LiFTinG: Lightweight Freerider-Tracking in Gossip

Rachid Guerraoui Kévin Huguenin Anne-Marie Kermarrec
EPFL Universi€ de Rennes 1/ IRISA INRIA Rennes — Bretagne Atlantique
rachid.guerraoui@epfl.ch kevin.huguenin@irisa.fr anne-marie.kermarrec@inria.fr
Maxime Monod Swagatika Prusty
EPFL [IT Guwahati
maxime.monod®@epfl.ch swagatika@iitg.ernet.in
Abstract performance in bandwidth-demanding applications such as

streaming. The impact of freeriders is even more critical
when they collude, i.e., they collaborate to decrease their
dividual and common contribution to the system.

In systems where exchanges ayenmetric, one of the
most popular mechanisms to address freeriding is the cele-
_brated Tit-for-Tat (TfT). TfT forces nodes to collaboratg b
enforcing the benefit of a node to be directly proportional
to its contribution [4]. BarGossip [21] applies TfT in ggssi
protocols by forcing symmetric exchanges. In this context,
freeriders can be modeled estional nodes that contribute
to symmetric exchanges by the minimum amount required
to get the maximum benefit in return [21].

In asymmetric systems [3, 5, 20, 25] where nodes altruis-
tically push content to other nodes, i.e., without asking-an
thing in return, the benefit of a node is not directly corredat
1. Introduction to its contribution but rather to t.he globlagalth of the sys-

tem. However, a strong correlation between the contributio
Gossip protocols have recently been successfully apmied t of a node and its benefit can be artificially established, in
decentralize large-scale high-bandwidth content dissami 5 coercive way, by means of verification mechanisms that
tion [3, 5, 6]. In suctasymmetric systems, nodes push packet expel the nodes which do not contribute their fair share. In
identifiers to a dynamically changing random subset of other this case, freeriders can be modeledaése nodes that de-

This paper presentkiFTinG, the first protocol to detect
freeriders, including colluding ones, in gossip-based-con
tent dissemination systems with asymmetric data exchanges
LiFTinG relies on nodes tracking abnormal behaviors by
cross-checking the history of their previous interactj@msl
exploits the fact that nodes pick neighbors at random to pre
vent colluding nodes from covering each other up.

We present extensive analytical evaluationd.ibfTinG,
backed up by simulations and PlanetLab experiments. In a
300-node system, where a streant6dd kbps is broadcast,
LiFTinG incurs a maximum overhead of or8§%. With 10%
of freeriders decreasing their contribution 83/%, LiFTinG
detects86% of the freeriders after onlyB0 seconds and
wrongfully expels only a few honest nodes.

nodes, who subsequently pull packets of interest. crease their contribution as much as possible while keeping
The efficiency of such protocols highly rely on the will- the probability of being expelled low.
ingneSS of participants to CO”aborate, i.e., to devoteaa-fr We consider a generic gossip protoco| where data is dis-

tion of their resources, namely their upload bandwidth, to seminated following an asymmetric push scheme where TfT

the system. Yet, some of these participants might be temptedzannot be used. In this context, we propbsETinG a co-

to freeride [19], i.e., not contribute their fair share of work, ercive lightweight mechanism to track freeriders in gossip

especially if they could still benefit from the system. Figer protocols. To our knowledgéjFTinG is the first protocol to

ing is common in large-scale systems deployed in the pub- secure asymmetric gossip protocols against possiblyaollu

lic domain [1] and may significantly degrade the overall ing freeriders. At the core dfiFTinG is a set of determin-
istic and statistical distributed verification procedubased
on accountability (i.e., each node maintains a digest of its
past interactions). Deterministic procedures check that t
content received by a node is further propagated follow-
ing the protocol (i.e., to the right number of nodes within
short delay) by cross-checking nodes’ logs. Statisticat pr

cedures check that the interactions of a node are evenly dis-
[Copyright notice will appear here once "preprint’ option is removed.]

LiFTInG 1 2009/11/7

tributed in the system using statistical techniques. &ger instance a gossip protocol, securedlblyTinG, to dissem-
ingly enough, the high dynamic and strong randomness of inate fresh chunks in the system, coupled with a protocol
gossip-based protocols that may be considered as a diffi-based on symmetric exchanges to complete the dissemina-
culty at a first glance, happens to help tracking freeriders. tion using traditional swarming and TfT.

Effectively, LiFTinG exploits the fact that nodes pick neigh- The rest of the paper is organized as follows. Section 2
bors at random to prevent collusion: the fact that a node in- defines the system model. Section 3 describes our illugtrati
teracts with a large subset of the nodes, chosen at randomgossip protocol and Section 4 lists and classifies the opport

drastically limits its possibility to freeride without bej de- nities for nodes to freeride. Section 5 presdnfsTinG and
tected, as it prevents it from continuously and determiinist Section 6 formally analyzes its performance backed up by
cally choosing colluding partners that would cover it up. extensive simulations. Section 7 reports on the deployment

LiFTinG is lightweight as it does not use heavyweight of LiFTinG over the PlanetLab testbed. Section 8 reviews
cryptography and incurs only a very low overhead in terms related work. Section 9 concludes the paper.
of bandwidth. This overhead can be dynamically adjusted
and potentially reduced to zero when the system is healthy.2. System model
In addition, LiFTinG is fully decentralized and evenly dis-
tributed among the nodes. FinallyiF TinG provides a good
probability of detecting freeriders while keeping the meb
bility of false positives (i.e., inaccurately classifyiagcor-

We consider a system of nodes that communicate over
lossy links (e.g., UDP) and can receive incoming data
from any other node in the system (i.e., the nodes are not
: guarded/firewalled, or there exists a means to circumvent
rect .node asa ffee”der) very IO\.N' . such protections [17]). In addition we assume that nodes can
Figure 1 depicts the health (i.e., the proportion of nodes pick uniformly at random a set of nodes in the system. This

able to view the stream as a function of the stream lag) in . ; : ;
is usually achieved using full membership or a random peer
a 300 PlanetLab-node system where a stream of 674 kbps y 9 P P

. ;) .) sampling protocol [13, 18].
is broadcast. We consider wise freeriders that decrease the Pling p []

ibuti h ble while keepind th b Nodes are either honest or freeriders. Honest nodes
contribution as much as possiole while keéeping the prob- strictly follow the protocol (including verifications) wiei
ability of being caught lower thafi0%. In short, without

. .. freeriders allow themselves to deviate from the protocol in
LiFTinG, the system collapses in the presence of freerid- P

hile th ; . | to the baseli order to minimize their contribution. Colluding freerider
ers while the performance remains very close to the baseling, ot to minimize their contribution and maximize the ben-

with LiFTinG. efit of the coalition. In addition, they may lie not to be de-
g 1 ' ' ' ' ' tected or even cover colluding freeriders up. However, they
£ o9l arewise as they behave in such a way that the probability
5 08} to be expelled remains low. Freeriders do not wrongfully
< oot} accuse honest nodes. Effectively, making honest nodes ex-
0 06| pelled(i) does not increase their benefit afiig leads to an
E o5t increased proportion of freeriders, thus degrading the-ove
5 04t ' all contribution of the system that results, in the end, in de
ERNER grading all nodes’ benefit. This phenomenon, known as the
s 02t} No freeriders tragedy of the commons [10] decreases the overall benefit of
E oortf 25% freeriders —mmme . the system, including freeriders. We denoterbythe num-

25% freeriders (LIFTinG) s ; :
= — L L ber of freeriders in the system.
0 10 20 30 40 50 60

stream lag (s)

3. Basic gossip protocol

We consider a system where content is broadcast from a
source to all nodes using a three-phase gossip-based proto-
col [5, 6]. The content is split into multiple chunks that are
identified by chunk ids. In short, each node periodically-pro

. ; oo o poses a set of chunks to a set of random nodes (i.e., propos-
ing their contribution by30%, LiFTinG detects’36% of the ing the chunk ids). Upon reception of a proposal, a node

]:)r]?tehrcle(:ﬁrlje?nndnV;[joensg\l/zhz);peeésezZ)ezfsggré?)ittr?l;):tieosn(ir:(éite tc)requests the sender the chunk ids it needs and the sender
g then serves the requested chunks. All messages are sent over

poor capabilities: these nodes deserve, in a sense, to be XDP. The three phases are illustrated in Figure 2b
pelled as well as freeriders) after ord§ seconds. ' '

We believe that, beyond gossip protocdl§; TinG can be Propose phase A node periodically, i.e., at every gossip
used to secure the asymmetric component of TfT-based pro-period Ty, picks uniformly at random a set gf nodes and
tocols, namelyopportunistic unchoking. This is considered proposes to them (as depicted in Figure 2a) theTsetf
to constitute their Achile’s heel [23, 24]. We can considerf ~ chunks it received since its last propose phase. The fsize

Figure 1. System efficiency in the presence of freeriders.
In a 300-node system deployed over PlanetLab, where

a stream of 674 kbps is broadcalsit- TinG incurs a maxi-
mum overhead of onl$%. With 10% of freeriders decreas-

LiFTInG 2 2009/11/7

(m) seve) i propose- propose- A
servel, & O A (< fnodes
Q\:j:\ : f nodes (x :
@ k- Ty +--_ proposeg, 7, 9) O O
: f node: requestg:;;j:f O O
proposeg, 79) “\—Sﬁl‘{‘%(?if"?lxw (a) Honest node (b) Freerider
@ Figure 3. A freerider communicates witfi < f partners.

(a) Gossip dissemination (b) Three phases

(ii) Invalid proposal A proposal is valid if it contains every
chunk received in the last gossip period. Proposing only
a subset of the chunks received in the last period, as
illustrated in Figure 4, obviously decreases the number
of requested chunks. However, a freerider has no interest

Figure 2. Three-phase generic gossip.

of the node set, namely thanout, is the same for all nodes
and kept constant over time (the fanout is typically slightl

larger thanin (n) [16], that is f = 12 for a 10,000-node in proposing chunks it does not have since, contrarily to
system). Such a gossip protocol follows aufiect-and-die TfT-based protocols, uploading chunks to a node does
process as once a node proposed a chunk to a set of nodes, it not imply that the latter sends chunks in return. In other
does not propose it anymore. words, proposing more (and possibly fake) chunks does

Request phase Upon reception of a proposal of a getof not increase the benefit of a node.

chunks, a node determines the subset of chiksneeds
and requests the sender to serve these chunks.

servep)
serve, &) "+

servep)
serve(, ¢y "~

___ propose, b)

Serving phase When a proposing node receives a request
corresponding to a proposal, it serves the chunks requested
If a request does not correspond to a proposal, it is ignored.
Similarly, nodes only serve chunks that were effectively
proposed (i.e., chunks iR N R).

(a) Honest node (b) Freerider

Figure 4. A freerider deliberately removes some chunks (
o here) from its proposal.
4. Freeriding

Freeriders may deviate from the protocol in three waysiiii) Biasing the partners selection £) Considering a group

(i) bias the partner selectioffii) drop messages they are
supposed to send, @ri) modify the content of the messages

they send. We exhaustively list all possible attacks in each

phase of the protocol, discuss their motivations and ingpact

of colluding nodes, a freerider may want to bias the ran-

dom selection of nodes to privilege its colluding partners,

so that the group’s benefit increases, as illustrated in Fig-
ure 5.

and then extract and classify those that may increase the
individual interest of a freerider or the common interest of
colluding freeriders. In the sequel, attacks that require o
serve colluding nodes are denoted withka This analysis O e S O

of the three-phase protocol is at the core of our lightweight pick pariners, -~
freerider tracking schemel=FTinG.

pick p
(biased)

(a) Honest node (b) Colluding freeriders

4.1 Propose phase

Figure 5. An honest node picks communication partners
uniformly at random from the set of all nodes whereas a
freerider biases the partner selection to pick mainly ebllu
ing nodes.

In the first phase, a freerider céin communicate with less
than f nodes,(ii) propose less chunks than it shou(di)
select as communication partners only a particular subfset o
nodes o(iv) reduce its proposing rate.

(i) Decreasing fanoutBy communicating tof < f nodes,
the freerider trivially reduces the potential number of re-
quests, and thus the probability of serving chunks. There-
fore, its contribution in terms of the amount of data up-
loaded is decreased while still fulfilling the received
requests as illustrated in Figure 3.

(iv) Increasing the gossip periodA freerider may increase

its gossip period, leading to less frequent proposals, i.e.
advertising more chunks per proposal, but “older” ones,
as illustrated in Figure 6. This implies a decreased inter-
est of the requesting nodes and thus a decreased contri-
bution for the sender. This is due to the fact that an old

LiFTinG 3 2009/11/7

chunk has a lower probability to be of interest as it be- the detected misbehavior. The value of a blame is propor-
comes more replicated over time. tional to the number of invalid pushes (i.e., proposal, re-
qguest and serves). Therefore, the blames emitted by the ver-
ification procedures are directly comparable and can thus be
> gossip period summed up into a consistent reputation score.
Direct verifications aim at checking that all chunks re-
guested are served and that all chunks served are further pro
- gossip period posed to a correct number of nodes, i.e., it checksjtiaati-
tative correctness andcausality. Direct verifications are per-
formed by nodes and are triggered with probabifity..: it
can be triggered at each seryg{. = 1), never py.. = 0)
Figure 6. With a larger gossip period, some proposed if the system is considered healthy, or anything in between.

ser\!e()) serve()
servef) T~ e
—f.l);\ gossip period serve() " -

- roposeq, b
serve()) »P;f;req)

ot serve())
serve(,) "=

gossip period servé(?)‘ “T=-{ proposeq, b, d)

7 propose(, d,)

(a) Honest node (b) Freerider

chunks are unlikely to be requested (eagandb here). The a posteriori auditing procedures are run sporadically
and consist in asking a suspected node for a log of its past
4.2 Pull request phase interactions to check theatistical validity of the random

Nodes are expected to request only chunks they have beerf110ic€s made when selecting communication partners. To
proposed. A freerider would increase its benefit by oppor- thiS &im, every node logs a bounded-sstory of sent and

tunistically requesting extra chunks (even from nodes that "€ceived messages. More specifically, each node maintains a
did not propose these chunks). The dissemination protocolface of the events that occurred in the lasteconds, i.e.,
itself prevents this misbehaving by automatically droppin corresponding to the last, = h/T), gossip periods.

such requests as described above. 5.1 Blaming architecture

4.3 Serving phase When a node detects that some other node freerides, it emits
In the serving phase, freeriders m@ysend only a subset of a blame message containingplame value against the sus-
what was requested ¢ii) send junk. The first obviously de- pected node. Summing up the blame values of a node re-
creases the freeriders’ contribution as they serve lesskshu sults in a score. We use an underlying distributed reputatio
than they are supposed to. However, as we mentioned abovemechanism allowing nodes to blame other nodes and to ac-
in the considered asymmetric protocol, a freerider haso in cess each other's scores in a decentralized fashion. This is
terest in sending junk data. achieved using an Alliatrust-like architecture [7]. In iaH
trust, each node is assignad random managers that store
a copy of its reputation score. When a node wants to know
Analyzing the basic gossip protocol (Section 3) in detdilsa the score of a node, it contactsp’s managers and votes
lowed to identify the possible attacks. Interestingly egiau over theM returned values. In order to be resilient to mes-
these attacks share similar aspects and can thus be gathereshge losses and malicious attacks (i.e., colluding masager
into three classes that dictate the rationale along which ou increasing the scores), we use a minimum as voting func-
verification procedures are designed. tion. Similarly, to blame a nodg, a blame message is sent
The first isquantitative correctness that characterizes the to p’s managers. Finally, a node is expelled using the very
fact that a node effectively proposes to the correct number same managers.
of nodes) at the correct ratel(7,). Assuming this first
aspect is verified, two more aspects must be further consid-5.2 Direct verifications and cross-checking
ered:causality that reflects the correctness of the determin- |n order to ensureuantitative correctness, the verification
istic part of the protocol, i.e., received chunks must be pro procedures check that the suspected node sent each proposal
posed in the next gossip period as depicted in Figure 2b, andg f nodes (decrease fanout attack). To assassality, the
statistical validity that evaluates the fairness (with respect yerification mechanism ensures tifgta chunk proposed is
to the.distribution spgcifi_ed by the protocaol) in the random gepyed (partial serve attack), and tki@t a chunk served to
selection of communication partners. a node at a time is proposed (partial propose attack) in its
5. Lightweight Freerider-Tracking in Gossip gﬁﬁ;{g‘;@?@%‘;ﬁ;ﬂ%"e” atthe latest atimd, (decrease
LiFTinG is a Lightweight protocol for Freerider-Tracking in To ensure that received chunks are further proposed, we
Gossip that encourages nodes, in a coercive way, to con-propose a directross-checking verification procedure that
tribute their fair share to the system, by means of disteédut works as follows: a nodg; that received a chunk from pg
lightweight verificationsLiFTinG consists of two kinds of acknowledges tg, that it proposed:; to a set off nodes.
verifications:(i) direct verifications andii) a posteriori au- Then,py sends confirm requests, with probability,.., to
diting procedures. Verifications can either lead to the emis the set off nodes to check whether they received or not a
sion of blames or to expulsion depending on the gravity of propose message frogp containing the chunkg, served to

LiFTinG 4 2009/11/7

p1. The f witnesses reply with confirm responses confirming proposal top; and tell p, that the chunk originated from
or infirming p;'s acknowledgment sent {g. pr. Doing this, bothpy and p, will not detect thatp, sent
an invalid proposal. The statistical verifications preedrin

Po P1 P2 3 ..
thel__ serve() the next paragraph address this issue.
k-T, + N
’ “'==:::ng’3°§?0 PPhe gonjl[m\ ~ . confirm_ //@: _ confirm
request() :: z :::—::_-_—_—f: 7 E - yes yesiio ~
’l':_,:::::::::"-__ @ T serve @ " propose @ @ T serve @ " propose @
ackfil(pe,ps) ___—-F=-or ___serve() NN e
:111:?_;;2::;?_ confirmf](p;) B o yesino
===========:=====:=:::::::: ________ (a) Direct cross-checking (b) Man-in-the-middle attack
yesino______-3 ___777 . _ _ _
e mmemmmm=sEAEESSTIEIEEIN Figure 8. Direct cross-checking and attacks. Colluding
nodes are denoted with & !

Figure 7. Cross-checking protocol.
5.3 Local history auditing

Figure 7 depicts the message sequence composing a dias stated in the analysis of the gossip protocol, the random
rect cross-checking procedure (with a fanout of 2 for the chojces made in the partners selection must be checked. In
sake of readability). If anything wrong is detectpglblames aqdition, the example described in the previous paragraph,
p1 by the number of contradictory testimonies or pjf no where freeriders collude to circumvent the verification-pro
acknowledgment is received. Direct cross-checking there- cedures, highlights the need for statistical verificatidn o
fore ensures that every node forwards the chunks it receivesy node’s contacts, i.e., the nodes that exchanged messages
to exactlyf nodes in the next gossip period. with the audited node, to ensure that it does not collaborate

For the partial serve attack, itis Straightforward for amod 0n|y with a subset of the network, e.g., a set of Co||uding
to detect that a chunk it has been proposed is effectively nodes that would cover each other up. The statistical ver-
served. If not, the requester blames the proposef iR | ification of the history of the nodes, namdiycal history
(whereR is the set of requested chunks) for each chunk that guditing, acts as a complement to the direct cross-checking.
has not been delivered. If the node did not serve any of the The history of a node that biased its partner selection con-
requested chunks, it is blamed Bywhich corresponds to tains a relatively large proportion of colluding nodes. If a
the same blame as if the node did not propose those chunkssmall fraction of colluding nodes is present in the system,

Since the verification messages (i.e., ack, confirm and they will appear more frequently than honest nodes in each
confirm responses) for the direct cross-checking are smallgther's histories and can therefore be detected. Basedon th

and in order to limit the subsequent overhead #TinG, remark, we propose an entropy-based approach to detect the
direct cross-checking is done exclusively with UDP. bias induced by freeriders on the history of nodes. If the his
The different attacks and corresponding blames are sum-tory of the inspected node does not pass the entropic checks,

marized in Table 1. the node is expelled from the system.

Attacks Blame values) Fi = {Po, D1, P2, D3, D3, Pa, Ps, s, P}

fanout decreasef(< f) | f — f from each verifier history entropy

partial propose 1 (per invalid proposal) from each verifidr o entries] Frepepe 5)

partial serve [S| < |R]) | /- (JR| — |S])/|R] from the receiver ' NN - 3 w=n
Table 1. Summary of attacks and associated blame values. 01231567 node

Figure 9. Local history auditing on proposalg & 3).
Fooling the direct cross-checkx) Considering a set of
colluding nodes, a node may freeride the protocol without
being detected. Consider the situation depicted in Figare 8
wherep, is a freerider. Ifpy colludes withp, then it will

Figure 9 gives a synthetic overview of local history audit-
ing on proposals. The gossip protocol specifies that a node
picks uniformly at random, a set off partners every gossip
period. When inspecting the local history of a node, the audi-

not blamep,, regardless op,’s answer. Similarly, ifp; tor computes the number of occurrences of each node in the
colludes withpy, then it will answer tg, thatp, sentavalid set of proposals sent by during the last: seconds. Defin-
proposal, regardless of what sent. Even when neitheg ing F;, as the multiset of nodes to whopa sent a proposal

nor p, collude with p;, p; can still fool the direct cross- during this period (a node may indeed appear more than once
checking thanks to a colluding third party by implementing in), the distributiond;, of nodes in;, characterizes the
aman-in-the-middle attack as depicted in Figure 8b. Indeed, randomness of the partners selection. We denoté,hythe

if a nodep; colludes withp, thenp; can tellp, it sent a number of occurrences of node(i € {1,...,n})in F,

LiFTinG 5 2009/11/7

normalized by the size of;,. The empirical distributiod is

to be compared to theniform distribution. The commonly
used function to evaluate the similarity between two distri
butions is the Kullback-Leibler divergence. Measuring the
uniformity of the distributiond of p;’s partners boils down
to computing its Shannon entropy:

H(dp) == dni1og,(dn,s) 1

The entropy is maximum when every node of the sys-
tem appears at most once jf, (assumingn,f < n).

In that case, it is equal ttvg,(ns f). Evaluating theuni-
formity of the partner selection is achieved by comparing
the entropy of the partner distribution to a given thresh-
old v (0 < v < logy(nnf)). Since the peer selection ser-
vice underlying the gossip protocol may not be perfect, the
threshold must be tolerant to small deviation with respect t
the uniform distribution to avoidalse positives (i.e., honest
nodes being blamed). Numerical values and practical appli-
cations are given in Section 6.

A local history audit must be coupled with @nposte-

riori cross-checking verification procedure to guarantee the
validity of the inspected node’s history. Cross-checkigag i
achieved by polling all or a subset of the nodes mentioned
in the history for an acknowledgment. The inspected node is
blamed byl for each proposal in its history that is not ac-
knowledged by the alleged receiver. Therefore, an insgecte
freerider replacing colluding nodes by honest nodes in its
history in order to pass the entropic check will not be cov-

ered by the honest nodes and will thus be blamed accord-

ingly.
So far we focused on inspecting the multi-ggtof nodes
to whom a node sent proposals. Due to the possibility of the

Local history auditing verifications are sporadically per-
formed by the nodes using TCP connections. The reasons to
use TCP are thdi) the overhead of establishing a connec-
tion is amortized since local history auditing happens spo-
radically and carries out a large amount of data, i.e., propo
tional toh, and(ii) local auditing is very sensitive to message
losses as the potential blame is much larger than for direct
verifications and can lead to expulsion from the system.

The different attacks and corresponding verification proce
dures are summarized in Table 2.

Attack Type Detection
fanout decreasef{ quantitative | direct cross-check
partial propose®) causality direct cross-check
partial serveR) quantitative | direct verification
decrease periodly) quantitative direct Cross -check
local auditing
bias partners selectiog) | entropy focal auditing
a posteriori cross-check

Table 2. Summary of attacks and associated verifications.

Analysis and simulation results

This section gives a theoretical performance analysisef th
detection mechanism &fFTinG. First we analyze its com-
plexity, then we study probabilistically its detection pesty

and the occurrence of false positives in the presence of col-
luding freeriders and message losses. The present analysis
backed up by Monte-Carlo simulations. Principal notations
used in this section are summarized in Table 4 (page 10).

6.1 Communication costs
In this section, we evaluate the overhead causddByinG

man-in-the middle attack presented in Section 5.2 (using aon the content dissemination protocol. To this end, we com-

colluding node to pass the direct verification), a complemen
tary entropic check is performed on the multi-set of nodes
F; that asked the nodes iy, for a confirmation, i.e., direct
cross-checking. When dealing with an honest nager; is
composed of the nodes that sent chunkgte- namely its
fanin. Therefore | shares similar statistical properties with
Fr, and can thus be checked similarly, i.e., using an entropic
check. On the other hand, when dealing with freeriders that
implemented the man-in-the-middle attack, contains a
large proportion of colluding nodes and thus the freeriders

are detected. If the history of the inspected node does not
pass the entropic checks (i.e, fanin and fanout), the node is

expelled from the system.

Local history auditing can be leveraged to check that a
node respected the gossip peribg specified by the pro-
tocol. Assuming a correct fanout (thanks to direct cross-

pute the maximum number of verification and blame mes-
sages sent by a node during one gossip period. The overhead
of the verifications is summarized in Table 3. Note that we
do not consider statistical verifications in this sectioritas
does not imply a regular overhead but only sporadic mes-
sage exchanges.

Direct verification Direct verifications do not require any
exchange of verification messages as they consist only in
comparing the number of chunks requested by the verifier

to the number of chunks it really received. However, direct
verification may lead to the emission ¢fblames (toM

managers). The communication overhead caused by direct

verifications is therefor&® (M - f) messages.

Direct cross-checking In order to check that the chunks it
sent during the previous gossip period are further proposed

checking), checking the gossip period boils down to count- the verifier polls thef partners of itsf partners with prob-

ing the number of proposals in the local history.

To conclude, in addition to ensuring that statistical prop-
erties of the protocol are respected, local history auglitin
limits the possibility for freeriders to cover each otherinp
order to circumvent the verification procedures.

LiFTinG

ability pqc.. Similarly, a node is polled byg.. - f2 nodes
per gossip period on average and therefore sepgds: f?
replies. Finally, a node sends the list of its current pastne

to the f nodes (on average) that served chunks to it in the

last gossip period. In addition, since a node inspectg’ its

2009/11/7

partners, direct cross-checking may lead to the emission ofwe analyze, for each verification, the situations where mes-
a maximum off blames (toM managers). The communi- sage losses can cause wrongful blames and evaluate their
cation overhead caused by direct cross-checking is threrefo impact. For the sake of the analysis, we assume (it

O(pace f2+pace - M - f) messages. Setting.. to 1/ f the node receives at least one chunk during every gossip period

overhead iO(M + f). (and therefore it will send proposals during the next gossip
period), and(ii) each node requests a constant nunjtxgr

The number of messages sent b§TinG is O(M - f). of chunks for each proposal it receives. We consider the case

This has to be compared to the number of messages sentvhere cross-checking is always performed, pg.. = 1.
by the three-phase gossip protocol itself, nam@y+ |R|) Direct verification This procedure checks, for each of the
—whereR is the set of requested chunks, the two additional 7 partners to which a node sent a proposal, that the proposed
messages *?e'”g the proposal gr)d the request'. Th.e overhedg, requested chunks are effectively received. For each re-
of LiFTinG is even more negligible when taking into ac- 4 ested chunk that has not been served, the node is blamed
count the size O.f the chunks sent by a no_d_e, V_Vh'Ch IS severalby f/|R|. If the proposal is received but the request is lost,
orders of magnltude .Iarger than the verification and blame 4" node is therefore blamed by((2) in Equation 2). Oth-
messages. Finally, sincé ~ In(n), both the three-phase o\ise it is blamed by the proportion of chunks lost ((b) in
protocol and.iFTinG scale with the number of nodes. Equation 2). The expected blame applied to an honest node
direct verifications (messages) 0 (by its f partners), during one gossip period, due to message

direct verifications (blames) | O(M - f) for the verifier losses is therefore:
O(pacc f?) for the verifier
direct cross-check (messages) O(pqc. f) for the inspected node) b
O(pace f?) for the each witness (@) (b)
direct cross-check (blames) | O(pgcc - M - f) for the verifier - 5 f
bdv - f p’r(lfpr)f+pr(17p7‘)|7?" . i
Table 3. Overhead of verifications. _ IR
bay = p(1-p7)-f? @

6.2 Wrongful blames

Due to message losses, a node may be wrongfully blamed pjrect cross-checking This procedure checks that each
l.e., blamed even though It f0||OWS the protOCOL FreeBder Chunk received is proposed Ebnodes in the next gossip
thg score distribution among the nodes _is expecteq to be 8gossip period. Therefore a node is subjecf tirect cross-
mixture of two components corresponding respectively to checking verifications and each verifier asks for a confirma-
hood maximization algorithms [15] are traditionally used t served by the verifier in the previous period are lost, then th
addres; decision problems, l.e., to decide whether a node iserifier considers thg proposals sent by the inspected node
a freerider or not. Such algorithms are based on the rela-asinvalid, i.e., incomplete. The inspected node will thene
tive score of the nodes and are thus not sensitive to Wrong-pe blamed by’ by this particular verifier ((a) in Equation 3).
ful blames. Effectively, wrongful blames have the same im- o, the other hand, for each verifier and for each partner, the
pact on honest nodes and freeriders. One may thus think thaﬁnspected node is blamed by 1 if the proposal, the confirma-
there is no need to compensate wrongful blames. tion or the answer to the confirmation is lost ((b) in Equation
However, in the context of content distribution in the 3). The expected blame applied to an honest node (by the

presence of freeriders, two problems arise when using rela-yerifiers), during one gossip period, due to message losses i
tive score-based detectiof) freeriders are able to decrease therefore:

the probability to be detected by wrongfully blaming honest

nodes, andii) the score of a node joining the system is not (a) (b)
comparable to thqse .of the nqdes already in the system. Forg _ [20T T4 TR (1)
these reasons, ihiFTinG, the impact of wrongful blames dee Pr Pr Pr - Pr Pr

on the nodes is automatically compensated and the decision, . = p2(1 — p|RI+4). 52 3)

algorithm is based on absolute scores with a fixed threshold.

Considering message losses independently drawn from a
Bernoulli distribution of parameter; (we denote by, = A posteriori cross-checking This procedure asks the nodes
1 — p; the probability of reception), we derive a closed-form that appear in the inspected node’s history for confirmation
expression for the expected value of the blames applied towhich can cause wrongful blames. Effectively, if a proposal
honest nodes during a given timespan. Periodically inereas sent by the inspected node has not been received by the des-
ing all scores accordingly leads to an average scofefof tination node, due to message losses, the latter will not ac-
honest nodes. This way, a fixed threshold can be used to disknowledge reception when asked. This leads again to wrong-
tinguish between honest nodes and freeriders. To this endful blames. However, since the nodes are polled using TCP,

LiFTInG 7 2009/11/7

the polling message and the answer are not subject to mes6.3.1 Score-based detection
sage losses. On average, oply- ny f proposals in the in-
spected node history are confirmed by the destination lead-
ing to an average blame of:

As mentioned above, the score-based detection mechanism
uses a fixed thresholgto which the scores of the nodes are
compared. To this aim, the score of each nodedjsisted

- (to compensate wrongful blames) andrmalized by the

bapee = (1= pr) - nnf (4) number of gossip periodsthe node spent in the system. At

. . . . thet-th gossip period, the normalized score of a node writes:
Similarly to direct verification, the wrongful blames apgali .

by the local auditing must be compensated. However, this s 1 Z (brs — 5)
should be done only sporadically, i.e., only when a node is o = ’

effectively audited, since these verifications are nogeigd) =0)
at each gossip period. where b; is the value of the blames applied to the node

during thei-th gossip period. From the previous analysis,

From the previous analysis, we obtain a closed form expres-We get the expectation and the standard deviation of the
sion for the expected value of the blamapplied to an hon- blames applied to honest nodes at each round due to message
est node due to message losses: losses, therefore, assuming that thare i.i.d. (independent

and identically distributed) we gé[s] = 0 ando(s) =
b= byy + Daee = pe(1+p, —p2 — p|TR\+5) f2. (5) o(b)//nr. Using Bienayrd-Tchebychev’s inequality we
derive an upper bound for the probability of false positive:
Following the same line of reasoning, a closed form expres- o(b)?
sion for the standard deviatiar(b) of b can be derived [8]. B=P(s<n)<P(s|>-n) <
Figure 10 depicts the distribution of scores after one
gossip period in a simulated networkidf, 000 honest nodes
in steady state (where both direct verifications and direc
cross-checking are performed with.. = 1). The message
loss ratep; has been set tG%, the fanoutf to 12 and
IR| = 4. The scores of the nodes have been increase
by —b = 72.95, according to Formula (5). We observe .)) :
that, as expected, the average score (dotted line) is abose t in the previous gossip periédand _Sef"e§3 * |R| chunks
zero (< 0.01) which means that the wrongful blames have to each requesting node. The gain in terms of the upload

been successfuly compensated. The experimental standarffandwidth saved is therefote- (1- 51.)(1 N 5.2)(1 —03). .
deviation is (b) — 25.6. Following the same line of reasoning as in the previous

section, we can derive a closed form expression for the
expected blame applied to a freerider as a functioA of

(6)

r-n?

The probabilitya to catch a freerider depends ondegree
; of freeriding that characterizes its deviation to the protocol.
Formally, we define the degree of freeriding as a 3-uple
(01,09,03), 0 < d1,02,03 < 1, so that a freerider contacts
gonly 41 - f nodes per gossip period, proposes the chunks
received from a proportion, of the nodes that served it

honest nodes ===

0.015 } '_,.‘:”‘\ 1 5/(A) = (1-01)-pr (1 —pr(1— 53)) P4 P+
(1= 02) - p2 - [pIRIF1 (1= p3(1 = 6))+
‘ 1 (1 _p\T’RH-l)} 2

0.005 ,-"': & | Similarly to o(b), a closed form expression for the standard
/ y deviationo (b'(A)) of &' (A) can be obtained [8]. Similarly
4 \ to the probability of false positivgs the probability of de-

fraction of nodes

average

. . . s N\ _ .
950 200 150 -100 50 0 50 tectiona can be lower bounded:
score > 1 g (b/ (A))z
O[fall - - -
Figure 10. Impact of message losses. r-(V(A) —n)?

Note that the performance @fFTinG increases over time.
Effectively, as the detection threshold is fixed and the-stan
6.3 Detection and false positives dard deviations of the score distributions tend to zero when
A node can be expelled from the system either when its scorethe time spend in the system increases, the probability of
drops beyond a fixed thresholg)(or upon a local auditing ~ detectionx increases to one and the probability of false pos-
procedure. We now evaluate the abilityloF TinG to detect itive 3 decreases to zero.
freeriders (prObablhty of detectloan) and the proportion of 1When a node removes some chunks from its proposals, it is blamed by

h'o.nest nodes Wr'olnng"Y expelle_d erm the system (proba- the nodes that served them. A freerider has therefore intieresmoving
bility of false positives3) in both situations. chunks from the least number of sources.

LiFTinG 8 2009/11/7

honest nodes ---—---- '
0.1 F freeriders W
ay
i
& oo0m | P
2 oo
S) i i
g 0.05
E
0.025 ' \
: \
O 1 Il 1 1 \\.L
-50 -40 -30 -20 -10 0 10
score
(a) probability density function (pdf)
1 T T =
honest nodes -------- ya
0.9 F freeriders /
08 b /
s 07} tion (o) /
B i
S 0.6 f
? 0.5 F threshold ——s| 1
E 0.3 false positives (3)
/
0.2 /
0.1 /
d
0

-20

score

-40 -30

(b) cumulative distribution function (cdf)

Figure 11. Distribution of normalized scores in the pres-
ence of freeriders = (0.1,0.1,0.1)).

Figure 11 depicts the distribution of normalized scores
in the presence ofl,000 freeriders of degreeA
(0.1,0.1,0.1) in a 10,000-node system after = 50 gos-

sip periods. We plot separately the distribution of scores 9.23. Similarly, the entropy of the multi-s

a freerider achieves a gain @0% for 5 = 0.035 which
corresponds to a probability of being detected @ (Fig-
ure 12).

detection

0.8 f
0.6 |
0.4 | ;
02

fraction of
freeriders

sain
1| g

fraction of
upload bandwidth

0 0.05 0.1 0.15

degree of freeriding (d)

0.2

Figure 12. Proportion of freeriders detected biF TinG.

6.3.2 Entropy-based detection

For the sake of fairness and in order to prevent colluding
nodes from covering each other Wk TinG includes a local
audit assessing the statistical validity of the partnexctein.
To this end, the entropy of the distribution of the inspected
node’s former partners is compared to a threshglearhich
is a parameter of the system. The distribution of the entropy
H of an honest node’s history depends on the peer sampling
algorithm used and can be estimated by simulations.

Figure 13a depicts the distribution of entrop¥ for a
history of n;, f = 600 partners ¢, = 50 and f = 12)
in a 10,000-node system using a full membership-based
partner selection. The observed entropy ranges fdoi
to 9.21 for a maximum reachable value tfg, (nyf) =
., of nodes

among honest nodes and freeriders. As expected, the probthat selected the inspected node as partner, i.e., its, fenin

ability density function (Figure 11a) is split into two dis-

depicted in Figure 13b. The observed entropy ranges from

joint modes separated by a gap: the lowest (i.e., left most) 8.98 t09.34. Note that the size of;, can be greater tham, f
mode corresponds to freeriders and the highest one to honestbut isn,, f on average) and therefore the bodag, (n, f)

nodes. Figure 11b depicts the cumulative distribution func
tion of scores and illustrates the notion of detection afgkfa
positives for a given value of the detection threshold ,(i.e.
n = —9.75).

We set the detection threshojdo —9.75 so that the prob-
ability of false positive is lower than 1%, we assume that
freeriders perform all possible attacks with the same proba
bility (61 = 02 = d3 = §) and we observe the proportion
of freeriders detected bkiFTinG for several values ob.
Figure 12 plotsy and g as functions ob. For instance, we
observe that for a node freeriding bYt, the probability to
be detected byiFTinG is 65%. Beyond10% of freeriding,

a node is detected ov89% of the time. It is commonly as-

does not apply to the entropy of fanin.

The simulation results show that the probability of
wrongfully expelling the inspected node during local audit
ing is negligible when the thresholdis set t08.95. This
threshold is used for both fanout and fanin entropic check.

We now determine analytically to what extent a freerider
can bias its partner selection without being detected bglloc
auditing, given a thresholg and a number of colluding
nodesm’. A first requirement to be able to detect colluding
nodes is that the number of proposals in a node’s history
must be greater than the number of colluding freeriders.
Otherwise, by proposing chunks only to other freeriders in
a round-robin manner, a node may still be able to achieve a

sumed that users are willing to use a modified version of the maximized entropy. We therefore deso thatn, f > m/'.

client application only if it increases significantly théien-
efit (resp. decreases their contribution). In FlightPat?],[2
this threshold is assumed to be aroufd;. With LiFTinG,

LiIFTInG 9

Consider a freerider that biases partner selection in doder
favor colluding freeriders by picking a freerider as partne
with probability p,,, and an honest node with probability

2009/11/7

0.12

0.1
< 008
0.06

0.04

fraction of nodes

0.02

91 92 93 94

entropy

(b) entropy of fanin

9 91 92 93 94 8.8

entropy

(a) entropy of fanout

88 8.9 89 9

Figure 13. Distribution of the entropyH of the nodes’
histories using a full membership-based partner selection

1 — pm. We seek the maximum valyg, for p,,, function
of v andm’. Defining the probability law of the partner

7. Evaluation and experimental results

We now evaluatéiF TinG on top of the gossip-based stream-
ing protocol described in [6], over the PlanetLab testbed.

7.1 Experimental setup

We have deployed and executed TinG on a 300 Planet-
Lab node testbed, broadcasting a stream of 674 kbps in the
presence of0% of freeriders. The freeride(g) contact only

f = 6 random partnerss{ = 1/7), (ii) propose only0%

of what they received, = 0.1) and finally(iii) serve only
90% of what they are requested;(= 0.1). The fanout of all
nodes is set t@ and the gossip period is set300 ms. The
blaming architecture uséd = 25 managers for each node.

7.2 Practical cost

selection among honest nodes (resp. colluding nodes) by i]) -~
X (resp. byY), the entropy of its fanout is expressed as Table 5 gives the bandwidth overhead of the direct verifi-

follows:

H(Fn) Pm 1085 P + (1 — prm) 1ogy (1 — pim)

+pmH(X) + (1= pm) H(Y)

sinceX andY are independent. This quantity is maximized
when X andY are the uniform distribution. Therefore, to
maximize the entropy of its history, a freerider must choose
uniformly at random its partners in the chosen class, i.e.,
honest or colluding. Therefore, given a threshglénd a
maximum number of colluding nodes’, we have:

) @

wherep?, is the maximum value fop,, that a freerider
can use without being detected. Inverting numerically For-
mula (7), we deduce that for = 8.95 a freerider colluding
with 25 other nodes can serve its colluding partr#% of

the time, without being detected. In this setting, a frearid
can therefore further decrease its contributior2 bys.

1—pn

. P
Y = —Pmlog, (W) — (1= pn)log, (m

Notations | Descriptions

n,m number of nodes / freeriders

IR| number of chunks requested

f fanout

np size of history

Fh,]—'}’L multi-set of fanout / fanin in history

Pdcc probability to trigger direct cross-checking
12 probability of message losg{ =1 — p;)

b average value of wrongful blames

standard deviation of wrongful blames

number of gossip periods spent in the system
normalized score

degree of freeriding (3-uple)

average value of blames (freeriders)

standard deviation of blames (freeriders)
detection threshold (blame-based detection)
probability of detection (blame-based detection)
probability of false positive (blame-based detectign)
detection threshold (entropy-based detection)

Table 4. Summary of principal notations.

LiFTinG 10

cations ofLiFTinG for three values opg... Note that the
overhead is not null whepy.. = 0 since ack messages are
always sent. Yet, we observe that the overhead is negligible
whenpg.. = 0 (i.e., when the system is healthy) and remains
reasonable whepy.. = 1 (i.e., when the systems needs to
be purged from freeriders).

Cross-checking and
blaming overhead
Pdce 0 0.5 1
674kbps stream | 1.07% | 4.53% | 8.01%
1082 kbps stream | 0.69% | 3.51% | 5.04%
2036 kbps stream | 0.38% | 1.69% | 2.76%

Table 5. Practical overhead

7.3 Experimental results

We have executetiFTinG with pg.. = 1 andpg.. = 0.5.
Figure 7 depicts the scores obtained a#ter30 and35 sec-
onds when running direct verifications and cross-checking.
The scores have been compensated as explained in the anal-
ysis, assuming a loss rate 4 (average value observed on
PlanetLab).

The two cumulative distribution functions for honest
nodes and freeriders are clearly separated. The threshold
for expelling freeriders is set t69.75 (as specified in the
analysis). In Figure 14bpg.. = 1, after30s) the detec-
tion mechanism expel86% of the freeriders and2% of
the honest nodes. In other words, aféér seconds,14%
of freeriders are not yet detected atels represent false
positives, mainly corresponding to honest nodes that suf-
fer from very poor connection (e.g., limited connectivity,
message losses and bandwidth limitation). These nodes do
not deliberately freeride, but their connection does riotal
them to contribute their fair share. This is acceptable ak su
nodes should not have been allowed to join the system in
the first place. As expected, with,.. set t00.5 the detec-
tion is slower but not twice as slow. Effectively, with nodes
freeriding withds > 0 (i.e., partial serves) the direct verifica-
tion blames freeriders without the need for any cross-check

2009/11/7

honest nodes + x honest nodes + o honest nodes
freeriders x M freeriders x freeriders
x

fraction of nodes
fraction of nodes
fraction of nodes

0.2 0.2 F 0.2
w,‘: o PRI « et
0 2K et * 0 s B 0 WV N
-60 -40 -20 0 20 -60 -40 -20 0 20 -60 -40 -20 0 20
score score score
(a) After 25 seconds. (b) After 30 seconds. (c) After 35 seconds.
1 3 1 1
honest nodes] honest nodes honest nodes
freeriders freeriders freeriders
0.8 ‘ 0.8 0.8
S 06 ' S 06 S 06
B l B 3 x
g g g H
= 0.4 Eel 0.4 Eel 0.4 x
2 & & H
& ; & & ;
0.2 & 0.2 0.2 &
x * x
et
0 K ™ 0 x "t 0 PO d
-60 -40 -20 0 20 -60 -40 -20 0 20 -60 -40 -20 0 20
score score score
(d) After 25 seconds. (e) After 30 seconds. (f) After 35 seconds.

Figure 14. Cumulative distribution functions of scores wijil).. = 1 (above) anghy.. = 0.5 (below).

This explains why the detection after oriy seconds with tion and is composed of opportunistic pushes performed by
pace = 0.5 (Figure 14f) is comparable with the detection altruistic nodes (essential for the efficiency of the protbc
after30 seconds wittp,.. = 1 (Figure 14b). and balanced pairwise exchanges based on a TfT mecha-
As stated in the analysis, we observe that the gap betweemism. Randomness of partner selection is verified by means
the two cdfs widens over time. However, the variance of the of a pseudo-random number generator with signed seeds,
score does not decrease over time (for both honest nodesand symmetric exchanges are made robust using crypto-
and freeriders). This is due to the fact that we considered in graphic primitives. BAR Gossip prevents attacks on oppor-
the analysis that the blames applied to a given node duringtunistic pushes by turning them into symmetric exchanges:
distinct gossip periods were independent and identicédly d each peer must reciprocate with junk chunks when oppor-
tributed (i.i.d.). In practice however, successive gopsp- tunistically unchoked. This results in a non-negligiblestea
ods are correlated. Effectively, a node with a poor conpacti of bandwidth. It is further demonstrated in [11] that BAR
is usually blamed more than nodes with high capabilities, Gossip presents scalability issues, not to mention the-over

and this remains true over the whole experiment. head of cryptography.
PeerReview [9] deals with malicious nodes following an
8. Related Work accountability approach. Peers maintain verifiable signed

The novel approach proposed in this paper aims at prevent-'ogs of their actions that can be audited and checked using a

ing freeriding in gossip-based dissemination protocots vi Simulator of the application, i.e., a reference implemeoita.
coercion. It is related to the following recent work. running in addition to the application. When combined with

THT distributed incentives have been broadly used to deal CSAR [2], PeerReview can be applied to non-deterministic

with freeriders in file sharing systems based on symmetric Protocols. However, the intensive use of cryptography and

exchanges, such as BitTorrent [4]. However, there are a num-the sizes of the logs maintained and exchanged drastically
reduce the scalability of this solution. In addition, thdidka

ber of attacks, mainly targeting the opportunistic unchgki | ’ y
mechanism, allowing freeriders to download contents with ity of PeerReview relies on the fact that messages are always
received which is not the case over the Internet.

no or a very small contribution [23, 24]. o S ')
BAR Gossip [21] and its improvement [22] is a gossip- The case of m_ahuou§ part|C|pant§ was con_s@ered in the
context of generic gossip protocols, i.e., consisting afest

based streaming application that fights against freeridéig) >
exchanges and updates [12]. This system relies on cryptog-

ing verifications on partner selection and chunk exchanges. o
BAR Gossip operates in a gossip fashion for partner selec-"@Phy for signing messages between peers and do not con-

LiFTInG 11 2009/11/7

sider malicious behaviors that stem from the partner selec- [6] D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod, and

tion, i.e., biasing the random choices. In addition, they do V. Quéma. Stretching Gossip with Live Streaming. D&N,
not tackle the problem of collusion. 2009.

The two approaches that relate the mosLifoTinG are [7]1 J. Gerard, H. Cai, and J. Wang. Alliatrust: A Trustable Rep-
the distributed auditing protocol proposed in [11] and the utation Management Scheme for Unstructured P2P Systems.
passive monitoring protocol proposed in [14]. The first pro- In GPC, 2006.
tocol targets live streaming applications. Freeridersdare [8] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, and M. Monod.
tected by cross-checking their neighbors’ reports. The lat LiFT: Lightweight Freerider-Tracking Protocol. Research Re-

ter focuses on gossip-based search in the Gnutella network. port RR-6913, INRIA, 2009.

The peers monitor the way their neighbors forward/answer [9] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:

gueries in order to detect freeriders and query droppets. Ye Practical Accountability for Distributed Systems. $OSP,

contrarily toLiFTinG — which is based on random peer se- 2007.

lection — in both protocols the peers’s neighborhoods are [10] G. Hardin. The Tragedy of the CommorSsience, 162:1243—

static, i.e., forming a fixed mesh overlay. These techniques 1248, 1968.

thus cannot be applied to gossip protocols. In addition, the 111] M. Haridasan, I. Jansch-Porto, and R. Van Renesse. Enéprc

situation where colluding peers cover each other up (not ad- Fairness in a Live-Streaming System.MiMCN, 2008.

dressed ip t_he Papers) makes _suc_h monitp_ring pro_tocols vain [12] M. Jelasity, A. Montresor, and O. Babaoglu. Detection and
The originality of our work lies in exploiting the inherent Removal of Malicious Peers in Gossip-Based Protocols. In

randomness of gossip-based protocols, information cross- FuDiCo, 2004.

checking and statistical verifications to fight againstricke [13] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and

ers, even in presence of colluding nodes. The strength of M. van Steen. Gossip-based Peer Samplif@CS, 25(3):

LiFTinG is to achieve efficient freeriders-tracking with a 1-36, 2007.

slight overhead in challenging environment (i.e., faciregm

14] M. Karakaya, |. Krpedjlu, and O. Ulusoy. Counteractin
sage losses and asynchrony). [14] Y pe y g

Free-riding in Peer-to-Peer Network€omputer Networks,
52(3):675-694, 2008.

9. Conclusion
[15] S. Kay. Fundamentals of Statistical Sgnal Processing: Esti-

We presentediFTinG, a protocol for tracking freeriders in mation Theory. Prentice Hall, 1993.

gossip-based asymmetric data dissemination systems. B(':'[16] A.-M. Kermarrec, L. Massoudi, and A. Ganesh. Probabilistic
yond the fact thatiF TinG deals with the inherent random- Reliable Dissemination in Large-Scale System&DS, 14
ness of the protocol.iFTinG precisely relies on this ran- (3):248-258, 2003.

domness to robustify its verification mechanisms against [17] A.-M. Kermarrec, A. Pace, V. Gima, and V. Schiavoni. NAT-
colluding freeriders with a very slight overhead. We pro- resilient Gossip Peer Sampling. IBDCS, 2009.

vidgd a theoreticql analysis &fFTinG that aII'ows system [18] V. King and J. Saia. Choosing a Random Peer.PGDC,
designers to set its parameters to their optimal values and 2004.

characterizes its performance backed up by extensive simu- . .

lations. We reported on our experimentations on PlanetLab [19] R- K“Sh“f”“?’ M. Smith, Z. Tang, and R. Telang. The Impact
which prove the practicability and efficiencyloF TinG. We of Free-R|d|ng on Peer-to-?eer Ne.tworks..HrCSS 2004.

plan to integratdiF TinG into an existing symmetric content ~ [20] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang.

. LS . - . Inside the New Coolstreaming: Principles, Measurements and
dissemination system to secure its opportunistic unclgpkin Performance Implications. IINFOCOM, 2008.

mechanism.) o
[21] H. Li, A. Clement, E. Wong, J. Napper, |. Roy, L. Alvisi, and
References M. Dahlin. BAR Gossip. IMOSDI, 2006.
[1] E. Adar and B. Huberman. Free riding on Gnutellfirst [22] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robinson,
Monday, 5(10), October 2000. L. Alvisi, and M. Dahlin. FlightPath: Obedience v.s. Choice

in Cooperative Services. DI, 2008.
[2] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh. CSAR: P .
A Practical and Provable Technique to Make Randomized [23] T- Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free

Systems Accountable. INDSS, 2009. Riding in BitTorrent is Cheap. IhlotNets, 2006.

[3] T. Bonald, L. Massoug, F. Mathieu, D. Perino, and A. Twigg. [24] M. Sirivianos, J. Park, R. Chen, and X. Yang. Free-riding in
Epidemic Live Streaming: Optimal Performance Trade-offs. BitTorrent with the Large View Exploit. IWPTPS 2007.

In SGMETRICS, 2008. [25] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread
[4] B. Cohen. Incentives Build Robustness in BitTorrentPRP Heterogeneous Unstructured Tree-Based Peer-to-Peer Multi-
Econ, 2003. cast. InICNP, 2006.

[5] M. Deshpande, B. Xing, |. Lazardis, B. Hore, N. Venkatasub-
ramanian, and S. Mehrotra. CREW: A Gossip-based Flash-
Dissemination System. IFCDCS, 2006.

LiIFTING 12 2009/117

