
states that the arrival time T at any point depends only on
the adjacent neighbors that have smaller values. The
updating algorithm is described as follows:

1. During initialization, the nearest grid points to the
boundary are initialized and simultaneously tagged as
Alive points (see Fig. 7). The grid points which are one
grid away from the Alive points are tagged as Narrow

band. All the other grid points are assigned status of
Far Away.

2. The signed distance value of the narrow band is
calculated by using the minimum time calculated by
either Eqs. 4 or 5.

3. LOOP: select the minimum arrival time grid point from
the Narrow band, and change its tag as Alive.

4. Find its nearest neighbors, and select the grid points
with either Far away or Narrow band tag. Update their
arrival time value according to the minimum arrival
time calculated by either Eqs. 4 or 5.

5. Go back to step (3) until all the grid points are tagged
as Alive.

The key in the efficiency of this method is to find the
minimum arrival time in the narrowband grid points in the
step (3) of above-mentioned algorithm. This is done by a
standard heap sort algorithm with a min-heap data structure.
It is important to note that the total work for one call is O
(log N), where N is the size of the heap. Thus, the worst
case total operation cost is O(N log N), where N is the
number of total grid points.

3.3 Contour finder

In order to compute the tool path at any offset distance, a
contour finder program is required. Once the initialization
and the updating processes are over, a simple contour
program is written based on the marching square algorithm,
which is the special case of marching cube widely used in
computer graphics [22]. For each grid point (i,j), there are
two possibilities, either the T(iΔx, jΔy) is greater or equal to
zero or it is less than zero. With this understanding, there
are 16 types of cases for each cell. These 16 cases could be

Fig. 7 The “Far away” (red), “Alive” (blue), and “Narrow band”
(green) points
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reduced to four unique cases, if the symmetry is taken into
account. However, there is an ambiguous case for the last
configuration in Fig. 8; the segmentation can produce
alternative solution. This case is taken care by further
dividing the cell into four small cells and continuing until
the last case disappears.

3.4 Implementation

3.4.1 Development of tool path generation

A system in C++ is prepared which takes the parametric
form of geometric profiles of the pocket and island and tool
radius as an input. A rectangular grid is generated which is
based on the user-defined meshing resolutions. In the
rectangular grid, each grid point can be identified by its x-
coordinate, and the y-coordinate and distance value T[i][j]
could be accessed, where i=floor(y-coordinate of grid point/
grid resolution) and j=floor(x-coordinate of grid point/grid
resolution). The initialization for the neighboring grid points
is done by traveling along the boundary curves and finding
the grid points closest to the boundary curve as mentioned in
the section. The updating code is then utilized to find the
unique arrival time at each grid point, using the fast
marching method. Once the updating process is carried out
up to the last grid point and when no grid points are left, it is
terminated. This stage is shown as the preparation step in
flow chart for tool path generation in Fig. 9. At this stage, the
signed distances function of pocket boundary is obtained
which is essentially a two-dimensional matrix where each
data value refers to the minimum distance value from the
boundary of pocket. This signed distance function will be

shown as [Pocket] which refers to the pocket boundary.
Note, in order to find any offset of the boundary of the
pocket, a simple scalar subtraction operation is sufficient.
The first offset from the pocket should be at the distance of
the radius of tool, which makes the material boundary
conformed to the required final pocket shape and is given by:

Boundary Conformed Path½ � ¼ pocket½ � � R ð6Þ

A contour program (discussed in previous section) is
then used to extract the 0-level contours of function
[Boundary_Conformed_Path]. This contour program takes
any signed distance function as an input along with the grid
resolution and gives an ordered set of points which refers to
the 0-level boundary of the given signed distance function.

This ordered list of coordinates of points is stored in an
array Tool_path(i), with i=1.

The subsequent contour parallel path should follow the
offset value specified as the input step over distance. As
shown in Fig. 9, a loop is used for the offsetting with the
specified step over value (S) such that, for each iteration,
the tool path matrix is obtained as:

Tool path matrix½ � ¼ Tool path matrix½ � � S ð7Þ

And, the tool path generation is terminated when the
there are no positive valued data points in the matrix
[Tool_path_matrix]. Otherwise, the iteration continues, and
for each signed distance function [Tool_path_matrix], the
contour program is used to extract the ordered set of x and y
coordinates and stores them as an array in Tool_Path(i),
where i is incremented by 1 for each new iteration. In this
way, all the contour parallel tool paths are obtained for a
particular pocket. The detailed flow chart for the tool path
generation is shown in Fig. 9.

An example of a pocket with two islands is shown in
Fig. 10. A pocket of 500×500 units with two islands of
100×100 units are taken as input, and the tool path is
generated for the offset of 22 units.

Next, the machining of an arbitrary shaped pocket will
be demonstrated. As described earlier, the method can yield
contour parallel tool paths for any type of boundary. A
number of methods available in the literature are limited in
terms of the geometry they can handle. The feasibility of
the method to machine an arbitrary pocket is demonstrated
in Fig. 10 for the roughing process. Fig. 11a is an arbitrary
2D pocket, and Fig. 11b shows the corresponding contour
parallel tool path.

As demonstrated in [16], some standard libraries of
current CAD/CAM systems could yield erroneous results if
the thin wall boundaries meet at an angle close to 2π. In the
proposed method, the region is initialized into a signed
distance function, which may not be accurate initially but

Fig. 8 a Different possibilities for the vertex leveling, green points
corresponds to point with T value>0 and red points show points with
value≤0 b group representation
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preserves the property of the bounded region. Thus, such
errors are not possible in this method due to the signed
distance initialization of the domain.

3.4.2 Error analysis

As mentioned earlier and in the contour parallel tool path
generation using the level set method [19], the error reduces
with the grid size, and accurate results could be achieved
using the required resolution of the grid, but no analysis of
the error is provided. The parameter res is selected as 1 for
all the simulations. For the first-order scheme used to
approximate ∇T, the error in computation will be of the
order of spacing of the grid, i.e., o(h). However, additional
error in the diagonal direction is produced using the
approach described in [19]. For the error analysis, the error
in the offset position from the boundary is compared with
the analytical result. An offsetting of a curve considered as

a simple point is chosen which is in the middle of the
domain (50×50 units). The expanding offset of a point
will be circles, and hence, at each grid point, the exact
distance value of the offset is known. The two standard
error norms L2 and L1 are considered, which are defined
as follows:

L1 error ¼ max T � Tanalytical
		 		� � ð8Þ

and,

L2 error ¼ mean T � Tanalytical
		 		� � ð9Þ

L1 error reflects the maximum deviation on the domain
from the exact solution, while L2 error represents the mean
error expected at any grid point of the domain. The
accuracy of the original level set based contour tool path
generation [19], and the modified method is compared in

Fig. 9 The flow chart of tool
path generation for contour par-
allel milling process

Fig. 10 Pocket with island Fig. 11 Arbitrary pocket and contour parallel tool path
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Table 1. It can be concluded that the accuracies of the
result indeed depend upon the resolution, and the error is
reduced less than half by using the modified fast marching
method. The error is also proportional to the grid size (h),
and for the first-order two-stencil scheme, the error is
bounded by the grid size.

3.4.3 Computational complexity

The time complexity of the proposed approach isO(N log(N));
N is the total number of grid points. The time to execute the
normal fast marching approach and the modified fast march-
ing approach is now compared. Standard PC with Pentium 4
CPU 2.30 GHz is used for all the computations. Table 2 is
prepared for the two methods; although the complexity of the
both methods remains same, it appears that the execution
time for modified fast marching method (FMM2) is 1.2–1.5
times higher than the ordinary FMM1. This increase in time
is due to the additional logic added to the modified fast
marching method.

As compared with the narrow band level set method
[17], it is important to note that there is no time step in
the fast marching method. Thus, the fast marching
method does not require the satisfaction of the Cou-
rant–Friedeichs–Lewy condition, which imposes a re-
striction on the time step based on the grid size,
whereas the narrow band level set method does, and
hence could be much slower than the fast marching
method. Also, the heap operation time complexity is ln
(N) in the worst case, and for practical problems, it is
probably closer to O(1). In case of the three-dimensional
(3D) surface generation problem, this method based on the
up-winding nature is useful for offsetting also. Thus, it
could be useful for determining the offsetting surfaces in
the higher dimension with the worst time complexity of

O(M3ln(M)), where M is the number of grid points in each
direction.

4 Conclusion

A system to generate a tool path based on the fast marching
formulation is presented in this paper. It can be seen that the
appropriate grid resolution can be selected based on the
required tolerance of the tool path. The method is found to
be computationally efficient and is suitable for generating
tool paths for the milling process. The advantages of this
method could be summarized as follows:

1. The method naturally deals with the changing in the
topology of the offsetting fronts; hence, it is an
effective method for generating tool paths for pockets
with islands as it is not required to track intersecting
offsetting profiles of the pocket and islands.

2. The offsetting fronts may be self-intersecting or cusps
or corners could form as the offsetting is taking place;
in such cases, a viscosity-based weak solution is readily
available; thus, it is not required to compute the self-
intersecting sections separately. The corner points
generated by the self-intersecting features are smooth-
ened based on the updating scheme used for computa-
tion, and the c1 continuity is maintained throughout the
solution. Because of the smoothing of the sharp
corners, the generated tool path is better in relation to
machine dynamics.

3. The fast marching method and heap sort algorithm is
developed in C++ and can be easily integrated with the
ACIS kernel. The capability of the integrated system is
demonstrated in the paper.

4. With every numerical method, there are always some
numerical errors associated. As fast marching method

Number Grid size Bounding box L mean [19] L mean (FMM) L max [19] L max (FMM)

1 1 50×50 0.640 0.226 1.094 0.447

2 0.5 50×50 0.372 0.145 0.658 0.289

3 0.25 50×50 0.221 0.090 0.386 0.180

4 0.1 50×50 0.109 0.046 0.188 0.08

Table 1 The accuracy of differ-
ent models based on standard
error norms

Table 2 The execution time for different fast marching methods

Number Grid size Bounding box Execution time, ms(FMM1) Execution time, ms (FMM2) N log(N)

1 1 50×50 94 156 1.9560e4

2 0.5 50×50 563 859 9.2103e4

3 0.25 50×50 5,047 6,390 42.387e4

4 0.1 50×50 149,440 166,778 310.73e4
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calls for discretization of the domain, the numerical
errors arise. The analysis of numerical error is
compared with the possible analytical errors, and it is
found that the standard error decreases with the
reduction in the grid size. Furthermore, the fast march-
ing method implementation is done on rectangular grid
with uniform grid length. Very high grid resolution is
needed for pocket boundary with high curvature
sections. In order to reduce the computational time for
high curvature section, an adaptive grid would be more
beneficial.

The implementation of fast marching method is a first
step towards the fast computation of contour parallel tool
paths for a given arbitrary zone. The method presented here
for 2D pocket boundary offsetting can be further extended
for the contour surface offsetting in 3D contour pocket
milling with consideration of motion along the additional Z
direction. Furthermore, the smoothing could be controlled
by using the motion based on curvature (i.e., speed function
F ¼ 1� "k), and the uniform spacing between the two
contours could be maintained. The further efforts will be
directed towards the generation of contour parallel tool
paths for optimization of the curvature of the tool path and
the engagement condition between tool and workpiece.
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