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Abstract: Following the analytic approach to thermodynamics developed by Stückelberg,

we study the evolution equations of a closed thermodynamic system consisting of point

particles in a fluid. We obtain a system of coupled differential equations describing the

mechanical and the thermal evolution of the system. The coupling between these evolution

equations is due to the action of a viscous friction term. Finally, we apply our coupled

evolution equations to study the thermodynamics of an isolated system consisting of identical

point particles interacting through a harmonic potential.
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1. Introduction

The history and development of modern thermodynamics started during the industrialisation period

and was closely related to the need to improve the efficiency of steam engines. Since the foundational

work of Carnot [1] in 1824, until 1960, thermodynamics has been a phenomenological theory mainly

restricted to the description of either equilibrium states or transformations relating one equilibrium

state to another [2]. In essence, thermodynamics was essentially reduced to thermostatics or

quasi-thermostatics.

In 1960, Stückelberg [3] reformulated thermodynamics in an axiomatic way as a truly dynamic and

phenomenological theory describing the evolution of a thermodynamic system by a set of first-order
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differential equations. By doing so, he actually extended the existing theory of equilibrium states,

or thermostatic, in order to obtain a genuine thermodynamic theory, i.e., a theory describing the

evolution and the approach to equilibrium of thermodynamic systems. In his axiomatic approach, he

introduced, two state functions, the “energy” and the “entropy” obeying the two fundamental laws of

thermodynamics. He then derived from these two laws the equations for the time evolution of the system.

In his words, the state of a thermodynamic system is defined by a set of geometric variables and a

set of thermal variables. The simplest system, which he called “system element”, is a system where one

thermal variable and a set of geometric variables are sufficient to define entirely the state. The second

law of thermodynamics requires the existence of a state function entropy for every system. Thus, the

state of a system element is defined by the entropy and a set of geometric variables. We note that the

notion of system element is analogous to the concept of point particle in mechanics. It is the building

block required to develop the theory of general systems where several thermal variables are necessary to

define the state.

In the present work, we essentially follow the original approach of Stückelberg [3] and apply his

formalism to a closed thermodynamic system consisting of N point particles moving in a fluid. The

system is thus defined by the particles and the fluid, but we assume no a priori knowledge of the fluid. It is

a phenomenological approach where the theory is built upon the macroscopic description of the particles

(which are the only observable objects). It is thus observed that the macroscopical mechanical variables

(generalised coordinates and velocities) are not sufficient to obtain the time evolution of the system.

Following the thermodynamic approach, we assume the simplest possible case where the system can

be described by introducing only one more non-mechanical, or thermodynamical variable, the entropy.

Applying the first and second law, we obtain a system of coupled differential equations describing the

thermodynamic evolution of the system. In that system of differential equations, the coupling between

the resulting Lagrange equations and the thermal equation is due to the viscous friction terms depending

on the state variable.

In this phenomenological approach, the theory tells us what are the quantities that should be obtained

from experiment, in particular in order to obtain typical thermodynamical properties such as the specific

heat. Since we have introduced a model with only one thermal variable (the total entropy), it is not

possible to derive transport properties (viscosity or thermal conductivity). To obtain such a transport

theory, we would need a continuum description of the fluid (density field, entropy field, ...).

The structure of this publication is as follows. In Section 2, we briefly recall Stückelberg’s axiomatic

formulation of the first and second thermodynamic laws. Section 3 is devoted to establishing the

equations of evolution of a system of point particles based on the first law. In Section 4, we extend

the thermodynamics of a system of point particles to include the second law. Section 5 shows how

thermodynamics relates to mechanics and in particular to the Lagrange equations. Finally, in Section 6,

we apply our formalism to study the thermodynamics of an isolated system consisting of identical point

particles interacting through a harmonic potential, which is the simplest phenomenological model of

a solid.
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2. Axiomatic Formulation of the First and Second Laws

2.1. First Law

For every system Σ, there exists an extensive, scalar state function E, called energy. If the system is

isolated, the energy is constant, i.e., E is a conserved observable. If the system is not isolated, then

dE

dt
= P ext

W (t) + P ext
Q (t) + P ext

chem(t) , (1)

where P ext
W (t) is the power due to the external forces acting on the mechanical variables of the system,

P ext
Q (t) is the power due to the heat transfer and P ext

chem(t) is the power due to the matter transfer between

the system and the exterior (see [3] p. 26 and [4] p. 221).

The system is said to be “closed” if there is no exchange of matter, i.e., P ext
chem(t) = 0 ; it is said

“adiabatically closed” if it is closed and there is no heat exchange, i.e., P ext
chem(t) = 0 and P ext

Q (t) = 0. It

is said isolated if it is adiabatically closed and there is no mechanical power exchange, i.e., P ext
chem(t) = 0,

P ext
Q (t) = 0 and P ext

W (t) = 0, in which case the energy E is a constant.

2.2. Second Law

For every system Σ, there exists an extensive, scalar state function S, called entropy, which obeys the

following two conditions (see [3] p. 23) :

(a) Evolution Part :
If the system is adiabatically closed, the entropy S is a non-decreasing function with respect to

time, i.e.,
dS

dt
= I(t) � 0 , (2)

where I(t) is the entropy production rate of the system accounting for the irreversibility of internal

thermal processes.

(b) Equilibrium Part :
If the system is isolated, as time tends to infinity (i.e., t → +∞) the entropy tends towards a finite

local maximum [5], compatible with the constraints (internal walls and isolation conditions), i.e.,

lim
t→+∞

S(t) = max
ρ compatible

S[ρ] , (3)

where ρ compatible denotes a thermodynamic state compatible with the constraints.

3. System of Point Particles: First Law

We consider a physical system Σ of N point particles imbedded in a fluid (e.g., air, water, ...) as

shown in Figure 1. The point particles are submitted to holonomic, time-independent constraints, and

we assume no a priori knowledge for the fluid.

The system is thus defined by the particles and the fluid. It is said to be isolated when there is

no interaction between Σ and the outside (no external force, no heat exchange, no matter exchange).

By definition, the mechanical state of Σ is defined by 2n independent variables ξ = (ξ1, . . . , ξ2n) =



Entropy 2011, 13 370

(q1, . . . , qn, v1, . . . , vn) where q = (q1, . . . , qn) are the generalised coordinates and v = (v1, . . . , vn),

with vi = dqi

dt
, are the generalised velocities. Moreover, under the above condition on the system, the

kinetic energy K for N point particles of mass mα, defined as,

K =
1

2

N∑
α=1

mαv
2
α , (4)

is expressed in terms of the generalised coordinates qi and velocities vi, by the quadratic form (see [6]

Section 8.6)

K(q, v) =
1

2

n∑
i,j=1

gij(q) v
ivj � 0 , with gij = gji . (5)

Furthermore, the exterior of the system can act on the generalised coordinate qi by means of a

generalised force Q ext
i (t), and the work done per unit time by this force on Σ is the work-power

P ext
W i(t) = Q ext

i (t)vi.

Figure 1. The system Σ: N particles imbedded in a fluid.

F ext
F extΣ

PQ ext

From observations, we conclude that the set of mechanical variables does not entirely define the state

of the system and we are forced to introduce thermal variables. To simplify the following discussion,

we assume that it is sufficient to add just one thermal variable to define entirely the state. Since in the

axiomatic formulation of the second law there exists for any system a thermal observable, the entropy S,

we shall define the state by the set of variables ρ = (S, q, v), which are all independent by definition of

the holonomic constraints.

For our system, we assume that the energy E, introduced in the first law, is the sum of the kinetic

energy (5) and a potential energy U independent of the velocities, i.e.,

E(S, q, v) = K(q, v) + U(S, q) . (6)

The “potential energy” U(S, q) describes the internal forces but may contain contributions from the

outside of Σ, such as potentials of conservative external forces (e.g., the gravitational potential energy

due to the earth). In this case, these forces are considered as internal forces of Σ, and not external.



Entropy 2011, 13 371

Since the system is closed, i.e., there is no exchange of matter with the outside, the first law of

thermodynamics reduces to,
dE

dt
= P ext

W (t) + P ext
Q (t) . (7)

Using the fact that E = E(S, q, v), the LHS side of the first law (7) gives,

dE

dt
=

∂E

∂S
Ṡ +

∑
i

∂E

∂qi
q̇i +

∑
i

∂E

∂vi
v̇i

=
∂U

∂S
Ṡ +

1

2

∑
i,j,k

∂gij
∂qk

vivjvk +
∑
i

∂U

∂qi
vi +

∑
i,j

gijv
i v̇j .

(8)

At this point, we must insist on the fact that the choice of general coordinates was completely arbitrary.

Therefore, we want to impose the covariance of the time evolution equations, i.e., they must have the

same structure for any coordinate transformation of the mechanical variables,

q′ i = q′ i(q) ,

v′ i =
∑
j

∂q′ i

∂qj
vj .

(9)

Under the covariance requirement, gij must be a second order, symmetrical, covariant tensor so that K

is a scalar. In order to ensure that K is positive definite, gij must have a positive definite signature.

Moreover, one can easily check that

dK

dt
=

1

2

∑
i,j,k

∂gij
∂qk

vivjvk +
∑
i,j

gijv
i v̇j , (10)

is not covariant. However, the second term on the RHS of (8) is totally symmetric and invariant under

cyclic permutation of indices, so that we have,

1

2

∑
i,j,k

∂gij
∂qk

vivjvk =
∑
i,j,k

(
∂gij
∂qk

− 1

2

∂gjk
∂qi

)
vivjvk =

1

2

∑
i,j,k

(
∂gij
∂qk

+
∂gik
∂qj

− ∂gjk
∂qi

)
vivjvk . (11)

Introducing the symbols,

Γijk(q) =
1

2

(
∂gij
∂qk

+
∂gik
∂qj

− ∂gjk
∂qi

)
, (12)

the LHS of the first law (7) reduces to the covariant equation,

dE

dt
=

∂U

∂S
Ṡ +

∑
i

vi

(∑
j

gij v̇
j +

∑
j,k

Γijk v
jvk +

∂U

∂qi

)
. (13)

As for the RHS of (7), we have [6],

P ext
W (t) =

∑
i

Q ext
i (t)vi(t) , (14)

where Q ext
i (t) is the external generalised force associated with qi.
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It is useful to introduce two new state functions, defined respectively as,

Q int
i (S, q) = −∂U

∂qi
, (15)

T (S, q, v) =
∂U

∂S
, (16)

where Q int
i (S, q) is the internal force associated with the generalised coordinate qi and T (S, q, v) is called

the “temperature” [3]. Using these definitions, the first law (7) reduces to the thermodynamic equation,

T
dS

dt
=

∑
i

vi

(
Q ext

i (t) +Q int
i −

∑
j

gij v̇
j −

∑
j,k

Γijk v
jvk

)
+ P ext

Q (t) . (17)

4. System of Point Particles: Second Law

We investigate now the consequence of the second law for our system by proceeding in three steps:

first, we consider an isolated system, then, we extend our analysis to an adiabatically closed system,

finally, we generalise our approach to a closed system with heat exchange.

4.1. Thermodynamics of an Isolated System

An isolated system is characterised by the absence of interaction with the exterior, i.e., Q ext
i (t) = 0

and P ext
Q (t) = 0. In this case, it follows from (17) that

Ṡ(t) =
1

T

∑
i

vi

(
Q int

i −
∑
j

gij v̇
j −

∑
j,k

Γijk v
jvk

)
. (18)

This means that there exists a state function I(S, q, v) called “entropy production” given by

I(S, q, v) =
1

T (S, q, v)

∑
i

vi

(
Q int

i −
∑
j

gij v̇
j −

∑
j,k

Γijk v
jvk

)
, (19)

and such that

Ṡ(t) = I(S(t), q(t), v(t)) . (20)

At this point, we introduce the state function Q fr
i (S, q, v), called “friction force associated with the

generalised coordinate qi”, defined as,

Q fr
i = −Q int

i +
∑
i

gij v̇
j +

∑
j,k

Γijk v
jvk . (21)

With this definition (21), the entropy production (19) can be expressed as,

I(S, q, v) = − 1

T

∑
i

viQ fr
i . (22)

This expression of the entropy production given as the products of the generalised velocities

with the associated friction forces (or affinities) is analogous to the usual expression in

nonequilibrium thermodynamics found for example in [7] (p. 309), [8] (p. 30) or [9] (p. 213).
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From the evolution part of the second law (2) (following the standard methods outlined

in [3] p. 31, [8] p. 31, [9] pp. 215, 235, [10] p. 348) we must have, I(S, q, v) � 0, and thus the friction

force is of the form,

Q fr
i (S, q, v) = −

∑
j

λij (S, q, v) v
j , (23)

where the “friction coefficient tensor λij(S, q, v)” must satisfy the non-negativity condition,

1

T (S, q, v)

{
λ(ij)(S, q, v)

}
� 0 , where λ(ij) =

1

2
(λij + λji) . (24)

Note that in the usual linear scheme of non-equilibrium thermodynamics, i.e., near an equilibrium point,

one considers λij to be the coefficients of a constant matrix computed at this equilibrium point, as

explained in [9] (p. 236).

In conclusion, in this case, the entropy production is given by,

I(S, q, v) =
1

T (S, q, v)

∑
i,j

λij(S, q, v) v
ivj � 0 . (25)

Thus, we have obtained the time evolution equations for the isolated system,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

gij q̈
j +

∑
j,k

Γijk q̇
j q̇k = −∂U

∂qi
−

∑
j

λij q̇
j mechanical equations

dS

dt
=

1

T

∑
i,j

λij q̇
iq̇j thermal equation

(26)

Hence, in such a phenomenological approach, the system is characterised by the state functions gij(q),

U(S, q) and λij(S, q, q̇), which have to be determined experimentally. It should be stressed that

Q int
i = − ∂U

∂qi
is an internal conservative force (e.g., the force exerted between two particles) introduced

in the first law and that Q fr
i is a friction force exerted by the fluid in which the particles are imbedded.

Note that in the particular case of solid friction, the friction force is singular [2].

4.2. Thermodynamics of an Adiabatically Closed System

We now consider an adiabatically closed system, i.e., P ext
Q (t) = 0, for which the thermodynamic

equation (17) reduces to,

T
dS

dt
=

∑
i

vi

(
Q ext

i (t) +Q int
i −

∑
j

gij v̇
j −

∑
j,k

Γijk v
jvk

)
. (27)

Again, we introduce the generalised friction force,

Q fr
i = −Q ext

i (t)−Q int
i +

∑
j

gij v̇
j +

∑
j,k

Γijk v
jvk , (28)

which yields,

T
dS

dt
= −

∑
i

viQ fr
i , (29)
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and ∑
j

gij v̇
j +

∑
j,k

Γijk v
jvk = Q int

i +Q fr
i +Q ext

i (t) . (30)

Since the system is adiabatically closed, the evolution part of the second law (2) implies again,

dS

dt
= I(t) = − 1

T

∑
i

viQ fr
i � 0 , (31)

which suggests that the friction force has the same form as for the isolated system,

Q fr
i = −

∑
j

λij(S, q, v)v
j , (32)

and thus is again a state function with the same coefficients λij as in the isolated case. Similarly to the

isolated system, the time evolution equations are given by,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

gij q̈
j +

∑
j,k

Γijk q̇
j q̇k = −∂U

∂qi
−

∑
j

λij q̇
j +Q ext

i (t) mechanical equations

dS

dt
=

1

T

∑
i,j

λij q̇
iq̇j thermal equation

(33)

It is worth mentioning that the arbitrary external force Q ext
i (t) should not be confused with the internal

forces, which are the conservative force Q int
i and the dissipative friction force Q fr

i .

4.3. Thermodynamics of a Closed System

We now consider a closed system, i.e., P ext
chem(t) = 0, for which the thermodynamic equation is given

by (17). The entropy variation of the system is due to the friction force (28), as for the isolated and

adiabatically closed systems, but also to heat exchange with the exterior according to (17) i.e.,

T
dS

dt
= −

∑
i

vi Q fr
i + P ext

Q (t) . (34)

Hence, similarly to the isolated and adiabatically closed systems, the time evolution equations are

given by, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

gij q̈
j +

∑
j,k

Γijk q̇
j q̇k = −∂U

∂qi
−

∑
j

λij q̇
j +Q ext

i (t) mechanical equations

dS

dt
=

1

T

∑
i,j

λij q̇
iq̇j +

1

T
P ext
Q (t) thermal equation

(35)

4.4. Equilibrium Part of the Second Law

Finally, we can investigate the consequences of the equilibrium part of the second law (3). In this

case, we have to assume that the system is isolated for all t � t0 and we have to look for the maximum

of S under the condition that the energy E(S, q, v) = Ē is fixed. In other words, we have to look for the

maximum of S(Ē, q, v).
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One can show [3] that this maximum condition on S is equivalent to the condition that the energy

E(S, q, v) is minimum for a fixed S = S̄ if the temperature T is positive, and is maximum if T is

negative, i.e.,

δ(1)E

∣∣∣∣
S=S̄

= 0 , and
1

T
δ(2)E

∣∣∣∣
S=S̄

� 0 . (36)

(i) The extremum condition δ(1)E
∣∣∣
S=S̄

= 0 implies that,

• ∂E

∂vi

∣∣∣∣
S=S̄

= 0 i.e.,
∑
j

gij(q)v
j = 0 and thus vj = 0 since gij is positive definite.

• ∂E

∂qi

∣∣∣∣
S=S̄

= 0 which gives (with vj = 0) , Q int = −∂U

∂qi
= 0 .

In other words, the extremum condition implies that the system evolves to an equilibrium

point of the time evolution equation (26), characterised by q = q̄ and v = v̄ = 0.

(ii) The condition 1
T
δ(2)E

∣∣∣
S=S̄, q=q̄, v=v̄=0

� 0 implies first that the matrix 1
T
gij(q̄) is non-negative

and thus, for our mechanical system with positive kinetic energy, the temperature is necessarily

positive. This in turn implies that the friction coefficients matrix is non-negative. Moreover, this

same condition also implies that the matrix 1
T

∂2U
∂qi∂qj

(
S̄, q̄

)
must be non-negative. In conclusion,

the equilibrium part of the second law implies that the system evolves towards a stable equilibrium

point. This is the zeroth law of thermodynamics [3].

5. From Thermodynamics to Mechanics

The symmetric matrix gij can be identified as a metric with a positive definite signature on the

configuration space. Thus, the configuration space is a Riemannian manifold endowed with a torsion-free

Levi-Civita connection [11], where the components,

Γijk(q) =
1

2

(
∂gij
∂qk

+
∂gik
∂qj

− ∂gjk
∂qi

)
, (37)

are commonly referred to as the Riemann-Christoffel symbols. Such a manifold preserves the generalised

infinitesimal distances squared ds2 defined in terms of the generalised coordinates as [12],

ds2 =
∑
i,j

gij(q) dq
idqj , (38)

and satisfies the metricity condition [13], which requires the covariant derivative of the metric with

respect to every coordinate qi to vanish,

∇i gjk = 0 . (39)

In the particular case of an isolated system where the friction coefficients matrix is strictly zero, then

from the second relation in (26), the entropy is necessarily constant. Furthermore, if the potential energy

is zero, i.e., U = 0, then the evolution of the system is a geodesic in configuration space given by,

v̇i +
∑
j,k

Γi
jk v

jvk = 0 , (40)
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thus satisfying the 1st law of Newton.

At this point, it is convenient to introduce the Lagrangian of the system defined as,

L(S, q, q̇) = K(q, q̇)− U(S, q) =
1

2

∑
i,j

gij q̇
iq̇j − U(S, q) . (41)

In order to recast the dynamical terms on the RHS of the thermodynamic equation (17) in an analytical

manner, we compute the partial derivatives of the Lagrangian and their time derivatives,

∂L
∂qi

=
1

2

∑
j,k

∂gjk
∂qi

q̇j q̇k − ∂U

∂qi
, (42)

d

dt

(
∂L
∂q̇i

)
=

∑
j

gij q̈
j +

∑
j,k

∂gij
∂qk

q̇j q̇k =
∑
j

gij q̈
j +

1

2

∑
j,k

(
∂gij
∂qk

+
∂gik
∂qj

)
q̇j q̇k . (43)

From the differential relations (42) and (43), we derive the dynamic identity,

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
=

∑
j

gij q̈
j +

∑
j,k

Γijk q̇
j q̇k +

∂U

∂qi
. (44)

Using this identity, the thermodynamic equation (35) reduces to,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Q ext

i (t)−
∑
j

λij q̇
j Lagrange equations

dS

dt
=

1

T

∑
i,j

λij q̇
iq̇j +

1

T
P ext
Q (t) Thermal equation

(45)

In conclusion, if the state functions U and λij are independent of S, or equivalently, if the time evolution

happens at fixed temperature by contact with a thermal bath, the mechanical Lagrange equations

decouple from the thermal equation. This is the usual case considered in mechanics.

6. Thermodynamics of an Isolated System of Point Particles Interacting through a
Harmonic Potential

As an application of the formalism we developed, we now consider the thermodynamics of an isolated

system where the state functions U and λij are independent of S. The system consists of identical point

particles interacting through a harmonic potential and is the simplest phenomenological model of a

solid, where the harmonic oscillators represent the phonons. As generalised coordinates, we choose for

simplicity cartesian coordinates of the point particles and denote them q = x. Thus, the metric reduces

to the trivial Kronecker delta, i.e., gij(q) = δij . The kinetic energy K(x, ẋ) of the point particles per unit

mass and the harmonic interaction potential per unit mass U(x) are respectively given by,

K(x, ẋ) =
1

2

∑
i,j

δij ẋ
iẋj , (46)

U(x) =
1

2
ω2

∑
i,j,k,l

δijδkl
(
xi − xk

) (
xj − xl

)
, (47)
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where the coefficient ω2 is positive by the equilibrium condition of the second law and ω represents the

angular frequency of the identical harmonic oscillators. The Lagrangian of the system is given by,

L(x, ẋ) = 1

2

∑
i,j

δij ẋ
iẋj − 1

2
ω2

∑
i,j,k,l

δijδkl
(
xi − xk

) (
xj − xl

)
. (48)

The partial derivatives of the Lagrangian and their time derivatives are given by,

∂L
∂xi

= −ω2
∑
j,k,l

δijδkl
(
xj − xl

)
, (49)

d

dt

(
∂L
∂ẋi

)
=

d

dt

(∑
j

δijẋ
j

)
=

∑
j

δijẍ
j . (50)

Finally, the system of coupled thermodynamical equations (26) is explicitly found to be,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j

[
δijẍ

j + λij ẋ
j + ω2 δij

∑
k,l

δkl
(
xj − xl

)]
= 0 Lagrange equations

dS

dt
=

1

T

∑
i,j

λij ẋ
iẋj Thermal equation

(51)

The physical interpretation of these evolution equations is clear [6]. The Lagrange equations are a system

of coupled damped harmonic oscillators where the damping term is due to the action of a viscous friction

force. These equations are in turn coupled to the thermal equation through the friction force. Since λij

and ω2 do not depend on S, the Lagrange equations can be solved independently to find x(t), which in

turn will give S(t) using the thermal equation.

If the friction matrix {λij} is positive, the condition that the system evolves to a state of maximal

entropy implies that the system evolves towards the equilibrium state (x̄i = 0, ˙̄xi = 0). For a strictly

mechanical system, i.e., if λij = 0, then S is a constant; in this case the system will oscillate around the

equilibrium state according to,⎧⎪⎨
⎪⎩
ẍi + ω2

∑
j

(
xi − xj

)
= 0 Lagrange equations

S = const Thermal equation

(52)

7. Conclusions

We followed the phenomenological approach developed by Stückelberg to study a closed

thermodynamic system consisting of a fixed number of point particles. We thus obtained a system of

coupled differential equations describing the thermodynamic evolution of the system. We observed that

in this system of differential equations, the coupling between the Lagrange equations and the thermal

equation is due to the viscous friction terms. If the phenomenological variables U , λij , do not depend

on S, we recover the usual Newton or Lagrange equations with friction. In the general case where

these variables do depend on S, i.e., on temperature, such a coupling shows that thermodynamics is

a natural extension of mechanics. Finally, we applied our coupled thermodynamic equations to study

the thermodynamics of an isolated system consisting of identical point particles interacting through a

harmonic potential, which is the simplest phenomenological model of a solid.
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