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1 Institut de Théorie des Phénomènes Physiques, EPF Lausanne - CH-1015 Lausanne, Switzerland
2 Lehrstuhl für Theoretische Physik I, Technische Universität Dortmund - D-44221 Dortmund, Germany, EU

received 16 March 2011; accepted 10 May 2011
published online 13 June 2011

PACS 75.10.Jm – Quantized spin models, including quantum spin frustration
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Abstract – Using density matrix renormalization group (DMRG) and perturbative continuous
unitary transformations (PCUTs), we study the magnetization process in a magnetic field for
all coupling strengths of a quasi-1D version of the 2D Shastry-Sutherland lattice, a frustrated
spin tube made of two orthogonal dimer chains. At small inter-dimer coupling, plateaus in the
magnetization appear at 1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal
of triplons. However, close to the boundary of the product singlet phase, plateaus of a new type
appear at 1/5 and 3/4. They are stabilized by the localization of bound states of triplons. Their
magnetization profile differs significantly from that of single-triplon plateaus and leads to specific
NMR signatures. We address the possibility to stabilize such plateaus in further geometries by
analyzing small finite clusters using exact diagonalizations and the PCUTs.

Copyright c© EPLA, 2011

Introduction. – The competition between kinetic
energy and inter-particle repulsion is a central theme of
strongly correlated systems and leads to many interesting
phenomena. In bosonic lattice models, the ground state
can be insulating, superfluid or supersolid depending on
the strength of the interaction and on the density [1–4].
At fractional filling, the insulating phases identified so far
in lattice models are Wigner crystals in which elementary
particles form a superlattice. A high-commensurability
example has been observed a few years ago in a frustrated
quantum magnet, SrCu2(BO3)2 [5]. This dimer-based 2D
antiferromagnet is a realization of the Shastry-Sutherland
lattice, and the bosonic particles are triplets injected
by the magnetic field into the singlet product ground
state. They have a very small kinetic energy due to the
frustrated nature of the inter-dimer interaction, and the
1/8 insulating state (identified in NMR experiments to
be a crystal of triplet excitations [6]) is the first of a
series of insulating phases, or magnetization plateaus
in the magnetic language. The actual series is still
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NIST), and Department of Physics, University of Colorado
at Boulder - Boulder, CO 80309-0440, USA; E-mail:
salvatore.manmana@jila.colorado.edu

controversial [7,8], but according to the latest NMR
and magnetization results [9], insulating phases occur
at density 1/8, 2/15, 1/6, 1/4, and 1/3 (and probably
1/2 [8]). Although no theory has been able so far to
reproduce this series, the current belief is that all these
phases are Wigner crystals of triplets. This is based on
weak coupling approaches which have allowed one to
reliably explore the parameter range J ′/J � 0.5 [10,11]
(where J ′ and J are the inter- and intra-dimer couplings,
see fig. 1), and to reproduce a series of magnetization
plateaus similar (but not identical) to the experimental
one. On the other hand, it has been found that elemen-
tary excitations of the Shastry-Sutherland lattice can be
bound states of triplet excitations [12,13], and the ques-
tion arises, if in a strong magnetic field Mott insulators of
such bound states can be stabilized. Since the reliability
of the perturbative approaches is limited to J ′/J � 0.5,
and in view of the significant changes of the plateau
structure upon increasing J ′/J reported in ref. [10],
investigations aimed at studying the magnetization for
stronger inter-dimer couplings are clearly called for.
This is of particular relevance for SrCu2(BO3)2, where

J ′/J ≈ 0.65, quite close to the critical ratio J ′/J � 0.7,
where the product of singlets is no longer the ground
state.
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Fig. 1: (Color online) Graphical representation of the system.

In this letter, we address these issues in the context
of a quasi-1D version of the model, a system of two
coupled orthogonal dimer chains with periodic boundary
conditions (PBC) applied in the transverse direction,
shown in fig. 1, which we call a Shastry-Sutherland spin
tube. On this geometry, we study the Heisenberg spin-1/2
Hamiltonian in an external magnetic field H,

H= J
∑

〈〈i,j〉〉
�Si · �Sj +J ′

∑

〈i,j〉
�Si · �Sj −H

∑

i

Szi (1)

with the bonds 〈〈i, j〉〉 building an array of orthogo-
nal dimers and the bonds 〈i, j〉 representing inter-dimer
couplings. The main advantage over the 2D lattice is the
possibility to use DMRG [14,15], which, as we shall see,
provides very accurate results for all parameters, and has
led to the identification of plateaus of a new type close
to the boundary of the singlet phase, while the interpre-
tation of the phase diagram, including the new plateaus,
relies heavily on the PCUT approach [10,12,13,16,17].

Properties of the system and methods. – Let
us first review some simple consequences of the peculiar
topology of the lattice. As for the 2D Shastry-Sutherland
model, the product of singlets on all dimers is an eigenstate
of the Hamiltonian [5]. But there are many more product
eigenstates, all consequences of the fact that the coupling
of a vertical dimer to its neighbouring horizontal dimers
involves only its total spin. This is only true for two
of them in 2D, but here it is also true for the third
one which lies above or below (see fig. 1) because of
periodic boundary conditions. A vertical singlet is thus
completely disconnected from the rest, and eigenstates can
be constructed as the product of an arbitrary number of
vertical singlets times an eigenstate of the Hamiltonian of
the remaining sites. By the same token, a horizontal triplet
surrounded by three vertical singlets can be factorized.
By contrast, a vertical triplet can delocalize on its two
horizontal neighbours on the same chain, and it is only
this three dimer unit that can factorize when surrounded
by singlets. Finally, when J = 0, the Hamiltonian can be

rewritten

H= J ′
∑

i odd

(�Si+ �Si+1) · (�Si+2+ �Si+3)−H
∑

i

Szi . (2)

It depends only on the total spin (�Si+ �Si+1) of pairs of
sites with i odd. These total spins are thus conserved
quantities and define sectors according to whether they
are equal to 0 or 1. For all fields, the ground state is
in the sector where they are equal to 1, as for the fully
frustrated spin-1/2 ladder [18], and the magnetization
curve is exactly that of a Haldane chain [19–21].
Let us now give some comments on the methods.

The effective hardcore boson model has been derived
by PCUTs about the limit J ′/J = 0 as described in
ref. [10]. According to the previous discussion, single
triplets on horizontal dimers cannot move while single
triplons on vertical dimers are localized on three-dimer
units and lower their energy by virtual fluctuations within
this three-dimer unit. This results in a lower chemical
potential for vertical dimers and the magnetization for
M < 1/2 is solely determined by these triplons (in the
dimer phase). The effective model for vertical dimers
contains only density-density interactions which have a
finite range. Here we have calculated all two-, three-,
and four-triplon interactions. Note that kinetic terms are
absent for vertical dimers and the Hartree approximation
of the effective model becomes exact. By contrast,
correlated hopping terms involving horizontal dimers are
relevant for M > 1/2. For the DMRG, the lack of kinetic
terms shows up as a tendency to get stuck in excited
states. In order to overcome this, additional fluctuations
need to be included. This can either be done ad hoc in the
course of the sweeps [22], or by adding small anisotropic
Dzyaloshinskii-Moriya (DM) interactions which break the
SU(2) symmetry of the original problem. We obtain a good
agreement between both DMRG approaches and in the
following we only quote the results obtained without DM
anisotropies for systems with up to L= 360 lattice sites.

Phase diagram. – The phase diagram as a function
of field and inter-dimer coupling is depicted in fig. 2. It
has been obtained by combining PCUT and DMRG (see
below). Three regimes of inter-dimer coupling can be iden-
tified. For small inter-dimer coupling, say up to J ′/J = 0.5,
the magnetization consists of a series of plateaus at 1/6,
1/4, 1/3, 3/8 and 1/2. For large inter-dimer coupling
(J ′/J > 1.2), the magnetization increases smoothly up to
saturation. In between, there is an intermediate regime
where a number of new features appear: kinks close to zero
magnetization and saturation [23], and more interestingly
two new plateaus at 1/5 and 3/4.
The change of behavior between small and large inter-

dimer coupling can be traced back to the zero-field phase
diagram of the model. As for the 2D Shastry-Sutherland
model, for small enough J ′/J , the product of singlets is
the ground state. Upon increasing J ′/J , there has to be
at least one phase transition since the low-energy sector
of the J = 0 model is equivalent to a Haldane chain.
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Fig. 2: (Color online) Sketch of the phase diagram of a
Shastry-Sutherland tube in a magnetic field as obtained by our
combined DMRG and PCUTs analysis. The various plateaus
are described in more detail in the text.
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Fig. 3: (Color online) Spin-spin correlation 〈�Si · �Sj〉 as a
function of J ′/J at zero magnetic field for the four different
bonds in the bulk of the system. The inset shows the pattern
on the bonds in the Haldane-like phase (blue (solid line):
〈�Si · �Sj〉< 0, red (dashed line): 〈�Si · �Sj〉> 0).

It turns out that there is a single, first-order transition
between two gapped phases, as clearly revealed by DMRG
calculations: spin-spin correlations have a dramatic jump
at J ′/J � 0.66 (see fig. 3), the ground-state energy per site
has a kink, the singlet-singlet gap closes at the same value,
and the singlet-triplet gap never closes (results not shown),
while beyond that value the correlations smoothly evolve
towards the values of a spin-1 chain. So the intermediate
regime cannot be simply explained by a different zero-field
ground state in this parameter range.

Small inter-dimer coupling. Let us now have a closer
look at the plateaus in the small J ′/J regime. In the

 0
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Fig. 4: (Color online) Magnetization curve for J ′/J = 0.3 below
M = 1/2 as obtained by exact diagonalizations and DMRG
calculations (see text) and by PCUTs+Hartree approximation.

domain of applicability of PCUT (not too large J ′/J ,
density not larger than 1/2), the agreement between
PCUT and DMRG is truly excellent, as can be seen on
fig. 4, where PCUT and DMRG results are compared for
J ′/J = 0.3. The only noticeable discrepancy concerns the
width of the 3/8 plateau. We believe that this might be due
to the presence of an infinite sequence of plateaus, as in the
orthogonal dimer chain [24,25], that cannot be captured
by our techniques. Indeed, vertical triplons have no kinetic
energy, as in the 1D case. At the same time, PCUT shows
that high-order corrections lead to repulsions of increasing
range, suggesting that the “exact” effective model has
long-range repulsions. Together with the rigorous absence
of kinetic energy, this is expected to lead to a sequence of
plateaus of increasing commensurability. Note, however,
that this sequence cannot be reproduced quantitatively
neither by PCUT, which cannot calculate the repulsion
beyond a certain range, nor by DMRG, which is limited
to finite sizes.
The structures of these plateaus are also in perfect

agreement (see fig. 5). In the bosonic (respectively,
magnetic) language, they consist of Mott insulating
phases with well localized bosons (respectively, triplons),
in qualitative agreement with phases detected so far in
the 2D Shastry-Sutherland model. Note that all plateaus
correspond to product wave functions with vertical
dimer singlets. This has been first observed by DMRG
calculations including all sites, then used systematically
to improve the accuracy of DMRG by performing calcu-
lations with those dimers removed. For the 1/6 and
1/4 plateaus, these singlets actually cut the tube into
independent finite segments, and the energy could be
calculated exactly by diagonalizing very small clusters.

Intermediate couplings: Wigner crystal of bound
triplons. By contrast, the plateaus that appear in the
intermediate regime are of a different nature. Let us
concentrate on the 1/5 plateau. The magnetization curve
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Fig. 5: (Color online) Structure of the magnetization plateaus,
respectively Mott insulating phases shown in fig. 4 obtained by
the DMRG (left side), respectively by the PCUTs for J ′/J =
0.3, representative for the parameter range J ′/J < 0.66 and
M � 1/2. The colors red (dashed bonds) and blue (solid bonds)
indicate a positive or negative value of the spin-spin correlation
〈�Si · �Sj〉 and of the local magnetizations 〈Szi 〉, respectively. The
circles in the PCUTs column indicate the dimers occupied by
a triplon.

Fig. 6: (Color online) (a) Magnetization curve at J ′/J = 0.68
at low fields as obtained by the DMRG. The inset shows the
structure of the 1/5 plateau. (b) Structure of the magnetization
plateau at 3/4 for J ′/J = 0.68 as obtained by the DMRG. The
shaded area highlights the four-dimer unit cell.

at J ′/J = 0.68 is depicted in fig. 6(a), and the structure of
this plateau is shown as an inset. This plateau is again a
product state of finite segments, so its energy and internal
structure are known exactly from diagonalizing a 16-site
cluster. What is remarkable is that it does not correspond
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(S=2, S =2)z

Fig. 7: (Color online) Energies for the bound state of fig. 6(a)
as obtained by ED and by the PCUTs, showing that the
structure is adiabatically connected to a three-triplet excitation
at J ′/J = 0.

to localized triplons. Indeed, the magnetization is spread
over three vertical dimers, although the total Sz is equal
to 2. This should be contrasted to the plateaus at small
inter-dimer coupling, which all correspond to localized
triplons on vertical dimers. This difference can be made
more precise with the help of the PCUT analysis, which
by essence is able to keep track of the number of triplons
in any eigenstate. For the 16 site building brick of the
1/5 plateau, the ground state inside the 1/5 plateau has
Stotal = S

z
total = 2. The PCUT analysis reveals that there

are strong attractive interactions, and that this eigenstate
is adiabatically connected to an excited three-triplon
state of the lattice with S = 2 in the limit J ′ = 0, as
shown in fig. 7. This is the main finding of the present
letter: in the intermediate region 0.65� J ′/J � 0.7, a
product state of singlets and of an extended bound state
of triplet excitations forms an exotic Mott insulator at
M = 1/5. The translational symmetry inside the plateau
is not broken by the freezing of localized single-triplon
objects as previously identified in the dimer phase of the
2D Shastry-Sutherland lattice, but by the crystallization
of extended triplon bound states which carry S = 2.
Below, we will analyze this bound state in more detail
and discuss the possibility to observe such structures in
the 2D system by analyzing various finite-size clusters of
different shapes.
The 3/4 plateau also seems to be of a similar nature. The

unit cell contains 8 sites (4 dimers), and the magnetization
Sz = 3 of a unit cell is spread over the 4 dimers (see
fig. 6(b)) with no indication of an empty dimer but
rather of two half-polarized dimers. This suggests that this
plateau might correspond to the condensation of an S = 3
bound state of four triplons. However, the delocalization of
one of the triplons might also be due to correlated hopping,
which is present for magnetization larger than 1/2. Which
of the two possibilities is realized could not be checked

67004-p4
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Fig. 8: (Color online) (a) Magnetization pattern and histogram
of the magnetizations for the building block of the M = 1/5
plateau at J ′/J = 0.68. (b) Typical magnetization pattern and
histogram of magnetizations for a plateau which is a product
state of singlets and triplons (here, the M = 1/6 plateau at
J ′/J = 0.63). The results in (a) are obtained by ED, the ones
in (b) by DMRG.

along the same lines as for the 1/5 plateau since the wave
function of the 3/4 plateau is not a product state.
The magnetization pattern of these plateaus is very

different from that of plateaus which are product states
of single triplons and singlets. If J ′/J is large enough,
a single localized triplon leads to a very characteristic
magnetization pattern on a 3-dimer unit already observed
by NMR in the 1/8 plateau of SrCu2(BO3)2 [6]: the
magnetization is large, along the field, and of comparable
magnitude on the sites of the central dimer and on the
sites further apart, while it is opposite to the field on
the first neighbors of the central dimer. In fig. 8(b), the
histogram of magnetizations of the plateau at M = 1/6 is
shown which is of this type. By contrast, a bound state
of triplons leads to sites with intermediate polarizations
along the field. This is for instance true for two of the three
dimers of the building brick of the 1/5 plateau, whose
polarization is about twice as small as that of the third
one. The resulting histogram of magnetizations is shown
in fig. 8(a). In addition, one observes that the histograms
of plateaus of single triplons have much more pronounced
peaks than the ones of the bound states, which are flatter.
This is due to the wider extension of the bound state
on the cluster: for plateaus of single triplons at density
1/p, 3 dimers out of p are polarized in each unit cell since
each triplon extends also over the two neighboring dimers.
Hence, the density of unpolarized singlets is (p− 3)/p,
leading to a very strong peak in the histograms at M = 0.
This peak is significantly reduced in the case of bound

Fig. 9: (Color online) Energy levels in the sector Sztotal = 1 of
a small planar cluster of 7 dimers as obtained by ED and
by PCUTs (the inset shows the structure of the cluster; the
red (filled) circles indicate the dimers occupied by the bound
state). The circles represent the energies as obtained by ED, the
red (filled) circles indicate the energies of the ED adiabatically
connected to the 2-triplon S = 1 bound state obtained by the
PCUTs.

states. As can be seen in fig. 8, only two singlets remain
unpolarized in the building block of the 1/5 plateau, while
in the case of single triplons it would be four unpolarized
singlets.

Analysis of the bound states. As discussed above
and shown in fig. 7, the building block of the M = 1/5
plateau is adiabatically connected to a three triplet exci-
tation at J ′/J = 0. This insinuates that the structure is
a bound state of three triplons which, however, has to
be contrasted to the value S = 2 of the total spin carried
by this structure. This value can be obtained by either
coupling two S = 1 objects to carry S = 2 and then adding
an additional triplet (leading to a substructure carrying
S = 2), or by adding two triplets to an object with S = 1
and then coupling to an additional triplet. By computing
the expectation value of S2 on the two polarized vertical
dimers on the same line and at the third polarized dimer
independently, we find S = 1 for the two dimers on the
same chain, and S = 1 for the third one. This shows that
the two vertical dimers on the same chain are in a super-
position of a |T1〉 and a |T0〉 triplet state, which is then
coupled to an additional |T1〉 triplet state. The nature of
the building block of the M = 1/5 plateau is hence rather
peculiar, and the question arises as to what extent such
a structure can be stabilized in a 2D system. In order to
address this question, we have analyzed small clusters with
open boundary conditions, two symmetric ones with 7
dimers (shown in fig. 9) and 11 dimers, and an asymmetric
configuration of 13 dimers, by using exact diagonalizations
and the PCUTs. It turns out that, although a bound state
of three triplons is never stabilized in these geometries
up to J ′/J = 0.7, the energy of a S = 1 bound state of
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S. R. Manmana et al.

a |T0〉 and a |T1〉 triplet becomes comparable to that of
the lowest single-triplon states around J ′/J = 0.7 for all
clusters investigated. For the 7-dimer cluster, this bound
state even becomes the ground state for J ′/J > 0.8. This
suggests that plateaus of such two-triplon bound states are
also viable candidates in the 2D lattice for large enough
J ′/J .

Conclusions. – In conclusion, we have determined
the phase diagram of a Shastry-Sutherland spin tube in
a magnetic field using a combined PCUTs and DMRG
approach. In the limit of small J ′/J we find a sequence
of fractional magnetization plateaus starting with 1/6,
1/4, 1/3 and 3/8, and a pronounced plateau at 1/2. Due
to the lack of kinetic terms we expect an infinite series
of plateaus to be realized between 3/8 and 1/2. In the
limit of large J ′/J , the system behaves as a spin-1 chain.
In the intermediate region, however, we find that the
plateau at 1/6 is replaced by one at 1/5 with a complex
structure not formed by local triplon excitations, but by
extended S = 2 triplon bound states, and that another
plateau appears at 3/4 whose magnetization pattern is
also incompatible with local triplons. The mechanism that
leads to the stabilization of these plateaus of a new type
is not specific to 1D. It relies on the stabilization of a
bound state of triplons, and bound states of two triplons
have been identified in the 2D system SrCu2(BO3)2 [5]
and in the Shastry-Sutherland model [12,13]. The main
specificity of the present calculation as compared to
previous investigations in 2D is that we could access the
parameter range close to the boundary of the product
singlet ground state. While the peculiar structure of three
bound triplons remains specific for the Shastry-Sutherland
tube, results for small clusters indicate that it is possible
to realize competitive states of two bound triplons in
the corresponding sector of Sztotal. So we believe that
such plateaus could appear in the Shastry-Sutherland and
further 2D dimer-based frustrated quantum magnets. This
is left for future investigation.
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