000171119 001__ 171119
000171119 005__ 20180318102537.0
000171119 0247_ $$2doi$$a10.1016/j.jcrysgro.2011.05.018
000171119 02470 $$2ISI$$a000293551100002
000171119 037__ $$aARTICLE
000171119 245__ $$aDefects in a-GaN grown on r-sapphire by hydride vapor phase epitaxy
000171119 269__ $$a2011
000171119 260__ $$c2011
000171119 336__ $$aJournal Articles
000171119 520__ $$aNon-polar a-GaN films grown on r-sapphire by hydride vapor phase epitaxy (HVPE) are studied using transmission electron microscopy (TEM). Despite the small lattice mismatch in a-GaN ([1 0 (1) over bar 0] similar to 1.1% and [0 00 1] similar to 16%), high dislocation and basal stacking fault densities are observed. Epitaxial lateral overgrowth (ELO) technique is implemented in order to reduce the defect density. ELO reduces both densities by two orders of magnitude: the dislocation density is reduced from 1 x 1010 to 3 x 108 cm(-2) and the stacking fault density is reduced from 1 x 10(6) to 4 x 10(4) cm(-1). Threading dislocations (TDs) are observed in the ELO mask openings with screw and mixed characters which have Burgers vectors (b) over right arrow = 1/3[1 1 (2) over bar 0] and (b) over right arrow = 1/3[1 1 (2) over bar 3] respectively. In the ELO areas, three kind of dislocations are observed: screw dislocations with (b) over right arrow = 1/3[1 1 (2) over bar 0], edge dislocations with (b) over right arrow = 1/3[(2) over bar 1 1 0] and partial dislocations (PDs) with (b) over right arrow = 1/3[1 0 (1) over bar 0] and (b) over right arrow = 1/6[2 0 (2) over bar 3]. Basal stacking faults (BSFs) of the type I-1 ((R) over right arrow = 1/6[2 0 (2) over bar 3]) and I-2 ((R) over right arrow 1/3[1 0 (1) over bar 0]), and prismatic stacking faults (PSFs) with a (R) over right arrow = [1 (1) over bar 0 1]Toil are also observed. Cathodoluminescence, spectra and imaging, has shown that TDs are non-radiative recombination centers contrary to BSFs. (C) 2011 Elsevier B.V. All rights reserved.
000171119 6531_ $$aDefects
000171119 6531_ $$aDislocations
000171119 6531_ $$aTransmission electron microscopy
000171119 6531_ $$aEpitaxial lateral overgrown
000171119 6531_ $$aHydride vapor phase epitaxy
000171119 6531_ $$aLight-Emitting-Diodes
000171119 6531_ $$aPlane Gallium Nitride
000171119 6531_ $$aLaterally Overgrown Gan
000171119 6531_ $$aMultiple-Quantum Wells
000171119 6531_ $$aStacking-Faults
000171119 6531_ $$aDeposition
000171119 6531_ $$aFilms
000171119 6531_ $$aHeteroepitaxy
000171119 6531_ $$aLuminescence
000171119 6531_ $$aPerformance
000171119 700__ $$aDasilva, Y. Arroyo Rojas
000171119 700__ $$aZhu, T.
000171119 700__ $$aMartin, D.
000171119 700__ $$0244550$$aGrandjean, N.$$g161577
000171119 700__ $$aJahn, U.
000171119 700__ $$0240052$$aStadelmann, P.$$g106465
000171119 773__ $$j327$$q6-12$$tJournal Of Crystal Growth
000171119 909CO $$ooai:infoscience.tind.io:171119$$pSB$$particle
000171119 909C0 $$0252025$$pCIME$$xU10192
000171119 909C0 $$0252312$$pLASPE$$xU10946
000171119 917Z8 $$x178548
000171119 937__ $$aEPFL-ARTICLE-171119
000171119 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000171119 980__ $$aARTICLE