000172097 001__ 172097
000172097 005__ 20180913060959.0
000172097 0247_ $$2doi$$a10.3150/09-BEJ247
000172097 02470 $$2ISI$$a000285533700021
000172097 037__ $$aARTICLE
000172097 245__ $$aCriteria for hitting probabilities with applications to systems of stochastic wave equations
000172097 269__ $$a2010
000172097 260__ $$c2010
000172097 336__ $$aJournal Articles
000172097 520__ $$aWe develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >= 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
000172097 6531_ $$acapacity
000172097 6531_ $$aHausdorff measure
000172097 6531_ $$ahitting probabilities
000172097 6531_ $$aspatially homogeneous colored noise
000172097 6531_ $$asystems of stochastic wave equations
000172097 6531_ $$aHeat-Equations
000172097 6531_ $$aSpdes
000172097 6531_ $$aIntegration
000172097 6531_ $$aReflection
000172097 6531_ $$aDimension
000172097 6531_ $$aParts
000172097 700__ $$0242536$$aDalang, Robert C.$$g104859$$uEcole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
000172097 700__ $$aSanz-Sole, Marta$$uUniv Barcelona, Fac Matemat, E-08007 Barcelona, Spain
000172097 773__ $$j16$$q1343-1368$$tBernoulli
000172097 909C0 $$0252437$$pMATHAA$$xU10112
000172097 909CO $$ooai:infoscience.tind.io:172097$$particle
000172097 937__ $$aEPFL-ARTICLE-172097
000172097 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000172097 980__ $$aARTICLE