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Since the discovery of superfluidity in 4He and Landau’s phenomenological theory, the relationship

between Bose condensation and superfluidity has been intensely debated. 4He is known by now to be both

superfluid and condensed at low temperature, and more generally, in dimension D � 2, all superfluid

bosonic models realized in experiments are condensed in their ground state, the most recent example

being provided by ultracold bosonic atoms trapped in an optical lattice. In this Letter, it is shown that a 2D

gas of bosons which is not condensed at T ¼ 0 can be achieved by populating a layer through a frustrated

proximity effect from a superfluid reservoir. This condensate-free bosonic fluid is further shown to be a

superfluid with incommensurate correlations.
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The low energy properties of many condensed-matter
systems are most naturally described in terms of bosonic
particles [1,2]. This is of course the case of 4He [3,4] and of
cold bosonic atoms loaded in optical lattices [5], but ef-
fective bosonic models have also provided an accurate
description of several systems such as superconducting
thin films [6], Josephson junction arrays [7], or quantum
magnets in a field [8]. At low enough temperature, most
bosonic systems exhibit two remarkable quantum effects:
Bose-Einstein condensation (BEC) and superfluidity.
These two manifestations of quantum coherence often
come together, but this need not be the case: for instance,
free bosons condense but are not superfluid, while in
principle superfluidity does not require a condensate, as
first pointed out by Landau in his phenomenological theory
of superfluid 4He [9]. However, to destroy the condensate
while keeping a system superfluid at T ¼ 0 in realistic
situations turns out to be tricky. It is well known [10]
that interactions induce quantum fluctuations and generi-
cally tend to deplete the condensate in the ground state
(GS), but they usually do not empty it completely. For
instance, in 4He, despite the very strong short-range repul-
sion, a condensate fraction of �0 � 7% of the total density
remains [11]. Generally speaking, interactions are known
to deplete completely the T ¼ 0 condensate only for 1D
geometries because of diverging fluctuations and for long-
ranged interactions in the 2D Bose Coulomb liquid model
with lnðrÞ interactions [12], a model with no experimental
implementation so far. Increasing further interactions will
ultimately induce a crystallized phase, which is of course
neither condensed nor superfluid. A realistic example for
D � 2 where superfluidity could occur independently of
BEC in the GS of a bosonic system is clearly missing. Here
we explore a new route, using geometrical frustration to
achieve a realistic condensate-free superfluid in D ¼ 2. In
the context of quantum magnetism, frustration has long
been identified as a possible mechanism to produce spin

liquid phases [13,14], but it has only been realized recently
that for bosonic models it could also induce new states of
matter such as the supersolid state [15,16] or the putative
Bose metal phase [17,18].
In this Letter, we show that the GS of a 2D bosonic fluid

created by frustrated tunneling from a reservoir (as de-
picted in Fig. 1) can be superfluid and not condensed. This
conclusion is quite general and only relies on the frustrated
character of the coupling. It thus applies in principle to a
variety of systems such as optical lattices loaded with
bosonic atoms or frustrated dimers in a strong magnetic
field like BaCuSi2O6. The starting point is a simple 2D
model of hard-core bosons on a square lattice:

H ¼ t
X
r;�k

ðayr arþ�k þ H:c:Þ ��
X
r

nr; (1)

where �k runs over the two basis vectors of the square

lattice. Throughout, we will consider t > 0, the relevant
sign for BaCuSi2O6. For cold atoms, this can be achieved
with artificial gauge fields [19,20]. The hard-core

FIG. 1 (color online). Schematic picture for the frustrated
bilayer made of two nonequivalent planes A and B which are
coupled by a frustrated hopping term t?. The thick arrows depict
the spin-1=2 degrees of freedom [equivalent to hard-core bosons,
see the text], which have their transverse component AF ordered
[bosons condensed at (�, �)] in the A layer while geometric
frustration prevents AF order in the B layer which, at the
classical level, remains fully polarized [insulator for the bosons].
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constraint is essential to get superfluidity because it yields
a linear excitation spectrum, which implies a finite critical
velocity [21]. On the other hand, such an infinite local
repulsion is expected to deplete the condensate with re-
spect to free bosons. To quantify these effects, it is expe-
dient to map the problem onto a spin model using the

Matsubara-Matsuda mapping [3]: Szr ¼ nr � 1=2, Sþr ¼
ayr , S�r ¼ ar, which, up to a constant, leads to an antifer-
romagnetic (AF) XY model in a transverse field.

H spin ¼ J
X
r;�k

ðSxrSxrþ�k þ SyrS
y
rþ�k Þ �H

X
r

Szr; (2)

with J ¼ 2t andH ¼ �. The basic physics already appears
at the classical level. For large negative �, the system is
empty (all the spins point down: hSzri ¼ �1=2). At � ¼
�c � �4t (H ¼ Hc � �2J), the bottom of the quadratic
single particle dispersion band "ðkÞ ¼ 2tðcoskx þ
coskyÞ �� vanishes at k0 ¼ ð�;�Þ. This momentum de-

fines the condensate mode in which bosons start to accu-
mulate. The condensate density, defined on a lattice with N

sites by �0 � 1
N hayk0

ak0
i ¼ 1

N2

P
r;r0e

ik0ðr�r0ÞhSþr S�r0 i, is, in
the magnetic language, equal to the AF order parameter in
the plane perpendicular to the field. The superfluid density
�s is proportional to the stiffness (or helicity modulus)� of
the system, i.e., the second derivative of the energy with
respect to a twist angle enforced at the boundaries [22]. At
the classical level, the AF coupling between the XY com-
ponents of neighboring spins induces a planar long-range
Néel order, which in the bosonic language leads to nonzero
condensate and superfluid densities given by �0 ¼ �s ¼
�ð1� �Þ, where � ¼ 1=2þ�=8t is the bosonic density
[21]. So, at this level of approximation, the condensate and
superfluid densities are strictly equal. Quantum fluctuations
slightly reduce the condensate and increase the stiffness
[21], but in the simple model of Eq. (1), the condensate
persists at all densities. So, a single layer of hard-core
bosons is a good prototype of a bosonic system in D � 2,
with both a condensate and a superfluid density at T ¼ 0.

Bosonic bilayer.—We want to populate a layer through
quantum tunneling from a superfluid reservoir. Therefore,
we consider two copies A and B of the model (1)

H A ¼ t
X
r;�k

ðayr arþ�k þ H:c:Þ ��
X
r

nAr (3)

H B ¼ t
X
r;�k

ðbyr brþ�k þ H:c:Þ � ð���ÞX
r

nBr ; (4)

where �> 0 is an energy barrier. The critical chemical
potentials now take different values: on theA layer,�c ¼
�4t, whereas on the B layer, �c ¼ �4tþ�, and if
0<���c < �, the A layer has a finite density while
theB layer is empty. Let us now consider, in such a regime,
the effect of a frustrated coupling between the layers

HAB ¼ t?
X
r;�?

ðayrþ�?br þ byr arþ�?Þ; (5)

where �? runs over the four vectors coupling one site of the
B layer to its four nearest neighbors in the A layer. As
depicted in Fig. 1, in the magnetic representation it is easy
to see that such a transverse frustrated coupling leads, at
the classical level, to a vanishing local xy field at each site
of the B layer, and therefore prevents bosons from A to
tunnel into B. Such a classical decoupling has to be con-
trasted with the case of a direct unfrustrated tunneling of

the form t?
P

rðayr br þ byr arÞ for which a local field is

induced in the B layer, leading to a finite density �B.
Coming back to the frustrated case of Eq. (5), since the

local field vanishes, the A layer has no influence at the
classical level on the B layer, which remains empty. This
cannot be true, however, when many-body effects and
quantum fluctuations are included. Indeed, in the bosonic
language, a wave function with particles only in the A
layer is not an eigenstate when one includes the interlayer
hopping of Eq. (5). So particles have to be present in theB
layer. This does not mean, however, that there is a conden-
sate. Indeed, according to field theory, a direct (linear)
coupling between condensate order parameters on A
and B is incompatible with the symmetry of the lattice
[23]. In our case of nonequivalent layers, this implies that a
condensate in the B layer will not develop immediately
when a condensate appears in theA layer. As we shall see,
treating quantum fluctuations at the level of linear spin-
wave theory indeed leads to a small bosonic population in
the B layer which is not condensed. We now explore the
very peculiar properties of this bosonic gas.
Linear spin-wave corrections.—To treat quantum fluc-

tuations, we start from the spin representation and perform
a Holstein-Primakoff transformation [24] after a local ro-
tation of the spins. In the classical GS, the spins in the A
layer make an angle��A ¼ � arccosð��=�cÞwith the ẑ
direction, while in theB layer the spins point opposite to ẑ,
as sketched in Fig. 1. To avoid confusion with the original
bosonic operators, the Holstein-Primakoff bosons on layers

A and B are denoted by ~ayi , ~ai and ~byi , ~bi. The resulting
Hamiltonian is quadratic, and can be diagonalized by a
Fourier transformation followed by a Bogoliubov trans-
formation, which leads to the diagonal Hamiltonian:

H SW ¼ P
kð��

k�
y
k�k þ��

k�
y
k�kÞ þ const, where the

Bogoliubov operators �y
k, �

y
k are linear combinations of

the Hostein-Primakoff operators ~ayr , ~ar and ~byr , ~br. The
new GS is now the vacuum of the Bogoliubov quasipar-

ticles: h�y
k�ki ¼ h�y

k�ki ¼ 0, and inverting the relation

between the Bogoliubov operators and the Holstein-
Primakoff operators gives access to the GS properties of
the system. The A layer is almost unaffected by the
presence of the B layer: the density grows linearly above
�c (strictly speaking, additional small logarithmic correc-
tions are expected in 2D), as in an isolated layer, and
condensate and superfluid densities are almost equal. The
physical properties of the B plane are very different, how-
ever, from those of an isolated layer. To describe them
more precisely, we consider the total density of bosons
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�B
tot � 1

N

P
khbykbki, the condensate density �B

0 � 1
N �

hbyk0
bk0

i, and the superfluid stiffness �B, defined by in-

troducing an infinitesimal twist angle ’ on each bond
along one direction of the B plane only. The hopping

amplitude t in HB [Eq. (4)] is replaced by tei’ along

this direction, and the superfluid stiffness is given by�B ¼
ð@2e=@’2Þ’¼0, e being the energy density of the system

[22]. This leads to the expression: �B ¼ � t
N

P
khbykbki�

ðcoskx þ coskyÞ. A key quantity here is the momentum

distribution nBðkÞ ¼ hbykbki that we show in Fig. 2 for a
representative set of parameters. It displays 4 incommen-
surate maxima away from the BEC point k0 atQ

� ¼ ð��
q�; �� q�Þ whose position in the Brillouin zone (BZ)
depends on � and �. Perhaps more importantly, the mo-

mentum distribution vanishes when k ! k0 as nBðkÞ �
kk�k0k3 as we discuss below. This remarkable behavior
results in the following properties for the bosonic fluid in

B: (i) the total density �B
tot is nonzero as soon as �>�c

[25]; (ii) the condensate mode remains empty: quantum

fluctuations do not change the classical result hbyk0
bk0

i ¼ 0

in the GS and the distribution nBðkÞ has no singularity and
remains finite in the thermodynamic limit, which signals
the absence of a condensate at any vector k; (iii) there is a
finite superfluid stiffness which is strongly influenced by
the location in the BZ of the incommensurate vector Q�
where the response is maximal. It is positive and leads to a

superfluid density �B
s ¼ �B=2t of the same order as the

total density ifQ� is close to the BEC point k0. However, it
strongly decreases when Q� shifts away from k0, and it
eventually changes sign for large enough � when the
maximum gets far enough from k0, which signals an
instability towards spontaneous currents, as discussed
some time ago in the context of dirty superconductors [26].

Filtering and frustrated proximity effects.—The basic
physical mechanism behind the absence of a condensate
and the incommensurate fluctuations in the B layer is
actually most simply understood as a filtering mechanism
due to frustration. To get an intuitive picture of this effect,
it is useful to look at the single particle dispersion

"ðkx; kyÞ ¼ 2tðcoskx þ coskyÞ ��þ �

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

4
þ 4t2?cos

2

�
kx
2

�
cos2

�
ky
2

�s
: (6)

The interlayer delocalization is governed by an effective

hopping amplitude t? cosðkx2 Þ cosðky2 Þ which vanishes ex-

actly at the BEC point k0. Therefore, a single particle
injected in the A layer with momentum k0 is confined
to this layer. At second order in t?=�, the probability for a
boson of momentum k to tunnel from A to B is given by

P A�BðkÞ /
�
t?
�

cos

�
kx
2

�
cos

�
ky
2

��
2
: (7)

As long as the density in the A layer is not too large, this
single particle tunneling probability can be used to esti-
mate the occupation in B, which, since all particles come
from A through tunnelling, is expected to be approxi-

mately given by nBðkÞ ’ nAðkÞ � PA�BðkÞ. In the vi-
cinity of the BEC mode k0, the hopping probability
vanishes very rapidly, as PA�B � kk0 � kk4.
Combined with the fact that the zero-mode fluctuations

in the A layer diverge like nA � 1=kk0 � kk, this leads
to nBðkÞ � kk0 � kk3 for k ! k0, in agreement with the

exact evaluation of nBðkÞ from the Bogoliubov transfor-
mation (see Fig. 3). More interestingly, this k-dependent
tunneling mechanism provides a simple explanation of the
maximal response observed in B at the incommensurate
vector Q�, away from the condensate point k0. Indeed,

there is a threshold vector �ð�Þ � ð���cÞ1=4 such that
for kk0 � kk> � the occupation in A starts to decay
faster than 1=kk0 � kk4, which leads to a maximal re-
sponse at j��Q�j � �. The properties of this unconven-
tional quantum liquid are summarized in Fig. 4.
Experimental consequences.—Since the filtering mecha-

nism induced by a frustrated coupling between bosonic
layers yields a condensate-free superfluid state with
incommensurate correlations, it is legitimate to askwhether
its experimental realization is possible or not. As discussed
in more detail in the supplemental material [27], two direc-
tions can be considered, namely, ultracold bosonic atoms

FIG. 2 (color online). Momentum distribution of the spin-
wave modes on the B layer: nBðkx; kyÞ for t ¼ 1, t? ¼ 0:5, � ¼
1, and ���c ¼ �=2.

FIG. 3 (color online). nBðkÞ (lines) along the line kx ¼ ky ¼ k
compared to nAðkÞ � PA�BðkÞ (symbols). Parameters are in-
dicated on the plot.

PRL 107, 037203 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JULY 2011

037203-3



loaded in an optical lattice, and the quantum antiferromag-
netBaCuSi2O6 in a field. For the former example, while the
harmonic trap will break the translational invariance and
slightly perturb the perfect frustration between layers, we
can extend the spin-wave calculation to the inhomogeneous
case (see [27] ) to show that, in practice, it will not quali-
tatively change the predictions made for the homogeneous
case. Concerning the frustrated magnet BaCuSi2O6 in a
strong external field [27], it is a very interesting 3D realiza-
tion of the frustrated layered model with two types of layers
[28]. While the formal analogy between superfluids and
quantummagnets is limited, we predict that high fieldNMR
and neutron experiments may detect the absence of field-
induced triplet BEC and incommensurate correlations in
half the layers of BaCuSi2O6.

Conclusions.—We have shown in the context of a simple
hard-core boson model of two coupled planes that frustra-
tion can influence dramatically the proximity effect in-
duced by a hopping term between the layers. If the
frustration is such that the condensate of one layer cannot
tunnel to an otherwise empty layer, then the bosonic gas
induced in this layer by tunnelling has been shown to be
superfluid but uncondensed. Beyond this simple model,
this effect is expected to be present whenever two bosonic
systems, an occupied one and an empty one, are put into
contact by a proximity effect, provided the geometry is
such that the condensate cannot hop from one system to the
other. This effect leads to nontrivial predictions for trapped
bosons in an optical lattice where the presence of a qua-
dratic potential does not qualitatively change the physics.
Furthermore, the quantum antiferromagnetBaCuSi2O6 in a
field is also predicted to display a very rich physics for the
triplet excitations in a window of �2 Tesla above the

critical field Hc. We hope that the present work will
encourage experimental investigations in both directions,
cold atoms and quantum magnets.
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FIG. 4 (color online). Phase diagram of the bosonic gas of the
B layer for the frustrated bilayer system, with the normalized
chemical potential ð���cÞ=� on the x axis and the energy
barrier � between layersA andB on the y axis. Colors indicate
the incommensurability Q�. For ���c >� Q� ¼ k0 ¼ �,
superfluidity and BEC occurs together (red region) whereas for
���c <�, there is no true BEC but a finite superfluid density
�B
s while the stiffness �B, positive for not too large � can

change sign and become negative for larger �.
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