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Desorption of alkali atoms from 4He nanodroplets
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The dynamics following the photoexcitation of Na and Li atoms located on the surface of helium

nanodroplets has been investigated in a joint experimental and theoretical study. Photoelectron

spectroscopy has revealed that excitation of the alkali atoms via the (n + 1)s ’ ns transition

leads to the desorption of these atoms. The mean kinetic energy of the desorbed atoms, as

determined by ion imaging, shows a linear dependence on excitation frequency. These

experimental findings are analyzed within a three-dimensional, time-dependent density functional

approach for the helium droplet combined with a Bohmian dynamics description of the desorbing

atom. This hybrid method reproduces well the key experimental observables. The dependence of

the observables on the impurity mass is discussed by comparing the results obtained for the
6Li and 7Li isotopes. The calculations show that the desorption of the excited alkali atom is

accompanied by the creation of highly non-linear density waves in the helium droplet that

propagate at supersonic velocities.

I. Introduction

During the last decade, many properties of helium droplets

have been disclosed, especially in relation to their use as a gentle

matrix for spectroscopic experiments. In particular, the dyna-

mical aspects associated with the vibrational and rotational

degrees of freedom of embedded chromophores, as probed by

infrared spectroscopy, are nowadays well established. We refer

the interested reader to a series of review papers devoted to this

subject.1–8 At variance, the effect of the strong perturbations

induced by electronic excitation or ionization of impurities in

helium droplets is much less understood. For example, there is

still no consistent model that can fully account for the line-

shapes and splittings observed in the electronic spectra of

aromatic molecules.9 Even less is known about the ensuing

dynamics, like the rearrangement of the helium or the evolution

of photoelectrons.10 These aspects are however expected to be

relevant for the study of chemical reactions in this soft ultra-

cold environment, since chemical reactions involve essentially

the rearrangement of the electronic structure of reactants. In

this respect, understanding the dynamical evolution of an

electronically excited impurity in helium droplets might be

considered a first step towards a better understanding of

chemical reactions in this unique quantum environment.

The aim of the present work is to gain insight into the

dynamics initiated by the excitation of alkali atoms residing on

the surface of helium droplets. The np ’ ns transitions of

alkali-doped helium nanodroplets have been the subject of a

series of experimental and theoretical studies, see e.g.

ref. 11–15 and references therein. Only recently, studies involving

transitions to higher excited states have been reported.16–18

These studies reveal that excitation of the alkali atoms in

almost all cases leads to the desorption of the excited atoms

from the surface of the helium droplet on a picosecond

timescale.19,20 In the present work we investigate, both experi-

mentally and theoretically, the desorption process of Na and

Li atoms following excitation to the 4s and 3s state, respec-

tively. The use of two different atomic systems allows us to

identify general processes, while the use of lithium having two

light isotopes, 6Li and 7Li, allows us to quantify the mass effect

on these processes. In the experiments we have used ion and

electron imaging techniques to determine the state distri-

butions of the desorbed atoms and the velocity distributions

of these atoms as a function of excitation frequency. The

functional correlation between excitation energy and final

kinetic energy of the impurities has also been determined from

first principles using Fermi’s Golden Rule. The dynamics of

the desorption process has been modeled using a newly devel-

oped theoretical hybrid approach based on time-dependent

DFT for the helium density and quantum trajectories for the

impurity wave function.

The hydrodynamic formulation of quantum mechanics—

first developed by Bohm21—has drawn the attention of theo-

retical quantum chemists and physicists because it constitutes

an alternative representation to the time-dependent Schrödinger
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equation that allows us to overcome some of the computa-

tional problems inherent to the conventional quantum

mechanical approach.22 The Bohmian formulation bears a large

flexibility, and a variety of quantum trajectory methods are

found in the literature, each of them adapted to the nature of

the dynamical problem under investigation.22–26 We will show

how the Bohmian method also lends itself to the study of the

complex dynamical processes addressed in the present work.

This paper is organized as follows. In Section II we describe

the experimental setup. The quantum-trajectory model

developed here to analyze the experimental results is presented

in Section III. In Section IV the experimental results are

presented and compared with the outcome of the calculations.

Further remarks on the results are made in Section V, and we

conclude with a summary, Section VI. Finally, a brief theore-

tical discussion on the angular dependence of the velocity

distributions is presented in Appendix A, and the expressions

used to simulate the experimental observables are collected in

Appendix B.

II. Experimental

The experimental setup has been described in detail before.27,28

In brief, helium droplets consisting on average of several

thousands of atoms are formed by expanding high-purity

helium gas at a pressure of 30 bar into vacuum through a

5 mm orifice cooled to cryogenic temperatures. The size

distribution of these droplets can be systematically varied by

changing the source temperature.29 The helium droplets pick

up alkali atoms as they traverse an oven in which either

sodium or lithium metal is evaporated. The temperature of

the oven is adjusted to ensure that the droplets on average pick

up less than one alkali atom. Via a differential pumping stage

the doped droplets enter a velocity map imaging spectrometer.

At the center of this setup, the alkali-doped droplets are

excited by crossing the droplet beam perpendicularly with

the frequency-doubled output of a Nd:YAG pumped dye laser

(PrecisionScan SL, Sirah Laser- und Plasmatechnik GmbH).

The laser system is operated at a repetition frequency of 20 Hz

and provides radiation with a linewidth of less than 0.1 cm�1,

an energy of 5 mJ per pulse and a pulse duration of 11 � 1 ns.

The laser beam is slightly focused to yield an estimated spot

size of 0.37 mm2 at the excitation region. Following excitation,

the alkali atoms are ionized by the absorption of an additional

photon from the same laser pulse. The ions, or alternatively

the photoelectrons, are accelerated by the applied electric

fields and projected onto a position sensitive detector consist-

ing of a pair of microchannel plates and a phosphor screen.

The light emitted by the phosphor screen is imaged onto a

high-resolution CCD camera (A202k, Basler) that is read out

every laser shot. The individual images are analyzed online

and the centroids of the impacts are determined. The kinetic

energy distributions are determined by performing an inverse

Abel transform on the image constructed from the accumu-

lated centroids. Spectra are recorded using this setup by

monitoring the number of ion impacts on the detector as a

function of laser frequency. Both the ion images and the

spectra can be recorded at a specific mass by gating the front

of the detector at the arrival time of the ions of interest.

III. Theoretical approach

The theoretical model is described here in detail for the

4s ’ 3s excitation of Na impurities on 4He droplets, but the

formalism applies equally well to the corresponding 3s ’ 2s

transition in lithium. We would like to point out that, while

the (n + 1)s ’ ns transitions are dipole forbidden in the gas

phase, they are allowed when the atoms reside on the surface

of helium droplets due to the reduced symmetry of the

system.17

Our starting point is the Fermi Golden Rule (GR) for

optical transitions derived from perturbation theory.30 It

yields the transition probability per unit time wi-f from an

initial state |ii to a final state |fi due to the interaction with a

perturbative electromagnetic field HI(t) = e�iotVI in a time

interval T:

wi!f ðoÞ ¼
1

�h2T

Z
T

dte�iothf jeiHt=�hVIe
�iHt=�hjii

����
����
2

; ð1Þ

where H is the unperturbed hamiltonian that describes the

system. For our purpose here, the initial state is the ground

state (gs) of the complex consisting of a superfluid 4He

droplet and a Na atom at zero temperature. We label it as

|ii = |Cgs
He,c

gs
Na,j

3s
e i, where CHe is the nuclear many-body

wave function of the helium cluster, cNa the nuclear wave

function of the sodium atom, and je the electronic wave

function of the complex. For convenience, we make explicit

that the Na valence electron is in the nominal 3s state, as it is

this electron that interacts with the electromagnetic field. We

are interested in those final states |fi that are accessible by the

optical transition to the nominal 4s state and we hence label

them as |fi = |Cf
He,c

f
Na,j

4s
e i.

To evaluate the integrand of the GR we make the following

approximations:

(i) The Born–Oppenheimer (BO) approximation30 is used to

factorize the electronic and nuclear wavefunctions.

(ii) Density functional theory (DFT)4,31 is used to describe

the droplet-impurity complex, factorizing the Na and He

nuclear wavefunctions, both evolving according to self-

consistent mean-field hamiltonians.

(iii) The Franck–Condon (FC) principle30 is invoked, so

that it can be assumed that the atomic nuclei do not change

their positions or momenta during the electronic transition.

A. The electronic contribution

The BO approximation allows one to factorize the electronic

contribution in the GR expression as |hj4s
e |VI|j

3s
e i|2, and to use

effective pair-potentials for the nuclear hamiltonians. Due to

the dipolar nature of the transition, the angular dependence of

|hj4s
e |VI|j

3s
e i|2 can be written as PðyÞ ¼ 1

4p½1þ bP2ðcos yÞ�,32,33

where P2(x) is the second Legendre polynomial, y is the angle

between the direction of the polarization vector of the laser

light and the final velocity of the adatom, and b is the so-called

anisotropy parameter.

Since the projection of the orbital angular momentum onto

the symmetry axis of the system—defined by the sodium atom

and the center-of-mass of the helium droplet—does not

change during the electronic transition, the value of b can be
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inferred by considering the symmetry of the valence electron

wavefunctions, j3s
e and j4s

e . Under the assumption that

both these nominally spherical wavefunctions exhibit a

dipolar deformation and that this deformation is larger for

the final wavefunction j4s
e as a result of the stronger inter-

action with the helium cluster,17 one finds that the value of the

anisotropy parameter is limited to 1.5 o b o 2, see

Appendix A.

B. The nuclear contribution within DFT

For the nuclear contribution, we start from the DFT descrip-

tion of the system in its ground state as described e.g. in ref. 4

and 31. We want to recall here that this is a zero temperature

phenomenological description of superfluid liquid 4He that

reproduces its thermodynamic properties and elementary

excitation spectrum. The BO factorization of the electronic

wavefunction allows one to represent the interaction between

the helium moiety and the impurity by an effective He–Na

interaction which is based on the V3s
X (rHe–Na) pair-potential,

rHe–Na being the interatomic distance.34 From the minimiza-

tion of the energy density functional E[CHe,cNa], we obtain

the effective hamiltonians corresponding to both the helium

particle density rHe(r) = |CHe(r)|
2, and the Na wavefunction

cNa(r):

H3s
HeCHeðrÞ � � �h2r2

2mHe
þU½rHe� þ V3s

HeðrÞ
� �

CHeðrÞ

¼ mCHeðrÞ

H3s
NacNaðrÞ � � �h2r2

2mNa
þ V3s

NaðrÞ
� �

cNaðrÞ

¼ egscNaðrÞ:
ð2Þ

Here, U[rHe] is the helium DFT self-consistent potential, m the

helium chemical potential and egs the ground state eigenenergy

of the sodium atom in the mean field created by the helium

droplet. The mean field interaction potentials are obtained by

convolution

V3s
He(r) =

R
dr0|cNa(r

0)|2V3s
X (|r

0 � r|)

V3s
Na(r) =

R
dr0|CHe(r

0)|2V3s
X (|r

0 � r|). (3)

These density-dependent, mean field hamiltonians are employed

to find the ground state of the droplet-impurity complex—Cgs
He

and cgs
Na—used in the evaluation of the GR. Within the FC

approximation the helium density is frozen, which allows us to

identify Cf
He with Cgs

He and to write the total transition

probability as

wi-f(o) p [1 + bP2(cos y)] � I(o, f) (4)

with

Iðo; f Þ ¼ 1

T

Z
T

dte�iðoþogsÞthcf
NajeiH

4s
Na

t=�hjcgs
Nai

����
����
2

: ð5Þ

Here, �hogs = egs, and H4s
Na is the effective hamiltonian for the

excited impurity, calculated by evaluating eqn (3) using the

ground state helium density and the the excited state pair-

potential V4s(rHe–Na) of ref. 35. Introducing the identity

P
n|nihn| = 1, where {|ni} is a complete set of H4s

Na eigenstates

with eigenenergies �hon0, we obtain

Iðo; f Þ ¼
X
n

jhcf
Najnij

2 � jhnjcgs
Naij

2d½o� ðon � ogsÞ�:

ð6Þ

It is worth noting that summing eqn (6) over the final states f

one obtains the Franck–Condon factors for the Na absorption

spectrum36–38

IðoÞ ¼
X
f

Iðo; f Þ ¼
X
n

jhnjcgs
Naij

2d½o� ðon � ogsÞ�: ð7Þ

As previously indicated, the final states cf
Na are those acces-

sible by the optical transition to the nominal 4s state. By using

the same |ni basis for the final states we recover from eqn (6)

the Franck–Condon factors. However, in the ion imaging

experiments discussed below what are probed are adatoms

after their desorption from the helium cluster, which are

characterized by a linear momentum k. For this reason, we

are interested in those |fi states that after a time tN evolve to

asymptotically free states with well-defined momentum k,

namely |cf
Nai = UNa(0, tN)|ki, where UNa(0, tN) is the

quantum time-evolution operator.

In this evolution we assume that (i) no Na–He exciplexes are

formed during the desorption process, and (ii) the helium does

not induce relaxation of the excited adatoms. These assump-

tions, which are justified a posteriori by the experiments

discussed below, imply that all the states accessible in the

course of the excitation evolve to free 4s states of Na. This

ensures that the free 4s states of Na, |ki, represent a complete

basis. Introducing these states into eqn (6) we obtain

Iðo; kÞ ¼
X
n

jhkjUNaðt1; 0Þjnij2

� jhnjcgs
Naij

2d½o� ðon � ogsÞ�:
ð8Þ

Integrating eqn (8) over o one obtains the Na probability

density in momentum space after the desorption process

I(k) =
R
doI(o, k) = |hk|UNa(tN, 0)|cgs

Nai|2 = |c(k, tN)|2,

(9)

which is a measured observable in our experiments. It is worth

noting that the evolution defined by U(0, tN) describes the

processes that follow the optical excitation. Hence, at this

point the FC approximation is no longer applicable and the

helium density is allowed to evolve dynamically.

C. 1D exploratory calculations

To obtain the dynamical evolution, we have to solve the

coupled 3D time-dependent system

i�h
@

@t
CHeðt; rÞ ¼ H4s

HeðtÞCHeðt; rÞ

i�h
@

@t
cNaðt; rÞ ¼ H4s

NaðtÞcNaðt; rÞ ð10Þ

from t = 0 to tN, using as the initial condition the 3s ground

state for both the helium and the Na nuclear wave functions.
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Before attempting the solution of eqn (10), we have carried

out an exploratory 1D evolution. Firstly, we have solved

eqn (2) by means of imaginary time methods—see e.g.

ref. 36 and 37 for details—obtaining the 3D structure of the

ground state of a Na@4He1000 droplet (shown in the top left

panel of Fig. 12). Secondly, keeping the helium density frozen,

we have let the Na wave function evolve in the resulting mean

field potential along the symmetry axis, z, defined by the

center-of-mass of the helium droplet and the sodium atom.

Since the electronic excitation is assumed to be instantaneous

in the FC approximation, the calculation starts from the Na

wave function corresponding to the ground state of the V3s
Na

potential, which next evolves in the V4s
Na potential shown in

Fig. 1. We solve the Schrödinger equation for Na in a regular

mesh using a predictor-corrector algorithm,39 whose first time

steps are provided by the outcome of a fourth-order Runge–

Kutta algorithm. We have found that the Na atom reaches a

quasi-free motion regime after about 1 ps. Since the helium

density is not allowed to evolve, the very large mass of the

helium droplet causes that all the potential energy deposited

into the system during the excitation is converted into kinetic

energy of the Na atom. This is in clear disagreement with the

experimental results discussed below that show that a signifi-

cant amount of energy is transferred to the helium droplet.

The 1D calculation is nonetheless useful as it helps to identify

limitations of the approach and it enables us to determine time

and space scales for the full 3D simulations.

Due to the highly repulsive nature of the V4s
Na potential, the

Na atom leaves the droplet very quickly and attains a high

mean asymptotic velocity of B650 m s�1. As a result of the

high velocity, fast oscillations appear in the Na wave function

as shown in Fig. 2. In order to reproduce these high frequency

oscillations the use of a very fine spatial mesh is mandatory.

This makes a full 3D evolution computationally unaffordable.

Fortunately, both the probability density and the velocity field

of Na are smooth functions which makes it possible to

describe the full 3D dynamics of the Na atom with quantum

trajectories, an approach that uses positions and velocities

instead of complex wave functions. This allows us to use a

hybrid calculation scheme in which we compute the helium

wave function in a mesh using standard methods for partial

differential equations,39 while the evolution of the Na atom is

solved using Bohmian dynamics21,22 as indicated below. We

mention the existence of other hybrid simulations for the

description of the dynamics of doped helium droplets.40–44

D. Bohmian trajectories for the impurity dynamics

The equation of motion for the Na trajectories R(t, r) is

derived as follows.22,24–26 We begin with writing the Na wave

function in its polar form cNaðt; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðt; rÞ

p
eiSðt;rÞ=�h, where

R(t, r) is the probability density and S(t, r) is the phase in units

of �h. S(t, r) is also known as the velocity potential since the

velocity field is defined as v(t, r) = rS(t, r)/mNa. Splitting the

Na time-dependent Schrödinger equation into its real and

imaginary parts, we obtain a continuity equation for the

probability density coupled to a Hamilton–Jacobi (HJ) equa-

tion for the phase

� @Rðt; rÞ
@t

¼ r � jðt; rÞ

� @Sðt; rÞ
@t

¼ 1

2
mNajvðt; rÞj2 þQðt; rÞ þ V4s

Naðt; rÞ; ð11Þ

where j(t, r) = R(t, r)v(t, r) is the current density and

Qðt; rÞ ¼ � �h2

2mNa

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðt; rÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðt; rÞ

p ð12Þ

is the so-called quantum potential.

Eqn (11) have been solved as follows. Writing the density

and the current density at time t as an histogram of M test

particles with trajectories {Ri(t)}
M
i=1, where Ri(t) = R(t, ri) and

Ri(0) = ri, we get

Rðt; rÞ ¼ lim
M!1

1

M

XM
i¼1

d½r� RiðtÞ�

jðt; rÞ ¼ lim
M!1

1

M

XM
i¼1

v½RiðtÞ�d½r� RiðtÞ�: ð13Þ

The continuity equation is automatically fulfilled if Ri(t) =

v[Ri(t)], i.e., if the change in time of the position of the test

particle is just the velocity field evaluated at the position of

that test particle. The equation of motion obeyed by the

Fig. 1 Na initial probability density (thick solid line) used in the 1D

calculation and the 3s ground state (dashed line) and 4s excited state

(solid line) mean-field potentials. The origin corresponds to the center-

of-mass of the helium droplet.

Fig. 2 Real part of the Na wave function in the 1D calculation at

t = 0, 0.25, and 0.6 ps. Also shown are the probability density

distributions (thick solid lines).
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velocity field—and thus the equation for the trajectories—is

obtained by taking the gradient of the HJ equation and

rewriting it in the Lagrangian reference frame (d/dt =

q/qt + v�r). One then obtains the quantum Newton equation

mNaR̈i(t) = �r[Q(t, r) + V4s
Na(t, r)]|r = Ri (t)

. (14)

In this way, both helium wave function and Na trajectories are

computed consistently at each time step of 10�4 ps using a

fourth-order Runge–Kutta algorithm. The quantum potential

Q(t, r) is computed using the histogram of the test particles as

probability density in a regular mesh with a spatial resolution

of 0.35 Å, and 13-points formulas for the derivatives involved.

Simultaneously, the helium wave function is evolved with a

fourth-order Runge–Kutta algorithm, using as the initial

condition the 3s ground state helium density and a set of

M = 200 000 positions randomly generated from the 3s

ground state Na probability density. The system is solved up

to tN = 5 ps (tN = 3 ps in the case of Li), when the test

particles are far enough from the droplet to follow quasi-free

trajectories at constant velocity. Note that this time is five

times longer than that of the 1D exploratory calculation with

the frozen helium density.

E. Practical evaluation of the Fermi Golden Rule

To complete the evaluation of the GR expression eqn (8), we

have resorted to a semiclassical approximation for the H4s
Na

hamiltonian for obtaining the dipole absorption spectrum of

atomic impurities:36 the kinetic term is neglected and the

hamiltonian is replaced by the potential energy, H4s
Na(0) -

V4s
Na(0, r). Thus, its eigenstates are those of the position

operator, |ni - |ri, and its eigenvalues those of the potential

energy surface evaluated at r, thus �hon - V4s(r) and the sum

over states becomes an integral
P

n -
R
dr, allowing us to write

I(o, k) =
R
dr|hk|UNa(tN, 0)|ri|2

� |hr|cgs
Nai|2d[�ho � (V4s(r) � �hogs)]. (15)

Within the quantum trajectory description for the Na atom,

the probability |hk|UNa(tN, 0)|ri|2 is written as d[k � K(tN, r)],

where K(tN, r) is the momentum at tN of the trajectory with

initial position r at t = 0. Since Na moves at tN as a free

particle, we can safely consider �hK(tN, r) = mNa

:
R(tN, r).

Using the definition in eqn (13) for the Na probability density,

eqn (15) is then computed as

Iðo; kÞ ¼ 1

M

XM
i¼1

d½�hk�mNa
_Riðt1Þ�

� df�ho� ½V4s
Nað0;Rið0ÞÞ � �hogs�g:

ð16Þ

The semiclassical approximation incorporates the trajectories

in a natural way by correlating along each trajectory its initial

potential energy with its asymptotic linear momentum. Note

that though the evaluation of the GR is semiclassical, the

trajectories are quantum-mechanically determined.

Incorporating shape fluctuations of the helium droplet

around the impurity has proved to be crucial for achieving a

quantitative description of processes involving impurities in

helium, as they substantially contribute to the broadening of

observables.14,45,46 For this reason, we have included the effect

of fluctuations in the evaluation of eqn (16) a posteriori, i.e.,

after the time evolution, using the DF-sampling method, as

shown in the Appendix B, eqn (B5). Inclusion of the density

fluctuations mainly affects the width of physical observables

such as the excitation spectrum and the velocity and kinetic

energy distributions of the desorbed atoms.

We want to stress that the transition probability wi-f

contains all the physical information that can be experi-

mentally determined. In point of fact, (i) by integrating over

k we obtain the excitation spectrum, as seen in eqn (7); (ii) by

fixing the excitation energy o, we obtain the distribution over

momentum k, corresponding to the velocity distribution of

the desorbed atom; and (iii) by the change of variable Ek =

�h2k2/2mNa the kinetic energy distribution is obtained. The

explicit expressions used to compute these quantities are

reported in Appendix B.

IV. Results

A. Excitation spectra

To investigate the desorption dynamics of sodium and lithium

atoms from the surface of helium nanodroplets, the alkali

atoms have been excited to their nominal 4s and 3s states,

respectively. The corresponding excitation spectra are shown

in Fig. 3 and 4. The spectra of the two lithium isotopes,
6Li and 7Li, have been recorded individually by gating the

detector at the appropriate arrival time of these ions. It should

be noted that only bare sodium and lithium ions have been

observed and that no complexes with helium were detected, as

was explicitly checked by time-of-flight mass spectrometry.

This implies that the excitation spectra reported in Fig. 3 and 4

correspond to absorption spectra, which allows for a direct

comparison between the experimental and theoretical spectra.

The spectra are all characterized by a broad absorption band

that is blue-shifted with respect to the transition in the free

atom. The 4s ’ 3s transition of sodium-doped droplets has

been discussed in detail before and the large blue-shift has

been attributed to the repulsive character of the 4s effective

potential,17 see also Fig. 1.

Fig. 3 Theoretical and experimental excitation spectrum of the

4s ’ 3s transition of Na on 4HeN droplets. The top-starred vertical

line corresponds to the free atom transition.48
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The absorption spectrum of the 4s ’ 3s transition for the

Na@4He1000 system has been calculated taking explicitly into

account dimple fluctuations using the atomic-like DFT sampling

technique, eqn (B7). The width of the experimental spectrum,

400 cm�1, is well reproduced by the calculations which yield a

value of 370 cm�1. In contrast, the spectral shift, which is droplet

size dependent and amounts to 570 cm�1 for droplets consisting

on average of 1700 helium atoms, is somewhat underestimated by

the calculation that yields 350 cm�1 for N = 1000.

We would like to mention that although the absorption

spectra of Na17 and other impurities13,36 calculated by semi-

classical methods yield at times quantitative agreement with

the experimental spectra, the DFT sampling method employed

here constitutes a consistent framework that is able to repro-

duce the basic spectral features both in droplets and bulk

helium.14,45–47 It is evident that since the helium–helium

correlations are described in a semiclassical way, the method

still needs some improvements. In spite of this limitation, it is

the only workable method for incorporating density fluctua-

tions within the DFT scheme, and it is for this reason that we

use it in this investigation.

Inspection of the spectra for the two lithium isotopes shown

in Fig. 4 reveals that they are very similar but that the

spectrum of 6Li is slightly less blue-shifted than that of 7Li.

Solving the equivalent of eqn (2) for both isotopes indicates

that this difference is related to the ground state structure: as

can be seen in Fig. 5 the lighter 6Li isotope generates a less

pronounced dimple structure and is more delocalized than the

heavier 7Li isotope. As a result, the lighter isotope probes the

excited state potential at larger distances corresponding to

lower energies. It is interesting to note that similar zero point

motion effects have been observed for Li on 3He and 4He

droplets.45 The calculations accurately reproduce the width of

the absorption line (540 cm�1 in the calculations vs. 530 cm�1

in the experiments) and the isotopic shift (relative difference of

13% in the calculations and 15% in the experiments). As

discussed above, the calculations somewhat underestimate the

absolute blue-shift of the spectrum. We would like to point out

that since the helium–lithium interaction is isotope-independent,

all the differences found in the ground state structure—and

thus in the excitation spectra—arise from the kinetic energy

term in eqn (2) for Li. It is thus a pure quantum effect (zero

point motion) and consequently cannot be reproduced by the

calculations if the impurity is included as an external field.

B. Photoelectron spectra

The desorption efficiency and the helium-induced relaxation of

excited alkali atoms have been investigated using photoelectron

spectroscopy. Fig. 6 shows the photoelectron spectrum

obtained following excitation of sodium-doped helium nano-

droplets at a frequency of 26 316 cm�1, corresponding to the

maximum of the absorption band. The spectrum is character-

ized by a strong peak at low photoelectron kinetic energy and a

much weaker peak at higher energies. Based on the photon

energy and the ionization potential of sodium,48 the low energy

peak can be readily assigned to gas phase sodium atoms in the

3p state. The peak at high energy corresponds to free sodium in

the 4s state. Since the spectrum reveals no other peaks which

could be assigned to excited sodium atoms attached to the

helium droplets,16 we conclude that all excited atoms desorb

from the droplets on the timescale of the laser pulse.

The photoelectron spectrum gives the impression that the

helium induces a strong relaxation of the excited sodium, since

Fig. 4 Top panel: Experimental excitation spectrum of the 3s ’ 2s

transition for Li attached to helium droplets consisting on average of

6100 atoms. Bottom panel: Corresponding theoretical spectrum for

Li@4He1000. The top-starred vertical line corresponds to the free atom

transition.48

Fig. 5 Dimple structure of 6Li@4He1000 (left) and 7Li@4He1000
(right) droplets. The probability density distribution of the dopant is

also shown.
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the majority of the sodium atoms are found to reside in the 3p

state and not in the initially excited 4s state. However, when

interpreting the photoelectron spectrum one has to take into

account that the 4s state has a short radiative lifetime48 and

that the ionization cross sections depend strongly on the

excited state of the sodium atom.49,50 Unfortunately, it is

not possible to address this issue by recording the corres-

ponding photoelectron spectrum of free sodium, as the 4s ’ 3s

transition is dipole forbidden for one-photon excitation in the

free atom. The photoelectron spectrum therefore has been

simulated using a rate equation approach. The model used is

graphically depicted in Fig. 7. Following excitation of the

surface bound sodium atoms to the nominal 4s state they

desorb from the helium droplets. The free atoms decay by

spontaneous emission to lower lying states. This process is

characterized by the Einstein coefficients A4s-3p and A3p-3s.
48

During the laser pulse the excited atoms are ionized with an

efficiency that is determined by the state specific ionization

cross sections s4s and s3p
49,50 and the laser intensity. To model

the photoelectron spectra we now assume that no relaxation is

induced by the helium and that the atoms desorb instanta-

neously from the droplets. This latter assumption is justified

by the fact that the radiative lifetime and the interaction time

of the free atoms with the light pulse are much longer than the

desorption time of the excited atoms, vide infra. It should be

noted that with these assumptions the calculated photo-

electron spectrum corresponds to that of a free sodium atom

resonantly ionized by a 1+1 photon excitation process via the

4s state. The set of coupled equations describing the ionization

of the free sodium atoms has been solved numerically

assuming that the 11 ns laser pulse can be approximated by

a Gaussian distribution. The uncertainties of the various

constants used, as well as laser power fluctuations have been

included in the simulations to determine the uncertainty of the

relative intensities in the calculated photoelectron spectrum.

The theoretically and experimentally determined intensity

ratios are reported in Table 1. As can be seen from the table,

the large intensity of the 3p state is well reproduced by the

calculations. This signifies that the 3p state is mainly popu-

lated by spontaneous emission of 4s excited sodium atoms

during the laser pulse. The small discrepancy between the

theoretical and experimental results might be attributed to the

large uncertainty associated with the s4s ionization cross

section, which is close to its minimum at the excitation

frequency used. Alternatively, it might indicate that some

helium-induced relaxation takes places during the desorption

process. In view of the good agreement between experiment

and model calculations, we assume that all sodium atoms leave

the helium droplets in the initially excited 4s state. Although

no photoelectron spectra have been recorded for lithium, we

presume that they behave similar to sodium, i.e. all the excited

lithium atoms desorb from the droplets without undergoing

helium-induced relaxation.

C. Velocity and kinetic energy distributions

To obtain insight into the desorption dynamics the velocity

distributions of the desorbed atoms have been determined. To

this end ion images have been recorded at several frequencies

within the absorption bands. Fig. 8 shows two ion images of

sodium that have been recorded following excitation at the low

and high frequency end of the 4s ’ 3s excitation spectrum.

Both images are characterized by a strong anisotropic angular

and radial distribution, indicating that the desorbing atoms

leave the droplets with a well-defined velocity distribution. By

performing an inverse Abel transform to these images the

speed distribution and the angular anisotropy parameter b
have been determined.

The resulting speed distributions, which are also shown in

Fig. 8, are found to depend strongly on the excitation fre-

quency. While excitation at 26 100 cm�1 yields sodium atoms

with amost probable speed of 440m s�1, excitation at 26600 cm�1

yields significant faster sodium atoms having speeds of

695 m s�1. Whereas the speed distributions depend on the

Fig. 6 Photoelectron spectrum recorded following photoexcitation of

sodium-doped helium droplets at 26 316 cm�1.

Fig. 7 Energy level diagram displaying the relation and excitation

processes taking place after excitation of sodium-doped helium

droplets via the 4s ’ 3s transition, see text for details.

Table 1 Experimental and calculated relative intensities of the photo-
electron peaks following excitation of sodium-doped helium droplets
via the 4s ’ 3s transition

State Experiment Model

3p 0.96(1) 0.89(4)
4s 0.04(1) 0.11(4)
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excitation frequency, the angular distributions do not show

such dependence. The anisotropy parameter b is found to be

independent of the velocity of the desorbing sodium atoms and

has a mean value of 1.81 � 0.06. Similar values for the

anisotropy parameter are found for desorbed lithium atoms,

see Table 2. It should be noted that the speed distributions and

the values for the anisotropy parameters are found to be

independent of the helium droplet size. This can be attributed

to the local character of the interaction of the alkali atom with

the helium droplet.

The values of the anisotropy parameter found in the experi-

ments are close to that expected for the parallel (n+1)s ’ ns

transitions. As discussed before, the small deviation from this

value might be due to helium-induced configuration mixing.

Recently, Callegari and Ancilotto proposed a method to

calculate the interaction potentials of alkali atoms on helium

nanodroplets that explicitly takes into account configuration

mixing.51 Using the expansion coefficients determined by this

method,52 evaluation of eqn (21) yields a value of b= 1.99 for

the anisotropy parameter. Evidently, configuration mixing

cannot account for the experimentally observed anisotropy.

A reduction of the anisotropy parameter also can result if the

rotational period of the helium droplets is comparable to the

time scale of desorption.53 Even though not much is known

about the rotation of helium droplets, it is to be expected that

the rotational period depends on the size of the droplets. Since

the anisotropy parameter is identical for all three adatoms and

does not depend on the velocity of the desorbed atoms nor on

the helium droplet size, it is highly unlikely that droplet

rotation is the cause for the reduced anisotropy parameter.

It is more likely that density fluctuations of the helium in the

proximity of the alkali atoms during the desorption process

lead to off-axis motion of the alkali atom. As we show in

Appendix A, the deformations induced by the helium fluctuations

can indeed result in a decrease of the anisotropy value. An

estimation of the order of magnitude of that decrease demands

an explicit calculation of the electronic configurations, which is

beyond the scope of this work.

In order to establish a relation between the kinetic energy of

the desorbing atoms and the excitation frequency, the speed

distributions have been transformed into kinetic energy distri-

butions, see Fig. 9, and their average value and standard

deviation have been determined. Fig. 10 shows the average

kinetic energy of desorbed sodium atoms as a function of excita-

tion frequency, while Fig. 11 shows those for the two lithium

isotopes. For all three impurities the average kinetic energy shows

a linear dependence on the excitation frequency. The data points

therefore have been fitted to the following expression:

hEkini = Z(�ho � �ho0) (17)

Fig. 8 (left) Ion images of sodium atoms desorbed from the surface

of helium droplets following excitation at two frequencies within the

4s ’ 3s resonance. The polarization of excitation laser is vertical with

respect to the images. (right) Speed distributions and anisotropy

parameters derived from the ion images.

Table 2 Characteristics of the experimental and theoretical kinetic
energy distributions of the desorbed alkali atoms, see text for details

Atom

Experiment Theory

o0/cm
�1 Z ZD b

meff/
amu

o0/
cm�1 48 Z

6Li 27 218(6) 0.743(6) 0.042(6) 1.73(6) 17.4 27 206 0.802(8)
7Li 27 222(3) 0.687(3) 0.040(2) 1.79(3) 15.4 27 206 0.756(8)
23Na 25 743(4) 0.516(4) 0.038(3) 1.81(6) 24.5 25 740 0.583(9)

Fig. 9 Experimental (top panel) and theoretical (bottom panel)

normalized kinetic energy distributions of desorbed Na atoms follow-

ing excitation at different energies.
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where �ho0 corresponds to the excitation energy yielding alkali

atoms with zero kinetic energy, while Z is a proportionality

constant. The constants derived from the fits are reported in

Table 2. The values of o0 are very close to the transition

frequencies of the free atoms, i.e., 25 740 cm�1 and 27 206 cm�1

for sodium and lithium, respectively.48 The good agreement

between these values indicates that the proportionality con-

stant Z can be interpreted as the fraction of the available

energy that is converted into kinetic energy of the desorbing

alkali atom. The values of Z as determined in the experiment

depend not only on the type of alkali atom but also on its

mass, see Table 2. The lighter the atom, the larger the value of

Z and thus the larger the fraction of available energy that is

carried away by the departing atom. The standard deviation of

the kinetic energy distribution, indicated by the bars in Fig. 10

and 11, also shows a linear dependence on excitation frequency

and therefore has been fitted to the same functional form as the

average kinetic energy. In contrast to the average kinetic energy,

the proportionality constant for the standard deviation, ZD,
does not depend on the atom nor its mass, see Table 2.

More insight into the desorption process can be gained from

the calculations. As can be seen in Fig. 1, excitation of Na to

the 4s state leads to a highly repulsive interaction between the

sodium atom and the droplet which triggers the desorption of

the impurity. Fig. 12 shows the evolution of the Na@4He1000
system after excitation of the sodium atom. Inspection of this

figure reveals that the desorption of the sodium atom is

accompanied by the creation of density waves in the helium

droplet. This indicates that a fraction of the energy deposited

in the system by the optical excitation is transferred to the

helium cluster. It can be seen from the figure that afterB1.5 ps

the Na atom has left the droplet surface and the helium starts

filling the dimple. The calculations are stopped after 5 ps,

when the sodium atom has reached an asymptotic mean

velocity of 510 m s�1. During the 5 ps time propagation, the

position of the center-of-mass of the droplet experiences a

minute displacement of 0.1 Å. Assuming a constant motion,

the translational energy of the droplet is calculated to be

0.7 cm�1, indicating that most of the energy transferred to

the helium cluster is converted into internal energy.

In the calculations, the GR is evaluated according to

eqn (B1) using the initial position and final velocities of the

Na test particles as input. This expression gives direct access to

the final velocity distributions of the desorbed alkali atoms. To

obtain a correlation between the asymptotic kinetic energy

distributions and the excitation energy, the GR is evaluated

using eqn (B2). The results of the calculations are compared

with experimental kinetic energy distributions in Fig. 9. It can

be seen that as the excitation energy increases, the kinetic

energy distributions shift to higher energies and broaden.

While these trends are well reproduced by the calculations,

the widths of the distributions are somewhat overestimated.

This can be attributed to the semiclassical method used to

simulate the density fluctuations, as discussed before.

The full I(o, Ek) distribution calculated for Na is shown in

Fig. 10 by a false color representation. The average kinetic

Fig. 10 I(o, Ek) distribution for Na atoms. Squares: theoretical mean

kinetic energy. Dashed line: linear fit to the theoretical data up to an

excitation energy of 26 400 cm�1.54 Dots: experimental mean kinetic

energy. Bars: experimental standard deviation of the kinetic energy

distributions. Solid line: linear fit to the experimental data.

Fig. 11 Same as Fig. 10 for Li. In this case, all the points shown have

been included in the fit of the theoretical data.
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energy of the desorbed sodium atoms derived from this

distribution at selected excitation energies is also presented

in this figure. The calculations show a strong correlation

between the mean kinetic energy and the excitation energy,

in agreement with experiments. A linear fit to the theoretical

data points yields a slope 0.58 which compares well to the

experimental value of 0.52. It is important to point out that it

is essential to take into account the density fluctuations in

order to achieve a good agreement with experiment.

If the density fluctuations are not included in the calculations

a slope of 0.76 is obtained. This leads to the conclusion that

the density fluctuations are responsible for the absorption

of a large part of the energy deposited in the system by

the electronic excitation.40 Calculations for the smaller

Na@4He500 complex yield results similar to those for

Na@4He1000. This size independence is in agreement with

experiment, and can be attributed to the local character of

the interaction of the alkali atom with the helium droplet.

The calculations reveal that lithium behaves very similar to

sodium, although there are some differences. Due to the lighter

mass and a less pronounced dimple, Li atoms desorb faster

from the droplets than Na atoms and reach the asymptotic

free regime already after B3 ps. Their asymptotic mean

velocities are significantly higher than for sodium and are

slightly different for the two Li isotopes, 6Li being faster than
7Li. The I(o, Ek) distributions for Li are shown in Fig. 11

together with the experimental data. Also in this case the

calculations display a similar correlation between the mean

kinetic energy of the desorbed atom and the excitation

energy. In agreement with experiment, see Table 2, slightly

different slopes for the two isotopes are found, 0.80 for 6Li and

0.76 for 7Li, confirming the mass-dependent nature of the

process.

As a final comment, we want to point out that while the

experimental mean kinetic energies vary essentially linearly

with excitation energy, the theoretical values show some non-

linearity, especially at higher excitation energies. We have

found that the variation becomes more linear at these energies

if we do not include helium density fluctuations. This indicates

that at least part of the non-linearity arises from the way

fluctuations are handled.

D. Helium density waves

Whereas the experiments provide only information on the

desorbing alkali atom, the calculations also provide insight

into the dynamics of the helium droplet upon excitation of the

adsorbed atom. As an example, in Fig. 13 the helium density

profile of a Li@4He1000 droplet along the symmetry axis is

represented as a function of time. This figure, together with

Fig. 12 for Na, gives a pictorial yet quantitative representation

of the dynamics triggered by the excitation of the alkali atom.

In particular, they show the dramatic changes in the droplet

density caused by the excitation and subsequent desorption of

the impurity.

To establish the nature of the helium density waves created

by the excitation, we concentrate on the simulations for Na, as

Fig. 12 Evolution of the Na@4He1000 complex after excitation.

Fig. 13 Helium density profiles and Li probability density distribu-

tions (Gaussian-like profiles) showing the dynamical desorption of Li

isotopes along the symmetry axis. Dashed lines, 6Li. Solid lines, 7Li.
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they last for longer times. Fig. 14 shows the evolution of the

helium density profile of a Na-doped 4He1000 droplet during

the first 5 ps. Initially, the droplet extends along the z

(symmetry) axis from about 21 to �25 Å, and the Na atom

is located in a dimple at the surface. Excitation of the sodium

to the 4s state causes the dimple first to deepen due the highly

repulsive nature of the He–Na 4s interaction. The associated

compression of the helium last up to B1 ps, as shown in the

figure. Following this compression, the helium surface bounces

back and the dimple starts being filled. The more distant part of

the droplet at B�25 Å remains unperturbed and at rest,

indicating that energy deposited in the droplet leads almost

exclusively to the excitation of its internal degrees of freedom

and not to a translational motion of the droplet as a whole.

Fig. 12–14 all reveal that excitation of the alkali atom

launches highly non-linear density waves into the helium

droplet. This becomes even clearer in Fig. 15 which shows

the density variations along the symmetry axis at different

times. The waves created by the excitation propagate in the

droplet at supersonic velocities.55 In the case of Na, see Fig. 14

and 15, the first perturbation front, labelled as 1, moves at

B890 m s�1 and reaches the opposite ‘edge’ of the droplet in

less than 5 ps. This perturbation generates carrier waves with a

phase velocity between 300 and 370 m s�1, modulated by

supersonic envelope fronts with growing intensity. The ones

with highest intensity, labelled as 2, have a group velocity of

B590 m s�1. The origin of this modulation can be traced back

to the original structure of the droplet, being an ‘echo’ of the

solvation shells around the impurity in its ground state. Next,

a high intensity wave appears travelling at B370 m s�1

(labelled as 3), which generates secondary waves propagating

backwards. A closer analysis of this wave has allowed us to

identify it with a solitary wave, or soliton. Indeed, it can be

seen from Fig. 14 and 15 that it always corresponds to the

maximum intensity of the travelling wave.

We have found similar density waves in the case of Li, for

which we recall that the evolution is stopped after 3 ps. This

time is long enough to establish that the first perturbation

front moves at about 750 m s�1 for both isotopes. This speed is

lower than in the case of sodium which might be attributed to

the smaller amount of energy that is deposited into the droplet.

Waves 2 and 3 develop as well, although they are not so clearly

visible and their velocities cannot be determined with

confidence.

To our knowledge, the existence of these types of travelling

waves has not been disclosed before. They bear some simila-

rities with the waves produced in liquid helium by the

de-excitation of electron bubbles.56,57 These waves have been

identified with shock waves in ref. 56, but with no clear

justification for this statement.

V. Further remarks

The most pertinent result of this study is undoubtedly the fact

that the asymptotic kinetic energy of the desorbing alkali

atoms scales linearly with the excitation energy. Both experi-

ment and theory find that the amount of energy carried away

by the desorbing alkali atom depends not only on the atom but

also on its mass. In particular, the larger the mass of the

impurity, the larger the amount of energy deposited in the

helium droplet.

Even though the calculations reproduce the experimental

observations fairly well, they do not provide the physical

insight required to identify the precise mechanism giving rise

to the particular partitioning of the available energy between

the desorbing alkali atom and the helium droplet. Rather than

a limitation of the method used, this is a signature of the actual

complexity of the desorption process.

Nonetheless, one would like to have some insight into the

physical processes leading to the particular energy partitioning.

In view of the analogy, one might consider describing the

desorption of an excited alkali atom from the surface of a

helium droplet as a photodissociation reaction. Various models

have been put forward to describe the photodissociation of

polyatomic molecules, each of them focussing on specific

aspects of the process.58 In the case of a direct dissociation

via excitation to a repulsive state, the process is best described

Fig. 14 Evolution of the helium density profile of the Na@4He1000
system along the symmetry axis. Three supersonic fronts are identified

and labelled by roman numbers. Equidensity lines corresponding to

0.5 and 0.1 times the helium saturation density, 0.0218 Å�3, are shown

in white.

Fig. 15 Difference between the density profile and the initial density

along the symmetry axis, Dr � r(t, z) � r(0, z), for t = 2.5 ps

(dashed lines) and t = 5 ps (solid lines). The envelope wave of the

modulated carrier waves is also shown for clarity (dotted lines). The

three identified fronts are labelled as in Fig. 14.
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by the simple impulsive model introduced by Busch and

Wilson in their seminal work on the photodynamics of

NO2.
59 The basic idea of the impulsive model is that the force

needed to break apart the molecule is solely directed along the

axis of the dissociating bond. Under the assumption that the

bond breaks promptly, the available energy is initially parti-

tioned, by conservation of linear momentum, between the

kinetic energies of the two atoms forming the bond. The

kinetic energy of the atoms is subsequently partitioned

between the translation, rotational and vibrational degrees

of freedom of each fragment. This impulsive model might be

well suited to describe the desorption of an alkali atom from

the surface of a helium droplet given that excitation of the

alkali atom leads to a highly repulsive interaction between the

excited atom and the helium droplet, see Fig. 1, and a fast

desorption of the alkali atom. The main difficulty in applying

the impulsive model to the helium droplet system lies in that

the alkali atom is not bound to a single helium atom but

interacts with all the atoms making up the droplet. However,

due to its short range character, the repulsive interaction is by

far the strongest with the nearby helium atoms located at the

surface of the dimple.35 This is also born out by the calcula-

tions which reveal that predominantly these helium atoms are

displaced immediately after excitation of the alkali atom, see

Fig. 12. One might therefore consider reducing the problem to

a pseudo-polyatomic model in which the alkali atom having a

mass of mAk is considered to be bound to the helium droplet

via a single helium moiety with an effective mass of meff that is

to be determined. Assuming that the impulsive model can be

applied to this strongly simplified description of the system,

the kinetic energy of the desorbed alkali atom, Ekin(Ak) is

related to the available energy D�ho according to:

EkinðAkÞ ¼ meff

meff þmAk
D�ho: ð18Þ

The model thus yields a linear dependence of the kinetic

energy on excitation frequency, as is observed in the present

study. The slope is directly related to the effective mass of the

helium moiety with which the excited alkali atom interacts.

Since the alkali atom interacts with several helium atoms

located at the surface of the dimple, we expect meff to be larger

than the mass of a single helium atom. Although meff cannot

be calculated a priori, it can be determined by fitting the

experimental slope of the kinetic energy on excitation

frequency, see Table 2. One finds an effective mass of B16 and

B24 amu for Li and Na, respectively. This would signify that

the 3s electron of Li interacts on average with 4 helium atoms,

while the 4s electron of sodium interacts with 6 helium atoms.

The difference in the number of interacting helium atoms is

thought to reflect the difference in electron orbit radius and

dimple structure.

We would like to stress here that in spite of the fact that the

impulsive model offers an explanation for some of the experi-

mental and theoretical observations, it is only an approxima-

tive description that lacks any predictive power. The effective

mass required for this model can only be determined a posteriori

from the experimental or theoretical data. Due to the approxi-

mative nature of the model this effective mass should be

interpreted with care. This is exemplified by the results for

the two lithium isotopes, where according to the impulsive

model 6Li interacts with more helium atoms than 7Li, see

Table 2. This contradicts the conclusion based on the differ-

ence in the excitation spectrum of the two lithium isotopes and

the calculations of the ground state structure, which indicate

that the lighter 6Li atom is located further away from the

droplet surface and consequently interacts less with the helium

than the 7Li atom.

As a final remark, the weak dependence of the standard

deviation of the energy distributions on the alkali atom or its

mass points to the helium as the source of the broadening. As

seen in the calculations, helium density fluctuations cause

some dispersion in the observables. Since these fluctuations

are to a large extent independent of the impurity attached to

the droplet, it is expected that so is the dispersion of the

observables.

VI. Summary

We have carried out a combined experimental and theoretical

investigation of the desorption of Na and Li alkali atoms from

the surface of helium droplets following excitation via the

(n+ 1)s’ ns transition. These systems are well suited to gain

insight into the dynamics of this complex phenomena, since

neither exciplex formation nor helium-induced relaxation of

the impurity obscures the analysis of the experimental findings

or its theoretical interpretation.17 Additionally, the use of Li

allows us to address the mass effect in the desorption process by

making a direct comparison between the results for 6Li and 7Li.

The analysis of the experimental results has been carried out

within a full dynamical, three dimensional approach that

combines a time-dependent DFT description of the droplet

with a Bohmian description of the impurity. To the best of our

knowledge, this is the first time that such a theoretical frame-

work has been developed and applied to the desorption of

impurities from helium droplets.

The experiments reveal that the (n+ 1)s’ ns transitions of

Li and Na atoms located on helium droplets are significantly

blue-shifted with respect to the corresponding gas phase

transitions. They furthermore disclose that excitation of the

alkali atom leads in all cases to its desorption from the helium

droplet and that the average kinetic energy of the desorbed

atom depends linearly on the excitation energy. These obser-

vations are all reproduced by the calculations, which allows us

to have confidence in theoretical observations that cannot be

experimentally verified. More specifically, the calculations

indicate that the energy deposited in the system by the excita-

tion of the alkali atom leads to the creation of highly non-

linear helium density waves that propagate through the helium

droplet at supersonic velocities. One of such waves could be

identified as a soliton. Based on the good agreement between

experiment and theory it becomes also possible to identify the

main physical ingredients necessary for a quantitative descrip-

tion of the desorption process, namely: (i) the zero-point

motion of the impurities, (ii) a full dynamical description of

both the helium droplet and the impurity, and (iii) the inclu-

sion of helium density fluctuations. These concepts have been

implemented in a numerical approach that is very robust and

can be applied to the description of other dynamical processes
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involving atomic impurities propagating in helium

droplets.27,28,43,44,60 Addressing exciplex formation, as

observed in several systems,17,19,41,42,61–64 however, still

remains a challenge from a computational point of view that

will likely require a test particle description of both the

impurity and the helium droplet.

Appendix A

We discuss in this Appendix the probability of an optical

transition between mixed electronic orbitals. Defining the

initial and final states in cylindrical symmetry as

jiðyÞ ¼
X1
‘¼0

A‘Y‘0ðyÞ

jf ðyÞ ¼
X1
‘¼0

B‘Y‘0ðyÞ;

whereYlm are the spherical harmonics of order (l,m), the angular

dependence of the dipolar transition probability is written as33

Pi!f ðyÞ ¼
X
‘‘0
jB‘j2jA‘0 j2jh‘0010j‘0ij2jY‘0ðyÞj2 ðA1Þ

where hl0010|l0i is a Clebsch–Gordan coefficient. Due to the

properties of these coefficients we can write

Pi!f ðyÞ ¼
X
‘

jB‘j2
jA‘�1j2‘ð3þ 2‘Þ þ jA‘ þ 1j2ð2‘2 þ ‘� 1Þ

4‘ð1þ ‘Þ � 3

jY‘0ðyÞj2 �
X1
j¼0

DjP2jðcos yÞ

ðA2Þ

where Pj(x) are the Legendre polynomials of order j. If the

involved states are limited to l r 1

ji(y) = Y00 + A1Y10(y)

jf(y) = Y00 + B1Y10(y),

we obtain for the transition probability

Pi!f ðyÞ ¼
jA1j2

12p
þ 3jB1j2

4p
cos2ðyÞ / 1

þ 2

1þ jA1j2=ð3jB1j2Þ
P2ðcos yÞ � 1þ bP2ðcos yÞ

ðA3Þ

It can be seen that the anisotropy can only take positive

values. When |B1|
2 > |A1|

2, the anisotropy is constrained to

1.5 o b o 2, and if the initial state is spherical (A1 = 0) one

finds the limiting value b = 2.

When non-axially symmetric deformations are included

(m a 0) the transition probability for l r 1 reads

Pi!f ðyÞ ¼
X

‘‘0�1;mm0
jB‘mj2jA‘0m0 j2jh‘0m010j‘mij2jY‘0ðyÞj2

/ 1þ b0KP2ðcos yÞ
ðA4Þ

with b0 = 2/(1 + |A10|
2/(3|B10|

2)) [the same structure as in

eqn (A3)] and

K ¼ ðjA10j2 þ 3jB10j2Þð4jB10j2 � jA11j2jB11j2 � jA1�1j2jB1�1j2Þ
2jB10j2½2ðjA10j2 þ 3jB10j2Þ þ 3ðjA11j2jB11j2 þ jA1�1j2jB1�1j2Þ�

:

ðA5Þ

Some algebra shows that K o 1, since (|A10|
2 +

9|B10|
2)(|A11|

2|B11|
2 + |A1�1|

2|B1�1|
2) > 0. Consequently,

these deformations will always decrease the value of the

anisotropy parameter.

Appendix B

We show in this appendix how we have represented the delta

functions involved in eqn (16) to compute the GR. Using the

rectangular function rect(x) � W(x + 1/2) � W(x � 1/2), where

W(x) is the Step function, we write

wi!f / ½1þ bP2ðcos yÞ�
1

M

XM
i¼1

rect
�hk�mNa

_Riðt1Þ
Dk

� �

1

Dk
rect

�ho� ½V4s
Nað0;Rið0ÞÞ � �hogs�

Do

� �
1

Do
;

ðB1Þ

where we have used for the number of test particles M =

200 000 and the intervals take small values as Dk/mNa E
5 m s�1 and Do E 3 K. The velocity distributions are

simulated by choosing a value of the excitation energy o
and evaluating eqn (B1), while the final kinetic energy vs.

excitation energy distribution is obtained after the change of

variable Ek = �h2k2/2mNa as

Iðo;EkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mNa

2Ek�h
2

r
I o; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNaEk

�h2

r !

¼ 1

M

XM
i¼1

rect
Ek �mNa

_R
2

i ðt1Þ=2
DEk

" #

1

DEk
rect

�ho� ½V4s
Nað0;Rið0ÞÞ � �hogs�

Do

� �
1

Do
:

ðB2Þ

The excitation spectrum is computed as

IðoÞ ¼ 1

M

XM
i¼1

rect
�ho� ½V4s

Nað0;Rið0ÞÞ � �hogs�
Do

� �
1

Do
: ðB3Þ

If density fluctuations are included using the stochastic

method described in detail in ref. 14 and 46, the total distri-

bution is generated by the contribution of Nc configurations

generated by sorting N random positions in the j-th configu-

ration {rjn}
N
n=1 for the hard spheres that represent the N helium

atoms, using the helium density divided by N as probability

density distribution together with a hard-sphere repulsion

between He atoms. The diameter of the sphere is of the order

of the length h used to screen the Lennard-Jones potential and
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to compute the coarse-grained density.31 This diameter is

defined as14,46

dj
n ¼ h

r0
�rðrjnÞ

 !1=3

; ðB4Þ

where r0 is the liquid saturation density value, and �r is the

coarse-grained density obtained by averaging the atomic

density within a sphere of radius h.31 The distributions are

then obtained as

wi!f /
1

Nc

XNc

j¼1

XN
n¼1
½1þ bP2ðcos yÞ�

1

M

XM
i¼1

rect
�hk�mNa

_Riðt1Þ
Dk

� �

1

Dk
rect

�ho� ½V4s
X ðjrjn � Rið0ÞjÞ � �hogs�

Do

� �
1

Do
;

ðB5Þ

Iðo;EkÞ ¼
1

Nc

XNc

j¼1

XN
n¼1

1

M

XM
i¼1

rect
Ek �mNa

_R
2

i ðt1Þ=2
DEk

" #

1

DEk
rect

�ho� ½V4s
X ðjrjn � Rið0ÞjÞ � �hogs�

Do

� �
1

Do
;

ðB6Þ

and

IðoÞ ¼ 1

Nc

XNc

j¼1

XN
n¼1

1

M

XM
i¼1

rect
�ho� ½V4s

X ðjrjn � Rið0ÞjÞ � �hogs�
Do

� �
1

Do
:

ðB7Þ

Note that with a number of configurations Nc = 10 000, the

histograms are computed using a total of Nc � M = 2 � 109

contributions, large enough to reduce the statistical noise.
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