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Abstract. In the k-set agreement problem, each processor starts with a private input value and
eventually decides on an output value. At most k distinct output values may be chosen, and every
processor’s output value must be one of the proposed values. We consider a synchronous message
passing system, and we prove a tight bound of �f/k�+2 rounds of communication for all processors
to decide in every run in which at most f processors fail. The lower bound proof proceeds through
a simulation of a synchronous solution to k-set agreement in message passing, in an asynchronous
shared memory system in which k − 1 processors may fail, and which was proven to be impossible
using topological approaches. In contrast to past complexity results on set agreement, our lower
bound proof is purely algorithmic. It does not use any direct topological argument but uses instead
the impossibility of asynchronous set agreement to encapsulate the needed topology. We thus derive
an adaptive complexity lower bound for a message passing system from a static impossibility in a
shared memory system.
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1. Introduction. Results about the complexity of set agreement are intriguing,
as they present an intrinsic trade-off between the degree of coordination that these
processors can reach and the number of failures that are tolerated [7]. The complexity
of early deciding [9] set agreement is even more intriguing as it brings to the picture
the number of failures that actually occur in a given computation.

1.1. Set agreement. Set agreement is a natural generalization of the widely
studied consensus problem [11]. In set agreement, just like in consensus, each pro-
cessor is supposed to propose a value and eventually decide on some output that was
initially proposed, such that every correct processor eventually decides. Processors
are restricted not to decide on more than k distinct outputs. We talk about k-set
agreement, and consensus is the special case where k = 1.

Set agreement was introduced in [6], where it was conjectured that, in an asyn-
chronous system, the problem has a solution if and only if strictly less than k proces-
sors may crash. (An asynchronous model of distributed computation is characterized
by the following two properties: (1) processors execute the algorithm assigned to them
unless they crash, in which case they stop all their activities and they are said to be
faulty (not correct); (2) processors make no assumption on their relative speed and
message communication delay.) This conjecture has sparked a fruitful line of research
[3, 14, 17].
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64 ELI GAFNI, RACHID GUERRAOUI, AND BASTIAN POCHON

1.2. The complexity of set agreement. After proving the impossibility of
k-set agreement with k crashes in an asynchronous system, researchers turned to the
complexity of the problem in the synchronous system [7, 12, 13]. (In a synchronous
model of distributed computation, processors execute in a lockstep manner, moving
incrementally from one round to the next, and exchanging messages in every round;
if a processor p does not receive a message from a processor q in a round r, then no
processor ever receives any message from q in any subsequent round r′ > r.) Here,
topological arguments were used to prove a fundamental complexity result.

In short, the result states that any synchronous k-set agreement algorithm that
tolerates t failures (where t < N and N is the total number of processors in the
system) has at least one run where at least one correct processor does not reach a
decision before round �t/k�+ 1.

This lower bound does not, however, say much about the existence of algorithms
that would expedite a decision in runs where f (f ≤ t) failures actually occur. In
particular, one would expect that, in runs where few failures occur, a decision can
be reached earlier than in those with more failures. Algorithms that have such an
adaptive flavor are called early deciding: their efficiency depends on the effective
number of failures that occur in a given computation, rather than (only) on the
(total) number of failures that can be tolerated [9].

In practice, failures rarely happen, and it makes sense to devise algorithms that
decide earlier when fewer failures occur. For consensus, a significant efficiency im-
provement has been established when considering the effective number of failures
[5, 10, 15]. In particular, it was shown that there is an algorithm where all correct
processors decide by round min(f +2, t+1) in any run with at most f failures for any
integer f [5, 15]. It was also shown that, for any integer f ≤ t and for any consensus
algorithm, not every processor may decide before min(f + 2, t+1) rounds in any run
with at most f failures.

No (tight) bound for early deciding set agreement has been established so far.
This might not be surprising given the involvement of the lower bound proofs of less
general, nonearly deciding set agreement algorithms. In particular, when facing the
question of a lower-bound to early deciding set agreement, it is not clear how to
extend the topological arguments in [14]. The “protocol complex”—the topological
entity used in that paper—applies to the “end” of the protocol. With early deciding,
we deal with some processors outputting a decision in a round and some not: so there
is no well-defined “end.”

More generally, the topological method typically characterizes the structure of
views of processors at the end of the computation and has not been adapted yet to
deal with evolving computation. In a sense, early decision argumentation is evocative
of the analysis that is called for when arguing one-shot versus long-lived object im-
plementations [2]. The issue there is whether a processor can obtain an output in the
face of continual arrival and departure of other processors. To date, the topological
method has not helped in resolving this matter. The early decision question seems to
fall into this category of evolving dynamic computations.

Also, here we consider set agreement; yet, even for consensus, the early decid-
ing synchronous lower bound is involved. The consensus bound has been argued
recently [15] through similarity between computations, rather than by using the
more modern methods developed with the emergence of the topological techniques
[3, 4, 7, 14].D
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THE COMPLEXITY OF EARLY DECIDING SET AGREEMENT 65

1.3. Contribution. In this paper, we propose dealing with the dynamic situa-
tion of early decision in an iterative manner, rather than through a head-on attack.
We do not apply topology directly. Rather, we reason about the dynamics of the
synchronous computation through reduction. Unlike [12], where the simulation pro-
ceeds forward without “looking back,” we propose a simulation technique using the
BG-simulation [3, 4]. This allows simulators to go back and look at the transcript of
the simulation and by that allows us to argue about the dynamics of the computation
rather than just its end. Interestingly, even if the transcript is explored in the more
abstract shared memory model, the lower bound we derive is for a message passing
model.

More specifically, this paper first considers an underlying synchronous message
passing system and exhibits a set-agreement algorithm where every correct processor
decides within �f/k�+2 rounds in every run in which at most f processors fail. Then
we prove our main lower-bound result showing that the algorithm is optimal. The
lower bound is expressed in general terms without any assumption on the total number
of processors. Its proof proceeds through a simulation of a synchronous solution to
k-set agreement in message passing, in an underlying asynchronous shared memory
system in which k − 1 processors may fail. The lower bound then derives from the
impossibility of k-set agreement in the latter model, which has already been proved,
e.g., using topological approaches.

Our result supports the tradition in computer science that once a few cornerstone
impossibility or complexity results have been proved using direct arguments, from
there one should use reductions rather than argue anew. In our distributed computing
context, this translates into a minimal usage of topological techniques, in the same
vein that one proves NP-completeness by reduction rather than rehashing Cook’s
proof of the SAT NP-completeness [8].

1.4. Roadmap. The rest of the paper is organized as follows. Section 2 gives
some preliminaries about the distributed computing models that are needed to state
and prove our results. Section 3 presents an algorithm for early deciding set agree-
ment, giving the upper bound. Section 4 states and proves our lower-bound result,
showing the bound to be tight. Section 5 compares our result with previous results
on consensus. Section 6 concludes the paper with some final remarks.

2. Models and problems. In the following, we present the main elements of the
synchronous message passing model, in which we state the lower bound and design our
optimal early deciding set agreement algorithm. Then we present the asynchronous
shared memory model, which we use in our lower-bound proof. (Remember that we
reduce the lower bound on the synchronous complexity of early deciding set agreement
in message passing into its asynchronous impossibility in shared memory.) We finally
also briefly recall the set agreement problem.

2.1. The synchronous message passing model. We consider a set of proces-
sors Π = {p0, p1, . . .}. Processors communicate by message passing. Communication
channels are reliable. Processors execute in a synchronous, round-based model [16].

A run is a sequence of rounds. Every round is composed of three phases. In the
first phase, every processor broadcasts a message to all the other processors. In the
second phase, every processor receives all the messages sent to it during the round.
In the third phase, every processor performs a local computation before starting the
next round. Processors may fail by crashing.

A processor that crashes does not execute any step thereafter and is said to be
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66 ELI GAFNI, RACHID GUERRAOUI, AND BASTIAN POCHON

faulty. Processors that do not crash are said to be correct. When processor pi crashes
in round r, any subset of the messages that pi sends in round r (possibly the empty
set) might not be received by the end of round r. A message broadcast in round r by
a processor that does not crash in round r is received, at the end of round r, by every
processor that reaches the end of round r.

We say that a processor pi sees f crashes at the end of any round r if pi receives
messages from all processors but f of them. We consider that at most t < N processors
may fail, i.e., crash, in any run. The state of a processor pi, at the end of round r,
consists of the content of its local memory, including the messages received in each
round r′ ≤ r as well as the local variables of pi.

For simplicity, we sometimes say that an algorithm is synchronous (resp., asyn-
chronous) to mean that the algorithm assumes a synchronous message passing (resp.,
asynchronous shared memory) model.

2.2. The asynchronous shared memory model. We prove our lower bound
result by reducing computations in the synchronous message passing model, recalled
above, to computations in the more abstract asynchronous shared memory model,
which we recall here.

For clarity, processors are called simulators in the asynchronous shared memory
model. Precisely, we consider a set of k + 1 simulators {sim0, . . . , simk}.

Simulators communicate through asynchronous shared memory. In the asynchro-
nous shared memory model, there exists no bound on the processor relative run speed.
Shared memory is organized into cells (sometimes called registers), where each mem-
ory cell may contain an infinite number of bits.

Cells of the shared memory support three operations: the write(v) operation
atomically writes value v into the cell; the read() operation atomically returns the
content of the cell; and the snapshot() operation returns an atomic view of all the
cells (i.e., the snapshot which can be implemented from read and write operations
in asynchronous shared memory returns values of cell read simultaneously at some
instance between the invocation and the return of the snapshot operation [1]). Any
cell may be written by a single simulator and read by all of them.

For the sake of simplifying the presentation, in what follows we adopt the conven-
tion that, after executing an operation snapshot(args), the variables args are accessible
by the simulator in its local memory, and the content of the args variables are the
same as that at the time of the snapshot() operation.

Without loss of generality, we consider that the simulators execute full-informa-
tion protocols in shared memory [14]. In a full-information protocol, any simulator
simi writes its entire state into a memory cell whenever simi writes anything into this
cell. Any simulator that later reads the cell reads the entire history of the states of
simulator simi.

2.3. The k-set agreement problem. Each processor proposes a value v from
a set of inputs V , and is supposed to eventually decide on an output v′ of V , such
that the following hold:

Validity. Every output is a proposed input value.
k-set agreement. There are at most k distinct outputs.
Termination. Every correct processor eventually decides on an output.

Solving k-set agreement in a wait-free manner means that every correct processor
eventually decides (no matter how many processors fail). Wait-free k-set agreement
is proved impossible in an asynchronous shared memory model of k + 1 processors
[3, 14, 17].
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At processor pi:

1: halt := ∅ ; deciding := false
2: Sr := ∅ ∀r

3: procedure propose(vi)
4: esti := vi
5: for r from 1 to ∞ do
6: if deciding then
7: send (r,Dec, esti) to all
8: else
9: send (r,Est, esti) to all

10: if deciding then
11: decide(esti) ; return
12: else if received any (r,Dec, estj) then
13: esti := estj ; deciding := true
14: else
15: Sr := {(estj , j) | (r,Est, estj) is received in round r from pj}
16: halt := Π\∪(estj ,j)∈Sr {j}
17: esti := min{estj | (estj , j) ∈ Sr}
18: if |halt | < rk then
19: deciding := true

Fig. 3.1. An early deciding k-set agreement algorithm (algorithm for processor pi).

3. An upper bound for early deciding set agreement. We give in Figure
3.1 an algorithm that solves k-set agreement in the synchronous message passing
system Π = {p0, p1, . . .}. In any run where there are at most f crashes, every correct
processor decides within �f/k�+ 2 rounds. Moreover, if there are eventually at most
k − 1 crashes per round, every correct processor eventually decides.

The algorithm is pretty simple. It helps us understand the notion of early decision
and hopefully motivates the ideas underlying the lower-bound proof, which is the main
technical contribution of this paper.

3.1. Overview of the algorithm. The idea underlying the algorithm is that
each processor maintains its current estimate of the decision value, and in each round,
processors exchange their estimate values. Moreover, each processor pi maintains a
set (denoted halti in Figure 3.1) with the identity of the processors from which pi does
not receive a message.

If, in a given round r, less than k new processors crash, then, for any processor pi,
there are at most k− 1 values among those remaining in the system that pi has never
received in any message (i.e., pi is unaware of at most k− 1 values of those remaining
in the system).

Any processor pi that misses at most k − 1 values from those in the system in
any round r has a decision value as its estimate at the end of round r. If pi succeeds
in sending its estimate value in the next round r+1 to every other processor without
crashing, pi may safely decide on its estimate value at the end of round r + 1.

In the algorithm, processors decide only when there are at most k − 1 crashes in
a round r for any r > 0. (The decision effectively occurs at the end of round r + 1.)
However, processors do not decide if there are k crashes in the round.
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3.2. Correctness of the algorithm. In the following, we denote the local copy
of a variable var at processor pi by vari, and the value of vari at the end of round
r by varri . We denote by crashedr the set of processors that crash before completing
round r, and by estsr the set of estimate values of every processor at the end of round
r. By definition, round 0 ends when the algorithm starts.

No processor decides by round 0. We first prove three general claims about the
algorithm (of Figure 3.1).

Claim 3.1. estsr ⊆ estsr−1.
Proof. The proof is straightforward: for any processor pi, est

r
i ∈ estsr−1.

Claim 3.2. If at the end of round 0 ≤ r ≤ �t/k� no processor has decided, and
at most l processors crash in round r + 1, then |estsr+1| ≤ l + 1.

Proof. Assume the conditions of the claim, and assume by contradiction that
|estsr+1| ≥ l+2. By assumption, l+2 processors have distinct estimate values at the
end of round r+1. Denote by q0, . . . , ql+1 these processors, such that estr+1

qi ≤ estr+1
qi+1

for 0 ≤ i ≤ l + 1. Processors q0, . . . , ql do not send estr+1
q0 , . . . , estr+1

ql
in round r + 1;

otherwise, ql+1 receives one of the smallest l+1 estimate values in round r+1. Thus,
l + 1 processors send values corresponding to estr+1

q0 , . . . , estr+1
ql

in round r + 1 and
which crash in round r+1; otherwise, ql+1 receives one of the smallest l+1 estimate
values in round r+1. This contradicts our assumption that at most l processors crash
in round r + 1.

Claim 3.3. If, at the end of round r ≥ 1, no processor has decided, and |estsr| ≥
k + 1, then |crashedr| ≥ rk.

Proof. We prove the claim by induction. For the base case r = 1, assume that the
conditions of the claim hold. That is, at the end of round 1, k+1 distinct processors
q0, . . . , qk have distinct estimate values. By Claim 3.2, |crashed1| ≥ k. Assume the
claim for round r − 1, and assume the conditions of the claim hold at round r. We
prove the claim for round r. By assumption, k + 1 processors q0, . . . , qk, at the end
of round r, have k + 1 distinct estimates. By Claim 3.1, k + 1 processors necessarily
reach the end of round r − 1 with k + 1 distinct estimates. Thus Claim 3.3 holds at
round r − 1 (induction hypothesis), and thus, |crashedr−1| ≥ (r − 1)k. By Claim 3.2,
at least k processors crash in round r. Thus |crashedr| ≥ k+ |crashedr−1| ≥ rk.

We are now able to prove the correctness of the algorithm.
Theorem 3.4. The algorithm in Figure 3.1 solves k-set agreement.
Proof. Validity is obvious, as any processor pi assigns its proposed value as its

estimate, thereafter exchanges estimate values with other processors, and decides on
its estimate value.

For proving that the algorithm ensures k-set agreement, consider the lowest round
r in which some processor decides. If such a round r does not exist, then no processor
ever decides, and k-set agreement is trivially satisfied. Hence we assume hereafter
that such a round r exists. Let pi be one of the processors that decide in round r.
Processor pi decides at line 11, after executing line 19 in round r−1, where deciding is
set to true at processor pi. In round r−1, pi executes line 19 only if |crashed|r−1 < rk
holds at line 18. Thus, from Claim 3.3, there are at most k distinct estimate values
at the end of round r − 1 in the system, which ensures k-set agreement.

For proving that, if there are eventually at most k − 1 crashes per round, then
every correct processor eventually decides, observe that, if in any round r at most
k − 1 processors crash, then |haltr| < rk at the end of round r. Hence, every correct
processor executes line 19, sends its estimate as a decision in round r+1, and decides
on its estimate value at the end of round r + 1 at line 11 in the algorithm.
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Theorem 3.5. In any run with at most f failures, any correct processor decides
by round �f/k�+ 2 with the algorithm in Figure 3.1.

Proof. Assume a run with at most f failures. By way of contradiction, assume
that there exists a processor pi for which |haltri | ≥ rk for r = �f/k�+ 1. (Otherwise,
if |haltri | < rk, then pi decides at line 11 in the next round.) Processor pi does not
decide in round r; in particular, pi does not receive any dec message in round r. We
have |haltri | ≥ rk = (�f/k�+ 1)k = �f/k�k + k > f , which is a contradiction.

4. The lower bound. Our lower-bound proof proceeds through a simulation
of a synchronous solution to k-set agreement in message passing, in an underlying
asynchronous shared memory system in which k − 1 processors may fail. The lower
bound then derives from the impossibility of k-set agreement in the latter model.

The simulation relies on a reduction technique called the BG-agreement protocol
[3, 4]. For completeness and self-containment of our lower bound proof we briefly
review this protocol here before giving our main lower-bound result. (A formal treat-
ment of the protocol is given in [4].)

4.1. The BG-agreement protocol. A BG-agreement protocol is a distributed
algorithm involving a set of processors (called simulators here) that seek to reach
agreement in the asynchronous shared memory model. The protocol has exactly one
wait statement—the last one.

The BG-agreement protocol consists in deciding one of the values proposed by the
simulators. The simulator whose value is decided is called the winner of the protocol.
The protocol is guaranteed to decide a value when all participating simulators arrive
at the wait statement. These participating simulators are not known in advance.
While waiting for other simulators to reach the wait statement, the outcome of the
protocol may not be known and, in our terminology, we say that the BG-agreement
is not resolved.

The crucial observation here is that, if the BG-agreement is not resolved, then
one of the participating simulators is in the middle of the algorithm rather than
at the wait statement (we say that this simulator is blocking the BG-agreement).
Interestingly, if simulators that are waiting time-share and execute other protocols,
and the BG-agreement is not resolved, we can conclude that at least one simulator
does not participate in other protocols.

An implementation of the BG-agreement protocol is illustrated in Figure 4.1.
Variables vi, xi, and Si (for any 0 ≤ i ≤ n) are in shared memory, are written by
simulator simi, and are read by all. The ∗ in front of the parameter result indicates
an output parameter. The wait statement spans over lines 11 to 13.

A simulator proposes a value v to a BG-agreement instance by invoking BGpro-
pose(v, result) and expects the result of the agreement to be stored in local variable
result.

The intuitive idea underlying how the BG-agreement protocol works in Figure 4.1
is as follows: a simulator (i) writes its proposed value and its identifier in shared
memory (we say that the simulator “registers”), (ii) takes a snapshot of the registered
simulators, and (iii) writes its snapshot into shared memory. The simulator then
continuously takes snapshots of the shared memory until all the registered simulators
have written their snapshots into shared memory. The simulator then returns the
value of the simulator with the smallest identifier in the smallest set corresponding to
the snapshot of a simulator. This simulator with the smallest identifier is the winner.

Notice that, in the BG-agreement protocol, a simulator, after taking a snapshot,
has a set of candidate winners—those that appear in its snapshot. No simulator
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1: In shared memory:
2: vi ∈ V, init ⊥
3: xi ∈ {true, false}, init false
4: Si ⊆ {0, . . . , n}, init ∅

5: procedure BGpropose(v, ∗result)
6: vi := v
7: xi := true
8: snapshot(x1, . . . , xn)
9: Si := { j | xj = true, 0 ≤ j ≤ n }

10: do
11: {The do loop is the wait statement}
12: snapshot(S0, . . . , Sn)
13: until ∀j ∈ Si : Sj �= ∅
14: winner := min(Sj), where j ∈ Si and ∀k ∈ Si : |Sk| ≥ |Sj |
15: ∗result := vwinner

Fig. 4.1. BG-agreement protocol (algorithm for simulator simi).

registering later may win the agreement, and, more generally, no simulator registering
after any other processor arrived at the wait statement may win the agreement. Thus,
if a simulator, after arriving at the wait statement, observes that all current proposals
are the same, this simulator may determine the resolution of the agreement. In
this sense, a BG-agreement instance is an “open” box. Any simulator may access
the shared memory used in a particular BG-agreement instance without invoking
BGpropose, e.g., to read all the proposals to this instance and determine the winner
of this instance.

4.2. Main theorem. We now give the main theorem behind our lower-bound
result. The theorem is expressed in general terms, without any mention of the total
number of processors.

Theorem 4.1. For any integer f ≥ 0, no synchronous algorithm C(k, f) solves
k-set agreement under the following conditions:

1. In runs in which eventually no more than k−1 processors crash in each round,
eventually every correct processor decides.

2. A processor that sees f failures (for some fixed f) decides within �f/k�+ 1
rounds.

The first condition can be viewed as a nontriviality property. Without it, The-
orem 4.1 would be trivially wrong: for any integer f ≥ 0, it is possible to design an
algorithm where all processors that decide do so by round �f/k�+1, in any run with
at most f failures, if eventually there will be no failure.

The proof is by contradiction, and the main idea is to reduce the problem of
solving wait-free k-set agreement with an asynchronous shared memory algorithm to a
synchronous message passing algorithm C(k, f) solving k-set agreement and satisfying
the two conditions of Theorem 4.1. The impossibility of the former problem [3, 14, 17]
implies the impossibility of the latter.

In short, the reduction consists in simulating, with algorithm C(k, f), a run of an
asynchronous shared memory algorithm that wait-free solves k-set agreement among
k + 1 processors (simulators).
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BG-agreement in Rr,1

Purpose agree upon the state of a processor pj at the beginning of round r+
1 (i.e., whether pj crashes in round r and, if not, which messages
pj receives in round r)

Input values “failed,” “pj receives messages from all processors in a set
correct ⊆ 2Π”

BG-agreement in Rr,2

Purpose agree upon a correct processor at the beginning of round r + 1
Input values “no processor,” “kill pl ∈ Π”

Fig. 4.2. Series of BG-agreements in Rr,1 and Rr,2.

4.3. Proof overview. We first give an intuitive idea of the simulation underly-
ing the lower bound proof.

In the simulation of each synchronous round of algorithm C(k, f), the k+ 1 sim-
ulators use a series of BG-agreement instances (Figures 4.3 to 4.7) to decide which
messages any processor pj received and which messages pj did not receive; this deter-
mines the new state of pj .

When a simulator simi decides, in any of the BG-agreements, that messages of
pj were not received, simi somehow fails processor pj (we also say that pj was chosen
to be failed); this means that simi is simulating a run of C(k, f) where processor pj
crashes.

The exact simulation performed by simulator simi depends on the execution of the
particular BG-agreement, according to Figure 4.2. Any simulator simi that blocks a
BG-agreement does not let the other simulators involved in the same BG-agreement
decide upon the state of processor pj; as a simulator may block at most one BG-
agreement, in each round at most k BG-agreements may be unresolved.

In the simulation, this is translated into at most k new failures per round of the
synchronous run. If a BG-agreement in the “far past” is not resolved, then a simulator
is blocked in this BG-agreement, which means that the simulation proceeds from some
round on with less than k + 1 simulators and therefore generates less than k failures
per round.

This, according to condition 1 of Theorem 4.1, forces the processors to decide
and allows the simulators to read any processor decision and then decide on the same
value.

On the other hand, if no simulator is blocked in any past BG-agreement, then
a correct processor eventually decides according to condition 2 of Theorem 4.1. The
simulators identify a processor that is correct and which decides according to con-
dition 2. The simulators may read the decision of this processor and decide on the
same value. The processor that decides does not interfere with the simulation after it
decides. This is because the simulation ensures that this processor fails immediately
after deciding.

4.4. Lower-bound proof. Assume by contradiction that algorithm C(k, f),
satisfying the two conditions of Theorem 4.1, exists. We show how k + 1 simulators
sim0, . . . , simk solve k-set agreement asynchronously in a wait-free manner (i.e., while
tolerating k simulator crashes) in shared memory, using C. This has been proved
impossible [3, 14, 17].
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1: In shared memory:
2: stater,j, init ⊥
3: FinalFaultyr,j, init ∅, r ≥ 1, 0 ≤ j ≤ n

4: procedure Simulate(C, f)
5: r := 0, Correct := Π
6: {
7: {Execute two coroutines in parallel}
8: ResolveInputs()
9: {Coroutine 1: the simulation}

10: for r := 1 to ∞ do
11: r := +1
12: Execute Rr,1

13: Execute Rr,2

14: SimulateRound(C, r)
15: } || {
16: {Coroutine 2: finding a decision}
17: for scan := 1 to r do
18: if ∃pj ∈ Π : statescan,j = “failed” then
19: Correct := Correct − { pj }
20: if ∃pj ∈ Π : statescan,j = “decided v” then
21: decide v
22: else if ∃pl ∈ Π : statescan,j = “killed” then
23: add or subtract messages to pl from faulty processors to have exactly
24: f failures
25: resimulate C(k, f) with the new messages to pl; pl decides on v
26: decide v
27: else if |Correct | ≤ N − f then
28: select the faulty processor pl from which all correct
29: processors receive a message in round scan
30: add or subtract messages to pl from faulty processors to have exactly
31: f failures
32: resimulate C(k, f) with the new messages to pl; pl decides on v
33: decide v
34: }

Fig. 4.3. Simulation of algorithm C (algorithm for simulator simi).

1: procedure ResolveInputs()
2: for each pj ∈ Π do
3: BGproposej,0(i, state1,j)

Fig. 4.4. Resolving inputs of algorithm C (algorithm for simulator simi).

The proof is divided into three parts.
1. We first inductively show how a synchronous round r > 1 of algorithm C(k, f)

can be simulated in the asynchronous shared memory model, assuming round
r − 1 was simulated.
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1: procedure Execute Rr,1

2: snapshot(stater,0, . . . , stater,n)
3: Fr,i := { pj | stater,j ∈ {⊥, “failed”, “killed”}} ∪ Suspectedr,i
4: for each pj ∈ Fr,i do
5: BGproposej,r,1(“failed”, stater+1,j)
6: snapshot(stater+1,0, . . . , stater+1,n)
7: FinalFaultyr+1,i := { pj | stater+1,j = “failed” or
8: BGproposej,r,1 has only “failed” proposals}
9: for each pj ∈ Correctr+1,i := Π\FinalFaultyr+1,i do

10: BGproposej,r,2(“pj receives messages from all processors in Correctr+1,i”,
11: stater+1,j)

Fig. 4.5. First asynchronous phase Rr,1 (algorithm for simulator simi).

1: procedure Execute Rr,2

2: snapshot(stater+1,0, . . . , stater+1,n)
3: snapshot(FinalFaultyr+1,0, . . . ,FinalFaultyr+1,n)
4: if (i) pl = ⊥ and

(ii) ∃simq : |FinalFaultyr+1,q| ≥ f and
(iii) �(pj ∈ Π, r′ ≥ 1) : stater′,j = “killed” and
(iv) �(pj ∈ Π, r′ ≥ 1) : BGproposer′ has only “kill pj” proposals then

5: processorToKill := minj{ pj | stater+1,j /∈ {⊥, “failed”, “killed”}}
6: BGproposer(“kill processorToKill”, pl)
7: else
8: BGproposer(“no processor”, pl)
9: if pl /∈ {⊥, “no processor”} then stater+1,l := “killed”

10: snapshot(stater+1,0, . . . , stater+1,n)
11: for all proposed pj �= pl in BGproposer do
12: Suspectedr+1,i := Suspectedr+1,i ∪ { pj }

Fig. 4.6. Second asynchronous phase Rr,2 (algorithm for simulator simi).

2. We then exploit the two conditions of Theorem 4.1 so that each simulator can
reach a decision with the simulation of C(k, f) presented in the first part.

3. We finally show how to initiate the simulation by instantiating the first part
with r = 1.

Proof. Part 1: Simulating synchrony with asynchrony. The simulators execute
two asynchronous phases, Rr,1 and Rr,2, for every synchronous round r of algorithm
C(k, f). In the first asynchronous phase, Rr,1, simulating round r of C(k, f), the
simulators tentatively agree on the state of each processor at the end of round r or,
equivalently, at the beginning of round r + 1 (i.e., on what messages are received by
each of the processors in synchronous round r, if any). In the second asynchronous
phase, Rr,2, simulating round r of C(k, f), the simulators tentatively agree on a
correct processor and simulate the failure of this processor at the beginning of round
r + 1. Asynchronous phases Rr,1 and Rr,2 are executed using several BG-agreement
instances, as depicted in Figures 4.3 to 4.7.

Claim 4.2. For any integer r > 1, the algorithm in Figures 4.3 to 4.7 simulates
a round r of synchronous algorithm C(k, f), assuming it simulated round r − 1.
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1: procedure SimulateRound(C, r)
2: execute round r of C using stater,0, . . . , stater,n:
3: • if a processor pj decides on a value v, then stater+1,j := “decided v”
4: • otherwise generate the content of the messages to be sent in round r + 1

Fig. 4.7. Simulating code C (algorithm for simulator simi).

Proof. In the first asynchronous phase, Rr,1, every simulator simi takes a first
snapshot and gathers in a set Fr,i the processors (a) for which the state at the be-
ginning of round r is not determined, or (b) for which the state at the beginning
of round r is determined and indicates that the processor is faulty. Simulator simi

proposes, in a first series of BG-agreements, in order to determine the state of each of
the processors in Fr,i at the beginning of round r + 1, failing each processor in Fr,i.
Simulator simi, after finishing all these BG-agreements (many of which are possibly
unresolved), then takes a second snapshot and gathers in a set FinalFaultyr+1,i ⊆ Fr,i

the processors in Fr,i which are faulty at the beginning of round r + 1. (These are
the processors decided to fail by resolved BG-agreements, plus the processors in Fr,i

for which all proposals are to fail them in the corresponding BG-agreement.) For any
processor pj in the complement set Correctr+1,i = Π\FinalFaultyr+1,i, simi obtains
the state of pj at the beginning of round r, from either the first or the second snapshot
in Rr,1. Simulator simi writes FinalFaultyr+1,i in shared memory and then proposes,
in a second series of BG-agreements in Rr,1, in order to determine the state of each
of the processors in Correctr+1,i, at the beginning of round r+1, that each processor
in Correctr+1,i receives a message from every other processor in Correctr+1,i. (Note
that it is possible that a processor that belongs to Fr,i for simulator si also belongs to
Correctr+1,i thereafter in the case that another simulator proposes not failing this pro-
cessor. In this case, simulator si does not use a second BG-agreement for determining
processor pi’s state.)

Simulator simi now moves to the second asynchronous phase Rr,2; simi first takes
a snapshot to observe the state of the processors at the beginning of round r + 1.
Then simi proposes a correct processor, using a single BG-agreement, whose purpose
is to agree upon a correct processor. simi chooses a correct processor to propose as
follows:

1. there is a simulator simq in the snapshot taken by simi, such that simq sees
f or more processor failures, and

2. simi has not yet chosen a correct processor, nor observed such a processor
being chosen, nor guaranteed to be chosen,1 in a previous asynchronous phase
Rs,2, s < r.

Otherwise there is no such processor and simi proposes a special “no processor” value.
The idea is to simulate the failure of the processor agreed upon at the beginning of
round r + 1.

Following the BG-agreement of Rr,2 (not necessarily resolved yet), simulator simi

takes a snapshot of the proposals to the BG-agreement of Rr,2 and starts to simu-
late synchronous round r + 1. For each correct processor that appears in the last
snapshot taken, that is, a correct processor that may be chosen as the result of the

1For instance, because a BG-agreement, though not yet resolved, may guarantee that a processor
will be chosen if all propositions are to fail the same processor and that no proposition is to fail no
processor.
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BG-agreement in Rr,2, its state at the beginning of synchronous round r + 1 is not
determined until the BG-agreement of Rr,2 is resolved (the processor is “suspected”).
Consequently, in Rr+1,1, all the simulators propose to fail these processors at the
beginning of synchronous round r+ 2, that is, in the first series of BG-agreements in
Rr+1,1.

Part 2: Reaching a decision. We make the following claim.
Claim 4.3. Consider the algorithm made of rounds C(k, f) simulated in Figures

4.3 to 4.7, and assume that in runs in which eventually no more than k−1 processors
fail in each round, eventually every correct processor decides; and a processor that
sees f failures (for some fixed f) decides within �f/k�+1 rounds. Then every correct
simulator decides.

Proof. Throughout the simulation, simulator simi continuously reads the shared
memory in order of increasing rounds starting at round 1 to determine the first pro-
cessor pl that has been agreed upon as the result of Rr,2 for some round r. Because
all simulators have the same rule for determining this processor, they will all agree on
the same pl (if one exists). There are two cases however, in which there may never
be such a processor:

1. the simulation goes almost lockstep and less than f processors fail in the
simulation, or

2. the simulators cannot determine pl because a past BG-agreement is not yet
resolved.

In any of these cases, there will eventually be less than k faulty processors per round.
Therefore, the synchronous simulated processors eventually have to decide, according
to the algorithm C(k, f).

Now, suppose that none of these cases happen, i.e., every BG-agreement is even-
tually resolved, but there are forever synchronous rounds with k failures in each round
(i.e., the opposite of eventually strictly less than k failures per round). Thus, the num-
ber of faulty processors grows without bound as the simulation proceeds far enough.
In this case, when reading the shared memory, the simulators will all determine a
round m such that m is the first round in which f or more processors are faulty
at the beginning of round m. Since, for each simulator simi, each processor in the
set FinalFaultym−1,i is faulty at the beginning of round m, it follows that in round
m− 2 or less, no correct processor was chosen to fail in Rm−2,2. To see why, suppose
by contradiction that a correct processor was chosen to fail at round m − 2 (i.e., in
Rm−2,2). Then at least one simulator simq has FinalFaultym−2,q ≥ f . Since these
processors will be faulty at the beginning of m− 1, and additionally one correct pro-
cessor was chosen to fail, there are more than f failures at the beginning of round
m− 1, contradicting the assumption that m is the first such round.

Since, at the beginning of round m, there are f failures or more, and at the
beginning of round m − 1, there are at most f − 1 failures, there must be, at the
beginning of round m, a processor pj that fails, and all correct processors at the
beginning of round m receive a message from pj in round m− 1. There are two cases:

1. A correct processor pl is chosen by the BG-agreement in Rm−1,2.
2. No correct processor is chosen by the BG-agreement in Rm−1,2.

In the latter case, there necessarily exists at least one simulator simi which proposes
that nobody be chosen in that BG-agreement; i.e., simulator simi observes no other
simulator simq with FinalFaultym−1,q ≥ f . Since simi finished all the BG-agreements
in Rm−1,1, no simulator simq with FinalFaultym−1,q ≥ f imposed its proposal in any
BG-agreement of Rm−1,1. Consequently, no processors receive messages from at most
a set FinalFaultym−1,j < f for some simulator simj . Since there are now more than
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f faulty processors, the set of faulty processors at the beginning of round m must
contain a processor from which all messages are received by correct processors. This
processor is chosen to be pl by all the simulators (ties broken by the lowest processor
identifier in the case of two such processors).

In both cases, pl is a correct processor, and we may add or withdraw enough
messages to pl from other faulty processors in the simulation to get exactly f failures.
(Every simulator can do that in the same deterministic way.) This is possible since
at the beginning of round m− 1 there are at most f failures.

As round m is the first round in which we choose a correct processor to fail in
the second asynchronous phase Rm−1,2, there are at most k failures per round until
round m, as a result of asynchronous simulators being late in a phase. Processor pl
has to decide at the beginning of m exactly when we fail pl. Its decision may now be
read by all the simulators, which can decide on the same value. This concludes the
simulation.

Notice that proposing and choosing a correct processor in one of the second asyn-
chronous phases Rr,2, in order to simulate its failure, is a transient phenomenon, as
a result of the second condition in the choice of pl. Eventually no processor will be
proposed to be faulty after round s for s large enough (in fact, in the case when the
number of failures is greater than f , then s = m+ 1). Thus, if a simulator is forever
late, then eventually the number of failures in each round is less than k since failures
occur only because of asynchrony of simulators, and less than k+1 simulators proceed
thereafter in the simulation.

Part 3: Starting the simulation. We make the following claim.
Claim 4.4. The algorithm in Figures 4.3 to 4.7 simulates round 0 of synchronous

algorithm C(k, f).
Proof. To start the simulation, each simulator proposes in a series of BG-agree-

ments, one for each processor, its simulator identifier as the value proposed by this
processor in code C(k, f). Following these BG-agreements, a simulator starts R1,1.
The initial state of a processor is determined when the corresponding BG-agreement
is resolved.

5. The case of consensus. If we substitute k with 1 in Theorem 4.1, we obtain
Theorem 5.1, in which consensus [5, 15] is the same problem as 1-set agreement.

Theorem 5.1. For any integer f ≥ 0, no synchronous algorithm C(f) solves
consensus under the following conditions:

1. In runs in which eventually no processors fail in each round, eventually every
correct processor decides.

2. A processor that sees f failures for some fixed f decides at the latest after
f + 1 rounds.

Property 2 is as in the theorem proved in [15]. Property 1 is, however, different: we
express our lower bound with no mention of the total number of processes. Indeed,
consensus is specified by a termination property which says that eventually every
correct processor decides. Even though the property is formulated independently of
the actual computation of the run, and because there are finitely many processes and
finitely many of them may crash, it is guaranteed that eventually no processor will
crash anymore.

Hence (i) correct processors must eventually decide, but (ii) independently of
what they decide, we can make the run violate agreement. In [15], it is shown that
if a processor that sees f crashes decides at the end of round f + 1, then other
processors may eventually violate agreement. Indeed it is possible for both 0 and 1
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to be the decision value decided by the processor that has seen f crashes. If this
processor crashes immediately after deciding, then the other processors have no way
to determine which is the decided value.

6. Concluding remarks. Set agreement, in which processors’ decisions consti-
tute a set of outputs, is notoriously harder to analyze than consensus, in which the de-
cisions are restricted to a single output. This is because the topological questions that
underlie set agreement are not about simple connectivity as in consensus. Analyzing
set agreement inspired the discovery of the relation between topology and distributed
algorithms and consequently the impossibility of asynchronous set agreement.

Yet, the application of topological reasoning has been to the static case—that
of asynchronous and synchronous tasks. It is not known yet, for example, how to
characterize starvation-free solvability of nonterminating tasks. Nonterminating tasks
are dynamic entities with no defined end. In a similar vein, early deciding synchronous
set agreement, in which the number of rounds it takes a processor to decide adapts
to the actual number of failures, falls within this category of dynamic entities.

This paper develops a simulation technique that brings to bear topological results
to deal with the dynamic situation that arises with early decisions. The novelty of
the new simulation is the ability of simulators to look back at the transcript of past
rounds of the simulation to influence their current behavior.

Using our new technique, we not only rederive past results (consensus), but we
also propose and prove a tight bound on synchronous early deciding set agreement.
Our technique uses the BG-simulation in the most creative way to date to obtain a
rather simple reduction from a static asynchronous impossibility. This reduction is
an alternative to a yet unknown topological argument and in fact may suggest the
way of finding such an argument.
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