
LiFTinG: Lightweight Freerider-Tracking in Gossip

Rachid Guerraoui

EPFL

rachid.guerraoui@epfl.ch

Kévin Huguenin

Universit́e de Rennes 1 / IRISA

kevin.huguenin@irisa.fr

Anne-Marie Kermarrec

INRIA Rennes – Bretagne Atlantique

anne-marie.kermarrec@inria.fr

Maxime Monod

EPFL

maxime.monod@epfl.ch

Swagatika Prusty

IIT Guwahati

swagatika@iitg.ernet.in

Abstract
This paper presentsLiFTinG, the first protocol to detect
freeriders, including colluding ones, in gossip-based con-
tent dissemination systems with asymmetric data exchanges.
LiFTinG relies on nodes tracking abnormal behaviors by
cross-checking the history of their previous interactions, and
exploits the fact that nodes pick neighbors at random to pre-
vent colluding nodes from covering each other up.

We present extensive analytical evaluations ofLiFTinG,
backed up by simulations and PlanetLab experiments. In a
300-node system, where a stream of674 kbps is broadcast,
LiFTinG incurs a maximum overhead of only8%. With 10%
of freeriders decreasing their contribution by30%, LiFTinG

detects86% of the freeriders after only30 seconds and
wrongfully expels only a few honest nodes.

1. Introduction
Gossip protocols have recently been successfully applied to
decentralize large-scale high-bandwidth content dissemina-
tion [3, 5, 6]. In suchasymmetric systems, nodes push packet
identifiers to a dynamically changing random subset of other
nodes, who subsequently pull packets of interest.

The efficiency of such protocols highly rely on the will-
ingness of participants to collaborate, i.e., to devote a frac-
tion of their resources, namely their upload bandwidth, to
the system. Yet, some of these participants might be tempted
to freeride [19], i.e., not contribute their fair share of work,
especially if they could still benefit from the system. Freerid-
ing is common in large-scale systems deployed in the pub-
lic domain [1] and may significantly degrade the overall

[Copyright notice will appear here once ’preprint’ option is removed.]

performance in bandwidth-demanding applications such as
streaming. The impact of freeriders is even more critical
when they collude, i.e., they collaborate to decrease theirin-
dividual and common contribution to the system.

In systems where exchanges aresymmetric, one of the
most popular mechanisms to address freeriding is the cele-
brated Tit-for-Tat (TfT). TfT forces nodes to collaborate by
enforcing the benefit of a node to be directly proportional
to its contribution [4]. BarGossip [21] applies TfT in gossip
protocols by forcing symmetric exchanges. In this context,
freeriders can be modeled asrational nodes that contribute
to symmetric exchanges by the minimum amount required
to get the maximum benefit in return [21].

In asymmetric systems [3, 5, 20, 25] where nodes altruis-
tically push content to other nodes, i.e., without asking any-
thing in return, the benefit of a node is not directly correlated
to its contribution but rather to the globalhealth of the sys-
tem. However, a strong correlation between the contribution
of a node and its benefit can be artificially established, in
a coercive way, by means of verification mechanisms that
expel the nodes which do not contribute their fair share. In
this case, freeriders can be modeled aswise nodes that de-
crease their contribution as much as possible while keeping
the probability of being expelled low.

We consider a generic gossip protocol where data is dis-
seminated following an asymmetric push scheme where TfT
cannot be used. In this context, we proposeLiFTinG a co-
ercive lightweight mechanism to track freeriders in gossip
protocols. To our knowledge,LiFTinG is the first protocol to
secure asymmetric gossip protocols against possibly collud-
ing freeriders. At the core ofLiFTinG is a set of determin-
istic and statistical distributed verification proceduresbased
on accountability (i.e., each node maintains a digest of its
past interactions). Deterministic procedures check that the
content received by a node is further propagated follow-
ing the protocol (i.e., to the right number of nodes within
short delay) by cross-checking nodes’ logs. Statistical pro-
cedures check that the interactions of a node are evenly dis-

LiFTinG 1 2009/11/7

tributed in the system using statistical techniques. Interest-
ingly enough, the high dynamic and strong randomness of
gossip-based protocols that may be considered as a diffi-
culty at a first glance, happens to help tracking freeriders.
Effectively,LiFTinG exploits the fact that nodes pick neigh-
bors at random to prevent collusion: the fact that a node in-
teracts with a large subset of the nodes, chosen at random,
drastically limits its possibility to freeride without being de-
tected, as it prevents it from continuously and deterministi-
cally choosing colluding partners that would cover it up.

LiFTinG is lightweight as it does not use heavyweight
cryptography and incurs only a very low overhead in terms
of bandwidth. This overhead can be dynamically adjusted
and potentially reduced to zero when the system is healthy.
In addition,LiFTinG is fully decentralized and evenly dis-
tributed among the nodes. Finally,LiFTinG provides a good
probability of detecting freeriders while keeping the proba-
bility of false positives (i.e., inaccurately classifyinga cor-
rect node as a freerider) very low.

Figure 1 depicts the health (i.e., the proportion of nodes
able to view the stream as a function of the stream lag) in
a 300 PlanetLab-node system where a stream of 674 kbps
is broadcast. We consider wise freeriders that decrease their
contribution as much as possible while keeping the prob-
ability of being caught lower than50%. In short, without
LiFTinG, the system collapses in the presence of freerid-
ers while the performance remains very close to the baseline
with LiFTinG.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60fr
ac

ti
on

of
n
o
d
es

v
ie

w
in

g
a

cl
ea

r
st

re
am

stream lag (s)

No freeriders
25% freeriders

25% freeriders (LiFTinG)

Figure 1. System efficiency in the presence of freeriders.

In a 300-node system deployed over PlanetLab, where
a stream of 674 kbps is broadcast,LiFTinG incurs a maxi-
mum overhead of only8%. With 10% of freeriders decreas-
ing their contribution by30%, LiFTinG detects86% of the
freeriders and wrongly expels12% of honest nodes (most
of them being nodes whose decreased contribution is due to
poor capabilities: these nodes deserve, in a sense, to be ex-
pelled as well as freeriders) after only30 seconds.

We believe that, beyond gossip protocols,LiFTinG can be
used to secure the asymmetric component of TfT-based pro-
tocols, namelyopportunistic unchoking. This is considered
to constitute their Achile’s heel [23, 24]. We can consider for

instance a gossip protocol, secured byLiFTinG, to dissem-
inate fresh chunks in the system, coupled with a protocol
based on symmetric exchanges to complete the dissemina-
tion using traditional swarming and TfT.

The rest of the paper is organized as follows. Section 2
defines the system model. Section 3 describes our illustrative
gossip protocol and Section 4 lists and classifies the opportu-
nities for nodes to freeride. Section 5 presentsLiFTinG and
Section 6 formally analyzes its performance backed up by
extensive simulations. Section 7 reports on the deployment
of LiFTinG over the PlanetLab testbed. Section 8 reviews
related work. Section 9 concludes the paper.

2. System model
We consider a system ofn nodes that communicate over
lossy links (e.g., UDP) and can receive incoming data
from any other node in the system (i.e., the nodes are not
guarded/firewalled, or there exists a means to circumvent
such protections [17]). In addition we assume that nodes can
pick uniformly at random a set of nodes in the system. This
is usually achieved using full membership or a random peer
sampling protocol [13, 18].

Nodes are either honest or freeriders. Honest nodes
strictly follow the protocol (including verifications) while
freeriders allow themselves to deviate from the protocol in
order to minimize their contribution. Colluding freeriders
want to minimize their contribution and maximize the ben-
efit of the coalition. In addition, they may lie not to be de-
tected or even cover colluding freeriders up. However, they
arewise as they behave in such a way that the probability
to be expelled remains low. Freeriders do not wrongfully
accuse honest nodes. Effectively, making honest nodes ex-
pelled(i) does not increase their benefit and(ii) leads to an
increased proportion of freeriders, thus degrading the over-
all contribution of the system that results, in the end, in de-
grading all nodes’ benefit. This phenomenon, known as the
tragedy of the commons [10] decreases the overall benefit of
the system, including freeriders. We denote bym the num-
ber of freeriders in the system.

3. Basic gossip protocol
We consider a system where content is broadcast from a
source to all nodes using a three-phase gossip-based proto-
col [5, 6]. The content is split into multiple chunks that are
identified by chunk ids. In short, each node periodically pro-
poses a set of chunks to a set of random nodes (i.e., propos-
ing the chunk ids). Upon reception of a proposal, a node
requests the sender the chunk ids it needs and the sender
then serves the requested chunks. All messages are sent over
UDP. The three phases are illustrated in Figure 2b.

Propose phase A node periodically, i.e., at every gossip
periodTg, picks uniformly at random a set off nodes and
proposes to them (as depicted in Figure 2a) the setP of
chunks it received since its last propose phase. The sizef

LiFTinG 2 2009/11/7

p0

p1

p8

p5

p6































































































f nodes

propose(3, 7, 9)

...

(a) Gossip dissemination

k · Tg propose(3, 7, 9)

request(3, 9)

serve(c3, c9)

serve(c3, c7)

serve(c9)
p0 p1

(b) Three phases

Figure 2. Three-phase generic gossip.

of the node set, namely thefanout, is the same for all nodes
and kept constant over time (the fanout is typically slightly
larger thanln (n) [16], that isf = 12 for a 10, 000-node
system). Such a gossip protocol follows aninfect-and-die
process as once a node proposed a chunk to a set of nodes, it
does not propose it anymore.

Request phase Upon reception of a proposal of a setP of
chunks, a node determines the subset of chunksR it needs
and requests the sender to serve these chunks.

Serving phase When a proposing node receives a request
corresponding to a proposal, it serves the chunks requested.
If a request does not correspond to a proposal, it is ignored.
Similarly, nodes only serve chunks that were effectively
proposed (i.e., chunks inP ∩R).

4. Freeriding
Freeriders may deviate from the protocol in three ways:
(i) bias the partner selection,(ii) drop messages they are
supposed to send, or(iii) modify the content of the messages
they send. We exhaustively list all possible attacks in each
phase of the protocol, discuss their motivations and impacts,
and then extract and classify those that may increase the
individual interest of a freerider or the common interest of
colluding freeriders. In the sequel, attacks that require or
serve colluding nodes are denoted with a ‘⋆’. This analysis
of the three-phase protocol is at the core of our lightweight
freerider tracking scheme –LiFTinG.

4.1 Propose phase

In the first phase, a freerider can(i) communicate with less
thanf nodes,(ii) propose less chunks than it should,(iii)
select as communication partners only a particular subset of
nodes or(iv) reduce its proposing rate.

(i) Decreasing fanoutBy communicating tof̂ < f nodes,
the freerider trivially reduces the potential number of re-
quests, and thus the probability of serving chunks. There-
fore, its contribution in terms of the amount of data up-
loaded is decreased while still fulfilling thêf received
requests as illustrated in Figure 3.































































































f nodes

propose

...

(a) Honest node



























































f̂ < f nodes

propose

...

(b) Freerider

Figure 3. A freerider communicates witĥf < f partners.

(ii) Invalid proposal A proposal is valid if it contains every
chunk received in the last gossip period. Proposing only
a subset of the chunks received in the last period, as
illustrated in Figure 4, obviously decreases the number
of requested chunks. However, a freerider has no interest
in proposing chunks it does not have since, contrarily to
TfT-based protocols, uploading chunks to a node does
not imply that the latter sends chunks in return. In other
words, proposing more (and possibly fake) chunks does
not increase the benefit of a node.

propose(a, b, c)

serve(a, c)

serve(b)

(a) Honest node

propose(a, b)

serve(a, c)

serve(b)

(b) Freerider

Figure 4. A freerider deliberately removes some chunks (c
here) from its proposal.

(iii) Biasing the partners selection (⋆) Considering a group
of colluding nodes, a freerider may want to bias the ran-
dom selection of nodes to privilege its colluding partners,
so that the group’s benefit increases, as illustrated in Fig-
ure 5.

all nodes

pick partners
(uniform)

(a) Honest node

all nodes

freeriders
pick partners

(biased)

(b) Colluding freeriders

Figure 5. An honest node picks communication partners
uniformly at random from the set of all nodes whereas a
freerider biases the partner selection to pick mainly collud-
ing nodes.

(iv) Increasing the gossip periodA freerider may increase
its gossip period, leading to less frequent proposals, i.e.,
advertising more chunks per proposal, but “older” ones,
as illustrated in Figure 6. This implies a decreased inter-
est of the requesting nodes and thus a decreased contri-
bution for the sender. This is due to the fact that an old

LiFTinG 3 2009/11/7

chunk has a lower probability to be of interest as it be-
comes more replicated over time.

propose(a, b)

serve(a)

serve(b)

propose(c, d, e)

serve(c, e)

serve(d)







































gossip period







































gossip period

(a) Honest node

propose(a, b, d)

serve(a)

serve(b)

serve(c, e)

serve(d)



































































> gossip period



































































> gossip period

(b) Freerider

Figure 6. With a larger gossip period, some proposed
chunks are unlikely to be requested (e.g.,a andb here).

4.2 Pull request phase

Nodes are expected to request only chunks they have been
proposed. A freerider would increase its benefit by oppor-
tunistically requesting extra chunks (even from nodes that
did not propose these chunks). The dissemination protocol
itself prevents this misbehaving by automatically dropping
such requests as described above.

4.3 Serving phase

In the serving phase, freeriders may(i) send only a subset of
what was requested or(ii) send junk. The first obviously de-
creases the freeriders’ contribution as they serve less chunks
than they are supposed to. However, as we mentioned above,
in the considered asymmetric protocol, a freerider has no in-
terest in sending junk data.

Analyzing the basic gossip protocol (Section 3) in details al-
lowed to identify the possible attacks. Interestingly enough,
these attacks share similar aspects and can thus be gathered
into three classes that dictate the rationale along which our
verification procedures are designed.

The first isquantitative correctness that characterizes the
fact that a node effectively proposes to the correct number
of nodes (f) at the correct rate (1/Tg). Assuming this first
aspect is verified, two more aspects must be further consid-
ered:causality that reflects the correctness of the determin-
istic part of the protocol, i.e., received chunks must be pro-
posed in the next gossip period as depicted in Figure 2b, and
statistical validity that evaluates the fairness (with respect
to the distribution specified by the protocol) in the random
selection of communication partners.

5. Lightweight Freerider-Tracking in Gossip
LiFTinG is a Lightweight protocol for Freerider-Tracking in
Gossip that encourages nodes, in a coercive way, to con-
tribute their fair share to the system, by means of distributed
lightweight verifications.LiFTinG consists of two kinds of
verifications:(i) direct verifications and(ii) a posteriori au-
diting procedures. Verifications can either lead to the emis-
sion of blames or to expulsion depending on the gravity of

the detected misbehavior. The value of a blame is propor-
tional to the number of invalid pushes (i.e., proposal, re-
quest and serves). Therefore, the blames emitted by the ver-
ification procedures are directly comparable and can thus be
summed up into a consistent reputation score.

Direct verifications aim at checking that all chunks re-
quested are served and that all chunks served are further pro-
posed to a correct number of nodes, i.e., it checks thequanti-
tative correctness andcausality. Direct verifications are per-
formed by nodes and are triggered with probabilitypdcc: it
can be triggered at each serve (pdcc = 1), never (pdcc = 0)
if the system is considered healthy, or anything in between.

The a posteriori auditing procedures are run sporadically
and consist in asking a suspected node for a log of its past
interactions to check thestatistical validity of the random
choices made when selecting communication partners. To
this aim, every node logs a bounded-sizehistory of sent and
received messages. More specifically, each node maintains a
trace of the events that occurred in the lasth seconds, i.e.,
corresponding to the lastnh = h/Tg gossip periods.

5.1 Blaming architecture

When a node detects that some other node freerides, it emits
a blame message containing ablame value against the sus-
pected node. Summing up the blame values of a node re-
sults in a score. We use an underlying distributed reputation
mechanism allowing nodes to blame other nodes and to ac-
cess each other’s scores in a decentralized fashion. This is
achieved using an Alliatrust-like architecture [7]. In Allia-
trust, each node is assignedM random managers that store
a copy of its reputation score. When a node wants to know
the score of a nodep, it contactsp’s managers and votes
over theM returned values. In order to be resilient to mes-
sage losses and malicious attacks (i.e., colluding managers
increasing the scores), we use a minimum as voting func-
tion. Similarly, to blame a nodep, a blame message is sent
to p’s managers. Finally, a node is expelled using the very
same managers.

5.2 Direct verifications and cross-checking

In order to ensurequantitative correctness, the verification
procedures check that the suspected node sent each proposal
to f nodes (decrease fanout attack). To assesscausality, the
verification mechanism ensures that(i) a chunk proposed is
served (partial serve attack), and that(ii) a chunk served to
a node at a timet is proposed (partial propose attack) in its
next propose phase, i.e., at the latest at timet+Tg (decrease
gossip period attack)

To ensure that received chunks are further proposed, we
propose a directcross-checking verification procedure that
works as follows: a nodep1 that received a chunkci from p0

acknowledges top0 that it proposedci to a set off nodes.
Then,p0 sends confirm requests, with probabilitypdcc, to
the set off nodes to check whether they received or not a
propose message fromp1 containing the chunksp0 served to

LiFTinG 4 2009/11/7

p1. Thef witnesses reply with confirm responses confirming
or infirmingp1’s acknowledgment sent top0.

propose(i)

request(i)

serve(ci)

serve(ci)

ack[i](p2, p3)

yes/no

(pdcc)? confirm[i](p1)

t

k · Tg

p0 p1 p2 p3

Figure 7. Cross-checking protocol.

Figure 7 depicts the message sequence composing a di-
rect cross-checking procedure (with a fanout of 2 for the
sake of readability). If anything wrong is detected,p0 blames
p1 by the number of contradictory testimonies or byf if no
acknowledgment is received. Direct cross-checking there-
fore ensures that every node forwards the chunks it receives
to exactlyf nodes in the next gossip period.

For the partial serve attack, it is straightforward for a node
to detect that a chunk it has been proposed is effectively
served. If not, the requester blames the proposer byf/ |R|
(whereR is the set of requested chunks) for each chunk that
has not been delivered. If the node did not serve any of the
requested chunks, it is blamed byf which corresponds to
the same blame as if the node did not propose those chunks.

Since the verification messages (i.e., ack, confirm and
confirm responses) for the direct cross-checking are small
and in order to limit the subsequent overhead ofLiFTinG,
direct cross-checking is done exclusively with UDP.

The different attacks and corresponding blames are sum-
marized in Table 1.

Attacks Blame values
fanout decrease (̂f < f) f − f̂ from each verifier
partial propose 1 (per invalid proposal) from each verifier
partial serve (|S| < |R|) f · (|R| − |S|)/ |R| from the receiver

Table 1. Summary of attacks and associated blame values.

Fooling the direct cross-check (⋆) Considering a set of
colluding nodes, a node may freeride the protocol without
being detected. Consider the situation depicted in Figure 8a,
wherep1 is a freerider. Ifp0 colludes withp1, then it will
not blamep1, regardless ofp2’s answer. Similarly, ifp2

colludes withp1, then it will answer top0 thatp1 sent a valid
proposal, regardless of whatp1 sent. Even when neitherp0

nor p2 collude with p1, p1 can still fool the direct cross-
checking thanks to a colluding third party by implementing
aman-in-the-middle attack as depicted in Figure 8b. Indeed,
if a nodep7 colludes withp1, thenp1 can tellp0 it sent a

proposal top7 and tell p2 that the chunk originated from
p7. Doing this, bothp0 andp2 will not detect thatp1 sent
an invalid proposal. The statistical verifications presented in
the next paragraph address this issue.

p0 p1 p2

serve propose

confirm

yes/no

(a) Direct cross-checking

p
0

p⋆
1

p⋆
7

p
2

serve propose

confirm

yes

confirm

yes/no

(b) Man-in-the-middle attack

Figure 8. Direct cross-checking and attacks. Colluding
nodes are denoted with a ‘⋆’.

5.3 Local history auditing

As stated in the analysis of the gossip protocol, the random
choices made in the partners selection must be checked. In
addition, the example described in the previous paragraph,
where freeriders collude to circumvent the verification pro-
cedures, highlights the need for statistical verification of
a node’s contacts, i.e., the nodes that exchanged messages
with the audited node, to ensure that it does not collaborate
only with a subset of the network, e.g., a set of colluding
nodes that would cover each other up. The statistical ver-
ification of the history of the nodes, namelylocal history
auditing, acts as a complement to the direct cross-checking.
The history of a node that biased its partner selection con-
tains a relatively large proportion of colluding nodes. If a
small fraction of colluding nodes is present in the system,
they will appear more frequently than honest nodes in each
other’s histories and can therefore be detected. Based on this
remark, we propose an entropy-based approach to detect the
bias induced by freeriders on the history of nodes. If the his-
tory of the inspected node does not pass the entropic checks,
the node is expelled from the system.

p1, p3, p5

p0, p4, p7

p2, p3, p5

nh entries











history
Fh = {p0, p1, p2, p3, p3, p4, p5, p5, p7}

d̃h =

fr
eq

ue
nc

y

node0 1 2 3 4 5 6 7

H(d̃h)
?
> γ

entropy

Figure 9. Local history auditing on proposals (f = 3).

Figure 9 gives a synthetic overview of local history audit-
ing on proposals. The gossip protocol specifies that a node
picksuniformly at random, a set off partners every gossip
period. When inspecting the local history of a node, the audi-
tor computes the number of occurrences of each node in the
set of proposals sent byp1 during the lasth seconds. Defin-
ing Fh as the multiset of nodes to whomp1 sent a proposal
during this period (a node may indeed appear more than once
in Fh), the distributiond̃h of nodes inFh characterizes the
randomness of the partners selection. We denote byd̃h,i the
number of occurrences of nodei (i ∈ {1, . . . , n}) in Fh

LiFTinG 5 2009/11/7

normalized by the size ofFh. The empirical distributioñd is
to be compared to theuniform distribution. The commonly
used function to evaluate the similarity between two distri-
butions is the Kullback-Leibler divergence. Measuring the
uniformity of the distributiond̃ of p1’s partners boils down
to computing its Shannon entropy:

H(d̃h) = −
X

i

d̃h,i log2(d̃h,i) (1)

The entropy is maximum when every node of the sys-
tem appears at most once inFh (assumingnhf < n).
In that case, it is equal tolog2(nhf). Evaluating theuni-
formity of the partner selection is achieved by comparing
the entropy of the partner distribution to a given thresh-
old γ (0 ≤ γ ≤ log2(nhf)). Since the peer selection ser-
vice underlying the gossip protocol may not be perfect, the
threshold must be tolerant to small deviation with respect to
the uniform distribution to avoidfalse positives (i.e., honest
nodes being blamed). Numerical values and practical appli-
cations are given in Section 6.

A local history audit must be coupled with ana poste-
riori cross-checking verification procedure to guarantee the
validity of the inspected node’s history. Cross-checking is
achieved by polling all or a subset of the nodes mentioned
in the history for an acknowledgment. The inspected node is
blamed by1 for each proposal in its history that is not ac-
knowledged by the alleged receiver. Therefore, an inspected
freerider replacing colluding nodes by honest nodes in its
history in order to pass the entropic check will not be cov-
ered by the honest nodes and will thus be blamed accord-
ingly.

So far we focused on inspecting the multi-setFh of nodes
to whom a node sent proposals. Due to the possibility of the
man-in-the middle attack presented in Section 5.2 (using a
colluding node to pass the direct verification), a complemen-
tary entropic check is performed on the multi-set of nodes
F ′

h that asked the nodes inFh for a confirmation, i.e., direct
cross-checking. When dealing with an honest nodep0, F ′

h is
composed of the nodes that sent chunks top0 – namely its
fanin. Therefore,F ′

h shares similar statistical properties with
Fh and can thus be checked similarly, i.e., using an entropic
check. On the other hand, when dealing with freeriders that
implemented the man-in-the-middle attack,F ′

h contains a
large proportion of colluding nodes and thus the freeriders
are detected. If the history of the inspected node does not
pass the entropic checks (i.e, fanin and fanout), the node is
expelled from the system.

Local history auditing can be leveraged to check that a
node respected the gossip periodTg specified by the pro-
tocol. Assuming a correct fanout (thanks to direct cross-
checking), checking the gossip period boils down to count-
ing the number of proposals in the local history.

To conclude, in addition to ensuring that statistical prop-
erties of the protocol are respected, local history auditing
limits the possibility for freeriders to cover each other upin
order to circumvent the verification procedures.

Local history auditing verifications are sporadically per-
formed by the nodes using TCP connections. The reasons to
use TCP are that(i) the overhead of establishing a connec-
tion is amortized since local history auditing happens spo-
radically and carries out a large amount of data, i.e., propor-
tional toh, and(ii) local auditing is very sensitive to message
losses as the potential blame is much larger than for direct
verifications and can lead to expulsion from the system.

The different attacks and corresponding verification proce-
dures are summarized in Table 2.

Attack Type Detection
fanout decrease (f) quantitative direct cross-check
partial propose (P) causality direct cross-check
partial serve (R) quantitative direct verification

decrease period (Tg) quantitative
direct cross-check
local auditing

bias partners selection (⋆) entropy
local auditing
a posteriori cross-check

Table 2. Summary of attacks and associated verifications.

6. Analysis and simulation results
This section gives a theoretical performance analysis of the
detection mechanism ofLiFTinG. First we analyze its com-
plexity, then we study probabilistically its detection property
and the occurrence of false positives in the presence of col-
luding freeriders and message losses. The present analysisis
backed up by Monte-Carlo simulations. Principal notations
used in this section are summarized in Table 4 (page 10).

6.1 Communication costs

In this section, we evaluate the overhead caused byLiFTinG

on the content dissemination protocol. To this end, we com-
pute the maximum number of verification and blame mes-
sages sent by a node during one gossip period. The overhead
of the verifications is summarized in Table 3. Note that we
do not consider statistical verifications in this section asit
does not imply a regular overhead but only sporadic mes-
sage exchanges.

Direct verification Direct verifications do not require any
exchange of verification messages as they consist only in
comparing the number of chunks requested by the verifier
to the number of chunks it really received. However, direct
verification may lead to the emission off blames (toM
managers). The communication overhead caused by direct
verifications is thereforeO(M · f) messages.

Direct cross-checking In order to check that the chunks it
sent during the previous gossip period are further proposed,
the verifier polls thef partners of itsf partners with prob-
ability pdcc. Similarly, a node is polled bypdcc · f2 nodes
per gossip period on average and therefore sendspdcc · f2

replies. Finally, a node sends the list of its current partners
to thef nodes (on average) that served chunks to it in the
last gossip period. In addition, since a node inspects itsf

LiFTinG 6 2009/11/7

partners, direct cross-checking may lead to the emission of
a maximum off blames (toM managers). The communi-
cation overhead caused by direct cross-checking is therefore
O(pdcc ·f2 +pdcc ·M ·f) messages. Settingpdcc to 1/f the
overhead isO(M + f).

The number of messages sent byLiFTinG is O(M · f).
This has to be compared to the number of messages sent
by the three-phase gossip protocol itself, namelyf(2 + |R|)
– whereR is the set of requested chunks, the two additional
messages being the proposal and the request. The overhead
of LiFTinG is even more negligible when taking into ac-
count the size of the chunks sent by a node, which is several
orders of magnitude larger than the verification and blame
messages. Finally, sincef ∼ ln(n), both the three-phase
protocol andLiFTinG scale with the number of nodes.

direct verifications (messages) 0
direct verifications (blames) O(M · f) for the verifier

direct cross-check (messages)
O(pdccf

2) for the verifier
O(pdccf) for the inspected node
O(pdccf

2) for the each witness
direct cross-check (blames) O(pdcc · M · f) for the verifier

Table 3. Overhead of verifications.

6.2 Wrongful blames

Due to message losses, a node may be wrongfully blamed,
i.e., blamed even though it follows the protocol. Freeriders
are additionally blamed for their misbehaviors. Therefore,
the score distribution among the nodes is expected to be a
mixture of two components corresponding respectively to
those of honest nodes and freeriders. In this setting, likeli-
hood maximization algorithms [15] are traditionally used to
address decision problems, i.e., to decide whether a node is
a freerider or not. Such algorithms are based on the rela-
tive score of the nodes and are thus not sensitive to wrong-
ful blames. Effectively, wrongful blames have the same im-
pact on honest nodes and freeriders. One may thus think that
there is no need to compensate wrongful blames.

However, in the context of content distribution in the
presence of freeriders, two problems arise when using rela-
tive score-based detection:(i) freeriders are able to decrease
the probability to be detected by wrongfully blaming honest
nodes, and(ii) the score of a node joining the system is not
comparable to those of the nodes already in the system. For
these reasons, inLiFTinG, the impact of wrongful blames
on the nodes is automatically compensated and the decision
algorithm is based on absolute scores with a fixed threshold.

Considering message losses independently drawn from a
Bernoulli distribution of parameterpl (we denote bypr =
1− pl the probability of reception), we derive a closed-form
expression for the expected value of the blames applied to
honest nodes during a given timespan. Periodically increas-
ing all scores accordingly leads to an average score of0 for
honest nodes. This way, a fixed threshold can be used to dis-
tinguish between honest nodes and freeriders. To this end,

we analyze, for each verification, the situations where mes-
sage losses can cause wrongful blames and evaluate their
impact. For the sake of the analysis, we assume that(i) a
node receives at least one chunk during every gossip period
(and therefore it will send proposals during the next gossip
period), and(ii) each node requests a constant number|R|
of chunks for each proposal it receives. We consider the case
where cross-checking is always performed, i.e.,pdcc = 1.

Direct verification This procedure checks, for each of the
f partners to which a node sent a proposal, that the proposed
and requested chunks are effectively received. For each re-
quested chunk that has not been served, the node is blamed
by f/ |R|. If the proposal is received but the request is lost,
the node is therefore blamed byf ((a) in Equation 2). Oth-
erwise it is blamed by the proportion of chunks lost ((b) in
Equation 2). The expected blame applied to an honest node
(by itsf partners), during one gossip period, due to message
losses is therefore:

b̃dv = f ·

»

(a)
z }| {

pr(1 − pr) · f +

(b)
z }| {

p
2
r · (1 − pr) |R| ·

f

|R|

–

b̃dv = pr(1 − p
2
r) · f

2 (2)

Direct cross-checking This procedure checks that each
chunk received is proposed tof nodes in the next gossip
period. On average, a node receivesf proposals during each
gossip period. Therefore a node is subject tof direct cross-
checking verifications and each verifier asks for a confirma-
tion to thef partners of the inspected node. If some chunks
served by the verifier in the previous period are lost, then the
verifier considers thef proposals sent by the inspected node
as invalid, i.e., incomplete. The inspected node will therefore
be blamed byf by this particular verifier ((a) in Equation 3).
On the other hand, for each verifier and for each partner, the
inspected node is blamed by 1 if the proposal, the confirma-
tion or the answer to the confirmation is lost ((b) in Equation
3). The expected blame applied to an honest node (by thef
verifiers), during one gossip period, due to message losses is
therefore:

b̃dcc = f ·
h

(a)
z }| {

p
2
r(1 − p

|R|+1
r) · f +

(b)
z }| {

f · p2
r · p|R|+1

r (1 − p
3
r)

i

b̃dcc = p
2
r(1 − p

|R|+4
r) · f2 (3)

A posteriori cross-checking This procedure asks the nodes
that appear in the inspected node’s history for confirmation
which can cause wrongful blames. Effectively, if a proposal
sent by the inspected node has not been received by the des-
tination node, due to message losses, the latter will not ac-
knowledge reception when asked. This leads again to wrong-
ful blames. However, since the nodes are polled using TCP,

LiFTinG 7 2009/11/7

the polling message and the answer are not subject to mes-
sage losses. On average, onlypr · nhf proposals in the in-
spected node history are confirmed by the destination lead-
ing to an average blame of:

b̃apcc = (1 − pr) · nhf (4)

Similarly to direct verification, the wrongful blames applied
by the local auditing must be compensated. However, this
should be done only sporadically, i.e., only when a node is
effectively audited, since these verifications are not triggered
at each gossip period.

From the previous analysis, we obtain a closed form expres-
sion for the expected value of the blameb applied to an hon-
est node due to message losses:

b̃ = b̃dv + b̃dcc = pr(1 + pr − p2
r − p|R|+5

r) · f2 . (5)

Following the same line of reasoning, a closed form expres-
sion for the standard deviationσ(b) of b can be derived [8].

Figure 10 depicts the distribution of scores after one
gossip period in a simulated network of10, 000 honest nodes
in steady state (where both direct verifications and direct
cross-checking are performed withpdcc = 1). The message
loss ratepl has been set to7%, the fanoutf to 12 and
|R| = 4. The scores of the nodes have been increased
by −b̃ = 72.95, according to Formula (5). We observe
that, as expected, the average score (dotted line) is close to
zero (< 0.01) which means that the wrongful blames have
been successfuly compensated. The experimental standard
deviation isσ(b) = 25.6.

0

0.005

0.01

0.015

-250 -200 -150 -100 -50 0 50

fr
a
ct
io
n
o
f
n
o
d
es

score

a
v
er
a
g
e

honest nodes

Figure 10. Impact of message losses.

6.3 Detection and false positives

A node can be expelled from the system either when its score
drops beyond a fixed threshold (η) or upon a local auditing
procedure. We now evaluate the ability ofLiFTinG to detect
freeriders (probability of detectionα) and the proportion of
honest nodes wrongfully expelled from the system (proba-
bility of false positivesβ) in both situations.

6.3.1 Score-based detection

As mentioned above, the score-based detection mechanism
uses a fixed thresholdη to which the scores of the nodes are
compared. To this aim, the score of each node isadjusted
(to compensate wrongful blames) andnormalized by the
number of gossip periodsr the node spent in the system. At
thet-th gossip period, the normalized score of a node writes:

s = −1

r

r
∑

i=0

(bt−i − b̃), (6)

where bi is the value of the blames applied to the node
during thei-th gossip period. From the previous analysis,
we get the expectation and the standard deviation of the
blames applied to honest nodes at each round due to message
losses, therefore, assuming that thebi are i.i.d. (independent
and identically distributed) we getE[s] = 0 and σ(s) =
σ(b)/

√
nT . Using Bienayḿe-Tchebychev’s inequality we

derive an upper bound for the probability of false positive:

β = P (s < η) ≤ P (|s| > −η) ≤ σ(b)2

r · η2

The probabilityα to catch a freerider depends on itsdegree
of freeriding that characterizes its deviation to the protocol.
Formally, we define the degree of freeriding as a 3-uple∆ =
(δ1, δ2, δ3), 0 ≤ δ1, δ2, δ3 ≤ 1, so that a freerider contacts
only δ1 · f nodes per gossip period, proposes the chunks
received from a proportionδ2 of the nodes that served it
in the previous gossip period1, and servesδ3 · |R| chunks
to each requesting node. The gain in terms of the upload
bandwidth saved is therefore1 − (1 − δ1)(1 − δ2)(1 − δ3).

Following the same line of reasoning as in the previous
section, we can derive a closed form expression for the
expected blame applied to a freerider as a function of∆:

b̃′(∆) = (1 − δ1) · pr

(

1 − p2
r(1 − δ3)

)

· f2 + δ2 · f2 +

(1 − δ2) · p2
r ·

[

p|R|+1
r (1 − p3

r(1 − δ1))+

(1 − p|R|+1
r)

]

· f2

Similarly to σ(b), a closed form expression for the standard
deviationσ(b′(∆)) of b′(∆) can be obtained [8]. Similarly
to the probability of false positivesβ, the probability of de-
tectionα can be lower bounded:

α ≥ 1 − σ(b′(∆))2

r · (b̃′(∆) − η)2

Note that the performance ofLiFTinG increases over time.
Effectively, as the detection threshold is fixed and the stan-
dard deviations of the score distributions tend to zero when
the time spend in the system increases, the probability of
detectionα increases to one and the probability of false pos-
itive β decreases to zero.

1 When a node removes some chunks from its proposals, it is blamed by
the nodes that served them. A freerider has therefore interest in removing
chunks from the least number of sources.

LiFTinG 8 2009/11/7

0

0.025

0.05

0.075

0.1

-50 -40 -30 -20 -10 0 10

fr
a
c
t
io
n
o
f
n
o
d
e
s

score

honest nodes

freeriders

(a) probability density function (pdf)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10

fr
a
c
t
io
n
o
f
n
o
d
e
s

score

threshold

false positives (β)

detection (α)

honest nodes

freeriders

(b) cumulative distribution function (cdf)

Figure 11. Distribution of normalized scores in the pres-
ence of freeriders (∆ = (0.1, 0.1, 0.1)).

Figure 11 depicts the distribution of normalized scores
in the presence of1, 000 freeriders of degree∆ =
(0.1, 0.1, 0.1) in a 10, 000-node system afterr = 50 gos-
sip periods. We plot separately the distribution of scores
among honest nodes and freeriders. As expected, the prob-
ability density function (Figure 11a) is split into two dis-
joint modes separated by a gap: the lowest (i.e., left most)
mode corresponds to freeriders and the highest one to honest
nodes. Figure 11b depicts the cumulative distribution func-
tion of scores and illustrates the notion of detection and false
positives for a given value of the detection threshold (i.e.,
η = −9.75).

We set the detection thresholdη to−9.75 so that the prob-
ability of false positive is lower than 1%, we assume that
freeriders perform all possible attacks with the same proba-
bility (δ1 = δ2 = δ3 = δ) and we observe the proportion
of freeriders detected byLiFTinG for several values ofδ.
Figure 12 plotsα andβ as functions ofδ. For instance, we
observe that for a node freeriding by5%, the probability to
be detected byLiFTinG is 65%. Beyond10% of freeriding,
a node is detected over99% of the time. It is commonly as-
sumed that users are willing to use a modified version of the
client application only if it increases significantly theirben-
efit (resp. decreases their contribution). In FlightPath [22],
this threshold is assumed to be around10%. With LiFTinG,

a freerider achieves a gain of10% for δ = 0.035 which
corresponds to a probability of being detected of50% (Fig-
ure 12).

0

0.2

0.4

0.6

0.8

1

fr
ac
ti
on

of
fr
ee
ri
d
er
s

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

fr
ac
ti
on

of
u
p
lo
ad

b
an

d
w
id
th

degree of freeriding (δ)

detection

gain

Figure 12. Proportion of freeriders detected byLiFTinG.

6.3.2 Entropy-based detection

For the sake of fairness and in order to prevent colluding
nodes from covering each other up,LiFTinG includes a local
audit assessing the statistical validity of the partner selection.
To this end, the entropy of the distribution of the inspected
node’s former partners is compared to a thresholdγ, which
is a parameter of the system. The distribution of the entropy
H of an honest node’s history depends on the peer sampling
algorithm used and can be estimated by simulations.

Figure 13a depicts the distribution of entropyH for a
history of nhf = 600 partners (nh = 50 and f = 12)
in a 10, 000-node system using a full membership-based
partner selection. The observed entropy ranges from9.11
to 9.21 for a maximum reachable value oflog2 (nhf) =
9.23. Similarly, the entropy of the multi-setF ′

h, of nodes
that selected the inspected node as partner, i.e., its fanin, is
depicted in Figure 13b. The observed entropy ranges from
8.98 to9.34. Note that the size ofF ′

h can be greater thannhf
(but isnhf on average) and therefore the boundlog2 (nhf)
does not apply to the entropy of fanin.

The simulation results show that the probability of
wrongfully expelling the inspected node during local audit-
ing is negligible when the thresholdγ is set to8.95. This
threshold is used for both fanout and fanin entropic check.

We now determine analytically to what extent a freerider
can bias its partner selection without being detected by local
auditing, given a thresholdγ and a number of colluding
nodesm′. A first requirement to be able to detect colluding
nodes is that the number of proposals in a node’s history
must be greater than the number of colluding freeriders.
Otherwise, by proposing chunks only to other freeriders in
a round-robin manner, a node may still be able to achieve a
maximized entropy. We therefore seth so thatnhf ≫ m′.
Consider a freerider that biases partner selection in orderto
favor colluding freeriders by picking a freerider as partner
with probability pm and an honest node with probability

LiFTinG 9 2009/11/7

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
a
ct
io
n
o
f
n
o
d
es

entropy

honest nodes

(a) entropy of fanout

0

0.02

0.04

0.06

0.08

0.1

0.12

8.8 8.9 9 9.1 9.2 9.3 9.4

fr
a
ct
io
n
o
f
n
o
d
es

entropy

honest nodes

(b) entropy of fanin

Figure 13. Distribution of the entropyH of the nodes’
histories using a full membership-based partner selection.

1 − pm. We seek the maximum valuep⋆
m for pm, function

of γ and m′. Defining the probability law of the partner
selection among honest nodes (resp. colluding nodes) by
X (resp. byY), the entropy of its fanout is expressed as
follows:

H(Fh) = pm log2 pm + (1 − pm) log2 (1 − pm)

+pmH(X) + (1 − pm)H(Y) ,

sinceX andY are independent. This quantity is maximized
whenX andY are the uniform distribution. Therefore, to
maximize the entropy of its history, a freerider must choose
uniformly at random its partners in the chosen class, i.e.,
honest or colluding. Therefore, given a thresholdγ and a
maximum number of colluding nodesm′, we have:

γ = −p
⋆
m log2

„

p⋆
m

m′

«

− (1 − p
⋆
m) log2

„

1 − p⋆
m

nhf − m′

«

(7)

wherep⋆
m is the maximum value forpm that a freerider

can use without being detected. Inverting numerically For-
mula (7), we deduce that forγ = 8.95 a freerider colluding
with 25 other nodes can serve its colluding partners21% of
the time, without being detected. In this setting, a freerider
can therefore further decrease its contribution by21%.

Notations Descriptions
n,m number of nodes / freeriders
|R| number of chunks requested
f fanout
nh size of history
Fh,F ′

h
multi-set of fanout / fanin in history

pdcc probability to trigger direct cross-checking
pl probability of message loss (pr = 1 − pl)
b̃ average value of wrongful blames
σ(b) standard deviation of wrongful blames
r number of gossip periods spent in the system
s normalized score
∆ degree of freeriding (3-uple)
b̃(∆) average value of blames (freeriders)
σ(b′(δ)) standard deviation of blames (freeriders)
η detection threshold (blame-based detection)
α probability of detection (blame-based detection)
β probability of false positive (blame-based detection)
γ detection threshold (entropy-based detection)

Table 4. Summary of principal notations.

7. Evaluation and experimental results
We now evaluateLiFTinG on top of the gossip-based stream-
ing protocol described in [6], over the PlanetLab testbed.

7.1 Experimental setup

We have deployed and executedLiFTinG on a 300 Planet-
Lab node testbed, broadcasting a stream of 674 kbps in the
presence of10% of freeriders. The freeriders(i) contact only
f̂ = 6 random partners (δ1 = 1/7), (ii) propose only90%
of what they receive (δ2 = 0.1) and finally(iii) serve only
90% of what they are requested (δ3 = 0.1). The fanout of all
nodes is set to7 and the gossip period is set to500 ms. The
blaming architecture usesM = 25 managers for each node.

7.2 Practical cost

Table 5 gives the bandwidth overhead of the direct verifi-
cations ofLiFTinG for three values ofpdcc. Note that the
overhead is not null whenpdcc = 0 since ack messages are
always sent. Yet, we observe that the overhead is negligible
whenpdcc = 0 (i.e., when the system is healthy) and remains
reasonable whenpdcc = 1 (i.e., when the systems needs to
be purged from freeriders).

cross-checking and
blaming overhead

pdcc 0 0.5 1
674 kbps stream 1.07% 4.53% 8.01%
1082 kbps stream 0.69% 3.51% 5.04%
2036 kbps stream 0.38% 1.69% 2.76%

Table 5. Practical overhead

7.3 Experimental results

We have executedLiFTinG with pdcc = 1 andpdcc = 0.5.
Figure 7 depicts the scores obtained after25, 30 and35 sec-
onds when running direct verifications and cross-checking.
The scores have been compensated as explained in the anal-
ysis, assuming a loss rate of4% (average value observed on
PlanetLab).

The two cumulative distribution functions for honest
nodes and freeriders are clearly separated. The threshold
for expelling freeriders is set to−9.75 (as specified in the
analysis). In Figure 14b (pdcc = 1, after 30 s) the detec-
tion mechanism expels86% of the freeriders and12% of
the honest nodes. In other words, after30 seconds,14%
of freeriders are not yet detected and12% represent false
positives, mainly corresponding to honest nodes that suf-
fer from very poor connection (e.g., limited connectivity,
message losses and bandwidth limitation). These nodes do
not deliberately freeride, but their connection does not allow
them to contribute their fair share. This is acceptable as such
nodes should not have been allowed to join the system in
the first place. As expected, withpdcc set to0.5 the detec-
tion is slower but not twice as slow. Effectively, with nodes
freeriding withδ3 > 0 (i.e., partial serves) the direct verifica-
tion blames freeriders without the need for any cross-check.

LiFTinG 10 2009/11/7

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(a) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(b) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(c) After 35 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(d) After 25 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(e) After 30 seconds.

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

fr
ac

ti
on

of
n
o
d
es

score

honest nodes
freeriders

(f) After 35 seconds.

Figure 14. Cumulative distribution functions of scores withpdcc = 1 (above) andpdcc = 0.5 (below).

This explains why the detection after only35 seconds with
pdcc = 0.5 (Figure 14f) is comparable with the detection
after30 seconds withpdcc = 1 (Figure 14b).

As stated in the analysis, we observe that the gap between
the two cdfs widens over time. However, the variance of the
score does not decrease over time (for both honest nodes
and freeriders). This is due to the fact that we considered in
the analysis that the blames applied to a given node during
distinct gossip periods were independent and identically dis-
tributed (i.i.d.). In practice however, successive gossipperi-
ods are correlated. Effectively, a node with a poor connection
is usually blamed more than nodes with high capabilities,
and this remains true over the whole experiment.

8. Related Work
The novel approach proposed in this paper aims at prevent-
ing freeriding in gossip-based dissemination protocols via
coercion. It is related to the following recent work.

TfT distributed incentives have been broadly used to deal
with freeriders in file sharing systems based on symmetric
exchanges, such as BitTorrent [4]. However, there are a num-
ber of attacks, mainly targeting the opportunistic unchoking
mechanism, allowing freeriders to download contents with
no or a very small contribution [23, 24].

BAR Gossip [21] and its improvement [22] is a gossip-
based streaming application that fights against freeridingus-
ing verifications on partner selection and chunk exchanges.
BAR Gossip operates in a gossip fashion for partner selec-

tion and is composed of opportunistic pushes performed by
altruistic nodes (essential for the efficiency of the protocol)
and balanced pairwise exchanges based on a TfT mecha-
nism. Randomness of partner selection is verified by means
of a pseudo-random number generator with signed seeds,
and symmetric exchanges are made robust using crypto-
graphic primitives. BAR Gossip prevents attacks on oppor-
tunistic pushes by turning them into symmetric exchanges:
each peer must reciprocate with junk chunks when oppor-
tunistically unchoked. This results in a non-negligible waste
of bandwidth. It is further demonstrated in [11] that BAR
Gossip presents scalability issues, not to mention the over-
head of cryptography.

PeerReview [9] deals with malicious nodes following an
accountability approach. Peers maintain verifiable signed
logs of their actions that can be audited and checked using a
simulator of the application, i.e., a reference implementation
running in addition to the application. When combined with
CSAR [2], PeerReview can be applied to non-deterministic
protocols. However, the intensive use of cryptography and
the sizes of the logs maintained and exchanged drastically
reduce the scalability of this solution. In addition, the valid-
ity of PeerReview relies on the fact that messages are always
received which is not the case over the Internet.

The case of malicious participants was considered in the
context of generic gossip protocols, i.e., consisting of state
exchanges and updates [12]. This system relies on cryptog-
raphy for signing messages between peers and do not con-

LiFTinG 11 2009/11/7

sider malicious behaviors that stem from the partner selec-
tion, i.e., biasing the random choices. In addition, they do
not tackle the problem of collusion.

The two approaches that relate the most toLiFTinG are
the distributed auditing protocol proposed in [11] and the
passive monitoring protocol proposed in [14]. The first pro-
tocol targets live streaming applications. Freeriders arede-
tected by cross-checking their neighbors’ reports. The lat-
ter focuses on gossip-based search in the Gnutella network.
The peers monitor the way their neighbors forward/answer
queries in order to detect freeriders and query droppers. Yet,
contrarily toLiFTinG – which is based on random peer se-
lection – in both protocols the peers’s neighborhoods are
static, i.e., forming a fixed mesh overlay. These techniques
thus cannot be applied to gossip protocols. In addition, the
situation where colluding peers cover each other up (not ad-
dressed in the papers) makes such monitoring protocols vain.

The originality of our work lies in exploiting the inherent
randomness of gossip-based protocols, information cross-
checking and statistical verifications to fight against freerid-
ers, even in presence of colluding nodes. The strength of
LiFTinG is to achieve efficient freeriders-tracking with a
slight overhead in challenging environment (i.e., facing mes-
sage losses and asynchrony).

9. Conclusion
We presentedLiFTinG, a protocol for tracking freeriders in
gossip-based asymmetric data dissemination systems. Be-
yond the fact thatLiFTinG deals with the inherent random-
ness of the protocol,LiFTinG precisely relies on this ran-
domness to robustify its verification mechanisms against
colluding freeriders with a very slight overhead. We pro-
vided a theoretical analysis ofLiFTinG that allows system
designers to set its parameters to their optimal values and
characterizes its performance backed up by extensive simu-
lations. We reported on our experimentations on PlanetLab
which prove the practicability and efficiency ofLiFTinG. We
plan to integrateLiFTinG into an existing symmetric content
dissemination system to secure its opportunistic unchoking
mechanism.

References
[1] E. Adar and B. Huberman. Free riding on Gnutella.First

Monday, 5(10), October 2000.

[2] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh. CSAR:
A Practical and Provable Technique to Make Randomized
Systems Accountable. InNDSS, 2009.

[3] T. Bonald, L. Massoulíe, F. Mathieu, D. Perino, and A. Twigg.
Epidemic Live Streaming: Optimal Performance Trade-offs.
In SIGMETRICS, 2008.

[4] B. Cohen. Incentives Build Robustness in BitTorrent. InP2P
Econ, 2003.

[5] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasub-
ramanian, and S. Mehrotra. CREW: A Gossip-based Flash-
Dissemination System. InICDCS, 2006.

[6] D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod, and
V. Quéma. Stretching Gossip with Live Streaming. InDSN,
2009.

[7] J. Gerard, H. Cai, and J. Wang. Alliatrust: A Trustable Rep-
utation Management Scheme for Unstructured P2P Systems.
In GPC, 2006.

[8] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, and M. Monod.
LiFT: Lightweight Freerider-Tracking Protocol. Research Re-
port RR-6913, INRIA, 2009.

[9] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
Practical Accountability for Distributed Systems. InSOSP,
2007.

[10] G. Hardin. The Tragedy of the Commons.Science, 162:1243–
1248, 1968.

[11] M. Haridasan, I. Jansch-Porto, and R. Van Renesse. Enforcing
Fairness in a Live-Streaming System. InMMCN, 2008.

[12] M. Jelasity, A. Montresor, and O. Babaoglu. Detection and
Removal of Malicious Peers in Gossip-Based Protocols. In
FuDiCo, 2004.

[13] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. Gossip-based Peer Sampling.TOCS, 25(3):
1–36, 2007.

[14] M. Karakaya, I. K̈orpeŏglu, and O. Ulusoy. Counteracting
Free-riding in Peer-to-Peer Networks.Computer Networks,
52(3):675–694, 2008.

[15] S. Kay. Fundamentals of Statistical Signal Processing: Esti-
mation Theory. Prentice Hall, 1993.

[16] A.-M. Kermarrec, L. Massoulié, and A. Ganesh. Probabilistic
Reliable Dissemination in Large-Scale Systems.TPDS, 14
(3):248–258, 2003.

[17] A.-M. Kermarrec, A. Pace, V. Qúema, and V. Schiavoni. NAT-
resilient Gossip Peer Sampling. InICDCS, 2009.

[18] V. King and J. Saia. Choosing a Random Peer. InPODC,
2004.

[19] R. Krishnan, M. Smith, Z. Tang, and R. Telang. The Impact
of Free-Riding on Peer-to-Peer Networks. InHICSS, 2004.

[20] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang.
Inside the New Coolstreaming: Principles, Measurements and
Performance Implications. InINFOCOM, 2008.

[21] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR Gossip. InOSDI, 2006.

[22] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson,
L. Alvisi, and M. Dahlin. FlightPath: Obedience v.s. Choice
in Cooperative Services. InOSDI, 2008.

[23] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
Riding in BitTorrent is Cheap. InHotNets, 2006.

[24] M. Sirivianos, J. Park, R. Chen, and X. Yang. Free-riding in
BitTorrent with the Large View Exploit. InIPTPS, 2007.

[25] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread:
Heterogeneous Unstructured Tree-Based Peer-to-Peer Multi-
cast. InICNP, 2006.

LiFTinG 12 2009/11/7

