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Abstract Consensus is at the heart of fault-tolerant distrib-
uted computing systems. Much research has been devoted
to developing algorithms for this particular problem. This
paper presents a semi-automatic verification approach for
asynchronous consensus algorithms, aiming at facilitating
their development. Our approach uses model checking, a
widely practiced verification method based on state traversal.
The challenge here is that the state space of these algo-
rithms is huge, often infinite, thus making model checking
infeasible. The proposed approach addresses this difficulty
by reducing the verification problem to small model check-
ing problems that involve only single phases of algorithm
execution. Because a phase consists of a small, finite num-
ber of rounds, bounded model checking, a technique using
satisfiability solving, can be effectively used to solve these
problems. The proposed approach allows us to model check
several consensus algorithms up to around 10 processes.

Keywords Consensus · Model checking · Fault-tolerant
distributed algorithms · Formal verification

1 Introduction

Consensus is the problem of getting processes to agree on the
same decision in spite of faults. Consensus is central to the
construction of fault-tolerant distributed systems. For exam-
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ple, atomic broadcast, which is at the core of state machine
replication, can be implemented as a sequence of consen-
sus instances [5]. Other services, such as view synchrony
and membership, can also be constructed using consensus
[19,33]. Because of its importance, much research has been
being devoted to developing new algorithms for this problem.

In this paper we study the verification of consensus algo-
rithms for non-synchronous distributed systems, aiming at
facilitating the development of such algorithms. Specifically,
we propose a semi-automatic verification approach based
on model checking techniques. Model checking is a popular
method for formally verifying state transition systems with
state traversal. The main advantage of using this method is
that it allows the fully automatic analysis of designs. It is now
possible to model check systems with 100 million states or
more, thanks to the rapid progress in related algorithms.

However, model checking of asynchronous consensus
algorithms is still far from straightforward. As these algo-
rithms have runs of unbounded length, have unbounded
queues or unbounded sets of messages in transit, they induce
an infinite state space, making even latest model checkers
powerless. This problem can be partially alleviated by adopt-
ing a round-based model, which is an abstract model built on
top of the message-passing model. In particular, we adopt a
round-based model called the Heard-Of (HO) model [9,10].
In the conventional model, events, such as message send or
receive, are arbitrarily interleaved. That is, any event causes a
different system state, thus easily causing a state space explo-
sion. In the HO model (as in other round-based models), on
the other hand, an algorithm is modeled as a sequence of
rounds and therefore has a more regular structure. In each
round, every process sends messages, then receives messages
from other processes, and finally makes a local state transi-
tion. As a global state transition occurs only once per each
round, this model allows us to abstract away a large number
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of intermediate states, thus making the process of design and
analysis of algorithms much easier.

This coarse abstraction rests on the ground that most
of the existing consensus algorithms are structured in
communication-closed rounds: that is, processes react solely
to messages sent for the round that they are currently exe-
cuting. In non-synchronous settings, communication-closed-
ness is ensured by buffering early messages and discarding
late messages. In [6] it is proven that under the assumption
of communication-closedness, the lockstep semantics of the
HO model and the interleaving semantics are equivalent with
respect to the correctness of consensus algorithms.

However, as will be shown later, adopting a round model
is not sufficient for model checking purposes: even with
state-of-the art model checkers, the system size that can be
directly model checked is rather small, typically three or four
processes.

We address this scalability problem as follows: In our
approach the verification problem is divided into several
problems that can be solved by model checking. Importantly,
these model checking problems can be solved by only ana-
lyzing single phases—that is, a small number of consecutive
rounds—of a consensus algorithm. Because of this property,
bonded model checking [13] can be very effectively used.
As the name suggests, bounded model checking searches
state transitions of bounded length. This restriction allows
the model checking problem to be reduced to the satisfiability
problem for a formula, which is the problem of determining
whether or not values can be assigned to variables such that
the formula evaluates to true. Bounded model checking can
often be used only for finding defects near the initial states;
but in our case this problem is avoided because it is already
known that the depth of the search space exactly matches the
number of rounds in a phase.

In reducing the verification problem to the set of bounded
model checking problems, it is necessary to use approxi-
mations of some state sets, because otherwise it would not
be possible to examine all behaviors only by checking single
phases. Specifically we need to approximate the set of reach-
able states, as well as the set of univalent states—the states
from which only one value may be decided. Practical success
of our approach depends on how accurate these approxima-
tions are. In case studies we show that it is not difficult to
derive, from a given algorithm, the approximations accurate
enough to make the verification process successful.

Through the case studies, we also show that the proposed
approach doubles the size of systems that can be verified,
compared to the approach in which the whole state space is
model checked. This improvement cannot be achieved with-
out a significant reduction in the time and memory space
used for verification, because the state space increases expo-
nentially in the number of processes.

1.1 Related work

Some attempts have been reported to model check asynchro-
nous consensus algorithms. As stated above, if a conventional
message-passing model is assumed, then one has to deal with
an infinitely huge state space with fine details and thus model
checking can only be used for limited purposes. For example,
TLC, the TLA+ model checker, was used to find errors in the
TLA+ specifications of some Paxos algorithms [18,27]. The
models that were model checked consisted of two or three
processes and a small number of rounds [26]. In [38], an
approach to automatic discovery of consensus algorithms is
proposed. This approach depends on a procedure that deter-
mines if a given decision rule satisfies the required safety
properties of a single phase of a “full-information exchange”
consensus algorithm. This procedure cannot be used for live-
ness verification or to verify an entire consensus algorithm.

In [20], a synchronous consensus algorithm is model
checked for three processes. Studies on model checking of
shared memory-based randomized consensus algorithms can
be found in [11,24].

Model checking is also applied to the algorithms for Byz-
antine agreement, which is a similar problem to consensus
[2,23]. In [2] a synchronous system model is assumed. In
[23] an asynchronous algorithm is verified but manual proof
is used in combination with model checking.

In our previous work [36], we adopt the HO model and
model check several asynchronous consensus algorithms
with the NuSMV model checker [12]. The approach there
is to build a finite state model that represents the whole
state space of a given algorithm using an abstraction tech-
nique. The model generated is in turn verified by traditional
model checking. As we show, the performance improvement
of the technique proposed in this paper with respect to [36] is
significant.

Adopting the HO model can facilitate not only model
checking but also theorem proving. In [7] a formal proof
is presented for the LastVoting algorithm, a variant of Paxos
in the HO model. This proof is “at least five times shorter”
than the one for a similar consensus algorithm based on the
conventional message-passing model.

None of these previous studies, including ours, uses
bounded model checking. It is partly because of its inher-
ent limitation, namely, only depth-bounded state search is
possible. In the model checking community, the extension of
bounded model checking to “unbounded” model checking
has been intensively researched recently. Combining induc-
tion and bounded model checking is one such approach
[34]. Our verification approach has some similarity with it.
Especially the procedure for proving an invariant, which we
will explain in Sect. 5.1, can be viewed as a variation of
k-induction [32], a generalization of induction.
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1.2 Roadmap

This paper is structured as follows: Section 2 describes the
HO model and the consensus problem. Sections 3 and 4
describe our proposed model checking techniques for verifi-
cation of safety and liveness, respectively. Section 5 proposes
automatic procedures for validating two important assump-
tions used in the safety and liveness verification. Section 6
shows the results of case studies. Section 7 concludes the
paper.

2 The consensus problem

We start with an overview of the models that have been con-
sidered for solving consensus. Then we focus on the round
model that we use in the paper.

2.1 Models for solving consensus

Consensus is solvable in a synchronous system, but this leads
to inefficient solutions. This fact, and the FLP impossibility
result [16], have led to focus on models stronger than the
asynchronous system model, and weaker than the synchro-
nous system model. One such model is the partially synchro-
nous system model [15]; another model is the asynchronous
system model augmented with failure detectors [5].

We consider here the partially synchronous system model,
and, as in [15], we consider an abstraction on top of the
system model for expressing consensus algorithms: a round-
based model. The reason for this choice has been explained in
Sect. 1, where we point out the problems of model checking
of asynchronous algorithms. It should be noted that a con-
sensus algorithm expressed in the asynchronous system aug-
mented with failure detectors can, in general, always be
translated into a round-based consensus algorithm. There-
fore, focusing on a round-based model does not restrict the
scope of the paper.

2.2 Round-based model

In a round-based model, the computation consists of rounds
of message exchange. In each round r , each process p sends
a (possibly empty) message according to a sending function
Sr

p to every process, and, at the end of round r , computes a
new state according to a state transition function T r

p : message
reception is thus implicit. The state transition function takes
as input the set of messages received in round r (a message
sent in round r can only be received in round r ) and the cur-
rent process state. Since the message reception is implicit,
waiting for messages is not handled at the application level.
The issue is handled by the layer that implements the round
model. In [15] the round layer considered provides the

following guarantee: there exists a round GS R > 0 such
that for all rounds r ≥ GS R, all messages sent in round r by
correct processes to correct processes are received in round r .
An algorithm that ensures this property in a partially synchro-
nous system is given in [15]. Another algorithm is proposed
in [22].

The benefit of adding predicates to a round-based model
has been shown by Gafni: predicates can be used to systemat-
ically characterize the synchrony properties extracted from
the underlying system model and thus allow unification of
synchrony and asynchrony [17]. We use here the notation
introduced by the Heard-Of (HO) model [10]. If � is the set
of processes, H O(p, r) ⊆ � denotes the set of processes
from which p receives a message in round r : H O(p, r) is
the “heard of” set of p in round r . If q �∈ H O(p, r) while
q sent (or was supposed to send) a message to p in round
r , then a transmission fault occurred. This can be due to the
asynchrony of communication or process, or to a process
or link failure. The exact reason is not relevant. Predicates
over the HO sets are called communication predicates. For
example, an asynchronous system with reliable links and at
most f crash failures can be represented by the following
communication predicate:

∀p ∈ �, ∀r > 0 : |H O(p, r)| ≥ n − f

For any round r , its kernel is defined as the set of processes
K (r) = ⋂

p∈� H O(p, r). With this notation, a synchronous
system with reliable links and at most f crash failures can
be represented by the following communication predicate:
∣
∣
∣
∣
∣

⋂

r>0

K (r)

∣
∣
∣
∣
∣
≥n− f ∧∀p∈�, ∀r >0 : H O(p, r +1)⊆K (r)

The consensus problem is therefore solved by a pair
“round-based algorithm + communication predicate”. The
solution applies to a partially synchronous system whenever
the communication predicate is implementable in such a sys-
tem. We come back to this issue later in Sect. 2.4.

The round-based model can naturally be extended to
accommodate coordinator-based algorithms, by letting a
communication predicate deal with not only HO sets but also
with coordinators. This extended notion of a communication
predicate is called a communication-coordinator predicate.

A process is usually coordinator for a sequence of rounds,
and this sequence of rounds is called a phase. We denote
by k the number of rounds that compose a single phase.
Let Coord(p, φ) ∈ � denote the coordinator of process
p in phase φ. We assume that p knows its coordinator
Coord(p, φ) in phase φ and that the coordinator does not
change during that phase. The domain of a communica-
tion-coordinator predicate is the collection of H O(p, r) and
Coord(p, φ), for all p ∈ �, r > 0, φ > 0. The sending
function and the state transition function are now represented
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as Sr
p(sp, Coord(p, φ)) and T r

p (Msg, sp, Coord(p, φ)),
where φ is the phase that round r belongs to.

As in the case for HO sets, the property of coordinators
is represented by a communication-coordinator predicate.
For example, the property that all processes will eventually
have an identical coordinator is represented by the predicate:
∃φ > 0, ∃co ∈ �,∀p ∈ � : co = Coord(p, φ). Note that
the procedure for selecting coordinators is outside of the con-
sensus algorithm and is abstracted away in the HO model:
processes may use an external device/oracle or may adopt
the rotating coordinator strategy.

Since the correctness of an algorithm falls into safety or
liveness, we consider a communication-coordinator predi-
cate P of the form (� means is defined to equal)

P � Psa f e ∧ P live,

where Psa f e is used for satisfying safety, whereas P live is
used for satisfying liveness in conjunction with Psa f e.

We assume that Psa f e and P live are of the following form:

Psa f e � ∀φ > 0 : Psa f e(φ)

P live � ∃φ > 0 : Psync(φ)

where Psa f e(φ) and Psync(φ) are predicates over HO sets
and coordinators in phase φ. The latter form means that
only a single “good” phase is required to satisfy termination.
We will explain the reason for this assumption in Sect. 2.4.
We also assume that Psa f e(φ) ∧ Psync(φ) is not the con-
stant predicateFALSE.1 This excludes the uninteresting case
where the system has no possible behavior.

2.3 Consensus

Consensus is the problem of getting all processes to agree on
the same decision. Each process is assumed to have a pro-
posed value at the beginning and is required to eventually
decide on a value proposed by some process. We consider
the following specification:

– Integrity: Any decision value is the proposed value of
some process.

– Agreement: No two different values are decided.
– Termination: All processes eventually decide.2

It is easy to see that integrity and agreement are safety
properties, whereas termination is a liveness property. For
most consensus algorithms, integrity is trivially satisfied;

1 As stated in Sect. 4, this assumption is required by termination veri-
fication.
2 As in much of the literature on consensus, we do not require processes
to halt. The problem of ensuring halting can be treated separately as the
problem of reliably broadcasting a decision value, which in practice can
be done by repeated sending.

thus we limit our discussion to the verification of agreement
and termination. Note that the termination property requires
all processes to decide. This is because there is no notion of
faulty processes in the HO model,3 and therefore a process
is never exempted from deciding. There is no harm in doing
so, since we can always represent a process p that crashes
as a process that is no more heard of by any other process
(but still hears the other non-crashed processes). Requiring
such a process p to decide has no impact on the rest of the
computation.

2.4 The LastVoting (paxos) algorithm

We present now the LastVoting algorithm (Fig. 1) that is used
as a running example throughout the paper [10]. LastVoting
can be viewed as an HO model-version of Paxos [25]. It is
also close to the ♦S consensus algorithm by Chandra and
Toueg [5].

In LastVoting a phase consists of four rounds. In the first
round (round 4φ − 3), coordinators collect the current esti-
mate x p and the timestamp tsp from processes. If a coordi-
nator obtains these values from a majority of processes, then
it picks up the estimate that is associated with the greatest
timestamp and sets votep equal to that estimate. In the second
round (round 4φ −2) the coordinator broadcasts votep to all
processes. If a process p receives this value, then it updates
timestamp tp to the current phase number φ and then votes
for that value by replying ack to the coordinator in the third
round (round 4φ − 1). If the coordinator obtains a majority
of votes, then it again broadcasts the value of votep in the
fourth round (round 4φ). If a process receives this value, then
it decides on the value.

A sufficient condition for the LastVoting algorithm to
solve consensus is specified by the communication-coordi-
nator predicate P � Psa f e ∧ P live such that:4

Psa f e(φ) � TRUE

Psa f e � ∀φ > 0 : Psa f e(φ)

= TRUE

Psync(φ) � ∃co ∈ �,∀p ∈ � :
∧ co = Coord(p, φ)

∧ |H O(co, 4φ − 3)| > n/2

∧ |H O(co, 4φ − 1)| > n/2

∧ co ∈ H O(p, 4φ − 2)

∧ co ∈ H O(p, 4φ)

P live � ∃φ > 0 : Psync(φ)

(1)

3 However, all messages sent by a process may be lost, which is indis-
tinguishable for other processes.
4 Adopting the notation of TLA+, we write a conjunction or disjunction
as a list of formulas bulleted by ∧ or ∨.
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Fig. 1 The LastVoting ( Paxos)
algorithm

Recall that we require all processes to decide, as stated in
Sect. 2.3. Hence Formula (1) requires every process to agree
on the coordinator co.

For the LastVoting algorithm, agreement can never be vio-
lated no matter how bad the HO set is; that is the algorithm is
always safe, even in completely asynchronous runs. Hence
Psa f e is the constant predicate TRUE.

To meet liveness, on the other hand, some synchrony con-
dition must be assumed, since there is no deterministic con-
sensus algorithm in a pure asynchronous system [16]. The
above Psync(φ) specifies a synchronous phase φ where: all
processes agree on the same coordinator co; co can hear from
a majority of processes in the first and third rounds of that
phase; and every process can hear from co in the second and
fourth rounds. If such a phase φ occurs, then all processes
will make a decision in that phase. The predicate P live states
that such a synchronous phase will eventually occur. Based
on the results of [15], it is easy to show that this predicate is
implementable in the partially synchronous model provided

that a majority of processes eventually behave correctly, that
is, suffer no faults after some point in time. As stated in
Sect. 2.2, the algorithm presented in [15] guarantees that in
any round r > GS R, all message sent by correct processes
to correct processes are received in that round. This, and the
majority of correct processes assumption, ensure rounds of
the HO model where all processes can hear from a majority of
processes. In these rounds a unique coordinator can be cho-
sen by, for example, selecting the process with the highest
ID from those that can be heard of.

Many of the existing consensus algorithms follow this
template; that is, only a single phase is necessary to reach
consensus once the system has been stabilized.5 Accordingly,
the proposed approach verifies a restricted version of termi-
nation, namely:

5 In Sect. 7, we mention a possible extension of our approach to deal
with algorithms that do no have this property.
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– Termination: All processes decide in phase φ if Psync(φ)

holds.

To distinguish this property from the original definition of
termination, we call it simultaneous termination. Clearly
simultaneous termination implies termination.

3 Verification of agreement

In this section, we present our approach to verifying agree-
ment for a pair of a consensus algorithm and a communica-
tion-coordinator predicate Psa f e � ∀φ > 0 : Psa f e(φ). The
verification of termination is discussed in Sect. 4.

Our reasoning consists of two levels. Section 3.1 presents
the phase-level reasoning, which shows that agreement verifi-
cation can be accomplished by examining only single phases
of algorithm execution. Section 3.2 then describes how model
checking can be used to analyze the single phases at the round
level.

3.1 Phase level analysis

At the upper-level of our reasoning, we perform a phase-wise
analysis, rather than round-wise. We define a configuration as
a n+1-tuple consisting of the states of the n processes and the
phase number. Let C be the set of all possible configurations;
that is,

C � S1 × · · · × Sn × N
+

where Sp is the set of possible states of a process p and
N

+ is the set of positive integers. Given a configuration c =
〈s1, . . . , sn, φ〉 ∈ C, we denote by φ(c) the phase number
φ of c. It should be noted that the state sp of a process p
is a value assignment to the variables of p. Hence any set
of configurations can be represented by a predicate over the
process variables of all processes and φ; that is, the predicate
represents the set of configurations for which it evaluates to
true. We therefore use the notions of a set of configurations
and of such a predicate interchangeably.

Let V al be the set of values that may be proposed. We
define a ternary relation R ⊆ C × 2V al × C as follows:
〈c, d, c′〉 ∈ R iff the algorithm and Psa f e(φ(c)) permit a
phase such that: (1) c is the configuration at the beginning of
that phase (phase φ(c)), (2) d is the set of all values decided
in the phase, and (3) c′ is the configuration at the beginning of
the next phase (phase φ(c′)). By definition φ(c)+1 = φ(c′)
if 〈c, d, c′〉 ∈ R.

Let I ni t be the set of the configurations that can occur
at the beginning of phase 1. We define a run as an infi-
nite sequence c1d1c2d2 · · · (ci ∈ C, di ∈ 2V al) such that
c1 ∈ I ni t and 〈ci , di , ci+1〉 ∈ R for all i ≥ 1. We
let Run denote the set of all runs. Let Reachable be the

set of all configurations that can occur in a run; that is,
Reachable � {c | ∃c1d1c2d2 · · · ∈ Run, ∃i ≥ 1 : c = ci }.
We say that a configuration c is reachable iff c ∈ Reachable.
Agreement holds iff:

∀c1d1c2d2 · · · ∈ Run :
∣
∣
∣
∣
∣

⋃

i>0

di

∣
∣
∣
∣
∣
≤ 1 (2)

In determining whether Formula (2) holds or not, our veri-
fication approach does not individually explore every infinite
run. Rather, it collectively examines all phases that can occur
in a run. The notion of univalence plays here a crucial role.
A configuration is said to be univalent if there is only one
value that can be decided from that configuration [16]. If
the configuration is univalent and v is the only value that
can be decided, then the configuration is said to be v-valent.
Formally:

Definition 1 A configuration ci is v-valent iff
⋃

j≥i d j = ∅
or

⋃
j≥i d j = {v} holds for every sequence ci di ci+1di+1 · · ·

such that ∀ j ≥ i : 〈c j , d j , c j+1〉 ∈ R.

By definition, if c is a v-valent configuration, then the config-
uration c′ in the next phase, i.e., c′ such that 〈c, d, c′〉 ∈ R, is
also v-valent. That is, in a run c1d1c2d2 . . ., if ci is v-valent,
then every configuration c j such that j > i is also v-valent.

Agreement holds if, whenever some processes decide in
a phase, the decided values are the same (say v), and the
configuration at the beginning of the next phase is v-valent.
Formally, agreement holds if:

∀c ∈ Reachable : ∀〈c, d, c′〉 ∈ R :
d = ∅ ∨ ∃v : (d = {v} ∧ c′is v-valent)

In words, 〈c, d, c′〉 corresponds to any phase that can occur,
d = ∅ means that no decision is made in that phase, and
∃v : (d = {v} ∧ c′is v-valent) means that a single value v

is decided in that phase and that the next phase starts with a
v-valent configuration (and so does any successive phase).

It should be noted that this formula only refers to indi-
vidual phase-level transitions from the configurations in
Reachable, rather than to runs. This property is critical for
reducing the verification problem to a model checking prob-
lem of single phases. However, it is impractical to directly
check this formula, because roughly speaking, obtaining
Reachable is as hard as examining all runs.

The key here is to use, instead of Reachable, its over-
approximation. An over-approximation of the set of reach-
able states is usually referred to as an invariant.

Definition 2 A set of configurations is an invariant iff it
contains all reachable configurations.

In other words, an invariant is a predicate that is true in all
reachable configurations.

In the agreement verification, we assume that we already
have an invariant I nv and a predicate U (v) that specifies
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(a subset of) v-valent reachable configurations. Indeed, we
will have to validate I nv and U (v). Formally they must sat-
isfy the following properties.

Assumption 1 (I nv) A set I nv of configurations is an
invariant; that is, Reachable ⊆ I nv.

Assumption 2 (U (v)) For v ∈ V al, U (v) is a set of con-
figurations such that any configuration c ∈ U (v) is either (i)
reachable and v-valent or (ii) unreachable.

Example 1 In LastVoting the variables commitp and readyp

are initially set to false (lines 4, 5), updated only when a
process p is a coordinator (lines 14, 28, 37, 38) and always
reset to false at the end of every phase (lines 37, 38). The
value of the timestamp tsp is at most φ − 1 when a phase
φ starts. Hence the following predicate is always true at the
beginning of every phase φ:

I nv � ∀p ∈ � :
∧ commitp = false
∧ readyp = false
∧ tsp < φ

Example 2 In many consensus algorithms, a majority quo-
rum of processes is used to “lock” a decision value. This is
also true of the LastVoting algorithm. A reachable config-
uration is v-valent if a majority of processes have the same
estimate v for the decision value and have greater timestamps
than the other processes. Thus we have:

U (v) � ∃Q ⊆ � :
∧ |Q| > n/2
∧ ∀p ∈ Q : (x p = v ∧ ∀q ∈ �\Q : tsp > tsq)

Given I nv and U (v), we can use the following theorem
to verify the algorithm against agreement.

Theorem 1 Agreement holds if:

∀c ∈ I nv : ∀〈c, d, c′〉 ∈ R :
d = ∅ ∨ ∃v : (d = {v} ∧ c′ ∈ U (v))

(3)

Proof Let c1d1c2d2 · · · be any run. We prove that (3) implies
(2) by showing that |⋃i>0 di | ≤ 1. Since every ci is reach-
able and thus contained in I nv, (3) implies that for any
〈ci , di , ci+1〉, either di = ∅ or ∃v : (di = {v}∧ci+1 ∈ U (v)).

If di = ∅ for all i ≥ 1, then |⋃i>0 di | = 0 trivially
holds. Now suppose that some nonempty di exists. Let dl be
the first such nonempty di ; that is, dl �= ∅ and d1 = d2 =
· · · = dl−1 = ∅. Then (3) implies dl = {v} for some v

and cl+1 ∈ U (v). Because cl+1 is reachable, Assumption 2
implies that it is v-valent. Since cl+1 is v-valent, any ci such
that i > l + 1 is also v-valent and thus di = {v} or di = ∅
for any i ≥ l + 1. As a result,

⋃
i>0 di = {v}. ��

This theorem leads directly to the following verification
steps:

Given: Algorithm, n, Psa f e(φ), I nv, U (v).
Step A1: Check if (3) holds or not. If it holds, then agree-

ment holds.
Step A2: If (3) does not hold, then further analysis is needed,

because in this case (i) the consensus algorithm is
incorrect with respect to Psa f e(φ) or (ii) I nv and
U (v) are too large or too small, respectively. Case
(i) can be further divided into two cases: the algo-
rithm is indeed incorrect or Psa f e(φ) is too weak.

Our verification approach is sound but not complete; that
is, the algorithm under verification is proven to be correct
only when it is correct, but there is no guarantee that a con-
clusive answer is always obtained. This limitation is inev-
itable because we rely on imperfect information about the
algorithm, represented by I nv and U (v). Thus the practical
success of our approach largely depends on these predicates.
Through case studies, we will show that it is not difficult to
derive appropriate I nv and U (v) from consensus algorithms.

Theoretically, on the other hand, if agreement is indeed
satisfied, then some I nv and U (v) always exist such that (3)
holds. That is, there always exist I nv and U (v) that are accu-
rate enough to make the procedure complete, provided that
they are expressible in the logic we use for model checking.

Theorem 2 Suppose that I nv = Reachable and that U (v)

contains every state that is both reachable and v-valent. Then
agreement holds if and only if (3) holds.

Proof Since the proof of Theorem 1 directly applies to the
“if” part, it suffices to prove the “only-if” part. Suppose that
(3) does not hold. Then there is some 〈c, d, c′〉 ∈ R such that:
c is reachable; d �= ∅; ∀v : (d �= {v} ∨ c′ �∈ U (v)). Hence
we have two cases to consider: (i) |d| > 1 or (ii) d = {v}
and c′ �∈ U (v) for some v. In case (i), agreement is trivially
violated. In case (ii), since c′ is reachable and U (v) contains
every reachable v-valent state, c′ is not v-valent, meaning that
a run exists in which both v and another value v′ different
from v are decided. ��

3.2 Model checking of single phases

This section shows how model checking can be used to deter-
mine if Formula (3) holds or not. Model checking is the
process of exploring a state transition system to determine
whether or not a given property holds. Since our problem
involves only single phases, we only need to consider k con-
secutive state transitions of the consensus algorithm, where
k is the number of rounds per phase (see Sect. 2.2).

The behavior of the system in a single phase can be

represented as a tuple 〈c1ho1dv1c2ho2dv2· · ·ckhokdvkck+1,

Coord〉, where
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ci ci+1ci-1 ci+2

c1 ck+1c2 ck

Phase iPhase i-1 Phase i+1

Fig. 2 Transitions of configurations at the phase level (top) and at the
round level (bottom)

– ci (1 ≤ i ≤ k) is the configuration at the beginning of
the i-th round of the phase, while ck+1 is the configura-
tion at the beginning of the first round of the next phase
(see Fig. 2). Hence φ(c1) = φ(c2) = · · · = φ(ck) =
φ(ck+1) − 1.

– hoi (1 ≤ i ≤ k) is a collection of n HO sets—one per
process—in the i-th round.

– dvi � 〈dvi
1, . . . , dvi

n〉, where dvi
p ∈ V al ∪ {?} is the

value decided by each process p in the i-th round. If a
process p does not decide in the round, then dvi

p = ?
– Coord is a collection of n coordinators—one per

process—in the phase.

We call such a tuple a one-phase execution iff it is con-
sistent with the consensus algorithm and Psa f e(φ(c1)).6

By definition, 〈c, d, c′〉 ∈ R iff there is at least one one-
phase execution 〈c1ho1dv1 · · · ckhokdvkck+1, Coord〉 such

that c = c1, c′ = ck+1, and d =
(⋃

p∈�,1≤i≤k{dvi
p}

)
\{?}.

Our model checking problem is described as follows:
Determine if, for all one-phase executions 〈c1ho1dv1

· · · ckhokdvkck+1, Coord〉 such that c1 ∈ I nv, the following
condition holds:

d = ∅ ∨ ∃v : (d = {v} ∧ ck+1 ∈ U (v)) (4)

where d =
(⋃

p∈�,1≤i≤k{dvi
p}

)
\{?}.

Clearly (3) holds iff (4) holds for all one-phase executions
that start with a configuration in I nv.

This model checking problem only concerns exactly k
consecutive transitions. Because of this, bounded model
checking [13] can be most effectively used to solve it. The
idea of bounded model checking is to reduce the model
checking problem to the satisfiability problem for a formula
in some logic.

In order to check (4) with this model checking technique,
we proceed as follows. We construct three mathematical for-
mulas:

6 Here whether c1 is reachable or not is irrelevant. In other words, a
one-phase execution specifies how the system would behave in a phase,
provided that the phase begins with c1.

– X , which exactly represents all one-phase executions.
That is, X evaluates to true iff the variable values rep-
resent a one-phase execution.

– I N V , which specifies that c1 ∈ I nv.
– Agr , which specifies that (4) holds.

These formulas are built from variables that represent the
elements of a one-phase execution.

Then we check the satisfiability of:

X ∧ I N V ∧ ¬Agr (5)

This formula can only be satisfied by a value assignment
corresponding to a one-phase execution that (i) starts from
I nv and (ii) for which (4) does not hold. Therefore every
one-phase execution that starts from I nv meets (4) iff For-
mula (5) is unsatisfiable.

Step A1 and Step A2 can now be replaced with Step B1
and Step B2, respectively.

Step B1: Check the satisfiability of Formula (5). If no
satisfying value assignment exists, then every
one-phase execution starting from a configuration
in I nv satisfies (4), meaning that (3) holds. As a
result, it is guaranteed that agreement holds.

Step B2: On the other hand if there is a satisfying assign-
ment, further analysis is needed to obtain a con-
clusive answer (see Step A2).

Basically these formulas are specific to the algorithm and/or
the communication-coordinator predicate. In the rest of the
section we show how to construct these formulas with Last-
Voting as a running example.

3.2.1 Logic and variables

To ensure that the satisfiability of the formula is decidable,
we use a logic that allows boolean combinations of linear
(in)equalities and boolean expressions with integer and bool-
ean variables. A quantifier is allowed only when it is an exis-
tential quantifier that can be moved to the front of the formula
without changing the meaning of the formula. A Satisfiability
Modulo Theories (SMT) solver, such as Yices [14], can be
used to check the satisfiability of formulas in this logic.

To make the formula concise, we use the if- then- else
and tuple (〈· · · 〉) constructs and several “macros”. These
macros include:

– cardinality(x ∈ 〈e1, e2, · · · 〉 : P(x)) : The number of
ei such that P(ei ) = true.

– choose(x ∈ 〈e1, e2, · · · 〉 : P(x)) : Some ei such that
P(ei ) = true; ⊥ if no such ei exists.
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Before checking the satisfiability, these macros are trans-
lated into the raw logic. The macro cardinality is translated
into a term that has an integer value. A term that uses the
macro choose, e.g., y = choose(x ∈ 〈e1, e2, · · · 〉 : P(x)),
is translated as follows:

(P(y) ∧ (y = e1 ∨ y = e2 ∨ · · · ))
∨ (y =⊥ ∧¬P(e1) ∧ ¬P(e2) ∧ · · · )

This is added as a conjunct to the formula involving that term.
Formula (5) is constructed from variables that represent

the elements of a one-phase execution, namely, ci (1 ≤ i ≤
k + 1), hoi , dvi (1 ≤ i ≤ k), and Coord.

For the LastVoting algorithm, the variables involved are
as follows: The configuration ci is represented by: xi

p,

votei
p, tsi

p, commiti
p, readyi

p for p ∈ � and φi . The col-

lection of HO sets hoi is represented by boolean variables
hoi

p,q for p, q ∈ � such that hoi
p,q = true iff p hears q in

the i-th round. The collection of decision values dvi is rep-
resented by dvi

p for p ∈ �. The collection of coordinators
Coord is represented by Coordp for p ∈ �, where Coordp

specifies p’s coordinator.
Since the logic of the formula only allows integer and

boolean variables, it is necessary to convert the domain of
these variables into the integer domain, unless they are of
boolean type. We do this by mapping V al to [1..∞] and ?
to 0. As a result, the domain Dom of the variables is repre-
sented as follows:

Dom �
∧

∧

p∈�,1≤i≤k+1

(xi
p ≥ 1 ∧ votei

p ≥ 0 ∧ tsi
p ≥ 0)

∧
∧

1≤i≤k+1

φi ≥ 1

∧
∧

p∈�,1≤i≤k

dvi
p ≥ 0

∧
∧

p∈�

1 ≤ Coordi
p ≤ n

Special values are represented by distinct constant inte-
gers. Such values include: ⊥, empty, and ack. The value ⊥
is used to represent an invalid value. empty and ack repre-
sent an empty message and acknowledge message, respec-
tively. One could map these symbols to any integers, unless
a variable value simultaneously has two meanings. We map
⊥, empty, ack to −1,−2, 1, respectively.

3.2.2 Formula X

X is composed as follows:

X � Dom ∧ T 1 ∧ T 2 ∧ · · · ∧ T k ∧ Sa f e

where

– T i is a mathematical representation of the i-th round of
the algorithm.

– Sa f e is a mathematical representation of HO sets and all
possible coordinators that are permitted by Psa f e(φ).

Formula T i evaluates to true iff ci and ci+1—the config-
urations at the beginning of the i-th and i+1-th rounds—are
consistent with the algorithm under verification. For exam-
ple, the third round of LastVoting (round 4φ − 1) is repre-
sented as follows:

Snd Msg3
p,q �

if ts3
p = φ3 ∧ q = Coordp then ack else empty

RcvMsg3
p,q �

if ho3
p,q = true then Snd Msg3

q,p else ⊥
T 3

p �
if
∧ p = Coordp

∧ cardinality(Msg ∈ 〈RcvMsg3
p,1, . . . ,

RcvMsg3
p,n〉 : Msg = ack) ≥ � n+1

2 �
then
∧ ready4

p = true
∧ 〈x4

p, vote4
p, commit4

p, ts4
p〉

= 〈x3
p, vote3

p, commit3
p, ts3

p〉
∧ dv3

p = ?
else
∧ 〈x4

p, vote4
p, ready4

p, commit4
p, ts4

p〉
= 〈x3

p, vote3
p, ready3

p, commit3
p, ts3

p〉
∧ dv3

p = ?
T 3 � T 3

1 ∧ · · · ∧ T 3
n ∧ φ4 = φ3

Snd Msgp,q and RcvMsgp,q express the message sent by
p to q and the message received by p from q, respectively.
Here empty and ⊥ have different meanings; ⊥ means that the
sender process is not heard of (no message received), whereas
empty means that a message is received but it is empty.
T 3

p represents the state transition of process p at round 3.
It specifies that if p itself is p’s coordinator and receives
acks from a majority of processes, then it sets readyp to
true; p does not change other variables and makes no deci-
sion (specified as dv3

p = ?). Formula T 3 is a conjunction of
T 3

p ’s and the term φ4 = φ3. The term φ4 = φ3 states that c3

and c4 are in the same phase.
The LastVoting algorithm requires no condition on HO

sets and coordinators to satisfy safety; that is, Psa f e(φ) =
TRUE is sufficient. In this case we simply have:

Sa f e � true

3.2.3 Formula I N V

I N V specifies that c1 ∈ I nv. For example, consider I nv

shown in Example 1. In this case we have:
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I N V �
∧

p∈�

∧ commit1
p = false

∧ ready1
p = false

∧ ts1
p < φ1

3.2.4 Formula Agr

Agr specifies that (4) holds. For example, consider Agr
shown in Example 2. In this case we have:

v̄ � choose(v ∈ 〈dv1
1, · · · , dvk

n〉 : v �= ?)
Ū ′ �

∨

Q⊆�:|Q|>n/2

∧

p∈Q

⎛

⎝xk+1
p =v̄∧

∧

q∈�\Q

tsk+1
p >tsk+1

q

⎞

⎠

Agr �
∨ v̄ =⊥
∨ v̄ �=⊥ ∧

∧

p∈�,1≤i≤k

(dvi
p = ? ∨ dvi

p = v̄) ∧ Ū ′

Note that formula Arg, except the Ū ′ part, is independent of
the algorithm (if we ignore the dependency on k).

Value v̄ is one of the values decided in the phase. For-
mula Ū ′ represents whether U (v̄) holds or not for config-
uration ck+1(= c5). Value v̄ is ⊥ if no decision has been
made. Hence v̄ =⊥ holds iff d = ∅, where d is the set of all
decided values. In Agr , the term

∧
p∈�,1≤i≤k(...) represents

that d = ∅ or d = {v̄}. Thus the last disjunct represents that
d = {v̄} and ck+1 ∈ U (v̄). The verification of Formula (5)
for LastVoting is discussed in Sect. 6.

4 Verification of termination

This section presents a method for verifying a pair (algorithm,
communication-coordinator predicate P � Psa f e ∧ P live)
against termination. As stated in Sect. 2, we assume that
P live, the condition for termination, is of form:

P live � ∃φ > 0 : Psync(φ)

The proposed method verifies simultaneous termination, that
is, whether all processes decide in a phase φ such that
Psync(φ) is true. Clearly, simultaneous termination implies
termination.

Let Rsync ⊆ C × 2� × C be a ternary relation such that
〈c, π, c′〉 ∈ Rsync iff a one-phase execution from c to c′ exists
such that π is the set of processes that decide and Psync(φ(c))
holds for that one-phase execution. Hence simultaneous ter-
mination is satisfied iff:7

∀c ∈ Reachable : (∀〈c, π, c′〉 ∈ Rsync : π = �) (6)

7 Note that we safely exclude the exceptional case where no 〈c, π, c′〉 ∈
Rsync exists for some c, because Psa f e(φ)∧Psync(φ) is not the constant
predicate FALSE.

Theorem 3 Termination holds if:

∀c ∈ I nv : (∀〈c, π, c′〉 ∈ Rsync : π = �) (7)

Proof Because Reachable ⊆ I nv (Assumption 1), (7)
implies (6), that is, simultaneous termination. ��

Whether (7) holds or not can be determined using bounded
model checking, as was done for agreement verification. Note
that 〈c, π, c′〉 ∈ Rsync corresponds to one or several one-
phase executions 〈c1ho1dv1 · · · ckhokdvkck+1, Coord〉 such
that c = c1, c′ = ck+1, and π = {p | ∃i, 1 ≤ i ≤ k : dvi

p
�= ?}. Hence the problem needed to be solved by model check-
ing is to determine if, for all one-phase executions such that:

– c1 ∈ I nv; and
– Psync(φ(c1)) holds for the HO sets, ho1, ho2, . . . , hok ,

and the coordinators, Coord,

the following condition (8) holds:

∀p ∈ �, ∃i, 1 ≤ i ≤ k : dvi
p �= ? (8)

In words, (8) states that every process decides in some
round of a phase. By definition, (7) holds iff (8) holds for all
the above one-phase executions.

This decision problem is reduced to the satisfiability prob-
lem. The formula to be checked is:

X ∧ I N V ∧ Sync ∧ ¬T erm

where:

– Sync represents Psync(φ(c1)). Formula Sync is satisfied
iff Psync(φ(c1)) holds for the HO sets and the coordina-
tors represented by hoi

p,q and Coordp.
– T erm is satisfied iff (8) holds. We have:

T erm �
∧

p∈�

∨

1≤i≤k

dvi
p �=?

Note that T erm is independent of the algorithm, except
in that it depends on k.

The formula X ∧ I N V ∧ Sync ∧ ¬T erm can be satisfied
by, and only by a one-phase execution that (i) starts from
a configuration in I nv, (ii) satisfies Psync(φ), and (iii) for
which (8) does not hold. Therefore every one-phase execu-
tion examined satisfies (8) iff no satisfying assignment exists.
As a result, termination can be verified as follows:

Given: Algorithm, n, Psa f e(φ), Psync(φ), I nv.
Step C1: Check the satisfiability of X ∧ I N V ∧ Sync ∧

¬T erm. If no satisfying value assignment exists,
then termination is guaranteed.
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Step C2: If the formula is satisfiable, then it means that (i)
the algorithm is incorrect with respect to Psync(φ)

or (ii) I nv is too large. Case (i) can be further
divided into three cases: the algorithm is indeed
incorrect; the algorithm satisfies termination but
not simultaneous termination; or Psync(φ) is too
weak. Further analysis is required to obtain a con-
clusive answer.

Example 3 Consider Psync(φ) for LastVoting (Formula (1)).
We have:

Sync �∨

p∈�

∧ p = Coord1 = · · · = Coordn

∧ cardinality(ho ∈ 〈ho1
p,1, . . . , ho1

p,n〉 :
ho = true) ≥ � n+1

2 �
∧ cardinality(ho ∈ 〈ho3

p,1, . . . , ho3
p,n〉 :

ho = true) ≥ � n+1
2 �

∧
∧

q∈�

ho2
q,p = true

∧
∧

q∈�

ho4
q,p = true

Note that if I nv is equal to Reachable, then the above
procedure can determine exactly whether simultaneous ter-
mination holds or not. This follows from the fact that the
necessary and sufficient condition for simultaneous termina-
tion is (6), which is identical to (7) except I nv replaced with
Reachable.

5 Validating Inv and U(v)

So far we have assumed that I nv (see Example 1) and U (v)

(see Example 2) satisfy Assumption 1, respectively Assump-
tion 2 (see Sect. 3.1). Here we present automatic procedures
that can check that I nv and U (v) indeed satisfy the cor-
responding assumptions. We show that with some minor
modifications, the model checking technique described in
the previous sections can be used for this purpose.

5.1 Validating I nv

Here we discuss the validation of Assumption 1, i.e., the
invariance of I nv. The validation uses the following theo-
rem.

Theorem 4 Suppose that I nv is a set of configurations. I nv

is an invariant if the following two conditions hold:

I ni t ⊆ I nv (9)

∀c ∈ I nv : (∀〈c, d, c′〉 ∈ R : c′ ∈ I nv) (10)

Proof By induction we show that for any c1d1c2d2 · · · ∈
Run, ci ∈ I nv for any i ≥ 1. By definition of Run, c1 ∈
I ni t . By (9) c1 ∈ I nv. Suppose that ci ∈ I nv for some
i ≥ 1. Then ci+1 ∈ I nv by (10). ��

In the formal verification literature, such an invariant that
can be proven by induction is often referred to as an inductive
invariant. The use of bounded model checking for proving
an inductive invariant is studied in, for example, [32,34]. The
method presented in this section follows the same approach;
that is, it determines whether I nv is an inductive invariant or
not.

5.1.1 Test of (9) (Base Case)

Testing (9) can be done by searching for a configuration that
is in I ni t but not in I nv. This can be conducted by checking
the satisfiability of the following formula:

Dom ∧ I N I T ∧ ¬I N V

where I N I T specifies that c1 ∈ I ni t .
Since ¬I N V is satisfied iff c1 �∈ I nv, the above formula

is true iff c1 ∈ I ni t\I nv. Hence condition (9) holds iff no
satisfying assignment exists.

Example 4 Consider the LastVoting algorithm for example.
In this case we have:

I N I T � ∧
∧

p∈�

∧ vote1
p = ?

∧ commit1
p = false

∧ ready1
p = false

∧ ts1
p = 0

∧ φ1 = 1

5.1.2 Test of (10) (Inductive Step)

The problem of testing whether (10) holds or not is equiva-
lent to determining if for all one-phase executions 〈c1ho1dv1

· · · ckhokdvkck+1, Coord〉 we have:

c1 ∈ I nv −→ ck+1 ∈ I nv

This problem can be reduced to the satisfiability problem of
the following formula:

X ∧ I N V ∧ ¬I N V ′

where I N V ′ is satisfied iff ck+1 ∈ I nv. Thus if there is no
satisfying solution, then every one-phase execution starting
from a configuration in I nv ends with another configuration
in I nv, i.e., (10) holds.

I N V ′ is almost identical to I N V , except that every first-
round version variable var1 in I N V is now replaced with its
k+1-th version vark+1.
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The validation of Assumption 1 (I nv) for LastVoting is
discussed in Sect. 6.

5.2 Validating U (v) with Assumption 1

Here we discuss the validation of U (v), i.e., the fact that U (v)

represents v-valent configurations. We assume that I nv cor-
rectly represents an invariant; that is, Reachable ⊆ I nv

(Assumption 1).

Theorem 5 Suppose that v ∈ V al and that U (v) is a set
of configurations. Any c ∈ U (v) is either reachable and
v-valent or unreachable if:

∀c ∈ I nv : ∀〈c, d, c′〉 ∈ R : ∀v ∈ V al :
c ∈ U (v) −→ (d = ∅ ∨ d = {v}) ∧ c′ ∈ U (v)

(11)

Proof It suffices to show that when (11) holds, for any ci

(i ≥ 1) in any run c1d1c2d2 · · · ∈ Run, if ci ∈ U (v), then
ci is v-valent. Since Reachable ⊆ I nv, ci ∈ I nv for any
i ≥ 1. If ci ∈ U (v), then because of (11), di = ∅ or di = {v}
and ci+1 ∈ U (v). By induction, for any j ≥ i, d j = ∅ or
d j = {v}. Hence ci is v-valent. ��

Again, bounded model checking can be used to check if
(11) holds. The problem to be solved is to determine whether
every one-phase execution 〈c1ho1dv1 · · · ckhokdvkck+1,

Coord〉 such that c1 ∈ I nv satisfies the following condi-
tion for any v ∈ V al:

c1 ∈ U (v) −→ (d = ∅ ∨ d = {v}) ∧ ck+1 ∈ U (v) (12)

where d =
(⋃

p∈�,1≤i≤k{dvi
p}

)
\{?}.

The problem is reduced to the satisfiability problem of:

X ∧ I N V ∧ ∃v̂ : (v̂ ∈ V al ∧ ¬Univ(v̂))

where v̂ is a newly introduced variable and ¬Univ(v̂) is true
iff (12) does not hold when v = v̂ ∈ V al. If X ∧ I N V ∧∃v̂ :
(v̂ ∈ V al ∧ ¬Univ(v̂)) is unsatisfiable, then U (v) satis-
fies Assumption 2, because in that case (12) holds for any
v ∈ V al and for any one-phase execution that starts with
a configuration in I nv. Note that this use of a quantifier is
allowed by the logic of the formula and that the term v̂ ∈ V al
is represented as v̂ ≥ 1 (see Sect. 3.2.1).

Formula Univ(v̂) is constructed as follows:

Univ(v̂) �
Û (v̂) −→ ∧

p∈�,1≤i≤k
(dvi

p =? ∨ dvi
p = v̂) ∧ Û ′(v̂)

where Û (v̂) and Û ′(v̂) represent c1 ∈U (v̂) and ck+1 ∈U (v̂),
respectively. The term

∧
p∈�,1≤i≤k(..) represents d = ∅ or

d = {v̂}. This term is independent of the algorithm, except
in that it depends on k.

Fig. 3 The Hybrid-1(α) algorithm (α ≤ �n/4�)

Example 5 For U (v) shown in Example 2, we have:

Û (v̂)�
∨

Q⊆�:|Q|>n/2

∧

p∈Q

⎛

⎝x1
p = v̂∧

∧

q∈�\Q

ts1
p>ts1

q

⎞

⎠

Û ′(v̂) �
∨

Q⊆�:|Q|>n/2

∧

p∈Q

⎛

⎝xk+1
p =v̂∧

∧

q∈�\Q

tsk+1
p > tsk+1

q

⎞

⎠

The validation of Assumption 2 (U (v)) for LastVoting is
discussed in Sect. 6.

6 Case studies

6.1 Algorithms verified

In this section we present the results of applying the proposed
approach to four consensus algorithms:

– LastVoting (Paxos) [10], see Fig. 1.
– Hybrid-1(α) [8], see Fig. 3.
– CoordUniformVoting [10], see Fig. 4.
– Simplified CoordUniformVoting [10], see Fig. 5.

The conditions for safety and liveness are summarized in
Table 1. I nv and U (v) are shown in Table 2.
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Fig. 4 The CoordUniformVoting algorithm

Fig. 5 Simplified CoordUniformVoting algorithm

6.1.1 LastVoting

For LastVoting, the conditions for safety and liveness are
explained in Sect. 2.4, while I nv and U (v) are explained in
Examples 1 and 2 in Sect. 3.1.

6.1.2 Hybrid-1(α)

The Hybrid-1(α) algorithm is an improved version of the
Fast Paxos algorithm [27]. Unlike the other three algorithms,
Hybrid-1(α) has the design parameter α. This algorithm is
always safe if α ≤ �n/4�.

Hybrid-1(α) combines a fast phase and an ordinary phase
of Fast Paxos into the same phase. In the first round of
Phase 1, if a process has received the same estimate from
n − α processes, then the process can immediately decide
(line 3). To prevent processes from deciding different values
in later rounds (line 3), if n − α or more processes have the
same proposed value, then it must be guaranteed that no pro-
cess having a different estimate will be allowed to update its
timestamp. That is, when at least n − α processes have the
same estimate v and the remaining processes have a time-
stamp equal to zero, the system must be v-valent. The first
disjunct of the U (v) states this formally. The second disjunct
is the same as the U (v) for LastVoting.

For this algorithm, we perform a parameterized verifica-
tion to verify all possible values for α as follows: We intro-
duce an integer variable into the formula X to represent α,
instead of substituting a specific constant for it. At the same
time, we add to X the terms α ≥ 0 and n ≥ 4α as conjuncts.
These conjuncts guarantee that α stays within the permissible
range.

6.1.3 CoordUniformVoting

The CoordUniformVoting algorithm can be regarded as a
deterministic and coordinator-based version of the Ben-Or
algorithm [1].

In the first round, every process p that considers itself to
be the coordinator broadcasts x p, which is the estimate of the
decision value. If a process receives a value from its coor-
dinator, then it adopts the value as its own estimate. In the
second round, every process p broadcasts x p. Then, p votes
for value v if all received values are equal to v; otherwise,
the process does not cast a vote. In the third round, the cast
is actually performed: p sends the value of votep, which is
either v or ?, to all. If p receives at least one vote, then p
adopts it as its estimate. If every received message is the vote
for v, then p decides v.

Unlike the first two algorithms, CoordUniformVoting
requires some synchrony condition to satisfy its safety. Spe-
cifically, as shown in Table 1, it requires that the following
predicate hold for every phase φ:

Psa f e(φ) �
∀p, q ∈ �,∀r, 0 ≤ r ≤ 2 :

H O(p, 3φ − r) ∩ H O(q, 3φ − r) �= ∅

Psa f e(φ) states that any pair of processes can hear from at
least one common process. This is implementable in an asyn-
chronous system with at most f = � n−1

2 � crash failures with
reliable links (see the communication predicate for this sys-
tem shown in Sect. 2.2).

The Psa f e(φ) predicate and the condition of the if state-
ment at line 4 ensure that no two processes cast different
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Table 1 Conditions for safety
and liveness (Psa f e and Plive)

(a) LastVoting

Condition for safety None (TRUE)

Condition for liveness

∃φ > 0, ∃co ∈ �,∀p ∈ � :
∧ co = Coord(p, φ))

∧ |H O(co, 4φ − 3)| > n/2

∧ |H O(co, 4φ − 1)| > n/2

∧ co ∈ H O(p, 4φ − 2)

∧ co ∈ H O(p, 4φ)

(b) Hybrid-1(α)

Condition for safety None (TRUE)

Condition for liveness

∃φ > 0, ∃co ∈ �,∀p ∈ �,∀r, 0 ≤ r ≤ 2 :
∧ |H O(p, 3φ − r)| > max(n/2, 2α)

∧ co = Coord(p, φ)

∧ co ∈ H O(p, 3φ − r)

(c) CoordUniformVoting

Condition for safety
∀φ > 0,∀p, q ∈ �,∀r, 0 ≤ r ≤ 2 :

H O(p, 3φ − r) ∩ H O(q, 3φ − r) �= ∅
Condition for liveness

∃φ > 0, ∃co ∈ �,∀p ∈ � :
co = Coord(p, φ) ∧ co ∈ H O(p, 3φ − 2)

(d) Simplified CoordUniformVoting

Condition for safety

∀φ > 0,∀p, q ∈ �,∀r, 0 ≤ r ≤ 1 :
∧ H O(p, 2φ − r) ∩ H O(q, 2φ − r) �= ∅
∧ Coord(p, φ) = Coord(q, φ)

Condition for liveness
∃φ > 0, ∃co ∈ �,∀p ∈ � :
co = Coord(p, φ) ∧ co ∈ H O(p, 2φ − 1)

Table 2 I nv and U (v)

(a) LastVoting

I nv ∀p ∈ � :
∧ commitp = false

∧ readyp = false

∧ tsp < φ

U (v) ∃Q ⊆ � :
∧ |Q| > n/2

∧ ∀p ∈ Q : (x p = v ∧ ∀q ∈ �\Q : tsp > tsq )

(b) Hybrid-1(α)

I nv ∀p ∈ � : voteT oSendp = false ∧ tsp < φ

U (v)

∨ ∃Q ⊆ � :
∧ |Q| ≥ n − α

∧ ∀p ∈ Q : (x p = v) ∧ ∀p ∈ �\Q : (tsp = 0)

∨ ∃Q ⊆ � :
∧ |Q| > n/2

∧ ∀p ∈ Q : (x p = v ∧ ∀q ∈ �\Q : tsp > tsq )

(c) CoordUniformVoting

I nv ∀p ∈ � : votep = ?

U (v) ∀p ∈ � : x p = v

(d) Simplified CoordUniformVoting

I nv ∀p ∈ � : votep = ?

U (v) ∀p ∈ � : x p = v
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Table 3 Execution time (h: mm:ss)

n =4 n =5 n =6 n =7 n =8 n =9 n =10 n =11 n =12 n =13 n =14 n =15

(a) LastVoting

Agreement 0:01 0:02 0:07 0:27 1:27 4:53 21:44 > 5 h > 5 h > 5 h > 5 h > 5 h

Termination 0:00 0:01 0:01 0:04 0:20 0:28 2:06 11:52 29:11 3:19:56 4:04:29 > 5 h

I nv (9) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

I nv (10) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:04 0:00 0:03 0:06 0:03

U (v) 0:01 0:09 0:24 1:49 3:04 2:05:21 > 5 h > 5 h > 5 h > 5 h > 5 h > 5 h

(b) Hybrid-1(α)

Agreement 0:11 1:01 5:54 1:25:14 >5 h >5 h >5 h >5 h >5 h >5 h >5 h >5 h
Termination 0:00 0:00 0:01 0:01 0:10 13:05 1:56 5:48 10:22 14:20 47:31 > 5 h

I nv (9) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

I nv (10) 0:00 0:00 0:00 0:00 0:00 0:01 0:02 0:03 0:04 0:11 0:18 0:22

U (v) 0:09 1:01 9:38 1:10:03 > 5 h > 5 h > 5 h > 5 h > 5 h > 5 h > 5 h > 5 h

(c) CoordUniformVoting

Agreement 0:01 0:02 0:06 0:20 0:55 2:34 6:05 13:20 42:54 3:03:18 > 5 h > 5 h

Termination 0:02 0:02 0:03 0:05 0:06 0:09 0:14 0:22 0:27 0:38 1:20 1:46

I nv (9) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

I nv (10) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

U (v) 0:00 0:00 0:01 0:01 0:02 0:07 0:09 0:10 0:22 0:33 0:37 1:09

(d) Simplified CoordUniformVoting

Agreement 0:01 0:03 0:06 0:21 1:02 2:53 10:19 29:33 1:31:51 > 5 h > 5 h > 5 h

Termination 0:00 0:00 0:01 0:04 0:05 0:09 0:17 0:35 0:51 1:17 1:37 2:10

I nv (9) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

I nv (10) 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

U (v) 0:00 0:00 0:01 0:01 0:03 0:05 0:06 0:17 0:17 0:21 0:54 0:59

votes. In the third round, Psa f e(φ) also guarantees that if
some process decides a value, then all processes will adopt
the same value. This in turn guarantees that only the same
decision is possible in any later phase.

Recall that the condition for safety is represented as
the formula Sa f e in our model checking procedures (see
Sect. 3.2.2). For LastVoting and H ybrid − 1(α), Sa f e
simply equals true, whereas for CoordUniformVoting we
have:

Sa f e �∧

p1,p2∈�:p1<p2
i :1≤i≤3

∨

q∈�

(hoi
p1,q = true∧ hoi

p2,q = true)

The condition for termination shown in Table 1c specifies
that all processes can hear from the same coordinator in the
first round. The I nv in Table 2c is derived from the fact that
the variable votep is always initialized to ? in every phase
(line 4). Once a decision has been made, all processes have
to have the same estimate, equal to the decision value. The
U (v) in Table 2c represents this observation.

6.1.4 Simplified CoordUniformVoting

The Simplified CoordUniformVoting algorithm can be
viewed as the Mostéfaoui-Raynal algorithm [31] expressed
in the HO model. This algorithm requires that only a single
coordinator exist, in addition to the condition that any two
processes hear from at least one common process. The single
coordinator ensures that all votes are uniform. Termination is
intended to be satisfied in a phase where in its first round, all
the processes agree on the coordinator and can hear from it.
These conditions are formally represented in Table 1d. The
I nv and U (v) in Table 2d are the same as for CoordUniform-
Voting.

6.2 Experiments

We conducted, up to n = 15, the five kinds of checks, namely
agreement, termination, the base case of I nv (Formula (9)),
the inductive step of I nv (Formula (10)), and U (v). The
experiments were performed on a Linux workstation with
an Intel Xeon processor 2.2G Hz and 4 Gbyte memory. We
used the Yices [14] satisfiability solver. Table 3 shows the
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Table 4 The maximum number
of processes for which
agreement and termination were
proven

Algorithm Agreement Termination

LastVoting n = 9 n = 14

Hybrid-1(α) n = 7 n = 14

CoordUniformVoting n = 13 n = 15

Simplified CoordUniformVoting n = 12 n = 15

Table 5 Traditional approach
on LastVoting with different
model checkers

∗ The rotating coordinator
paradigm is assumed.

Model checker Agreement Termination

n Time n Time

NuSMV [12] n = 4 2:47 n = 3 0:41

SPIN [21]∗ n = 3 48:42 –

ALV [4] n = 3 32:01 –

execution time required for these checks.8 Notation “> 5h”
indicates that the check was not completed within 5 h. The
execution time increases as n increases, although fluctuating
in some cases. For example, the execution time for the ter-
mination check of Hybrid-1(α) decreases when n increases
from n = 9 to n = 10 (Table 3b). Such fluctuations can be
explained by the fact that the Yices SMT solver uses a variety
of heuristics to prune the search space and thus a larger state
space does not always mean a longer execution time. This
fact also explains why CoordUniformVoting sometimes has
a smaller verification time than its simplified version.

No satisfiable solution was found in any of the checks.
This means, up to n for which model checking was suc-
cessfully completed, that the I nv and U (v) presented in
Table 2 satisfy Assumptions 1 and 2, respectively, and that
both agreement and termination hold. Table 4 summarizes the
maximum number of processes for which agreement and ter-
mination were proven. Note that agreement is proven when
the four checks, namely, agreement, the base case and induc-
tion step for I nv, and U (v) are completed and all cases are
unsatisfiable, whereas proving termination involves termina-
tion check and the two checks for I nv.

6.3 Traditional approach

For comparison, we evaluated a different approach in which
the whole state space of an algorithm is explored with an
existing model checker. Specifically we verified LastVoting
with three model checkers: NuSMV [12], SPIN [21], and
ALV [4].

SMV [28] and SPIN are probably the two best known
model checkers. NuSMV is one of the latest implementa-
tions of SMV. Although SMV and SPIN can only deal with

8 All the files used in the experiment are available at: http://www-ise4.
ist.osaka-u.ac.jp/~t-tutiya/dc2010/

finite state systems, the abstraction technique proposed in
[36] allows one to model check the whole state space with
these model checkers. In [36] we show how NuSMV can be
used to model check HO model-based consensus algorithms.

In model checking with SPIN we made an extensive opti-
mization to reduce the state space. Specifically we com-
pletely removed the information on HO sets from the state
space, by specifying all possible behaviors as non-determin-
istic ones. The details can be found in [29]. This optimiza-
tion does not work for SMV because HO sets are already
compactly represented by the data structure used in SMV
(specifically, binary decision diagrams).

ALV is a model checker that can analyze infinite state
systems with unbounded integer variables by means of Pres-
burger arithmetic [3]. It does not require any finite state
abstraction. We made the same optimization as with SPIN
to avoid explicit representation of HO sets.

Table 5 presents the maximum number of processes that
each of the model checkers was able to handle without run-
ning out of memory or time (5 h) together with the time
needed to model check the largest model.

Termination is only verified by NuSMV, because for SPIN
and ALV, the above optimization completely abstracts away
HO sets and thus the termination property cannot be formally
specified. In spite of the extensive optimization, however,
SPIN could not complete the verification of LastVoting even
for n = 3 because of memory exhaustion. The execution
time of SPIN presented in Table 5 is that required to model
check a rotating coordinator-based version of the algorithm.
This variant has a significantly smaller state space, because
the coordinator is determined completely deterministically.

Comparing Tables 4 and 5 one can clearly see that the pro-
posed approach scales much better than the approach using
existing model checkers. This improvement can be explained
by the fact that our approach can avoid explosive growth of
the search space by limiting it to single phases.
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7 Conclusion

We proposed a verification approach for asynchronous con-
sensus algorithms. Using the notions of invariant and uni-
valence, we reduced agreement and termination verification
to the problem of model checking only single phases of the
algorithm. This unique property of the model checking prob-
lem allowed us to effectively use bounded model checking.
As case studies we applied the proposed approach to four
consensus algorithms and mechanically verified that they sat-
isfy agreement and termination up to around 10 processes.
Comparing the performance of the traditional model check-
ing approach showed that the performance improvement is
significant.

The cases tested in the case studies in Sect. 6 were all
successful, in that the formula was proven to be unsatisfi-
able, meaning that the property verified indeed holds. As
stated in Sects. 3.1 and 4, this is not always the case and the
proof process can fail if either the algorithm and/or its asso-
ciated communication-coordinator predicate are incorrect or
the invariant I nv and/or the approximation of the univalent
state set, U (v), are inaccurate.

In a follow-up paper [30] we report the results of applying
the proposed approach to an algorithm that is seeded with a
design fault. This artificial fault was easily identified, using
the value assignment to the variables that the SMT solver out-
puts. When the proof process fails, the SMT solver outputs the
satisfying value assignment to show how the checked formula
evaluates to true.Thisassignment representsan instanceof the
one-phase executions that falsify the given property, and thus
onecaneasilyanalyze theproblematicbehaviorof the system.

On the other hand, we have little experience about the
cases where the proof process fails because of the inaccu-
racy of I nv or U (v). We believe that in such a case the one-
phase execution that the SMT solver outputs can also serve
as a vital clue to finding the cause of the failure. Refine-
ment techniques for state approximations, such as invariant
strengthening [32], may be useful in that case. We leave the
application of such techniques to our context for future work.

There are several other future research directions. For
example, the verification of algorithms that implement
rounds of the HO model deserves further study. An example
of related work in this line is [35], where we model check
such an algorithm. Further studies are also needed to improve
the applicability of the proposed verification approach. For
example, our approach cannot be directly used for termi-
nation verification if the algorithm requires more than one
synchronous phase to have all processes decide. A simple
way to deal with such algorithms could be to model check
two or more consecutive phases, instead of a single phase.
However, this extension cannot be used to verify if termina-
tion is satisfied when synchronous phases occur sporadically.

Extensions to handle a larger class of algorithms, including
these, are of technical interest.
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