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Abstract—Network coding enables novel network func-
tionalities and thus offers a wider canvas of choices when
optimizing an information flow problem. In this paper we
examine the simplest possible information flow problem,
a unicast connection, and explore what we believe is one
of the most attractive features network coding offers: the
ability to enable near optimal performance in a completely
decentralized and randomized setting. This is an especially
attractive feature for wireless applications. However, it
comes at the cost of an overhead in terms of rate, that can
be significant for applications that operate using relatively
short frame lengths, as is the case in the wireless setting.
We review the efforts in the literature to either alleviate
this overhead, or alternatively, to exploit it for network
management and control.1

I. INTRODUCTION
The research in information flow through networks

can be clustered around three broad questions: (i) How
much information can we send over a given network,
that is, what are fundamental performance limits. (ii)
How do we send it, that is, can we design provably
efficient algorithms that have desirable properties and
meet practical requirements. Finally, (iii), how do we
build and maintain our networks, that is, how do we
perform network monitoring, management and control.
Many of the problem formulations that arise in infor-

mation flow over networks can be cast as optimization
problems: we want to maximize the throughput for a
given bandwidth, we want to minimize the delay for a
given throughput, we want to optimize the reliability for
a given energy efficiency.
Network coding can be viewed as increasing the

search space over which we optimize, as is illustrated in
the example developed in Figs. 1–3. Assume node A in
Fig. 1 receives two bits u1 and u2 per time slot, and can
only send one bit per time slot to node B. With routing,
we have two choices, to send either u1 or u2, as in
Fig. 2 (there is also the choice of sending nothing, but we
will always assume we communicate through explicitly
sending information in this paper). If we allow node A to

1This work was supported by the Swiss National Foundation
through the FNS grant PP00P2 128639.

perform any function f that maps two bits to one bit, we
have 24 choices2. One such choice is depicted in Table I.
In general, if u1 and u2 are elements of a finite field Fq,
i.e., take values in the finite set {0, 1, . . . , q − 1}, with
routing we still only have two choices, either send u1

or u2, while with linear coding we have q2 choices and
with nonlinear coding qq2 choices.
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B

u1 u2

Fig. 1. Node A receives symbols u1 and u2.
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Fig. 2. With routing, node A has two choices: to send to node B
either symbol u1 or symbol u2.

Increasing the search space over which we optimize
has two benefits: First, it allows to find better values
for the objective function we are optimizing for, that
were not possible when the search was restricted to a

2Some of these choices may not be useful, for example the constant
function, and some choices are equivalent for some applications, but
the general argument of growth we will make remains.
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Fig. 3. If we enable node A to perform linear combining, node A
can send to node B a linear combination of u1 and u2, and thus have
a much larger set of choices.

u1 u2 f(u1, u2)
0 0 1
0 1 0
1 0 1
1 1 1

TABLE I
FUNCTION f TAKES AS INPUTS BITS u1 AND u2 AND PROVIDES AS

OUTPUT ONE BIT, AS DETERMINED BY THE ABOVE TABLE.

routing solution. For example, we can achieve higher
throughput, smaller delay, or higher reliability. Several
papers and tutorial monographs have demonstrated such
benefits, see for example [13], [12], [1], [2], [3], [4],
[5]. Second, it allows to find the optimal values using
smaller complexity. For example, for some cases, an
optimization problem that is computationally hard, i.e.,
required essentially an exhaustive search of the routing
solution space, can now be solved efficiently [11]. In
some other cases, even a randomly selected solution in
the increased space is optimal with high probability [6],
[7], [8]. In both cases, the common underlying reason
for the reduction in complexity is that, in the increased
search space there are many more solutions that are
optimal, and thus, we can find such a solution more
easily.
This tutorial paper is motivated from the complexity

benefits of network coding. Complexity benefits promise
to have a very significant impact in practice – increasing
the throughput in a network by a factor of two might
be very desirable, but, achieving this using at the same
time very simple decentralized operations might be even
more important.
Instead of reviewing the set of instances where net-

work coding offers complexity benefits, in this paper we
make the conscientious choice to examine in depth the
simplest information flow problem: a unicast connection,
where a source sends information to a single receiver.

The case of multicast, where a source sends the same
information to multiple receivers, can also be treated in
the same manner. Our goal is to critically examine what
indeed are the complexity benefits we can get in practice,
and at what cost they come. What we will argue is that,
there exist significant benefits, but as always, there also
exist choices to make, and we need to make them in the
right way for the specific application goals we want to
achieve.
The paper starts with introducing in Section II ran-

domized network coding, which is a very attractive
approach for decentralized operation; then, we discuss
in Section III how using coding vectors allows to make
randomized coding practical, but at the cost of an over-
head that increases the packet length; we describe the
efforts to reduce this overhead in Sections IV and V;
and finally, we take a different viewpoint in Section VI
and show that instead of getting rid of this overhead, we
can in fact instead exploit it, for network monitoring and
control.
We want to emphasize that randomized network cod-

ing is not the only instantiation where network cod-
ing offers complexity benefits; on the contrary, there
are multiple such cases, more or less studied in the
literature, and we expect there will be many more to
come. However, the case we study is definitely the most
well studied up to now, and thus allows us a more
mature understanding of the potential benefits, as well
as the design choices we need to make in network
coding. Even in this case, we only examine in detail one
particular aspect of the overhead, and not the additional
computational complexity that we require for encoding
and decoding at the network nodes; we only briefly
mention these in Section VII. We conclude the paper
with a summary and discussion in Section VIII.

II. RANDOMIZED NETWORK CODING IS USEFUL ...
For simplicity, we consider a network represented

as a graph, where edges correspond to channels and
nodes to terminals. We assume that time is slotted, and
during each time-slot we can send through each edge one
symbol over a finite field Fq (for example, if we operate
over the binary field F2 we can send one bit per time
slot). We describe this as having unit capacity edges.
The simplest possible question we can ask in informa-

tion flow through networks is, how to send information
from a single source to a single receiver. This is called
a unicast connection.
How much information we can send was answered

in 1956, from Ford-Fulkerson and independently from
Elias, Fenstein and Shannon, in the famous min-cut max-
flow theorem [15], [16]. This theorem states that the
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maximum amount of information we can send equals
the value of the minimum cut that separates the source
from the receiver. A cut is a set of edges whose removal
disconnects the source from the receiver. The minimum
cut (mincut) value h equals the minimum number of
edges we need to remove to disconnect the source from
the receiver. For example in Fig. 4 the mincut value
to receiver R equals h = 2, since removing the edges
(B2, R) and (B3, R) disconnects the receiver from the
network.
How we can efficiently send information at the mincut

rate was also answered by Ford Fulkerson in [15] by
providing a polynomial time algorithm. This algorithm
identifies h edge-disjoint paths that connect the source
to the destination. We then simply route the information
along these paths. From each such path, the receiver
receives one symbol per time-slot. Fig. 4 shows two
edge-disjoint paths, that can be used to route symbols
u1 and u2 to the receiver.

S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R

u2 u1

Fig. 4. Two edge-disjoint paths towards receiver R.

However, this algorithm, and routing in general, pre-
supposes that we identify in advance the paths that we
use, which in turn assumes that the network is static
for our purposes. This not always the case in practical
networks, where we can have significant variations of the
network connectivity. To capture a dynamically changing
network we assume in Fig. 5 that during each time-slot,
the receiver R connects to two different nodes Bi and
Bj . For example, R could be connected to B1 and B2

at time t, to B2 and B4 at time t + 1, etc. This could
model a wireless environment, with a mobile receiver. It
could also model a lossy environment, where all nodes
B transmit information, but only two of the transmitted
symbols are received correctly at each time-slot.
If the network nodes are constrained to perform rout-

ing, then we can route through each edge AB either

S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R

Fig. 5. A dynamic unicast connection: receiver R at each time-slot
connects to two different nodes Bi and Bj . For example, R could
be connected to B1 and B2 at time t, to B2 and B4 at time t + 1,
etc.

symbol u1 or symbol u2, as depicted in Fig. 6. Think of
these symbols as colors, red and green, that we need to
assign to edges AB. Given that we have 4 edges (Ai, Bi)
and two colors, it follows that there will exist at least two
edges that get colored with the same color. Namely, they
route the same information. If the receiver then happens
to connect to these two edges, it will receive the same
information from both of them. If we assume that each
node A selects uniformly at random which of the two
symbols to forward, then the probability of failure equals
1
2 . If do not use a randomized scheme but a deterministic
scheme we again get a constant probability of error. For
example, if we deterministically assign to half the edges
(Ai, Bi) the symbol u1 and to the other half the symbol
u2, then the probability of error will equal k−1

2k , where k
is the number of (Ai, Bi) edges. This probability again
goes to 1

2 as k increases.
Now assume that nodes A perform linear coding. That

is, each node A uniformly at random selects and sends
to node B one linear combination of the symbols u1 and
u2, say xiu1 + xju2, using the coefficients xi, xj ∈ Fq,
the finite field of operation. It is then sufficient that the
receiver R receives two linearly independent equations,
as it can solve these to retrieve u1 and u2. Fig. 7 shows
a possible choice of linear combinations. Note that, no
matter to which two nodes B the receiver connects, it
can retrieve two linearly independent equations to solve
for u1 and u2. In particular, R needs to solve a set of
equations of the form

[

y1

y2

]

=

[

x1 x2

x3 x4

] [

u1

u2

]

,

where {y1, y2} are the two symbols receiver R receivers,
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S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R

u1 u2 u1 u2

Fig. 6. Routing sends one symbol, either u1 or u2 through each
edge (Ai, Bi).

and {xi} are the coefficients for the linear combinations
used to create {y1, y2}. For example, if R observes edges
(A1, B1) and (A3, B3) it needs to solve the equations

[

y1

y2

]

=

[

0 1
1 1

] [

u1

u2

]

.

S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R

u1 u2 u1 + u2 5u1 + 3u2

Fig. 7. Coding sends a linear combinations of the symbols u1 and
u2 through each edge (Ai, Bi).

If the A-nodes select the coefficients {xi} uniformly at
random over a field Fq, the probability of failure equals

(1 −
1

q2
)
q − 1

q2
≈

1

q
.

That is, we have now achieved a decentralized operation,
with probability of error that goes to zero as the field
size of operation increases. Thus, use of coding enables

operation in dynamically changing environments with no
centralized knowledge and near optimal performance.
Note that, we could connect an arbitrary number of

receivers on the B-nodes of our network, as Fig. 8
shows. Each receiver would still receive two linearly
independent equations and thus rate equal to its min-
cut. This network shows a special case of the main
multicasting theorem in network coding, which states
that over all networks, if we allow intermediate network
nodes to perform linear coding, we can then send rate
h simultaneously to an arbitrary number of receivers,
provided that the mincut towards each receiver equals
at least h. Moreover, we can achieve this mincut in a
decentralized manner, using randomized network coding.
Given that we can treat multicasting and unicasting in
the same manner, we will in the following only refer
to a unicast connection; however, all the discussion also
applies to the case of multicasting the same information
to an arbitrary number of receivers.

S1 S2

A1 A2 A3 A4

B1 B2 B3 B4

R2 R3 R4 R6R1 R5

u1 u2 u1 + u2 5u1 + 3u2

Fig. 8. We can connect an arbitrary number of receivers to the B-
nodes. Provided that each receiver connects to at least two different
such nodes, they can all simultaneously retrieve symbols u1 and u2,
with the same code.

In the example in Fig. 7, the receiver has to solve a
2 × 2 system of equations. In general, over an arbitrary
network where the mincut to each receiver equals h and
where intermediate nodes perform linear combining, the
overall system performs a linear transformation captured
by an h×h transfer matrix A. The receiver has to solve
an h × h set of equations of the form






y1
...

yh




 = A






u1
...

uh




 ,

where A is the transfer matrix from the sources to
the receiver. Note that to decode, the receiver needs to
know the matrix A. But how does the receiver get this
knowledge?
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One approach is to assume that each node that per-
forms coding (the A-nodes in our example) selects
always the same fixed linear combination, and commu-
nicates this information to the receiver. The receiver,
knowing the linear coefficients each node uses, can
calculate the overall transfer matrix. However, using
a fixed code is challenging over practical networks,
because networks are lossy and subject to delays - a fixed
code would again require a relatively static network, and
good synchronization between the network nodes. Thus,
using static coding instead of routing, seems as if we
have exchanged one requirement for static knowledge
with another. Is there an alternative approach?

III. ... BUT IT REQUIRES CODING VECTORS!
An alternative approach is to assume no static knowl-

edge about the network topology or the coding coeffi-
cients, in fact allow intermediate nodes at each time slot
to randomly to select what coefficients to use, but learn
online what are the specific linear combinations that the
destination receives. We can do this through some form
of training, that is termed coding vectors in the network
coding literature [17].
Operation with coding vectors is as follows. Assume

that we have h information packets {pi} to send, and
each pi contains L bits. We can treat each such packet
as equivalently containing T = L

log
2
q = L

m symbols over
a finite field Fq with q = 2m. That is, we can interpret
m consecutive bits of a packet as one symbol over the
field F2m , with each packet consisting of a vector of
T = L/m symbols in F2m . For example, if q = 24, we
can consider each packet of length L bits to equivalently
consist of L

4 symbols over F16. In the previous section,
we implicitly assumed that each packet pi has length
T = 1, i.e., L = m, and consists of a single symbol ui.
In the following, we will denote the symbols contained
in packet pi as {pk

i }, for clarity of notation.
When intermediate nodes linearly combine their re-

ceived packets, the summation has to occur for every
one of the T symbol positions. For example, to create
the linear combination 3p1 +8p2, a node would perform
3pk

1 + 8pk
2 , k = 1 . . . T , where pk

1 and pk
2 are the kth

symbols of p1 and p2, respectively.
We call the h source packets a generation. The gener-

ation specifies what is the set of source packets that we
are allowed to combine together. In a network we may
have simultaneously different generations, generated by
different sources, or by the same source at different
times.
To each of the h source packet pi in the generation,

we append a different coding vector pC
i of h symbols

over F2m , or equivalently, hm bits. These h vectors form

a basis of the h-dimensional space Fh
q . For example, the

sources can employ the orthonormal basis {ei} as coding
vectors, that is, pC

i = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Fh
q ,

where ei has zeros everywhere and 1 at the ith position.
Thus the packets sent by the sources are of the form

[ei | pi], (1)

where we assumed without loss of generality that the
coding vector is placed at the beginning of the packet.
The coding vector keeps track of the linear combination
of the source packets that is contained in the packet. For
example, a node that receives the packets [e1 | p1] and
[e2 | p2] may create the packet

3[e1 | p1] + 8[e2 | p2] = [3e1 + 8e2 | 3p1 + 8p2].

The coding vector 3e1 + 8e2 = (3, 8, 0, . . . , 0) reflects
the linear combination of the source packets. In general
a packet propagating in the network will have the form

p = [pC | pI ], (2)

where pI ∈ FL
q is a linear combination of source packets

and pC ∈ Fh
q is the coding vector that contains the linear

coefficients for the combined source packets.
Each receiver that receives h packets {pC

i } with lin-
early independent coding vectors can recover the original
source information. To do so, the receiver solves the
linear equations {pI

i =
∑h

j=1 xj
ipj}, where for each

received packet pC
i the h coefficients xi

j are contained
in its coding vector pC . That is,








pI
1

pI
2
...

pI
h








=








x1
1 x2

1 · · · xh
1

x1
21 x2

2 · · · xh
2

...
... . . . ...

x1
n1 x2

n · · · xh
n








︸ ︷︷ ︸

A∈F
n×n
q








p1

p2
...

ph








, (3)

where the ith row of matrix A is the coding vector
corresponding to received packet pi. If the receiver
collects h linearly independent coding vectors, the matrix
A is full rank, and thus the original packets can be
recovered.
Coding vectors allow for a very simple, distributed

operation, at the cost of an overhead. In particular, if
the packet length consists of T = L

log q symbols over
the finite field Fq, and we code together h packets, the
overhead O of the coding vectors per packet equals

O = h log2 q.

We thus have the following trade-off. With routing,
and centralized knowledge, we can send hT log2 q infor-
mation bits to receiver R. However, if we do not have
centralized knowledge, there is a constant probability
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that routing will only deliver a fraction of the information
rate. In the example of Fig. 6 with probability 1/2 we
would only get half the rate. In contrast, if we implement
randomized network coding with coding vectors, then
with probability that goes to one as the field size of oper-
ation increases, we would send a number of information
bits equal to

h(T − h) log2 q.

Routing has no overhead; but has a high probability of
failure in dynamically changing environments. Coding
has an overhead - that of coding vectors - but is very
robust to dynamic changes. Thus the ideal would be, if
we could remove the overhead of the coding vectors.

IV. REMOVING THE CODING VECTORS:
NONCOHERENT NETWORK CODING

Coding vectors come at an overhead that is not sig-
nificant if we are interested in long packet lengths L,
but that can very fast become prohibitive if we need to
operate with short frame lengths. For example, wireless
networks offer a very promising application for network
coding, since they form a dynamically changing environ-
ment where the decentralized operation network coding
allows could be very useful. However, in wireless we
are constrained to operate using relatively short block
lengths and thus the overhead coding vectors require
could be significant. Example 1 gives a specific such
instantiation for sensor networks.
Example 1: Consider a sensor network consisting of

100 nodes, each sending a message to a sink. To im-
plement network coding using coding vectors over a
field of size q = 24, we would need to use 50 bytes
of each packet simply for the coding vectors. In the
TinyOS operating system [18], which is perhaps the
most popular for sensor nodes, a typical frame length
allows approximately 30 bytes for data transmissions.
Thus clearly this is not a viable approach. !

Subspace coding is a beautiful idea, recently proposed
in [19], [20], that dispenses of the need to convey coding
vectors. The observation in this scheme is that, neither
the receiver nor the sources need to know the transfer
matrix to the receiver, i.e., the specific linear coefficients
in matrix A in (3). In this case, in analogy to the case
of wireless communications, when neither the transmitter
nor the receiver know the channel, we say that we have
noncoherent communication.
In noncoherent communication, we can take advantage

of the fact that the network performs only linear oper-
ations, and communicate information using subspaces3,

3A subspace is a subset of a vector space, that forms a vector space
in itself.

which are unaffected by the linear operations performed
on them. Indeed, if the source inserts in the network
h linearly independent vectors of length L, these span a
subspace π of the L-dimensional vector space; any linear
transformation the network performs to these vectors will
still result to vectors inside the same subspace π. If the
receiver collects h linearly independent vectors, these
will span π, and thus the receiver will know that the
source “inserted” π in the network. Thus, the source can
send different information messages by using different
h-dimensional subspaces; that is, the source can use a
subspace codebook that maps each information message
to a set of vectors spanning a different subspace. The
following toy example illustrates how subspace coding
works.
Example 2: Assume that we use vectors of length

L = 3, and operations over a field of size q = 3. For two
vectors v1 and v2 in F3

3, denote as π =< v1, v2 > the
two-dimensional subspace of F3

3 that these vectors span.
Assume that a source has four different messages to send
to a receiver. To do so, it uses a subspace codebook that
contains the following two-dimensional subspaces of the
three-dimensional space

π1 =< [1 0 0], [0 1 0] >, π2 =< [1 0 0], [0 0 1] >,

π3 =< [0 1 0], [0 0 1] >, π4 =< [0 1 0], [1 0 1] > .

To send a message to the receiver, the source inserts
in the network the basis vectors of the corresponding
subspace; for example, to send the first message, it
sends the vectors [1 0 0], [0 1 0]. These vectors are
linearly combined by the intermediate network nodes in
an arbitrary fashion, and the receiver receives some linear
combinations of these. However, there is no need to learn
at the receiver what the exact linear combinations are,
but simply to collect two linearly independent vectors.
The receiver may get for example the vectors [1 1 0], and
[2 1 0]. These vectors span π1; thus the receiver decodes
that the first message was send. !

A natural question to ask is, what are is the infor-
mation rate we can achieve with noncoherent network
coding, and what are the benefits we get as compared to
the coding vectors approach, in terms of the overhead.
To study this, we need to calculate the capacity of
noncoherent network coding [21], [22], [24], [25].
To derive information theoretical bounds, we need

to first define what is our channel. We will use the
approach in [21], [22]. We assume communication in
time-slots; in each time-slot, the source inserts in the
network m packets of length T over some finite field
Fq, and each receiver collects n packets that consist
of random combinations of the source packets. The
mincut h between the source and the receiver equals
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h = min{m,n}. At time slot4 t, the receiver observes

Y (t) = A(t)X(t), (4)

where X(t) ∈ Fm×T
q , A(t) ∈ Fn×m

q , and Y (t) ∈ Fn×T
q .

At each time-slot, the receiver receives n packets of
length T (captured as rows of the matrix Y (t)) that are
random linear combinations of the m packets injected
by the source (captured as rows of the matrix X(t)).The
packet length T can be interpreted as the coherence
time of the channel, during which the transfer matrix A

remains constant. Each element of the transfer matrix A

is chosen uniformly at random from Fq, changes inde-
pendently from time-slot to time-slot, and is unknown to
both the source and the receiver.
The channel described by (4) can be interpreted as a

discrete memoryless channel with input alphabet X "

Fm×T
q and output alphabet Y " Fn×T

q . The capacity of
this channel is given by

C = max
PX(x)

I(X;Y ), (5)

where PX(x) is the input distribution and I(X;Y ) the
mutual information between the variables X and Y .
To achieve the capacity, a coding scheme may employ
the channel (4) multiple times and in this case each
codeword is a sequence of input matrices from X .
The following theorem characterizes the capacity

of noncoherent network coding assuming our channel
model [22]. We first state this theorem formally, and then
interpret it.
Theorem 1: Consider the channel given in (4) and

assume that A is drawn uniformly at random from
Fn×m

q and independently from block to block. Then
there exists finite q0 such that for q > q0 the optimal
input distribution is non-zero only for the matrices whose
rank belongs

A =
{

min[(T − n)+,m, n, T ], . . . ,min[m,n, T ]
}

,
(6)

which we call the active set. The capacity of the channel
is

C =

[

log2

(

∑

i∈A

qi(T−i)

)

+ {T :odd} + O(q−1 log q)

]

=
[

{T :odd} + i∗(T − i∗) log2 q + O(q−1 log q)
]

,

(7)

where i∗ = arg mini∈A |T/2 − i| = min{m,n, %T/2&}.
Moreover, the optimal input distribution is uniform over

4In the rest of the paper we will omit for convenience the time
index t.

all matrices X of the same dimension, and the probabil-
ity of employing matrices X of rank i equals

α∗
i (x) = 2−Cqi(T−i)

[

1 + O(q−1 log q)
]

, ∀i ∈ A,

where C is the capacity of the channel.
This theorem says that the maximum rate we can

achieve using packets of length T behaves as i∗(T −
i∗) log q, where i∗ = min{m,n, %T/2&}. This result is
derived assuming large values of q, however, numerical
simulations indicate a very fast convergence to this value
as q increases. Fig. 9 depicts the capacity for small values
of q, calculated using the Differential Evolution toolbox
for matlab [26].

2 4 6 8 10
10

20

30

40

log2q

C
/lo

g 2q

T=13

T=7

T=10

Fig. 9. Numerical calculation of the capacity for small values of q
and m = 11, n = 7. The dotted line depicts i∗(T − i∗).
From this theorem we can derive the following con-

clusions for noncoherent network coding.
1) Subspace coding is optimal: Confirming our intu-

ition, this theorem states it is optimal to communicate
using subspace coding.
Additionally, it specifies the dimension of the sub-

spaces we should use as codewords. Note that, since
every time we use the channel we send m vectors
each of length T symbols, we can use subspaces of
FT

q that have dimension m, but also subspaces that
have dimension m − 1, m − 2, etc., simply by sending
some vectors linearly dependent with others. Theorem 1
specifies what exactly are the dimensions we should
employ. Interestingly, it turns out that this depends on
the relative values of m, n and T . In particular, for
T ≤ n, we should use subspaces of all dimensions.
As T increases, the set of used dimensions gradually
decreases, until we reach T ≥ min{m,n} + n. For T
larger than this value, it is sufficient to use subspaces of
a single dimension, equal to min{m,n}. This is depicted
in Fig. 10.
2) Subspace coding vs. coding vectors: Our moti-

vation for looking at noncoherent communication was
to avoid the overhead of the coding vectors. A natural
question is, what is the difference in the achievable rates
between using coding vectors and noncoherent coding,
and how much have we gained?
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Fig. 10. Active subspace dimensions for m = 4, n = 3.

TABLE II
INFORMATION LOSS FROM USING CODING VECTORS WHEN

n = m.

T ≤ 2m T > 2m

C − Rcv o(1) o(1) = (i∗ − 1)(T − i∗) log2 q

q
+ O(q−1)

Table II summarizes this difference. As we see from
this table, subspace coding does not offer benefits as
compared to the coding vectors approach, at least for
large field size.
Table II is calculated as follows. Depending on the

length T , we will use a generation that contains a
different number k of source packets, with k ≤ h (it is
in fact easy to see that for T ≤ 2h, it is optimal to use a
generation of size K = T/2). Using a generation of size
k in practice means that the source inserts k packets in
the network, with coding vectors also of length k. Thus
the achievable rate Rcv in this case equals

Rcv = k(T − k) log2 q,

since each packet includes a coding vector of length k
and T − k > 0 information symbols. We then substract
this rate from the noncoherent capacity C .
To conclude, noncoherent network coding achieves

better rates than use of coding vectors for packet frames
of length T < 2h, where h is the mincut between the
source and the receiver, but surprisingly, does not offer
rate benefits for T ≥ 2h. That is, whether we learn the
channel or not, we achieve the same rate. Given that
subspace coding involves higher complexity than use
of coding vectors for the encoding and decoding, for
T ≥ 2h we might as well use coding vectors.

V. IS THERE AN ALTERNATIVE APPROACH?
COMPRESSED CODING VECTORS

Noncoherent coding does not offer the rate benefits we
expected as compared to use of coding vectors; that is,
both use of coding vectors and subspace coding result
on approximately the same overhead, or loss rate, as
compared to routing. It seems that there is an underlying
reason why this happens.
A possible interpretation is that, both in the case of

coding vectors and subspace coding, we allow potentially

all source packets to get combined together to create each
single received coded packet. Recall that in our model,
h is the generation size, or equivalently the perceived
mincut of the network. So for each coded packet, the
receiver needs to know h linear coefficients to decode
it. Moreover, we have assumed that these h linear coef-
ficients are chosen independently at random. However,
for some networks, this is too strong a requirement and
results in an unnecessary loss of information rate.
We here propose an alternative approach that employs

shortened or compressed coding vectors to efficiently
convey the coding coefficients [27]. The observation our
approach leverages is that, in many cases, it is sufficient
to employ coding vectors that allow at most m source
packets to get combined. This naturally occurs in some
applications, where for example only source packets
originating from neighboring nodes get combined. We
can also artificially restrict the number of source packets
that get combined, by appending to each coded packet
a few bits to count the number of source packets it
contains. Note that, the receiver will eventually still need
to solve a set of h linear equations to retrieve the source
data; our approach only shortens the coding vectors that
convey the linear coefficients to the receiver.
Our design problem can now be stated as follows.

Given a generation that contains h source packets, each
receiver is going to observe packets that contain linear
combinations of at most m source packets. We want to
design coding vectors that allow us, by receiving each
combined packet, to determine which linear combination
of the source packets it contains. The classical coding
vectors design would utilize coding vectors of length h.
Here we explore what, under our assumptions, is the
smallest length r of coding vectors we need to employ,
and how can we select them. For m much smaller
than h, the classical coding vectors become sparse.
We can thus compress them, by replacing them with
shorter vectors, that still allow the receivers to extract the
original coding vectors and decode the source messages.
Our construction utilizes properties of algebraic error
correcting codes, and proceeds as follows.
Select a linear code C = [h, k, d]q where d =

min(2m+1, h+1) with k as large as possible. Consider
the r × h parity check matrix HC where r " h − k. As
coding vector, assign to source packet xi the ith column
of the matrix HC , which we will denote as hi. That is,

hi = ei · H
T
C . (8)

We call these vectors compressed coding vectors. Thus
the sources insert to the network the packets

[hi | pi]. (9)



9

Intermediate nodes linearly combine their received pack-
ets, exactly as in the classical coding vector approach.
The coded packets propagating in the network will now
have the form

p " [p̂C | pI ], (10)

where p̂C ∈ r
q denotes the compressed coding vector

appended to packet p. This is related to the classical
coding vector pC that describes the linear transform from
the source packets as

p̂C = pC ·HT
C . (11)

If m packets are allowed to be combined, with m much
smaller than the length h of the coding vector pC , this
can be viewed as compressing the sparse vector pC , and
hence the compressed coding vector terminology.
The following example gives a particular choice for

the compressed coding vectors.
Example 3: Suppose the number of packets in every

generation is h = 15 and each packet in the network
contains linear combinations of at most m = 2 packets,
which leads to d = 2m + 1 = 5. Let also q = 24. The
code C can be chosen to be the Reed-Solomon code with
parameters C = [15, 11, 5]q . The parity check matrix of
C can be written as follows

HC =







1 α α2 · · · α15−1

1 α2 α4 · · · α2(15−1)

1 α3 α6 · · · α3(15−1)

1 α4 α8 · · · α4(15−1)







,

H =
[

p1 p2 p3 · · · ph

]

,

where α is a primitive element of F24 . Each column of
HC can be assigned to one of h = 15 source packets. !

How do we decode?
Upon receiving a packet p with compressed coding

vector p̂C , the receiver needs to recover the original
coding vector to construct the system of linear equations
in (3). Is this even possible? and can we do it efficiently?
The reason this construction enables the receivers to
decode follows from a well known property that the
columns of matrix HC satisfy. Namely, if a code C
has minimum distance d = 2m + 1, then any set of
d − 1 = 2m columns of the matrix HC are linearly
independent [28]. As a result, any linear combination of
a specific set of m columns results in a unique vector,
that cannot be created by linearly combining any other
set of m columns. More formally, there is an injective
map between the vectors pC and p̂C in (11).
To efficiently perform the decoding, we note that it is

sufficient to find what are the non-zero positions of the

TABLE III
TIME FOR EXHAUSTIVE SEARCH IN SECONDS. EXPERIMENTS ARE
RUN ON A SINGLE CORE OF AN INTEL CENTRINO DUO2, AT 3

GHZ.

h/m 2 3 4
15 0.00018 0.0020 0.017
31 0.00097 0.024 0.48
63 0.0047 0.24 10.4

vector pC . If we know this, and using the knowledge of
the matrix HC , we can uniquely also recover the linear
coefficients in the original coding vectors. If we have
the original coding vectors, we can then solve the usual
system of linear equations and decode.
One approach to find the nonzero positions is through

exhaustive search. For small values for m and h this in
a fast computer can be feasible, as Table III illustrates.
However, there are

(
h
m

)

possible m-sets of non-zero po-
sitions to consider, and this number grows exponentially
in m for constant h.
A more practical approach is to use some known alge-

braic codes for C like BCH codes, Reed-Solomon codes
[30], Goppa codes [29], algebraic geometry codes [31],
etc., to recover the original coding vectors efficiently. For
all of the codes mentioned above there exists a version of
the Berlekamp-Massey algorithm [34], [35] which allows
the receivers to find the location of non-zero elements
of the original coding vectors.

What have we gained?
Using the compressed coding vectors method, the

length of coding vectors reduces from h to r = h − k.
We can formally prove that the construction we have
described achieves in fact the minimum possible value of
r for our problem [27]. Thus the benefits we get depend
on the required size r, that we next calculate.
From the Singleton bound for a code C we have

k ≤ h − d + 1

= h − min(2m,h),

so for h
2 ≤ m ≤ h we have k = 0 which implies that

we can select w.l.o.g. the full rank h × h parity matrix
HC to be the identity matrix. In this case, we recover
the usual network coding approach with coding vectors
{ei} appended to the sources packets, and there is no
benefit from our approach.
From the Gilbert-Varshamov bound [32] we have an

upper bound for the length of compressed coding vectors
r that for the case m < h

4 can be simplified to

r ≤ hHq

(
d − 1

h

)

= hHq

(
2m

h

)

, (12)
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q=128 q=2

Fig. 11. Bounds on the length of the compressed coding vectors,
r. First figure: when m = 3 and m = 12 sources get combined,
as a function of the number of packets in a generation h, q = 2.
Second figure: when m = 10 sources get combined, as a function of
the number of packets in a generation h for two values of field size
q = 2 and q = 128.

whereHq(δ) = δ logq(q−1)−δ logq δ−(1−δ) logq(1−δ)
is the q-ary entropy function. Also, the Sphere Packing
bound leads to a lower bound on the length of com-
pressed coding vectors where form < h

2 we can simplify
it to obtain

r ≥ hHq

(
d − 1

2h

)

−
1

2
logq

(

4(d − 1)

(

1 −
d − 1

2h

))

= hHq

(m

h

)

−
1

2
logq

(

8m
(

1 −
m

h

))

. (13)

From (12) and (13), for fixed values of m and as the
number h of source packets grows, we have

m logq h + O(1) ≤ r ≤ 2m logq h + O(1),

So using the proposed method, we can reduce the growth
of coding vectors from O(h) to O(m log h).
Example 4: Using a table of the best codes known

(from [28] and [37]), we can see for example that,
there exist binary linear codes of length h = 127 with
redundancy r = 35 and minimum distance d = 2m+1 =

11, which is in fact a shortened version of a [128, 93, 11]
Goppa code [29]. Thus in a network with 127 source
packets in each generation if at most m = 5 source
vectors get combined, we need to use coding vectors of
length r = 35 instead of h = 127. !

In the previous example, it is assumed that the network
nodes perform binary network coding; i.e., nodes only
XOR the packets. However, if the field size is increased,
we can have shorter compressed coding vectors, as we
can see in the following Example 5.
Example 5: A Reed-Solomon code is a [h, k, d]q lin-

ear code with h = q − 1 and k + d − 1 = h [30]. To
make a comparison with the binary codes in Example 4,
we use h = 127 and consider using the parity matrix
of a Reed-Solomon code over a field of size q = 28. If
we set d = 2m + 1 = 11, the length of the compressed
coding vectors equals r = h − k = d − 1 = 10. Thus,
as compared to the case of classical coding vectors, the
coding vector headers decrease from 112 bytes to only 9
bytes; this is a much higher compression than what we
had achieved in Example 4. !

VI. ANOTHER VIEWPOINT:
KEEPING THE CODING VECTORS CAN BE USEFUL
The idea of compressing the coding vectors leverages

the fact that, in a practical network, the empirical dis-
tribution of the coding vectors is not uniform - there is
some structure. We will argue in this section that this
is because coding vectors implicitly carry information
about the network topology as well as its state, where by
state we refer to link or node failures, congestion in some
parts of the network, etc. Instead of attempting to remove
this structure to gain rate benefits by compressing the
coding vectors, we can instead accept the associated rate
loss, and use this information that the coding vectors
passively collect, for network monitoring and control.
In this section we motivate this alternative approach,
through a short discussion on the topological information
the coding vectors carry, and a practical application in
bottleneck discovery for peer-to-peer networks.

A. Topology Inference
Assume a source S has a generation of h independent

packets {u1, . . . , uh}, ui, to distribute to a set of re-
ceivers, through the use of randomized network coding
over a field Fq and coding vectors.
Now assume that, contrary to what we considered

before, the mincut towards the receiver is much smaller
than the generation size h; this is infact most of the
times the case the practice. Thus, to disseminate the
information, the source keeps injecting packets into the
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network; intermediate nodes have buffers where they
store all the packets they have collected, and use these
collected packets to create the linear combinations they
forward towards the receivers.
If we consider the coding vectors that each network

node i has collected at a given time t, then these vectors
will span a subspace Πi(t) of the h-dimensional space
Fh

q . These subspaces will have nesting properties that
reflect the structure of the network. For example, in
Fig. 12, assume that at time t nodes A has received 3
coding vectors that span a subspace ΠA(t), and nodes
B and C have each received 2 coding vectors each.
We will then have that ΠB(t) and ΠC(t) are subspaces
of ΠA(t). Moreover, with high probability these two
subspaces will be distinct [38]. Studying properties of the
subspaces that network nodes collect, one can show that
in fact the coding vectors allow to perfectly reconstruct
the network topology (under some mild conditions) for
arbitrary network topologies, as the following theorem
(proved in [38]) states.
Theorem 2: In a network employing randomized net-

work coding over Fq, a sufficient condition to uniquely
identify the topology with high probability as q * 1, is
that

Πi(t) += Πj(t) ∀ i, j ∈ V, i += j, (14)

for some time t. We can achieve this by observing the
subspaces the network nodes have collected at appropri-
ate times.
Note that collecting the subspace information needs to
occur only once at a small additional overhead, espe-
cially for large values of generation size h. Leveraging
this information for designing practical network moni-
toring schemes is a subject of current research.

S Fh
q

A ΠA(t)

BΠB(t) C ΠC(t)

Fig. 12. The source S sends information to nodes A, B and C
that are connected through a tree; assuming the coding vectors the
source employs span the space F

h
q , then at time t the coding vectors

these nodes have collected, span subspaces ΠA(t), ΠB(t) and ΠC(t),
respectively.

B. Bottleneck Discovery in Peer-to-Peer Networks
Several works have proposed employing network cod-

ing for content distribution, pointing out a number of po-
tential benefits, such as simple decentralized operation,

(a)
S

A

B

C

D

(b)

S

A

B

C

D

Fig. 13. The source S distributes packets to the peers A, B, C
and D over the overlay network in fig. (a), that uses the underlying
physical network in fig. (b).

and no need for tight topology control [41], [42], [43],
The only requirement on the topology is a connectivity
pattern which allows information to flow fast among the
network nodes, i.e., creates a large mincut between pairs
of nodes.
However, this does not always occur naturally. Peer-

to-peer are very dynamically changing networks, where
hundreds of nodes may join and leave the network within
seconds. All nodes in this network are connected to a
small number of neighbors (four to eight). An arriving
node is allocated neighbors among the active participat-
ing nodes, which accept the solicited connection unless
they have already reached their maximum number of
neighbors. As a result, nodes that arrive at around the
same time tend to get connected to each other, since
they are all simultaneously available and looking for
neighbors. That is, we have formation of clusters and
bottlenecks in the network, that impede the information
flow.
To avoid this problem, one of the methods adopted

in practical protocols is to ask all nodes to periodically
drop one neighbor and reconnect to a new one among
an active peers list. This randomized rewiring results
in a fixed average number of reconnections per node
independently of how good or bad is the formed network
topology. Thus to achieve a good, on the average, per-
formance in terms of breaking clusters, it entails a much
larger number of rewiring than required, and unnecessary
topology changes.
An alternative approach is to have peers initiate topol-

ogy rewirings when they detect they are in a cluster. Con-
sider the toy network depicted in Figure 13(a) where the
edges correspond to logical (overlay network) links. The
source S has h packets to distribute to four peers. Nodes
A, B and C are directly connected to the source S, and
also among themselves with logical links, while node D
is connected to nodes A, B and C . In this overlay
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network, there exist three edge-disjoint paths between
the source and any other nodes.
Assume now (as shown in Figure 13(b)) that the

logical links SA, SB, SC share the bandwidth of the
same underlying physical link, which forms a bottleneck
between the source and the remaining nodes of the
network. As a result, assume the bandwidth on each
of these links is only 1/3 of the bandwidth of the
remaining links. Note that even if we kept track of
the complete logical network structure, we would not
know the existence of the bottleneck and the asymmetry
between the link bandwidths.
NodeD however, can infer this information by observ-

ing the coding vectors it receives from its neighbors A,
B and C . Indeed, when node A receives a coded packet
from the source, it will forward a linear combination of
the packets it has already collected to nodes B and C
and D. Now each of the nodes B and C , once they
receive the packet from node A, they also attempt to
send a coded packet to node D. But these packets will
not bring new information to node D, because they will
belong in the linear span of coding vectors that node D
has already received. Similarly, when nodes B and C
receive a new packet from the source, node D will end
up being offered three coded packets, one from each of
its neighbors, and only one of the three will bring to
node D new information.
More formally, the coding vectors nodes A, B and

C will collect will effectively span the same subspace.
The coded packets these nodes will offer to node D
to download will belong in significantly overlapping
subspaces and thus be redundant. Node D can infer
from this passively collected information that there is
a bottleneck between nodes A, B, C and the source,
and can thus initiate a connectivity change.

Experimental Results

We will here show simulation results that compare
peer-initiated algorithms leveraging the coding vector
information [39], and randomized rewiring. We start
from the topology illustrated in Figure 14, with three
clusters: cluster 1 has 15 nodes and contains the source,
cluster 2 has also 15 nodes, while the number of nodes in
cluster 3 increases from 15 to 250. The source is node 1,
and belongs in the first cluster. The bottleneck links are
indicated with arrows (and thus indicate the underlying
physical link structure). All algorithms perform similarly
in terms of average collection time; however, Fig. 15
clearly shows that the randomized algorithm results in a
much larger number of rewirings.
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Fig. 14. Topology with three clusters: cluster 1 contains nodes 1–10,
cluster 2 nodes 11–20 and cluster 3 nodes 21–30.
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Fig. 15. Average number of rewirings, for a topology with three
clusters: cluster 1 has 15 nodes, cluster 2 has 15 nodes, while the
number of nodes in cluster 3 increases from 20 to 250. The algorithms
Algo1-Algo3 use differently the information in the coding vectors,
and are described in [39].

VII. ADDITIONAL OVERHEADS: THE FINITE FIELD
SIZE

Implementing coding requires network nodes to have
the capability of performing linear operations (additions
and multiplications) over finite fields. To implement such
operations, we could for example store addition and
multiplication tables for each fixed field Fq.
The size of the finite field we need the use depends on

the number of receivers. For multicasting to N receivers,
the current network coding algorithms operate assuming
a field size q > N . However, since there is no reason the
number of receivers interested in a multicasting content
would be fixed, it is not clear how to decide in advance
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what finite field size to use. We can always assume a
very large N and accordingly over-provision for q, but
as the complexity of the finite field operations and the
coding vectors overhead increases with the field size, this
is clearly not the most economic approach. We may end
up spending the overhead we gained from compressing
the coding vectors for example, by inefficiently selecting
the finite field of operation.
An alternative approach to performing finite field

operations is provided by vector network coding [45],
[46], [47]. The idea is that, instead of performing scalar
operations over a finite field, we perform operations on
vectors. The source transmits h vectors of length T ,
where the elements of the vectors are over a fixed finite
field, for example, the binary field 2. Thus, intermediate
network nodes only need to have implemented operations
over the binary field; as the number of the receivers
grows, we can simply increase the length of the em-
ployed vectors, while always performing addition and
multiplication over the binary field.
In vector network coding each intermediate network

node receives from each incoming edge a binary vec-
tor of length T ; it combines the received vectors by
multiplying them with T × T coding matrices and
then adds them to create the new vectors to propagate
towards the destinations. That is, intermediate nodes
linearly combine their incoming vectors using coding
matrices, where these matrices play the same role as
scalar coding coefficients in traditional network coding.
The code design consists in selecting the length T and
the T ×T coding matrices so that each receiver receives
information at rate h.

A

B

u1 u2

X1u1 + X2u2

Fig. 16. In vector network coding, node A combines the received
vectors u1 and u2 by multiplying them with T ×T matrices X1 and
X2.

Scalar operations over a field of size qL can be

translated to vector operations employing L × L matri-
ces using a well known mapping between finite fields
operations and operations using matrices and vectors
[44]. Thus, code designs for scalar network coding over
a field qL can be directly translated to code designs
for vector network coding using L × L matrices with
elements in q. However, directly designing codes for
vector network coding can still be useful; indeed, there
exist qL2

L×Lmatrices over q, while a translation from
scalar coding only employs qL of these matrices. Thus,
vector network coding offers a larger space of choices
for optimizing cost parameters. For example, we can use
structured matrices for the encoding at the network nodes
to reduce the encoding complexity [47], [48]; or, we can
attempt to minimize the communication block length L
[45], [46].
Vector network coding is an area that is just starting

to be explored in the network coding community, but
early results seem very promising [45], [46], [47]. For
example, it might be that in a fraction 1023

1024 of cases, we
will be able to find in polynomial time binary coding
matrices of size at most 3 × 3, for an arbitrary number
of receivers [46]. Moreover, the randomized algorithms
translate from finite fields to matrices, thus allowing a
randomized network operation [48].

VIII. SUMMARY AND DISCUSSION
When solving optimization problems over networks,

use of network coding increases the solution space. Thus,
we can achieve points we could not achieve before - such
as the mincut to each receiver when multicasting - or,
we can achieve points we could achieve before in much
simpler ways - for example, the mincut for a unicast
connection over a dynamically changing graph.
We examined in detail one particular manifestation

of the complexity benefits network coding can offer,
the possibility to achieve rate very close to the mincut
capacity, in a completely decentralized operation mode.
We started our discussion from the well known fact that
routing allows to achieve the mincut capacity, however,
pre-supposes a static knowledge of the network. If the
network dynamically changes, routing will not be able
to achieve good performance. Using randomized coding
over a finite field Fq, on the other hand, allows to achieve
the mincut in a completely decentralized fashion with
probability that goes to one as the field size increases.
However, with random coding, each receiver, to de-

code, needs to know the transfer matrix and solve
linear equations. To learn the transfer matrix, we need
to employ coding vectors, that essentially are a form
of training. Coding vectors allow for a very simple,
distributed operation, at the cost of an overhead.
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We thus have the following trade-off. Routing has no
overhead; but has a high probability of failure in dynam-
ically changing environments. Coding has an overhead
- that of coding vectors - but is very robust to dynamic
changes. Thus the ideal would be, if we could completely
eliminate or at least reduce the overhead of the coding
vectors.
Noncoherent network coding does not require knowl-

edge of the transfer matrix for decoding, and thus one
could expect less overhead as compared to the coding
vectors approach that explicitly learns the transfer ma-
trix. However, it turns out that both use of coding vectors
and subspace coding results to the same overhead, or loss
rate, as compared to routing.
To reduce this overhead, we can leverage the fact that

the coding vectors will not be completely random but
will have some structure. This is because coding vectors
implicitly carry information about the network topology
as well as its state. We can remove this structure to
gain rate benefits by compressing the coding vectors.
Alternatively, we can instead accept the associated rate
loss, and use the information that the coding vectors
passively collect, for network monitoring and control.
Finally, network coding requires an overhead not only

in terms of rate, but also in terms of operational com-
plexity. In particular, it requires encoding and decoding
operations over a finite field. Recent work in vector
coding shows there exist efficient algorithms to perform
network coding while always using the binary field, by
using matrix operations for the linear combining.
To conclude, network coding makes possible to have

reliable communication when it was not possible before,
for example in very dynamically changing networks;
there are several ways to do this, through coding vectors,
subspace coding, compressed coding vectors; and each
way has its own benefits and drawbacks.
Many research questions are currently under investi-

gation or remain open even in the specific application
we have examined. To mention a few, are there other,
perhaps more efficient ways to compress the coding
vectors? Does subspace coding allows other benefits
apart from rate, for example, in terms of error correction
or security? Are there other ways to use the information
the coding vectors bring? Parallel lines of work also
look at optimizing for specific applications requirements
and for a variety of traffic scenarios. We hope that by
addressing such questions, apart from satisfying a theo-
retical interest, we can build a foundation for designing
future communication systems that operate under de-
manding conditions and meet performance requirements
challenging to maintain before.
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