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Abstract—We develop new algebraic algorithms for scalar and
vector network coding. In vector network coding, the source
multicasts information by transmitting vectors of length L,
while intermediate nodes process and combine their incoming
packets by multiplying them with L × L coding matrices that
play a similar role as coding coefficients in scalar coding. We
start our work by extending the algebraic framework developed
for multicasting over graphs in [1] to include operations over
matrices; we build on this generalized framework, to provide
a new approach for both scalar and vector code design which
attempts to minimize the employed field size and employed vector
length, while selecting the coding operations. Our algorithms
also lead as a special case to network code designs that employ
structured matrices.

Index Terms—Algebraic framework, alphabet size, multivari-
ate polynomials, network multicast, structured matrices, vector
network coding.

I. INTRODUCTION
In the seminal paper [1], Köetter and Médard translated the

problem of network code design to an algebraic problem. This
algebraic framework provided the theoretical foundation for
the development of most of the finite length coding results and
practical algorithms for network coding today. In this paper,
we show that this framework naturally extends to incorporate
vector communication; building on this extended framework,
we propose new algebraic code designs for scalar and vector
network coding.
In scalar network coding, when multicasting to N receivers

at rate h, the source transmits h scalar values over some finite
field. The size of the employed finite field is a design param-
eter, that for complexity considerations we typically desire to
minimize. Intermediate network nodes linearly combine their
received symbols by multiplying them with scalar coefficients,
called coding coefficients in the literature. The network code
design consists of selecting the coding coefficients, and the
finite field of operation, so that each receiver has a full rank
set of equations to solve and can thus retrieve the source
symbols [1].
In vector network coding, the source transmits h vectors

of length L, where the elements of the vectors are over a
fixed finite field Fq , for example, the binary field F2. Interme-
diate network nodes perform coding operations over vectors,
namely, multiply their incoming vectors with L × L coding
matrices and then add them to create the new vectors that they
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propagate towards the destinations. That is, intermediate nodes
linearly combine their incoming vectors using coding matrices,
where these matrices play a similar role as scalar coding
coefficients in traditional algebraic network coding. The code
design consists in selecting the length L and the L×L coding
matrices so that each receiver receives information at rate h.
Scalar operations over a field of size qL can be translated

to vector operations employing L × L matrices using a well
known mapping between finite fields operations and operations
using matrices and vectors (see [21], chapter II, page 78).
Thus, code designs for scalar network coding over a field FqL

can be directly translated to code designs for vector network
coding using L × L matrices with elements in Fq. However,
directly designing codes for vector network coding can still
be useful; indeed, there exist qL2

L × L matrices over Fq,
while a translation from scalar coding only employs qL of
these matrices. Thus, vector network coding offers a larger
space of choices for optimizing cost parameters, such as the
operational complexity, or the communication block length.
Our work takes small steps in exploring this potential, using
a subset of all possible matrices; we believe that the potential
of vector coding is much beyond what this work achieves.
An alternative motivation to study vector network coding

is that, in some networks, we may be restricted to employ
operations over a fixed finite field Fq; however, we may be
allowed to vary the length of the vectors we process. One such
case might be in practical networks, where intermediate nodes
might need to be equipped in advance with the capability of
operations over a fixed field. Scalar network coding requires
operations over a finite field of size that grows with the number
of receivers; to increase the size of the employed finite field,
say from FqL to FqL+1 , we may need to communicate to all
intermediate network nodes new multiplication and addition
tables; on the contrary, with vector network coding, we would
simply need to increase the size of the vectors we process from
L to L+1, while always performing operations over the same
base field Fq. Another such case may occur in deterministic
networks, see [13], [14].
We start our work by extending the algebraic framework

developed for multicasting over graphs in [1] to include oper-
ations over matrices. Building on this generalized framework,
our contributions include:

• We provide a polynomial time algorithm for the design
of coding matrices of vector network coding when mul-
ticasting to N receivers. Our metric of optimization is
the smallest size L such that there exist L × L coding
matrices that allow all N destinations to successfully
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decode the source information. The size of these matrices
plays the same role as the size of the finite field in
traditional network coding. Our algorithm reduces the
problem of finding a small size L to the problem of
finding a small degree co-prime factor of an algebraic
polynomial, and may lead to solutions not possible with
using scalar network coding, as illustrated through exam-
ples in Sections V and VI. We note that the potential of
vector coding was already noticed in several papers, see
for example [5], [16], [17], [31], [35], and we discuss the
differences with our work in Section II-B.

• From [1]–[4], [6], [27], it follows that if we translate
scalar to vector code designs, use of vectors of length
L = "log2(N + 1)# is always sufficient. In our work we
provide probabilistic arguments indicating that a much
smaller length of operation can be possible. For example,
in a fraction 1023

1024 of polynomials derived from transfer
matrices, we will be able to find in polynomial time
binary coding matrices of size at most 3 × 3 that lead
to a valid code.

• Our approach gives a new algorithm for scalar network
code design, that operates in polynomial time. This new
algorithm jointly minimizes the employed field size while
selecting the coding coefficients. In contrast, most1 of
the existing algorithms [1]–[4], [6], [27] first select a
fixed finite field and then proceed to design the network
codes over this predetermined field. Our approach builds
on a connection between the problem of identifying the
minimum field size required for network coding and the
problem of finding the smallest co-prime factor of an
algebraic polynomial.

The paper is organized as follows. Section II formalizes
our problem statement and reviews related work. Section III
generalizes the algebraic framework from scalar to vector
coding. Section IV presents our proposed code designs for
vector and scalar network coding, while Section V illustrates
through examples the application of vector network coding and
of our developed design tools. Section VI offers a comparison
between scalar and vector network coding. Finally Section VII
concludes the paper.

II. SETUP AND RELATED WORK

A. Setup

In this paper, we consider the problem of designing scalar
and vector network coding algorithms that allow us to mul-
ticast rate h to N receivers over directed acyclic graphs. We
assume that the min-cut from a source S to each receiver is
at least h.
In general, network nodes can perform arbitrary operations;

i.e., each network node can collect inputs, and send an arbi-
trary function of these inputs through each output. However,
in this paper we will restrict our attention to linear operations,
namely, each network code can perform linear combining

1As far as we know, only the algorithm in [36] attempted to jointly minimize
the field size and the code design before; we compare with this in Section
II-B.

with scalar coefficients for scalar network coding, and linear
combining with matrix coefficients for vector network coding.
For simplicity, we present our designs for binary vector

coding; the extension over arbitrary fields is straightforward,
and we briefly discuss it in Section IV-A. Moreover, we will
focus on acyclic networks, however, we note that the algebraic
framework generalization that we will present in the next
section applies for cyclic networks as well, using the same
approach as in [1]. Finally, although in this paper we only
consider the problem of multicasting, we believe that the tools
we develop might be useful for other traffic scenaria as well.

B. Related Work
Algebraic network coding for scalar coding was introduced

in the seminal paper [1]. We here extend this framework to
admit vector and scalar coding as special cases. This develops
on the ideas we have presented in [13]–[15].
The potential of vector coding was already indicated through

examples in several papers, see for example [5]. Designs
specifically targeted to vector coding were, as far as we know,
first proposed in [16], where vector coding was termed block
network coding, and where the coding matrices were restricted
to be binary interleaving matrices, leading to permute-and-add
network codes. The code design in [16] is randomized over
this specific set of structured matrices, and does not provide
deterministic designs for finite length, in contrast to our
approach. Very recently, the authors in [17] have proposed the
use of rotation matrices, and also proposed designs specifically
targeted to this set of matrices. Our work generalizes these
results and provides a unifying framework which leads to
additional structured network code designs.
Polynomial time designs for scalar network coding over

graphs were proposed for example in [1]–[4]. An important
difference between our work and these previous works is that
we jointly minimize the employed field size, while selecting
the coding coefficients, and may thus employ a much smaller
field while still using a polynomial time algorithm. The only
work that is close to ours in this sense is the work in [36].
The authors in [36] look at minimizing the field size that
is employed by the LIF algorithm in [2], in contrast to our
work that follows the algebraic approach. The algorithm in
[36] starts from a binary field, and moves to an extension
field when necessary and as the algorithm proceeds. Note that
a field 2k1 is an extension field of 2k2 only if k2 divides
k1. Thus, this algorithm only examines the fields of size 2,
22, 24, 28, 216, 232, etc., and not all fields of size 23, 25,
26, 27, 29, 210, 211,. . . etc. In contrast, our algorithms for
scalar network coding examines all fields (even fields that have
different characteristic). Additionally, in our work, we show
a double exponential convergence assuming all polynomials
occur with the same probability, while no such analysis is
provided for the algorithm in [36].

III. ALGEBRAIC FRAMEWORK
We here first review the algebraic framework for scalar

network coding in [1]; we then proceed to discuss how it can
be extended to incorporate vector network coding.
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A. Review of the algebraic framework for scalar coding [1]

In scalar coding, the source has h symbols {u1, . . . , uh}
in a field Fq to multicast to N receivers. Intermediate nodes
linearly combine their received information using coding co-
efficients {Xk} from the same field Fq .
Consider a directed acyclic graph G = (V, E), and each

edge of the graph as a memory element that stores an inter-
mediate information symbol. Assume that the source node has
also h auxiliary incoming edges, each bringing one of the h
symbols {u1, . . . , uh}. Then, if we consider a specific receiver
j, our network acts as a linear system with h inputs (the h
source symbols), h outputs (that the receiver observes), and
µ = |E| memory elements. This system is described by the
following set of finite-dimensional state-space equations:

sk+1 = Ask + Buk

yk = Cjsk + Djuk,
(1)

where sk is the µ × 1 state vector at time k, yk is the h × 1
output vector, uk is the h × 1 input vector, and A, B, Cj ,
and Dj are matrices with appropriate dimensions which we
discuss in the following.
Matrix A of dimension µ × µ is common for all receivers

and reflects the network topology, the way the edges (memory
elements) are connected. Each entry A!j of matrix A is
either zero, one, or an unknown variable in the set {Xi},
the coefficient that will multiply the information symbol from
edge j as it flows through edge !. We will assume that we
have in total ν such coefficients; clearly, ν ≤ µ2. Matrix B
is also common for all receivers and reflects the way the
inputs (sources) are connected to our graph. Matrices Cj

and Dj respectively express how the outputs that receiver
j observes, depend upon the state variables and the inputs.
Matrices B, Cj , and Dj can be chosen to be binary matrices
by possibly introducing auxiliary vertices and edges. Without
loss of generality, we will assume that Dj = 0 (this we can
again do by possibly adding auxiliary edges and increasing
the size µ of the state space).
A standard result in linear system theory gives us the

transfer matrix Gj(D):

Gj(D) = Cj(D
−1I− A)−1B, (2)

where D is the indeterminate delay operator. In this paper,
we will focus our attention to acyclic graphs, and thus we
will assume unit delay, to obtain the h× h transfer matrix for
receiver j:

Mj = Cj(I − A)−1B. (3)

However, the generalization of the algebraic framework also
holds for graphs with cycles.
By accordingly ordering the elements of the state space

vector, matrix A becomes strictly upper triangular for acyclic
graphs, and therefore, nilpotent, that is, An = 0 for some
positive integer n. Let Λ denote the length of the longest path
between the source and a receiver. Then AΛ+1 = 0. In other
words,

(I − A)−1 = I + A + A2 + . . . + AΛ. (4)

This equation immediately implies that the elements of the
transfer matrices Mj are multivariate polynomials in the
unknown variables {Xi}, of degree at most Λ in each variable,
and also of total degree at most Λ. By total degree we refer
to the maximum sum of the degrees across the variables in
each monomial; for example the polynomial f(X1, X2) =
X2

1X2 + X1 + X1X
4
2 has three monomials, total degree 5,

degree 2 in the variable X1 and degree 4 in the variable X2.
Network code design amounts to selecting values in Fq for

the variable entries {Xi} in A, so that all matrices Mj , for
j = 1 . . .N , are simultaneously full rank. Equivalently, if the
determinant of the matrix Mj is the multivariate polynomial
fj(X1, X2, . . . , Xν), we want to select values for the variables
{Xk} in Fq so that all the polynomials fj evaluate to a nonzero
value. Note that the degree of this polynomial in each variable
equals at most hΛ, and the total degree as well equals hΛ.
The matrices Mj , for j = 1 . . .N , are simultaneously full

rank if and only if the matrix

M ! M1 · M2 · · · . . . · · ·MN (5)

is full rank. Thus, we can equivalently select values for the
variables {Xi} so that the polynomial

f(X1, X2, . . . , Xν) = detM (6)

of total degree at most NhΛ evaluates to a nonzero value.
It can be shown in [3], [4] that Mj is full rank if and only

if the matrix
M̄j =

[

Cj 0
I− A B

]

(7)

is full rank. Let

M̄ ! M̄1 · M̄2 · · · . . . · · · M̄N , (8)

and for the polynomials corresponding to determinants, let

f̄j(X1, . . . , Xν)) = det(Mj), (9)

and
f̄(X1, . . . , Xν) = det(M̄). (10)

The polynomial f̄ has degree at most N in each of the
variables; however it may have a total degree as large as
Nµ, where µ = |E| is the number of edges in the graph.
The algebraic code design can equivalently be expressed as
selecting values for the variables so that the polynomial f̄
evaluates to a nonzero value. Three algebraic formulations
for the multicasting problem are summarized in the following
table. All these formulations are equivalent.

Scalar Algebraic Formulations [1]:
(1) Select a finite field Fq and values for the variables
{Xi} from the field Fq so that all matrices Mj become
simultaneously full rank.
(2) Select a finite field Fq and values for the vari-
ables {Xi} from the field Fq so that the polynomial
f(X1, . . . , Xν) in (6) of degree at most hΛN in each
variable and of total degree at most hΛN , evaluates to a
nonzero value.
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(3) Select a finite field Fq and values for the vari-
ables {Xi} from the field Fq so that the polynomial
f̄(X1, . . . , Xν) in (10) of degree at most N in each
variable and of total degree at most µN , evaluates to a
nonzero value.

From the sparse zero lemma (see Lemma 1 in [25], and
Lemma 4 in [4]), we can assign to the variables {Xi} values
in a finite field Fq of size larger than N so that all transfer ma-
trices Mj are simultaneously invertible. Provided that q > N ,
we can find such values deterministically in polynomial time,
for example using the methods [1]–[4], [6]. The algorithms we
will develop in this paper differ from the existing algorithms
in the literature in that they jointly optimize for the finite field
of operation and the specific values for the coding parameters.

B. Extension of the algebraic framework to vector coding
In vector coding, the source simultaneously conveys h

vectors of length L to the destination, where L is a design
parameter. We will denote these vectors as {u1, . . . ,uh}.
These vectors take values over a predetermined field Fq . For
example, in most of this paper we will focus on binary vector
coding, where Fq = F2. We will also focus in the case where
all the vectors transmitted in the network have equal length
L. The intermediate network nodes collect vectors of length
L, linearly process them by multiplying them with coding
matrices with values in the field Fq, and then further propagate
them. We will denote the L × L coding matrices as {Xi}.
Exactly similar to before, we can associate a state variable

with every edge of the network, where now each state variable
is a vector of length L, and write the state-space equations for
receiver j as

sB
k+1 = ABsB

k + BBuB
k

yB
k = CB

j sB
k + DB

j uB
k .

(11)

If the network has µ = |E| edges, in the above equations,
uB

k is the Lh × 1 input vector that contains the h vectors
{u1, . . . ,uh}, sB

k is the Lµ × 1 vector that contains the µ
state vectors, and yB

k is a Lh × 1 output vector. Matrices
AB , BB , CB

j , and DB
j are now block matrices of appropriate

dimension, that contain blocks of size L × L. Without loss
of generality, we can assume that DB

j is the all zero matrix.
Matrices BB and CB

j are fixed block matrices, that have as
elements either the L × L identity matrix I or the L × L all
zero matrix 0, at the same positions where matrices B and Cj

in (1) had 1 and 0, respectively. Matrix AB has also the same
structure as matrix A in (1) with the difference that where
matrix A had a variable entry Xi, now matrix AB has at the
same entry the L × L coding matrix Xi.
Exactly similar to before, the hL × hL transfer matrix for

receiver j can be calculated as

MB
j = CB

j (I − AB)−1BB. (12)

and MB
j is full rank if and only if the matrix

M̄B
j =

[

CB
j 0

I− AB BB

]

(13)

is full rank. Let also

MB ! MB
1 · MB

2 · . . . ·MB
N (14)

and
M̄B ! M̄B

1 · M̄B
2 · . . . · · ·M̄B

N . (15)

We observe that the dimensions of matrices MB
j and M̄B

j

depend upon the size parameter L. The multicasting code
design problem is to select the size parameter L and the L×L
coding matrices {Xi} so that all matricesMB

j for j = 1 . . .N
are simultaneously full rank. We will denote the set of L×L
matrices with elements over a field Fq as ML(Fq). Thus, the
matrices {Xi} take values in ML(Fq).
Since the matrices we consider have the same structure for

the scalar and vector case, we will omit the superscript B, and
refer for example to a matrix A that has as elements variables
{Xi} that take values in an algebraic structure, either a finite
field Fq or ML(Fq).

Example III.1. For the butterfly network [7], [8], the transfer
matrices to the two receivers are

M1 =

[

X1 X2

I 0

]

, M2 =

[

X1 X2

0 I

]

.

In vector coding the transfer matrices are block matrices, and
each element is an L×L matrix, where 0 is the all-zero and
I the identity matrix. For the butterfly network it is sufficient
to use L = 1.

The following theorem helps relate the problem of vector
code design to the problem of a polynomial evaluation. A
proof of this theorem can be found in [22].

Theorem III.2. Let M be an hL × hL matrix over a field.
Suppose M is subdivided into h2 blocks Mi,j , 1 ≤ i, j ≤ h
each of which is an L × L matrix. Moreover, suppose that
for all numbers 1 ≤ i, i′, j, j′ ≤ n we have Mi,j · Mi′,j′ =
Mi′,j′ ·Mi,j . Then det(M) = det(f(M1,1,M1,2, . . . ,Mn,n))
where f(x1,1, x1,2, . . . xn,n) = det([xi,j ]).

Thus, if the matrices we chose for the variables {Xi} are
pairwise commuting, then, from Theorem III.2, det(Mj) =
det(fj(X1, . . . , Xν)), det(M) = det(f(X1, . . . , Xν)) and
det(M̄j) = det(f̄j(X1, . . . , Xν)). We will call, in this case,
the polynomial

fj(X1, . . . , Xν) : ML(F2) × . . . × ML(F2) → ML(F2)

a matrix polynomial, to indicate that its evaluation results in
an L × L matrix (and similarly for f and f̄ ). The vector
code design problem can be cast as selecting the length L
and the commutative L×L matrices {Xi} so that the matrix
polynomials f(X1, . . . , Xν) and f̄(X1, . . . , Xν) evaluate to
an invertible matrix, as summarized in the following table.

Vector Algebraic Formulations:
(1) Select length L and L×L matrices {Xi} in ML(Fq)
so that all matrices Mj become simultaneously full rank.
(2) Select length L and L×L commutative matrices {Xi}
in ML(Fq) so that the matrix polynomial f(X1, . . . , Xν)
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of degree at most hΛN in each variable and of total
degree at most hΛN , is an invertible matrix.
(3) Select length L and L × L commutative matrices
{Xi} in ML(Fq) so that the the matrix polynomial
f̄(X1, . . . , Xν) of degree at most N in each variable and
of total degree at most mN , is an invertible matrix.

Note that although formulations (2) and (3) are equivalent,
they lead only to a subset of the possible solutions, since
they require the use of commutative matrices. Formulation (1)
does not impose this assumption and can lead to solutions not
possible with (2) and (3).
One approach for vector network coding is to find a solution

for scalar coding over a field of size qL, and then use a
standard translation between scalar operations over a field of
size qL to vector operations employing coding matrices in
ML(Fq) (see [34], chapter 7, page 424). For completeness, we
include the formal proof of this mapping in Appendix A. This
solution however, only uses qL of the matrices in ML(Fq)
and is more restrictive that the above formulations (1), (2)
and (3); indeed, formulations (2) and (3) only restrict the
matrices Xi to be commutative, while there exist collections2
of commutative matrices with more than qL members.

IV. CODE DESIGN
In this section we develop our algebraic algorithms for

vector and scalar network coding. As we mentioned before,
we consider for the rest of this paper acyclic networks. For
simplicity, we restrict our attention to binary vector network
coding, where the vectors and the matrices have elements
in the binary field, but the extension over arbitrary fields
is straightforward, and we briefly discuss it at the end of
Section IV-A.
Both for vector and scalar network coding, we start from

the algebraic formulation described in Section III. That is,
we construct the transfer matrices Mj , 1 ≤ j ≤ N , M̄j ,
1 ≤ j ≤ N , and M. Our algorithms for scalar network coding
seek to assign scalar values to the variables {Xi}, over a field
of size q as small as possible. Similarly, for vector network
coding, they seek to assign to these variables L × L binary
coding matrices in ML(F2), of a size L as small as possible.
The code design consists of two basic steps:
- Step 1: we reduce the multivariate polynomial

f(X1, . . . , Xν) to a single-variable polynomial f(X),
by expressing each variable Xi as a polynomial pi(X)
of the same variable X . We carefully select these
polynomials so that the resulting polynomial f(X) does
not become identically zero;

- Step 2: for scalar network coding we select a scalar value
for the variable X from a finite field of size as small as
possible, and for vector network coding we select a matrix

2For example, consider the set of all matrices of size 2k × 2k with the
properties that (1) every non-zero entry is located either on the main diagonal
or on the k×k upper right block and (2) all the elements on the main diagonal
are the same; these matrices are commutative, and their set has size qk

2+1

which is larger than q2k .

for the variable X of size as small as possible, so that
the polynomials evaluate to a nonzero value for scalar
coding, and to an invertible matrix for vector coding.

In the following, we first describe the code design for vector
network coding, we then proceed to the design for scalar
network coding, and finally explore the connections between
the two algorithms.

A. Code design for vector coding
1) Algorithm Description: We start by describing our al-

gorithm, and then analyze its performance. The complexity
calculation is provided by Lemma IV.6.

Step 1: Assignment of polynomials to {Xi}

1) Assume that the variables {Xi} take scalar values. Using
the matrix completion methods in [3], we can find an
assignment of values to the variables {Xi = αi}, with
{αi} in a finite field Fq of size q > 2#log2 N$, so that all
matrices M̄j become invertible, i.e., det(M̄j) '= 0, j =
1 . . .N . Note that this assignment of values {Xi = αi}
also makes det(Mj) '= 0, for j = 1 . . .N , and det(M) '=
0. That is,

f(X1 = α1, . . . , Xν = αν) '= 0. (16)

2) Assume that the field Fq, where the values {αi} belong,
has size q = 2k with k = "log2 N#+1. Using a standard
representation of extension fields ( [21], chapter 1, page
2), we can express each value αi ∈ F2k , identified in the
previous step, as a binary polynomial pi(X) of degree
at most k − 1 in an indeterminate X . For example, we
could have that α1 is expressed as p1(X) = X2 + 1,
and αν is expressed as pν(X) = X3. We substitute these
polynomials in place of the variables {Xi} in the transfer
matrices Mj and the matrix M.

3) We calculate the determinant of the matrix M. Note that
the entries of M are polynomials in a single variable
X , and thus the determinant can be calculated effi-
ciently, for example through interpolation as discussed
in Lemma VII.3 in the Appendix. We then get a single
variable polynomial f(X), that equals

f(X) ! f(X1 = p1(X), . . . , Xν = pν(X)). (17)

For example,

f(X) = f(X1 = X2 + 1, . . . , Xν = X3).

It follows from (16) that the polynomial f(X) in (17) is not
identically zero. Moreover, from Section III, it has degree at
most N(k − 1)hΛ in the variable X , where Λ is the longest
path length from the source to a receiver.
We underline that in the above procedure we never explicitly

calculate the polynomial f(X1, . . . , Xν), as this calculation
is not polynomial time; instead, we directly calculate the
polynomial f(X) in (17).
Now consider the variables {Xi} as L × L matrices, and

assume we express each such matrix as the polynomial pi(X)
we have previously identified, of an L × L matrix X . This
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assignment ensures that the resulting matrix polynomial f(X)
in (17) is not identically zero. Our code design problem is
now reduced to selecting the size parameter L and a single
matrix X = A so that the matrix f(A) is invertible.

Step 2: Assignment of value to X

1) Find a polynomial g(X) that is co-prime with f(X), of
degree m as small as possible. We will prove in the
analysis of our algorithm (section IV-A2) that we can
always find such a g(X) of degree m ≤ log2(N + 1) in
polynomial time.

2) If g(X) has degree m, create an m×m matrix A so that
g(A) = 0, using for example the well known construction
in Lemma IV.2.

3) Select L = m and X = A. The following Lemma IV.1
proves that for this selection, f(A) is an invertiblem×m
matrix. Thus, each coding matrixXi is assigned the L×L
matrix pi(A).

In the following, we denote by Fq[x] the ring of all polyno-
mials in variable x and with coefficients over a field Fq.

Lemma IV.1. Let f(x), g(x) be two relatively co-prime
polynomials in Fq[x]. If A is a matrix in ML(Fq) and
g(A) = 0, then f(A) is an invertible matrix.

Proof: Since gcd(f(x), g(x)) = 1, there exist polyno-
mials h1(x), h2(x) so that f(x)h1(x) + g(x)h2(x) = 1. If
we set x = A we get f(A)h1(A) + g(A)h2(A) = I. Since
g(A) = 0, f(A)h1(A) = I.

Lemma IV.2. ( [34], chapter 7, page 425) The m×m matrix

A =



















0 0 0 . . . 0 −a0

1 0 0 . . . 0 −a1

0 1 0 . . . 0 −a2

0 0 1 . . . 0 −a3
...

...
...

. . .
...

...
0 0 0 . . . 1 −am−1



















(18)

has the characteristic polynomial g(x) = xm + am−1x
m−1 +

. . . + a0 and thus satisfies g(A) = 0.

2) Algorithm Analysis: We now analyze the performance
of our algorithm. Lemma IV.6 provides the complexity calcu-
lation of our algorithm, and shows that the required number
of operations is polynomial in the number of variables ν, the
min-cut h, the number of receivers N and the longest path
length Λ (in the following, when we refer to polynomial time,
we mean that the complexity is polynomial in these network
parameters).
Our algorithm also attempts to minimize the size L of the

employed coding matrices, which is equal to the degree m
of the lowest degree polynomial g(X) co-prime to f(X) we
can find. In Theorem IV.3 and Lemma IV.4 we provide upper
bounds on the degree m of g(X) that could be required (hard
guarantees). In Lemma IV.5 we show that the fraction of poly-
nomials of a given degree n that have a co-prime polynomial
of degree at most m, converges doubly exponentially (with m)
to one. This strongly indicates that our algorithm will in the

majority of cases result in a size much smaller than the upper
bound in Theorem IV.3.

Theorem IV.3. If f(x) is a nonzero binary polynomial of
degree n, then there exists an irreducible co-prime polynomial
g(x) of degree at most log2(n + 1) − 1, and we can identify
g(x) in polynomial time in n. There also exist polynomials
that require g(x) to have this degree.

Proof: As candidates for the polynomials g(x), we are go-
ing to consider irreducible polynomials. The main observation
is that, since f(x) has a finite degree, it cannot have as factors
an arbitrary number of irreducible polynomials. In particular,
let g1, g2, . . . gK be all the irreducible binary polynomials of
degree at most m then ΠK

j+1gj(x) divides f(x), otherwise at
least one of the gi’s is co-prime with f .
In Appendix A, Lemmas VII.1 and VII.2, we prove that the

summation of the degrees of all the irreducible binary polyno-
mials of degree at most m is (1− 2ε)2m+1 for some small ε.
Then f(x) must have degree larger than this summation, i.e.,
2m+1 ≤ n, and the result follows.
It is also easy to see that we can find such a co-prime g(x) in

polynomial time. Indeed, the total number of such polynomials
is at most n + 1, and thus exhaustive search would suffice.
Finally, assume that f(x) is indeed the product of all

irreducible binary polynomials of degree at most m - then
g(x) would need to have degree m + 1 and the last statement
follows.
Observation: in this theorem, we restricted our attention

to irreducible polynomials g(x). However, we could simply
consider, as candidates for co-prime factors, all polynomials
of degree m, for any m such that m(2m+1 − 1) ≥ n (for
example, m = log2 n), without verifying if a polynomial is
irreducible,which can lead to a faster search. To design vector
network codes we can directly use any polynomial, irrespective
of whether it is irreducible or not; for the design of scalar
code, that we will discuss in Section IV-B, we need to use an
irreducible polynomial, but we can always factor the identified
polynomial, and use one of the irreducible factors.
Theorem IV.3 implies that our algorithms always allows

to operate using length L upper bounded by log2(n) ≤
log2(NhΛ log2(N)). The following Lemma argues that our
specific algorithm will in fact find such a co-prime factor of
degree at most log2(N + 1). Although this is an improved
bound for our algorithm, we believe the looser alternative
upper bound in Theorem IV.3 might still be interesting, as
it is independent of the employed technique to identify the
polynomials pi(X).

Lemma IV.4. The algorithm described in Section IV-A1
terminates by finding a co-prime factor of degree at most
L ! log2(N + 1).

Proof: This can be trivially shown by applying results in
[2], [4]. Namely, there exists an irreducible polynomial h(X)
that generates the field of size q > 2#log2 N$ over which we
make the scalar assignment in Step 1 of our algorithm. This
polynomial has degree approximately log2(N +1), and, since
the scalar assignment results in a nonzero value, it is co-prime
with the polynomial f(X).
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In Theorem IV.3, we proved that given a polynomial f(x)
of degree n, we can always find a co-prime polynomial g(x)
of degree m = O(log2 n). We next show that, although m =
O(log2 n) is always sufficient, we can in many cases find a
co-prime polynomial of much smaller degree than O(log2 n).

Lemma IV.5. The fraction of polynomials of degree n for
which there exists a co-prime polynomial of degree at most
m, with n > m, converges doubly exponentially (with m) to
one. In particular, this fraction is at least as large as

1 −
m
∏

i=1

1

2iζ(i)
,

where ζ(i) is the number of irreducible binary polynomials of
degree i and can be approximated by 2i

i .

Proof: For a fixed polynomial g(x) not identically zero
g(x) is a factor of f(x) for a fraction of 1

2m of all polynomials
f(x) of degree n, with n > m. This follows by observing that
the remainder after dividing f(x) with g(x), can be any of the
2m binary polynomials of degree smaller or equal to m − 1.
Moreover, we can divide the polynomials of degree n to 2m

mutually exclusive and equally-sized sets, one corresponding
to each possible remainder.
Let g1(x), g2(x), . . . , gk(x) be pairwise co-prime polyno-

mials. Therefore f(x) is divisible by all of them if and only
if it is divisible by their product. The fraction of non-zero
polynomials f that have all of the gi’s as a factor is at most
∏k

i=1
1

2mi , where mi is the degree of gi(x).
For example, if we take g1(x) = x and g2(x) = x + 1,

then 3
4 of all polynomials will be co-prime with either g1

and/or g2. For the case of g1(x) = x, g2(x) = x + 1,
g3(x) = x2 + x + 1, the fraction increases to 15

16 , and if we
consider all the irreducible polynomials of degree at most 3,
the fraction becomes 1023

1024 . That is, if we consider the set of
all polynomials of a given degree n ≥ 3, a fraction of 1023

1024
of these polynomials have a co-prime polynomial of degree
m ≤ 3.
As a result, if all polynomials of degree n resulted from

transfer matrices of networks with equal probability, in 1023
1024 of

such networks a binary matrix of size at most 3×3 would lead
to valid code. We note however that we currently do not know
the probability distribution of polynomials that result from
transfer matrices. Thus the above results might be pessimistic
or optimistic.

Lemma IV.6. The complexity of the algorithm is

O(N(ν + h)3 log2(ν + h) + ν(ν + h)2 + (N log2 NhΛ)3).

Proof: Our algorithm consists of the following steps:

• For identifying the values {αi}, the matrix completion
algorithm requires O(N((ν+h)3log(ν+h)+ν(ν+h)2)),
where ν is the number of variables [3].

• To calculate the polynomial f(x) using the determinant
calculation in Lemma VII.3, we evaluate x at different
points. For each evaluation point βi we can compute the

value f(βi) as the determinant3 of the matrix M(βi) in
O(h3). So, in total we will have O(h3N log NhΛ) opera-
tions for the determinant and we need O((N log NhΛ)3)
operations to find the coefficients {ci} of the polynomial
f(x) (see also Lemma VII.3.)

• For a polynomial f of degree n = NhΛ log N , to find
a co-prime factor of degree at most log2 n, we need
to perform approximately n polynomial divisions, where
each division can be achieved using complexity n log2 n.

3) Vector coding over a field of size Fq , with q > 2:
When the ground field is Fq for q > 2 the same algorithm
and analysis can be applied. The only important difference is
that the number of irreducible polynomials of degree m and
coefficients in Fq can be approximated by 1

mqm. As a result,
the value L we need to employ reduces as q increases.

B. Code design for scalar coding
Step 1: Assignment of polynomials to {Xi}

In the same way as in Step 1 in Section IV-A, we create
the not-identically zero polynomial f(X). We thus reduce the
code design problem to the problem of finding a value X = α
so that f(α) '= 0.

Step 2: Assignment of value to X

1) Similar to Step 2 in Section IV-A, we find an irreducible
polynomial g(X) that is co-prime with f(X) of degree
at most m = log2 n. In this case, however, it is important
that the polynomial g(x) is irreducible.

2) We consider the finite field of size F2m generated by the
polynomial g(X). We make the assignment

Xi = pi(X) mod g(X).

Thus, each Xi is assigned a value in the field F2m . The
polynomial f(X) evaluates to the nonzero value f(X)
mod g(X).

That is, we assign to X the value α in the finite field generated
by g(X), corresponding to the indeterminate X . The second
step is what distinguishes our algorithms from the algebraic
code designs in the literature. The solution we find from Step
1 may use an unnecessarily large field; step 2 aims to reduce
the employed field size.

Analysis
The analysis is the same as in Section IV-A.

Novelty of the algorithm
As also mentioned in Section II-B, there exist several poly-

nomial time designs for scalar network coding over graphs,
see for example [1]–[4]. An important difference between our
work and these previous works is the following. Elements of
finite fields can be regarded as polynomials over a base field,

3These calculations assume operations over a fixed field size q, that remains
constant; if not, we need to include a factor log2 q to account for the field
operations.



8

modulo an irreducible polynomial g(x). When, in network
code design, we make an assignment to the variables of a
multivariate polynomial using elements from a finite field, we
are replacing each variable with a polynomial of x in a way
that ensures the final result is not zero modulo g(x). Notice
that the final result, after the substitution, might be nonzero,
and might only become zero once we apply the modulo g(x)
operation. In contrast, in our approach we do not pre-determine
g(x). We first ensure that the multivariate polynomial (derived
from the transfer matrix) is nonzero. We then choose an g(x)
that it is co-prime with the resulting polynomial. We illustrate
this we a simple example.

Example IV.7. Consider a combination network with three
receivers and transfer matrices of the form:

T1 =

[

X1 Y1

X2 Y2

]

, T2 =

[

X1 Y1

X3 Y3

]

, T3 =

[

X3 Y3

X2 Y2

]

.

Since we have three receivers, Step 1 that does not optimize
the field size will search for a solution over the field Fp with
p > 3. For example, using the field F4 we can get the following
solution:

X1 = Y2 = X, Y1 = X3 = 1, X2 = Y3 = 0.

where X is an element of F4 other than 0 or 1. Step 2 in our
algorithm takes this scalar code and computes the product of
the determinants of the transfer matrices; in our example the
product is X2. Then it finds a polynomial which is co-prime
with X2, for example X +1 and reduces all variables modulo
this polynomial. Thus we get a solution over the binary field
F2.

Note that our algorithm can also be applied as an additional
step to any other network code design algorithm, to attempt
to reduce the employed field size.

C. Alphabet Size in Network Coding
It is interesting to note that our algorithm reduces the

problem of minimizing the alphabet size (finite field of op-
eration) in scalar network coding, to the problem of finding
a reduction of the polynomial f(X1, . . . , Xν) to a single
variable polynomial f(X) that has a co-prime factor of degree
as small as possible.
It was shown in [19], [20] that the problem of finding the

minimum alphabet size is NP-hard, through a reduction from
the graph coloring problem. The hardness in our equivalent
algebraic formulation is expressed through the manner the
reduction to a single variable polynomial is performed. This
reduction can be performed in multiple ways, and what is the
optimal way is not clear. For example, a polynomial f1(X)
can have larger degree than a polynomial f2(X), however,
f1(X) may have a smaller degree co-prime factor than f2(X),
leading to the use of a smaller alphabet size.

V. APPLICATION TO STRUCTURED MATRICES

In this section, we show how we can apply the vector
network coding framework to use, as coding matrices, specific
types of structured matrices that lead to low complexity

implementations. Use of structured matrices has already been
proposed in the literature, for permutation matrices in [16],
and very recently for rotation matrices in [17]. Our designs
give a different viewpoint in the utilization of such matrices,
and allow to develop alternative designs.
The main idea that we apply in the following is that

structured matrices have associated characteristic polynomials
that are also structured; we can find a solution using our
algorithms, provided at least one such structured polynomial
is co-prime with the polynomials we can derive from transfer
matrices.

A. Rotation Matrices over Fq

We are here interested in using rotation matrices as coding
matrices, in order to achieve low complexity encoding at the
network nodes. Use of rotation matrices over the binary field
was originally proposed in [17]. We here consider a more
general form of rotation matrices, over an arbitrary field, and
show how our developed framework can be used in order to
try to design network codes that employ such matrices.

Definition 1. An L × L matrix A over a field Fq is called
a t-th order rotation matrix with respect to the L-tuple
(c1, c2, . . . , cL) in FL

q and denoted by rot(t; c1, c2, . . . , cL) if
its entries are defined as following

A[i, j] =

{

ci if j = (i + t) mod L
0 otherwise.

Observe that the product of two rotation matrices is again a
rotation matrix. More precisely we have the following lemma
(the proof is straightforward and we omit it).

Lemma V.1. rot(t1; c1, c2, . . . , cL) × rot(t2; b1, b2, . . . , bL) =
rot(t1 + t2; c1b1+t1 , c2b2+t1 , . . . , cLbL+t1).

As a result, taking the powers of a rotation matrix leads to
a rotation matrix as well.
Recall that in our algorithms, we substitute the coding

coefficients {Xi} to be polynomials of an indeterminate X .
From the previous lemma, if we would like the matrices {Xi}
to be rotation matrices, we can simply select the variable X
to be a rotation matrix, and then have the variables {Xi} be
powers of X ; namely,

Xi = Xmi (19)

for some exponent mi. We then need to select the exponents
{mi} so that the polynomial f(X1, . . . , Xν) does not become
identically zero. We can easily do this by slightly modifying
Step 1 in our algorithms.
Alternative substitution for Step 1: As before we employ

the algorithm in [3] to find an assignment Xi = αi with
f(α1,α1, . . . ,αν) invertible. Let α be a primitive element
of the finite field Fq, we can then express each αi in Fq as
αi = αmi for some mi. Therefore we have:

0 '= f(α1,α2, . . . ,αν) = f(αm1 ,αm2 , . . . ,αmν ) = f(α).

Selecting these values for the exponents in (19) concludes the
first step.
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The following, easy to prove, lemma, gives the characteristic
polynomial of a rotation matrix.

Lemma V.2. The characteristic polynomial of the matrix
rot(1; c1, c2, . . . , cL) is XL −

∏L
i=1 ci.

Restricting the coding matrices to be rotation matrices may
not always lead to a solution; the following theorem helps
explore when it is possible to have such a solution.

Theorem V.3. Consider creating a polynomial f(X) by
substituting Xi = Xmi , for some mi, in the polynomial
f(X1, . . . , Xν) derived from the transfer matrix of a network.
If we can create such an f(X) that is co-prime with any of
the polynomials g(X) = XL − c for some c ∈ Fq, then we
can solve the network coding problem using rotation coding
matrices.

Proof: If such a co-prime polynomial exists, use X =
rot(t; 1 . . . 1 c).
That is, if there exists an assignment for the variables of the

polynomial (X1, . . . , Xν) with powers of a single variable X
so that f(X) is co-prime with a polynomial g(X) = Xk − c
for some c ∈ Fq , then the multicast network code design is
solvable with rotational coding.
We underline that our developed algorithms do not allow us

in polynomial time to find such an assignment, if it exists, but
only to check, if the assignment we have selected, is solvable
with rotational coding. We also do not provide any guarantees
under which such an assignment exists.

B. Permutation Matrices over Fq

Another class of matrices that can be employed is the class
of all matrices that are associated with the powers of a fixed
permutation matrix A. A binary permutation matrix simply
permutes the elements of the vector it multiplies. Randomized
designs using binary permutation matrices were presented in
[16]. Our approach aims to develop finite length deterministic
designs.
Permutation matrices can be considered to be block diagonal

matrices4, where each block in the diagonal is a rotation
matrix; this follows from the fact that each permutation can in
general be written as the product of cycles. (See [34], chapter
1, page 48). This implies that the same analysis and approach
as in the case of rotation matrices can be applied, with the
only difference that now the characteristic polynomials of per-
mutation matrices are products of characteristic polynomials
of rotation matrices. That is, we can substitute the coding
variables as powers of a single variable, and check whether, for
the resulting polynomial, there exists a co-prime polynomial
that is the characteristic polynomial of a permutation matrixA.

VI. SCALAR VS. VECTOR OPERATION: A COMPARISON

As we already discussed, and as Theorem VII.4 in Ap-
pendix A proves, if we can solve the scalar network coding

4More precisely, every permutation matrix is similar to a block diagonal
matrix where each block in the diagonal is a rotation matrix. Two square
matrices are called similar if they correspond to the same linear transformation
but with respect to possibly different basis (see [23], chapter 2, page 44).

problem for a network over a field Fqm , with any algorithm
that we desire, then we are able to solve the vector network
coding problem over the same network using matrices of
dimension m × m, i.e., using L = m. Therefore, binary
matrices are at least as useful as finite fields, since, every
solution over a finite field FqL can be directly translated to
code designs for vector network coding using matrices in
ML(Fq).
Indeed, if we translate scalar to vector coding, we only

employ qL of the matrices in ML(Fq), while there exist qL2

L × L such matrices. Even if we only count the number of
invertible matrices inML(Fq), it is easy to see that this number
equals

∏L−1
j=0 (qL − qj), which in turn can be lower bounded

by q
L(L−1)

2 (q − 1)
L(L+1)

2 . Clearly, the number of invertible
matrices of size L is still much larger than qL.
However, in the vector coding algorithm we have developed,

we have imposed restrictions on the set of matrices we are
using. In particular, we have assumed that:
1) The variables {Xi} are pairwise commuting matrices, and
2) each such variable can be expressed as a single variable
polynomial.

Theorem VI.1 proves that, under the above two assumptions,
if for vector coding we find a matrixA of sizem×m such that
f(A) is invertible, and thus we can solve the vector coding
problem using size m, we can translate this to scalar solution
over a field of size 2k, with k ≤ m.

Theorem VI.1. Consider a polynomial f(x) with binary
coefficients, and assume that there exists an m × m matrix
A so that f(A) is invertible. Then, there exists a scalar value
α in a finite field of size at most 2m so that f(α) '= 0.

Proof: If f(A) is invertible for some A ∈ Mm(F2), then
any eigenvalue a of A also satisfies f(a) '= 0. On the other
hand, since the characteristic polynomial of A has degree m,
the degree of the characteristic polynomial h(x) of a over F2

is at most m (see [21], proposition 1.15). If we take the field
generated by α, it is of size at most 2m and it contains α.
Given this theorem, one may ask, why not simply use our

algorithm for scalar network code design, and translate the
resulting solution to a vector solution. We believe that the
vector network coding algorithm might still be interesting, at
least for the following reasons:
1) We can work with structured matrices. Our algorithm for
vector network code design may lead to coding matrices
that have a desired structure, for example be rotation
matrices, as we discussed in Section V.

2) We can work with polynomials that are not irreducible.
Scalar designs always seek for a co-prime factor that is
an irreducible polynomial, since, only irreducible poly-
nomials generate finite fields. In contrast, for our vector
designs, we can use polynomials that are not necessarily
irreducible. We thus have a larger set of polynomials
to use, that might be useful in various application. The
following example VI.2 discusses such an application.

Example VI.2. The goal of this example is to illustrate why
working with non-irreducible polynomials might be useful.



10

Consider a sensor network application where the payload
packet length is very small and fixed to be 5 bits. Assume
that our algorithm steps result5 to the polynomial f(x) =
x32 − x. This polynomial has as roots all elements of the
field F32, and as factors 8 polynomials: x, x − 1, and the
6 irreducible polynomials of degree five. Our algorithm for
scalar code design can provide a solution over the fields of
size 22 and 23 but not the field of size 25. Thus, no scalar
solution can be translated to using vectors of length L = 5,
resulting in suboptimal use of the available payload space. On
the contrary, our algorithm for vector code design can employ
the polynomial g(x) = (x2 + x + 1)(x3 + x + 1), which is
a polynomial of degree 5 and is co-prime with f(x). Thus, it
can lead to a vector network code solution of L = 5 which
optimally utilizes the available space.
This example leverages the fact that if there exist vector

solutions of length k1 and k2, there also exists a vector
solution of length k1 + k2. In contrast, a scalar solution over
fields of size 2k1 and 2k2 does not necessarily imply a solution
over a field of size 2k1+k2 . This is because a field of size F2k

is a subfield of F2l only if k divides l.

3) It provides a basis for building further algorithms. Our
algorithm for vector network coding builds on several
intermediate steps, that in themselves we believe could
be useful for developing more general algorithms. For
example, in our algorithms we restrict our attention to
polynomials of a single variable. Future algorithms may
consider polynomials of two variables, as we do in the
following example.

Example VI.3. The goal of this example is to show that use of
vector network coding can potentially lead to new algorithms
that achieve solutions not possible with scalar coding.
Consider a network with h = 2 and N receivers, where the

transfer function to one specific receiver has the form
[

h1(X1, . . . , Xν) 0
0 h2(X1, . . . , Xν)

]

, (20)

for some polynomials h1 and h2. Assume that we build an
algorithm which substitutes each Xi as a function of two
variables, x and y, and that we end up with the transfer matrix
towards this particular receiver

[

F (x, y) 0
0 G(x, y)

]

. (21)

Assume that

F (x, y) = f4(x) · f6(x) · f7(x) · f8(x) · f9(x) · f10(x),

where we define fi(x) to be the product of all binary irre-
ducible polynomials of degree i, and

G(x, y) = ((x4+x)(x8+x)+(y4+y)(y8+y))(x32+x+y32+y).

We want to select values for x and y so that this receiver has

5We do not claim that there exists a network solvable only if this polynomial
is nonzero. We only assume that our algorithm results in this polynomial,
starting from some multivariate network transfer matrix.

a full rank set of equations to solve6. We will show that, it is
not possible to do that using scalar network coding over any
field of size smaller or equal to 210; however, there exists a
vector coding solution of size L = 10.
Let h(x, y) = F (x, y)G(x, y). We first show that the

evaluation of h at any element of the fields F2, F4, . . . , F1024

is zero. If x, y ∈ F4 then both x4 + x and y4 + y are zero
and therefore h(x, y) = 0. A similar argument shows that if
x, y ∈ F8 or x, y ∈ F32 then h(x, y) = 0. If x, y ∈ F16 then
either both of x and y will be in F4 or at least one of them
is not in that field. If both of x and y are in F4 then both
x4 + x and y4 + y are zero and therefore h(x, y) = 0. If one
of them, say x, is in F16 but not in F4 then the characteristic
polynomial of x will be an irreducible polynomial of degree 4
and therefore f4(x) = 0. Thus, in both cases, h(x, y) = 0. A
similar argument shows that if x, y ∈ F2i for i = 1, 2, . . . , 10
then h(x, y) = 0.
Next, we will show that h(x = X1, y = X2) is an invertible

matrix, where

X1 =





A1 0 0
0 A2 0
0 0 A3



 and X2 =





A3 0 0
0 A1 0
0 0 A2



 ,

where

A1 =

[

0 1
1 1

]

, A2 =





0 0 1
1 0 1
0 1 0



 ,

and

A3 =













0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0













.

First notice that the characteristic polynomials of both
matrices X1, X2 is the product of the characteristic poly-
nomials of the matrices A1, A2, and A3 which is c(x) =
(x2+x+1)(x3+x+1)(x5+x2+1). All the three factors of c(x)
are irreducible polynomials. Since c(X1) = c(X2) = 0 and
c(x) is co-prime with the polynomials f4, f6, f7, f8, f9, f10,
then F (x, y) will be invertible if evaluated at x = X1, y = X2.
Thus we only need to check the invertibility of the factors
((x4 +x)(x8 +x)+(y4 +y)(y8 +y)) and (x32 +x+y32 +y)
of G(x, y). We can evaluate each of these factors to verify that
all of them become invertible matrices. Therefore h(X1, X2)
is a 10 × 10 invertible binary matrix, and we have a vector
solution that employs L = 10.

Our final simple example again makes the point that, the
set of vector solutions can be larger than the set of scalar
solutions.

Example VI.4. Consider the deterministic network in Fig. 1;
deterministic networks were recently proposed to capture wire-
less network properties, such as broadcasting and interference
[9]. The algebraic framework can be directly applied to
deterministic networks as well, as observed in [13], [14], [18].

6We do not claim the existence of a network where satisfying these
conditions is necessary and sufficient.
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y10
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Fig. 1. A deterministic network with a source S multicasting information at rate h = 2 to N = 2 receivers. The information flow to the first receiver is
depicted in dashed lines, and the information flow to the second receiver in bold.

Assume for simplicity that nodes A1, A2 and A3 employ the
coding matrices X1, X2 and X3, while no other node employs
coding. Then

M1 =

[

X1 0

X2 X2

]

, M2 =

[

X1 + X2 X2 + X3

0 X3

]

.

We thus require that the matrices X1, X2, X3 and X1 + X2

are full rank. This is not possible for L = 1. For L = 2, we
can employ

X1 = I, X2 =

[

0 1
1 1

]

and X3 = I. (22)

Consider now the vector algebraic formulations (2) and (3).
We are seeking commutative matrices X1, X2 and X3, so that
the polynomial

f(X1, X2, X3) = X1X2X3(X1 + X2)

evaluates to an invertible L×L matrix. Note that the solution
in (22) employs such matrices.

Next we makes the point that the set of vector solutions
can be larger than the set of scalar solutions. Consider again
the network in Fig. 1. The solution provided in (22) employs
commutative matrices. However, we can also employ non-
commutative matrices such that X1, X2, X3 and X1 + X2

are full rank, for example

X1 =

[

1 0
1 1

]

, X2 =

[

1 1
0 1

]

and X3 = I. (23)

We will count the number of assignments for the variables
X1, X2, X3 using 2 × 2 binary matrices so that the matrix
X1X2X3(X1 + X2) is invertible. It suffices to select X3 to
be an arbitrary invertible matrix and matrices X1, X2 so that
X1, X2, X1+X2 are all invertible. Clearly there are 6 choices
for X3. The only way we can find two invertible binary matrix
whose sum is also invertible is to choose both matrices from

any of the following two sets

{I,

[

0 1
1 1

]

,

[

1 1
1 0

]

}, {

[

0 1
1 0

]

,

[

1 0
1 1

]

,

[

1 1
0 1

]

}. (24)

This shows that there are 12 possibilities to chose the or-
dered pair X1, X2 satisfying the properties mentioned above.
So, in total there are 72 different assignments for the Xi’s
which make X1X2X3(X1 + X2) an invertible matrix. Now
if we want to ensure that all the matrices X1, X2, X3 are
commuting with each other, we can still choose X1, X2 as
before. However, given X1, X2 there are only 3 possibilities
for X3. Therefore there will be 36 different assignments. We
can thus double the solution space if we do not restrict our
attention to commutative matrices.

Benefits of vector coding

To summarize, we have argued that designing vector coding
solutions, as compared to scalar solutions, has the following
benefits:

• All scalar solutions over a field of size q = 2k can be
translated to a vector solution of length k (see Theo-
rem VII.4).

• There may exist vector solutions of length k, while there
exists no scalar solution in a field of size q ≤ 2k (see
example VI.3). In general, if we are not restricted to use
commutative matrices that are polynomials of the same
matrix, there exists a larger set of solutions with vector
as compared to scalar coding (see example VI.4).

• If there exist vector solutions of length k1 and k2, there
exists a vector solution of length k1 + k2. In contrast,
a solution over fields of size 2k1 and 2k2 does not
necessarily imply a solution over a field of size 2k1+k2

(see example VI.2).
• Vector coding allows to leverage well-studied structure
and properties of matrices (see section V).
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VII. CONCLUSIONS
In this paper we develop new algebraic algorithms for the

problem of vector and scalar network code design. We start
our work by extending the algebraic framework developed for
multicasting over graphs in [1] to include operations over ma-
trices. Within this framework, the main idea in our approach is
to reduce the problem of code design to an algebraic problem
of finding co-prime factors of a given polynomial. Based on
this, we provide algorithms for scalar coding that attempt to
minimize the alphabet size and show a doubly exponential
convergence to a solution. We also provide algorithms for
vector coding that allow to use finite lengths and systematically
design vector coding solutions. We illustrate how our approach
can utilize structured matrices to further reduce the encoding
complexity. We also offer a comparison between vector and
scalar network coding and identify potential benefits of vec-
tor network coding. We believe that the approach we have
developed may be useful for network optimization problems
that allow coding, and for deriving additional algorithms for
network code design.
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APPENDIX A

Lemmas used in the proof of Theorem IV.3

For the proof in Theorem IV.3, we need to find a good
approximation for the summation of the degrees of all irre-
ducible polynomials of degree at most m. To do so, we use
the following well-known result on the number of irreducible
binary polynomials of a certain degree.

Lemma VII.1. The number of irreducible polynomials of
degree m is equal to 1

m

∑

d|m µ(m
d )2d where µ(d) is the

Möbius function (see [34], chapter 4, page 289, Corollary
2). Moreover, for every ε > 0, if m ≥ 2 log2

2
ε
, then the

number of binary irreducible polynomials of degree m is at
least (1−ε)

m 2m.

To see why the second statement is true, we use the fact that
the number of binary irreducible polynomials of degree m is
lower bounded by 2m−2×2m/2

m
[32]. It is now straightforward

to check that if m ≥ 2 log2
2
ε
then (1−ε)

m
2m ≤ 2m−2×2m/2

m
.

Lemma VII.2. Let ε be a positive real number and let Nε =
2 log2

2
ε
. If m > 2Nε then the summation of the degrees of all

the irreducible binary polynomials of degree at most m is at
least (1 − 2ε)2m+1.
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Proof: For k = Nε, Nε + 1, . . . , m, the number of
irreducible polynomials of degree k is at least (1−ε)

k
2k by

the previous lemma. Each such polynomial has degree k, and
therefore, the summation of all the irreducible polynomials
of degree k, equals k times their number, which is at least
(1−ε)2k. Summing up this quantity for k = Nε, Nε+1, . . . , m,
we see that the summation of the degrees of all the irreducible
polynomials of degree at most m is at least (1− 2ε)2m+1.
We observe that the numbers Nε are not large. In fact the

upper bound 1
m

2m for the number of irreducible polynomials
of degree m is very close to the actual number. We will use
in this paper this approximation for the number of irreducible
polynomials, as it does not affect the order arguments. We will
thus dispense of ε and Nε and say that the summation of all the
irreducible polynomials of degree at most m is approximately
2m+1.

Efficient time calculation of a polynomial determinant
Lemma VII.3. Consider a k × k matrix whose elements are
either binary variables or polynomials in the same variable x
of degree at most p. Then we can calculate the determinant
by solving a (pk + 1) × (pk + 1) set of linear equations.

Proof: Let g(x) denote the polynomial resulting from the
determinant, we know that the degree ν of the polynomial
g(x) is at most ν ≤ pk. Since we know that

g(x) = cνxν + . . . + c1x + c0

for some unknown coefficients {ci}, we can simply evaluate
the value of the polynomial at ν + 1 points {βi} and solve
a system of linear equations to retrieve {ci}. We select βi

from a finite field Fq′ of size q′ much larger than ν we take
the ν + 1 distinct nonzero elements βj of Fq′ , and for each
one, compute det(M(βj)). Notice that in the system of linear
equations, the corresponding matrix is a Vandermonde matrix
and in particular, it is invertible. So, there exists a unique
solution for this system of linear equation.
Note that if we expand the determinant as in the definition

of the determinant of a matrix, since all the entries are binary
polynomials, the determinant will be a binary polynomial as
well. Thus we know that {ci} are binary coefficients, and,
although we solve linear equations over the finite field where
the βi’s belong, the unique solution of this system of equations
will be binary.

Mapping of scalar operations to vector operations for our
algorithm
This is a well known result in algebraic coding, but we

repeat it here for completeness.

Theorem VII.4. For a non-zero polynomial
f(x1, x2, . . . , xn), assume that there are values
α1,α2, . . . ,αn ∈ F2m with f(α1,α2, . . . ,αn) '= 0. Then there
are pairwise commuting matrices A1, A2, . . . , An ∈ Mm(F2)
such that f(A1, A2, . . . , An) is an invertible matrix.

Proof: Consider the natural one-to-one ring homo-
morphism φ : F2α(f) → Mα(f)(F2) as defined in

[34], section 7, page 424. Let α1,α1, . . . ,αn ∈ F2m

with g(α1,α1, . . . ,αn) '= 0. Let Ai := φ(αi) for
1 ≤ i ≤ n. Since φ is a ring homomorphism we
have: f(A1, A2, . . . , An) = f(φ(α1),φ(α1), . . . ,φ(αn)) =
φ(f(α1,α1, . . . ,αn)) = φ(α). Since α '= 0, φ(α) is invertible
and hence, f(A1, A2, . . . , An) is invertible.
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