Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state

Cooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and control of quantum states of mechanical objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator to an occupancy below 200 quanta by thermalizing it with a 600-mK cold He-3 gas. Two-level-system induced damping via structural defect states is shown to be strongly reduced and simultaneously serves as a thermometry method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical back action optical sideband cooling can reduce the average occupancy to 9 +/- 1 quanta, implying that the mechanical oscillator can be found (10 +/- 1)% of the time in its quantum ground state.

Published in:
Physical Review A, 83, -

 Record created 2011-12-16, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)