000171258 001__ 171258
000171258 005__ 20181203022529.0
000171258 0247_ $$2doi$$a10.1103/PhysRevA.83.063835
000171258 02470 $$2ISI$$a000292038000011
000171258 037__ $$aARTICLE
000171258 245__ $$aOptomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
000171258 269__ $$a2011
000171258 260__ $$c2011
000171258 336__ $$aJournal Articles
000171258 520__ $$aCooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and control of quantum states of mechanical objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator to an occupancy below 200 quanta by thermalizing it with a 600-mK cold He-3 gas. Two-level-system induced damping via structural defect states is shown to be strongly reduced and simultaneously serves as a thermometry method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical back action optical sideband cooling can reduce the average occupancy to 9 +/- 1 quanta, implying that the mechanical oscillator can be found (10 +/- 1)% of the time in its quantum ground state.
000171258 6531_ $$aRadiation-Pressure
000171258 6531_ $$aNoise Reduction
000171258 6531_ $$aResonator
000171258 6531_ $$aCavity
000171258 6531_ $$aMicromirror
000171258 6531_ $$aInstability
000171258 6531_ $$aSilica
000171258 6531_ $$aField
000171258 700__ $$0245869$$g202178$$aRiviere, R.
000171258 700__ $$0244970$$g201576$$aDeleglise, S.
000171258 700__ $$0244972$$g202198$$aWeis, S.
000171258 700__ $$0244968$$g188603$$aGavartin, E.
000171258 700__ $$aArcizet, O.
000171258 700__ $$aSchliesser, A.$$g206150$$0244973
000171258 700__ $$aKippenberg, T. J.$$g182444$$0244694
000171258 773__ $$j83$$tPhysical Review A$$q-
000171258 909C0 $$0252348$$pLPQM
000171258 909CO $$particle$$ooai:infoscience.tind.io:171258$$pSB$$pSTI
000171258 917Z8 $$x102085
000171258 937__ $$aEPFL-ARTICLE-171258
000171258 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000171258 980__ $$aARTICLE