000171600 001__ 171600
000171600 005__ 20180913060943.0
000171600 0247_ $$2doi$$a10.1103/PhysRevB.83.125106
000171600 02470 $$2ISI$$a000288532400002
000171600 037__ $$aARTICLE
000171600 245__ $$aImplementing global Abelian symmetries in projected entangled-pair state algorithms
000171600 269__ $$a2011
000171600 260__ $$c2011
000171600 336__ $$aJournal Articles
000171600 520__ $$aDue to the unfavorable scaling of tensor-network methods with the refinement parameter M, new approaches are necessary to improve the efficiency of numerical simulations based on such states, in particular for gapless, strongly entangled systems. In one-dimensional density matrix renormalization group methods, the use of Abelian symmetries has led to large computational gain. In higher-dimensional tensor networks, this is associated with significant technical efforts and additional approximations. We explain a formalism to implement such symmetries in two-dimensional tensor-network states and present benchmark results that confirm the validity of these approximations in the context of projected entangled-pair state algorithms.
000171600 6531_ $$aMatrix Renormalization-Group
000171600 6531_ $$a3D Classical-Models
000171600 6531_ $$aSpin Chains
000171600 6531_ $$aFormulation
000171600 6531_ $$aParameters
000171600 700__ $$aBauer, B.$$uETH, CH-8093 Zurich, Switzerland
000171600 700__ $$0245109$$aCorboz, P.$$g119963$$uETH, CH-8093 Zurich, Switzerland
000171600 700__ $$aOrus, R.$$uUniv Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
000171600 700__ $$aTroyer, M.$$uETH, CH-8093 Zurich, Switzerland
000171600 773__ $$j83$$q-$$tPhysical Review B
000171600 909C0 $$0252379$$pCTMC$$xU10870
000171600 909CO $$ooai:infoscience.tind.io:171600$$pSB$$particle
000171600 937__ $$aEPFL-ARTICLE-171600
000171600 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000171600 980__ $$aARTICLE