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Effective hydrogen diffusion coefficient for solidifying aluminium alloys
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Abstract

An effective hydrogen diffusion coefficient has been calculated for two solidifying Al – 4.5 wt.% Cu and Al – 10 wt.% Cu alloys as a
function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume
fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were
assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite
volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the
results of the numerical model at steady state. The results are compared with various effective medium theories.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The detrimental effects of hydrogen on the mechanical
properties of cast aluminium alloys have been studied for
many years [1]. Hydrogen is the only gas that is signifi-
cantly soluble in liquid aluminium; moreover, it is strongly
segregated during solidification since the solid solubility is
substantially lower [2]. Concomitant to the partitioning of
hydrogen during solidification, the maximum solubility
decreases as a result of both the temperature decrease
and the pressure drop across the mushy zone induced by
solidification shrinkage. Once the gas concentration in
the liquid exceeds the solubility, pores can nucleate and
grow [3].

Once a pore has nucleated, it grows and hence dis-
solved hydrogen must diffuse through the solidifying alloy
towards the pore. Since hydrogen diffuses very rapidly
(the hydrogen diffusion coefficient in liquid aluminium
D‘ � 10�7 m2 s�1 at the melting point [2]), most porosity
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models assume a lever rule for hydrogen mass conserva-
tion and neglect diffusion [4–6]. However, it has been
shown that pore growth can be limited by hydrogen diffu-
sion [7,8]. In order to take the influence of hydrogen dif-
fusion into account, previous models assumed that the
pore is “fed” through the liquid–gas interface only [8,9].
For pores growing in the mushy zone, where both solid
and liquid are in contact with the pore, a pore-liquid
interfacial area “fraction” (a function of the volume frac-
tion of solid) must then be estimated, which is a rather
difficult task. Moreover, diffusion of hydrogen through
the solid can no longer be neglected when the solid frac-
tion is large.

For these reasons, Atwood et al. [10] introduced an
effective hydrogen diffusion coefficient hDi as a function
of the local solid fraction. These authors used an effec-
tive medium theory initially developed for the transverse
thermal conductivity of a unidirectional fibre composite
[11], i.e. they directly replaced the thermal conductivity of
the phases by their diffusion coefficient in Markworth’s
equation for the case of perfect transfer at the interface.
However, this equation applies to a two-dimensional
(2D) structure and is valid only at low solid fractions
rights reserved.
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and for a specific morphology. A freezing aluminium
alloy exhibits a much more complex two-phase 3D struc-
ture, which furthermore undergoes a topological change
near gs = 0.9: from isolated solid grains (or dendrites)
surrounded by the liquid, the microstructure transforms
into a coalesced solid with isolated liquid pockets
[12,13]. Moreover, replacing the phase thermal conduc-
tivity directly by the diffusion coefficient is inappropriate
since it is the chemical potential and not the composition
that is the equivalent of the temperature field. Analytical
calculation of an effective diffusion coefficient in a
two-phase material should therefore be made based on
chemical potential gradients and atomic mobility rather
than composition gradients and diffusion coefficients.

In the present study, an effective hydrogen diffusion
coefficient is calculated for a representative volume element
(RVE) of a solidifying aluminium alloy. The RVE is
extracted from in situ X-ray tomography measurements
performed at the European Radiation Synchrotron Facility
(ESRF) in Grenoble (France) on Al – 4.5 wt.% Cu and Al –
10 wt.% Cu samples. Each of the reconstructed 3D images
recorded at various temperatures provides a 3D mesh for a
finite volume method (FVM) calculation of diffusion based
on the chemical potential.

Using a time-explicit scheme, the average hydrogen flux
across the RVE and thus an effective diffusion coefficient
are computed and compared with analytical solutions
based on effective medium theories.

2. Experimental

First, aluminium–copper samples were solidified in an
induction furnace under argon atmosphere. From pure alu-
minium (99.995% purity) and oxygen-free high-conductiv-
ity copper shots, Al – 4.5 wt.% Cu and Al – 10 wt.% Cu
samples were produced. Specimens of about 4.5 mm3

(1.4 mm diameter, 3 mm high) were then extracted from
these samples and analyzed using X-ray tomography.
These tomography measurements are similar to those of
Ref. [14] and will not be detailed here. In brief, the rotating
sample was heated in a fixed resistance furnace up to its
melting temperature. It was then cooled down at 3 K min�1

and a scan was taken every 1.28 min to characterize the
microstructural evolution during solidification. The camera
pixel size was set to h = 2.8 lm pixel�1 and 500 radiogra-
phy projections, each made of 512 � 512 pixels, were
recorded in 51 s during a 180� rotation. After reconstruc-
tion, the images were cropped to a size of 200 �
200 � 200 pixels, i.e. 560 � 560 � 560 lm3, in order to per-
form 3D calculations with a personal computer. Depending
on its grey level, a phase index w = 1 or 0 for solid or
liquid, respectively, was attributed to each voxel. The 3D
volume information then served as the mesh for the time-
explicit finite volume model, with a phase index (solid/
liquid) at each mesh point obtained from the tomography
binary voxel index.
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3. Theory

3.1. Diffusion

In the diffusion process, the flux of hydrogen atoms H,
JH, at any point in the lattice is proportional to the chem-
ical potential gradient $lH and is given by [15]:

JH ¼ �MHCH$lH ð1Þ
where MH is the mobility coefficient of H atoms, CH is the
local molar concentration (in mol m�3) and the flux is
given in mol m�2 s�1. Combining Eq. (1) with the Gibbs–
Duhem relationship, and introducing the molar volume
Vm = XH/CH, where XH is the molar composition of H,
the following equation is obtained [15]:

JH ¼ �MH RT
V m 1þ d lnf H

d lnX H

� �
$X H ð2Þ

where fH is the activity coefficient of hydrogen, i.e. fH = aH/
XH, with aH the corresponding chemical activity. A com-
parison with Fick’s first law allows the diffusion coefficient
DH (m2 s�1) to be related to the atomic mobility MH:

DH ¼ MHRT 1þ d lnf H

d lnX H

� �
ð3Þ

For dilute solutions such as the Al–H system, where XH ?
0 and fH = aH/XH � constant (Henry’s law), the term in
parentheses is equal to 1. The diffusion coefficient is thus
linked simply to the atomic mobility MH via the following
relationship:

DH ¼ MHRT ð4Þ
In order to solve the diffusion equation for hydrogen in a
heterogeneous material, i.e. one made of solid and liquid,
it is necessary to use a variable that is continuous at inter-
faces. Assuming local equilibrium at interfaces, one has
lH
‘ ¼ lH

s and thus it is appropriate to calculate diffusion
in any part of the RVE from the equation:

JH ¼ �MHX H$lH ð5Þ
This equation is similar to Eq. (1), but both parts of the
equation have been divided by the molar volume, so that
the flux JH is now given in m s�1. The conservation of
hydrogen is given by Fick’s second law, which becomes:

@X H

@t
¼ �$ � JH ¼ $ � MHX H$lH

� �
ð6Þ

This equation will be used and further developed in Sec-
tion 4.1 to model hydrogen diffusion through a mushy zone
microstructure.

3.2. Chemical potentials

In order to use Eq. (6), the chemical potential of hydro-
gen dissolved in the liquid and in the solid must be known.
Qiu et al. [16] performed a thermodynamic evaluation of
the Al–H phase diagram. They gave a direct relationship
rogen diffusion coefficient for solidifying aluminium alloys. Acta
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between the chemical potential and the hydrogen molar
fraction. The liquid phase was modeled as a substitutional
solution between Al and H, with its molar energy given by
a regular solution at a fixed pressure:

Gm
‘ ¼�GAl

‘ X Al þ�GH
‘ X H þ RT X Al ln X Al þ X H ln X H

� �
þ X‘X AlX H ð7Þ

where XAl and XH are the mole fractions of Al and H,
respectively, �GAl

‘ and �GH
‘ are their corresponding Gibbs

free energy in the liquid state, and X‘ is the interaction
parameter. The chemical potential of hydrogen in the li-
quid, lH

‘ , is thus given by:

lH
‘ ¼�GH

‘ þ X‘ð1� X HÞ2 þ RT ln X H ð8Þ
Unfortunately, the same procedure cannot be applied to
the solid phase, because �GH

s is unknown. However, the
Gibbs free energy curve of the solid Gm

s is known from
Ref. [16] and the chemical potential at any composition
can be found from the tangent rule, i.e. from:

@Gm
s

@X
¼ lH

s �Gm
s ðX HÞ

1�X H
) lH

s ¼
@Gm

s

@X H
ð1�X HÞþGm

s ðX HÞ

ð9Þ
Eqs. (8) and (9) provide both lH

‘ and lH
s as a function of

XH, which allows the calculation of the chemical potential
gradient appearing in Eq. (6) for both phases.

4. Model

4.1. Discretization

An explicit time-stepping FVM scheme was used to
solve Eq. (6) for an RVE containing solid and liquid vox-
els. Integrating this equation over the volume Vi = h3 of
a mesh (voxel) point i, where h is the mesh (voxel) size,
and using the divergence theorem, one has:

h3 DX H
i

Dt
¼ �h2

X
j

JH
ij � nj ¼ h2

X
j

ðMHX HÞijrlH
ij � nj ð10Þ

where nj is the outward-pointing unit normal of the sur-
face element separating node i and its neighbour j; JH

ij is
the hydrogen flux exchanged between these nodes, and
(MHXH)ij is a combination of mobilities and molar com-
positions of hydrogen at both nodes that needs to be
averaged properly. If the neighbour j of node i has the
same phase index (i.e. both nodes are solid or both are
liquid), the problem is trivial and ðMHX HÞij ¼ MH

i X H
i .

The flux exchange between the nodes in this case is
simply:

JH
ij � nj ffi MH

i X H
i

lH
j � lH

i

rj � ri
� nj ¼ MH

i X H
i

lH
j � lH

i

h
ð11Þ

The positions of nodes i and j are given by ri and rj, respec-
tively, and the summation is made over the six nearest-
neighbours nodes j at the front/back, right/left and top/
bottom of node i.
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If the two nodes are not of the same phase, care must be
taken in calculating (MHXH)ij. Since the chemical potential
is continuous across the interface between two nodes, we
call lH�

ij the chemical potential at half distance between
nodes i and j. The hydrogen flux on both sides of the inter-
face being equal, one has:

MH
j X H

j

lH
j � lH�

ij

h=2
¼ MH

i X H
i

lH�
ij � lH

i

h=2
ð12Þ

or

lH�
ij ¼

ðMHX HlHÞi þ ðMHX HlHÞj
ðMHX HÞi þ ðMHX HÞj

ð13Þ

Therefore the flux is given in this case by:

JH
ij � nj ¼ ðMHX HÞij

lH
j � lH

i

h
ð14Þ

where (MHXH)ij is given by:

ðMHX HÞij ¼ 2
ðMHX HÞiðMHX HÞj
ðMHX HÞi þ ðMHX HÞj

ð15Þ

Without too much of a surprise, we retrieve an average
(mobility-composition) made of two half-elements of thick-
ness h/2 put in series for calculating the flux between the
two nodes. Note that this equation retrieves Eq. (11) when
the two considered nodes belong to the same phase, i.e.
MH

i ¼ MH
j . Strictly speaking, in this case one should still

average the compositions of the nodes i and j as in Eq.
(15) and not take just X H

i as in Eq. (11). However, being
in the same phase for both nodes, X H

i ffi X H
j and thus both

formulations of the fluxes are almost equivalent.
Having expressed the hydrogen flux JH

ij � nj between any
two nodes i and j, the time-explicit scheme is equivalent to
calculating at the new time step (t + Dt) the compositions
X H

i ðt þ DtÞ at all the nodes from the previous compositions
X H

i ðtÞ and the known chemical potentials lH
i ðtÞ ¼

lHðX H
i ðtÞÞ, i.e.:

X H
i ðt þ DtÞ ¼ X H

i ðtÞ þ
Dt
h

X
j

ðMHX HÞijðtÞ

�
lH

j ðtÞ � lH
i ðtÞ

h
ð16Þ

The algorithm is simple and can be summarized as follows:

1. calculate the mean mobility-composition (MHXH)ij(t) at
all interfaces between nodes i and j, using Eq. (15), the
phase index of the nodes, the mobility of hydrogen in
the solid and liquid, and the compositions X H

i ðtÞ at all
nodes at time t,

2. calculate the chemical potential lH
i ðtÞ at each node using

Eqs. (8) and (9),
3. calculate the hydrogen fluxes exchanged between the

nodes, JH
ij � nj, using Eq. (14),

4. calculate the new composition X H
i ðt þ DtÞ at each node

using Eq. (16),
rogen diffusion coefficient for solidifying aluminium alloys. Acta
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5. restart at step 1 until the end of the time steps (typically
when steady state is reached).

We used a time-explicit discretization for two reasons.
First, it avoids having to invert a sparse (8 � 106) �
(8 � 106) matrix. Second, the problem is non-linear, since
the compositions also appear on the right-hand side of
Eq. (10) and furthermore the relationships between chemi-
cal potential and composition are non-linear. If an implicit
time-stepping scheme were to be used, inverse relations
XH(lH) would need to be derived. The simplicity of the
explicit scheme is of course counterbalanced by the neces-
sity of using small time steps. For a 3D linear problem of
diffusion, it is recalled that the time step Dt must satisfy
the Fourier condition: DHDt/h2 < 1/6. This criterion is even
more severe in our non-linear situation (see Table 1).

Concerning the boundary conditions applied at the
frontiers of the (560 lm)3 RVE, a zero flux condition is
applied on the front, back, top and bottom frontiers of
the volume. Dirichlet boundary conditions are then consid-
ered for the left and right frontiers (see Fig. 1):

	 lW
s ¼ lW

‘ ¼ lH
eq on the left (West) boundary, where lH

eq

corresponds to the equilibrium chemical potential of
hydrogen at 933.6 K and 1 atm,
	 lE

s ¼ lE
‘ ¼ �71856 J mol�1 on the right (East)

boundary.

The chemical potential at the right frontier of the
domain corresponds to a very low composition e = 10�10

(–) in the solid and e ¼ 10�10=kH
0 (–) in the liquid, where

kH
0 is the partition coefficient of hydrogen in aluminium.

Finally, the initial compositions X H
i ðt ¼ 0Þ are fixed to

e = 10�10 (–) everywhere in the domain except at the left
frontier, where they are set to X H

i;‘ðlH
eqÞ and X H

i;sðlH
eqÞ at the

liquid and solid nodes, respectively.
Finally, even if REVs are for different solid fractions, i.e.

different temperatures for Al–Cu alloys, the temperature
and the pressure of the system are assumed to remain fixed
at 933.6 K and 1 atm, respectively. The influences of cop-
per and of curvature on the Al–H equilibrium condition
(Section 3.2) are also neglected. Thus, only the influence
of the microstructure on diffusion is taken into account.
Table 1
Inputs values for the model (for p = 1 atm and T = 933.6 K).

Entity Value Reference

Dt 2.0 e�6 s –
Number of steps 3e6 –
DH

s 4.48 e�8 m2 s�1 [2]
DH
‘ 1.09 e�7 m2 s�1 [2]

X H
‘;eq 1.56037 e�5 [16]

X H
s;eq 9.02644 e�7 [16]

lH
eq �1099.54 J mol�1 [16]
�GH

‘ 44144.5 J mol�1 [16]
Xs 6877.67 J mol�1 [16]
X‘ 40624.3 J mol�1 [16]
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4.2. Diffusion coefficient averaging

Dealing with the diffusion of hydrogen only, we omit for
the sake of simplicity the superscript “H” in the following
developments and keep only the phase index m (m = s or ‘)
where necessary. Starting with Eqs. (4) and (5) and using
the definition of the chemical activity am of hydrogen in a
given phase m , i.e. am = exp(�(�Gm � lm)/RT), or alterna-
tively starting from am = fmXm, it is easy to show that in each
phase one has separately:

Jm ¼ �Dm$X m ¼ �Dm$
am

fm

� �
ffi

Henry
�Dm

fm
ram ¼ �Dm$am

ð17Þ
Note that one has assumed Henry’s law again for taking
the chemical activity coefficient of hydrogen fm out of the
gradient. We have introduced a new entity Dm ¼ Dm

fm
that

we call “mobility coefficient” of phase m that in this case
represents the ability of the phase to transport hydrogen.
We see that not only the diffusion coefficient, but also the
activity coefficient must be taken into account if one wants
to derive effective properties for diffusion in a multi-phase
material.

Now that we have a linear relationship between the flux
Jm and the gradient of a quantity that is continuous across
the interface (the activity a), we can use common models
for establishing an effective mobility coefficient hDi and
an average hydrogen flux hJi in the two-phase RVE. From
this average flux, we can then deduce an average diffusion
coefficient hDi, by considering an average composition
hXi = gsXs + g‘X‘, where gs and g‘ are the phase fractions.
(Note that they can be mass or volume fractions, since we
assume the same density for the solid and liquid phases.) In
other words, we have:

hJi ¼ �hDi$a ¼ �hDi$hX i ð18Þ
Note that we have arbitrarily defined hDi such that
hDi = hJi/$hXi, where both hJi and hXi are deduced from
the finite volume computations.

Since:

hX i ¼ X sgs þ X ‘g‘ ¼
as

fs
gs þ

a‘
f‘

g‘ ¼ a
gs

fs
þ g‘

f‘

� �
ð19Þ

one also has:

$hX i ¼ gs

fs
þ g‘

f‘

� �
$a ð20Þ

for an RVE in which the phase fractions are constant, and
with fs and f‘ also being constant.

We finally have:

hDi ¼ hDi � $a
$hX i ¼ hDi

gs

fs
þ g‘

f‘

� ��1

ð21Þ

The average diffusion coefficients obtained from the simu-
lation results will be compared with analytical values de-
duced from the effective medium theories, which are
briefly summarized in the next section.
rogen diffusion coefficient for solidifying aluminium alloys. Acta
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Fig. 1. (a) 3D volume rendering of a reconstructed solidifying Al – 10 wt.% Cu sample (gs = 0.8). (b) Representative volume element. Solid regions are
white (w = 1), whereas black represents liquid regions (w = 0). (c) 2D cross-section with the applied boundary conditions.
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4.3. Effective medium approximations

Effective medium theories rely on the fact that there is a
linear relationship between an average generalized flux, in
our case hJi, and an average (or applied) generalized inten-
sity, in our case $a, continuous at the interface between
various phases [17]. There are several ways to average the
fluxes and thus properties such as hDi. For a composite
made of spherical particles (phase 2) in a matrix (phase
1), we consider the three most important ones:

	 The self-consistent approximation (SC) [18]:

hDiSC ¼
1

4
D1ð3g1 � 1Þ þD2ð3g2 � 1Þð

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ð3g1 � 1Þ þD2ð3g2 � 1Þð Þ2 þ 8D1D2

q �

ð22Þ

	 The Maxwell-type approximation [19], coinciding with
the Hashin–Shtrikman (HS) upper bond:

hDiHS ¼ D1

2D1g1 þD2ð1þ 2g2Þ
D1ð3� g1Þ þD2ð1� g2Þ

ð23Þ

	 The differential effective medium approximation (DEM)
[20]:

D2 � hDiDEM

D2 �D1

D1

hDiDEM

� �1=3

¼ 1� g2 ð24Þ

The SC approximation is implicit: it requires solving
implicit equations for the effective properties and it treats
each phase symmetrically: both phases are considered as
inclusions in a composite matrix. Hashin and Shtrikman
[21], on the other hand, derived explicit relationships for
the best possible bounds on the effective conductivity of
two-phase isotropic 3D composites given just the volume
fraction information [17]. Finally the DEM implicit
approximation scheme lies between the HS lower and
upper bounds and is supposed to be a better approximation
Please cite this article in press as: Felberbaum M et al. Effective hyd
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in the case of a two-phase material with high phase con-
trast D2=D1 (typically more than 4 [22]).

5. Results and discussion

Before calculations were performed on real microstruc-
tures obtained by X-ray tomography, validations using a
fictitious arrangement of solid and liquid layers connected
in parallel or series were performed (see Ref. [23] for
details). Then computations were run on two different
alloys (Al – 4.5 wt.% Cu and Al – 10 wt.% Cu) for four dif-
ferent volume fractions (gs = 0.6 ? 0.9). About 10 days
were needed for each computation on an Intel Xeon
CPU @ 2.5 GHz to reach steady state in an RVE made
of 200 � 200 � 200 volume elements. Fig. 2 shows the
results (composition map on a cross-section in the xy plane
for each gs) of 3D calculations after reach steady state has
been reached. The grey level is proportional to the local
hydrogen composition, with a logarithmic scale shown on
the right. Liquid regions are the brightest and have only
very small composition gradients (almost invisible on these
figures because of the logarithmic scale) because of the
highest solubility and diffusion coefficient. The iso-compo-
sitions in the solid are clearly visible and are not perpendic-
ular to the x-axis (left–right direction), because of the
influence of the tortuous 3D microstructure. Note that at
x = 0 the compositions in the solid and in the liquid are
unequal, since the same equilibrium chemical potential
(and not composition) has been imposed for both phases.

The calculated composition and flux of hydrogen were
then averaged on each plane x = constant to deduce hXi(x)
(Eq. 19) and hJi, respectively. When reach steady state is
reached, the results of the computations show that in each
plane x = constant we have hJxi 
 hJyi and hJxi 
 hJzi.
Accordingly, we approximate hJi � hJxi (the component
of hJ i in the x direction) to calculate the average hydrogen
flux. Fig. 3 shows the average composition hX i(x) as a
function of the distance from the plane x = 0 for each solid
fraction gs of an Al – 4.5 wt.% Cu alloy (note that a similar
trend is obtained for the Al – 10 wt.% Cu alloy). All the
rogen diffusion coefficient for solidifying aluminium alloys. Acta
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Fig. 2. Cross-sections in the xy-plane of the steady-state hydrogen composition maps for four solid fractions gs. The logarithmic grey scales for the
composition and the coordinate system are indicated on the right.
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composition profiles appear to be linear, thus allowing a
linear regression to be performed for all the volume frac-
tions of solid. The points do not lie exactly on a single line,
probably because of the tortuous shape of the mushy zone.
Also, the solid fraction in each plane x = constant differs
slightly from the overall volumetric fraction of the RVE,
thus skewing the results. Nevertheless, a correlation coeffi-
cient R2 P 0.99 is always obtained, which allows us to
divide the flux by the average composition gradient $hXi
Table 2
Effective hydrogen diffusion coefficient for an Al – 4.5 wt.% Cu alloy at four

gs hJi (m s�1) $hX i (m�1)

0.6 8.49 � 10�10 �1.29 � 10�2

0.7 6.39 � 10�10 �1.05 � 10�2

0.8 4.46 � 10�10 �8.04 � 10�3

0.9 2.21 � 10�10 �4.89 � 10�3

Table 3
Effective hydrogen diffusion coefficient for an Al – 10 wt.% Cu alloy at four d

gs hJi (m s�1) $hX i (m�1)

0.6 8.72 � 10�10 �1.16 � 10�2

0.7 6.07 � 10�10 �8.98 � 10�3

0.8 3.90 � 10�10 �6.53 � 10�3

0.86 2.44 � 10�10 �4.66 � 10�3
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in order to extract hDi (Eq. 18) for both alloys at each solid
fraction. The results are summarized in Tables 2 and 3. The
last column of these two tables shows a simple phase frac-
tion-averaging of the diffusion coefficients, i.e. gsDs + g‘D‘,
for comparison.

The effective diffusion coefficients hDi(gs) of these tables
are plotted in Fig. 4. They can be compared with the three
analytical results from the effective medium theories pre-
sented in Section 4.3. As can be seen, the SC approximation,
different volume fractions of solid.

hDi (m2 s�1) gsDs + g‘D‘ (m2 s�1)

6.55 � 10�8 7.05 � 10�8

6.08 � 10�8 6.41 � 10�8

5.55 � 10�8 5.76 � 10�8

4.52 � 10�8 5.12 � 10�8

ifferent volume fractions of solid.

hDi (m2 s�1) gsDs + g‘D‘ (m2 s�1)

7.53 � 10�8 7.05 � 10�8

6.76 � 10�8 6.41 � 10�8

5.97 � 10�8 5.76 � 10�8

5.24 � 10�8 5.38 � 10�8
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which treats each phase symmetrically, gives very poor
results. On the other hand, the Maxwell approximation
(the HS upper bound in this case) clearly overestimates
the data. The best approximation is obtained with the
DEM scheme, which has been reported to be most suitable
in cases with large phase contrast, as occurs in the present
case, i.e. D‘=Ds � 40. This is in line with other work on
effective properties where the DEM was found to be a
robust predictive scheme even at high phase contrast [22].
Interestingly, hDi can be even lower than Ds because the
remaining liquid droplets at high solid fractions can act
as a sink or trap for hydrogen, thus “pumping” hydrogen
from the solid and further reducing the average diffusion
coefficient.

Note that the considered effective medium theories are
valid for isotropic RVEs only. Although RVEs of
560 � 560 � 560 lm3 could be extracted from the tomogra-
phy experiments, they may not be exactly representative or
even isotropic. Moreover, these theories are based on phase
fraction information only, assuming a given and simplified
microstructure (e.g. spheres in a matrix). They cannot
account for the complex and very tortuous morphology
of the mushy RVE shown in Fig. 1. As the solid fraction
increases towards 1, there is also a drastic change of the
morphology, i.e. the continuous liquid within the solid
transforms into isolated liquid droplets.

While the DEM scheme stands, within its limitations,
on physically solid ground, it is somewhat cumbersome
to work with due to its implicite nature. In the particular
case of hydrogen diffusion in Al–Cu alloys, the effective
diffusion coefficient is quite accurately represented by
the simple volume averaged rule of mixture
hDi = gsDs + g‘D‘. However, in view of the derivation
given above, this particular result must be considered as
being fortuitous. It is actually quite simple to run the cal-
culation for the apparently simple case of a two-phase
material with identical diffusion coefficients in both phases
but a strong partitioning of the diffusing species among
the phases. While the rule of mixture would give a con-
stant diffusion coefficient for all phase volume fractions
and topologies, the analytical model would yield strongly
distinct results. Such a general discussion of diffusion in
two- or many-phase media is, however, outside of the
scope of this contribution.

6. Conclusion

Effective diffusion coefficients as a function of the vol-
ume fraction of solid have been calculated on real micro-
structures obtained via in situ X-ray tomography. For
that purpose, a finite volume mesh was produced from
the tomography data (solid and liquid voxels becoming
solid and liquid nodes, respectively), on which a time-expli-
cit finite volume calculation of hydrogen diffusion was per-
formed. It has been shown that the diffusion equation must
Please cite this article in press as: Felberbaum M et al. Effective hyd
Mater (2011), doi:10.1016/j.actamat.2010.12.022
be based on the hydrogen chemical potential, or chemical
activity, this quantity being continuous across the interface
unlike the composition. Several effective medium approxi-
mations were compared with the numerical results and
the best fit was obtained with the DEM approximation.
However, the much simpler volume fraction weighed aver-
age hDi = gsDs + g‘D‘ describes the effective diffusion coef-
ficient in these alloys with good accuracy. Such a validated
relationship can now be used in integrated models of
porosity formation in aluminium alloys.
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[4] Péquet Ch, Gremaud M, Rappaz M. Metall Mater Trans A

2002;33:2095.
[5] Sabau AS, Viswanathan S. Metall Mater Trans B 2002;33:243.
[6] Couturier G, Rappaz M. Model Simul Mater Sci Eng 2006;14:253.
[7] Lee PD, Hunt JD. Acta Mater 1997;45:4155.
[8] Carlson KD, Lin Z, Beckermann Ch. Metall Mater Trans B

2007;38:541.
[9] Felicelli SD, Wang L, Pita CM, De Obaldia EE. Metall Mater Trans

B 2009;40:169.
[10] Atwood RC, Sridhar S, Zhang W, Lee PD. Acta Mater 2000;48:405.
[11] Markworth AJ. J Mater Sci Lett 1993;12:1487.
[12] Rappaz M, Jacot A, Boettinger WJ. Metall Mater Trans A

2003;34:467.
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