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a  b  s  t  r  a  c  t

Microdevices  dedicated  to  monitor  metabolite  levels  have  recently  enabled  many  applications  in  the field
of cell  analysis,  to monitor  cell  growth  and  development  of  numerous  cell  lines.  By  combining  the  tradi-
tional  technology  used  for electrochemical  biosensors  with  nanoscale  materials,  it is possible  to  develop
miniaturized  metabolite  biosensors  with  unique  properties  of  sensitivity  and  detection  limit. In particu-
lar,  enzymes  tend  to adsorb  onto  carbon  nanotubes  and  their  optical  or electrical  activity  can  perturb  the
electronic  properties.  In  the  present  work  we  propose  multi-walled  carbon  nanotube-based  biosensors
eywords:
lectrochemical biosensor
etabolite

ell culture
arbon nanotubes
xidase

to  monitor  a  cell  line  highly  sensitive  to metabolic  alterations,  in order  to evaluate  lactate  production
and  glucose  uptake  during  different  cell  states.  We  achieve  sensors  for  both  lactate  and  glucose,  with
sensitivities  of  40.1  �A  mM−1 cm−2 and  27.7  �A mM−1 cm−2, and  detection  limits  of  28  �M  and  73  �M,
respectively.  This  nano-biosensing  technology  is used  to provide  new  information  on cell  line  metabolism
during  proliferation  and  differentiation,  which  are  unprecedented  in  cell  biology.
lucose deprivation

. Introduction

Metabolite monitoring in cell cultures is of crucial impor-
ance for a wide range of applications: it is a further instrument
o deep understand cell mechanisms; it can help to develop
utomated systems for tissue engineering; it can be applied to
nvestigate gene-expression pathways in cell biology. Important
iological metabolites are sometime difficult to measure in vitro
r in real-time. Standard techniques such as immunoassays, gel
lectrophoresis and nuclear magnetic resonance typically cannot
e performed in live cells and tissues, or at least they require
reparation steps that inhibit real-time measurements [1].  Instead,
lectrochemical sensing based on oxidases is suitable for real-time
onitoring of metabolites, such as glucose [2] and lactate [3].
In the field of electrochemical techniques for compound

etection, sensing by using nanoscale materials offers a unique
pportunity to improve sensitivity while protein probes improve
pecificity. It is well known that carbon nanotubes (CNT) have
onsiderable electron field emission properties. They are used to
nhance the emissivity of electrodes made of various materials

4]. Many theoretical [5,6] and experimental [7] works have been
ublished related to CNT field. The results suggest that the major
ontribution to emission performance is mainly from the body (the

∗ Corresponding author. Tel.: +41 21 693687; fax: +41 21 6930909.
E-mail address: cristina.boero@epfl.ch (C. Boero).

925-4005/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2011.03.053
© 2011 Elsevier B.V. All rights reserved.

sidewall) of each individual CNT. From the biosensing point-of-
view, increased emission performance from CNT definitely results
in an improved sensitivity of sensors for metabolites [8].  Moreover,
molecular adsorption of proteins onto carbon nanotubes can be
translated into an optical [9] or electrical [10] signal by perturbing
the electronic structure of the nanotubes. Thus, their functional-
ization with enzymes offers a unique way to improve also the
specificity of the detection.

Among all the metabolites which can be monitored, certainly
glucose is the most interesting, since it is the essential source of
energy for the body, and especially for the brain. Although glucose
is traditionally considered as the preferential source of energy for
neurons, recent papers suggest that lactate might be transported
within the different brain cell types (e.g. neurons and astrocytes),
and consumed instead of glucose during neuronal activation [11].
Therefore, the so-called astrocyte-neuron shuttle model proposes
a net production of glutamate-derived lactate by astrocytes, which
is then transported and consumed by neurons [12]. However, no
definitive data are available to support this theory, making this field
of research very debated [13].

To this purpose, the use of sensor arrays combining carbon nan-
otubes and enzymes for sensing levels of such metabolites can
definitely contribute to elucidate this point. One  of the simpli-

fied biological systems, e.g. neuronal cultures in dynamic metabolic
conditions is the SN56 cell line, which derives from fusion of sep-
tal neurons of postnatal mice with murine neuroblastoma cells.
SN56 is a cholinergic line, and cholinergic neurons are highly sen-

dx.doi.org/10.1016/j.snb.2011.03.053
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:cristina.boero@epfl.ch
dx.doi.org/10.1016/j.snb.2011.03.053
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itive to several stressors and to metabolic alterations. Those cells
ctively proliferate, but they acquire mature cholinergic phenotype
fter retinoic acid (RA) exposure, which also stops cell cycle. There-
ore, depending on RA administration, we will refer to proliferation
tate of neuron precursors in the case we do not supply the acid;
therwise cells differentiate in mature neurons, similarly to the
ase of stem cells. Thus, on one side SN56 represents a suitable
odel to test the hypothesis astrocyte-neuron shuttle model [12];

n the other side they “mimic” stem cell behavior, allowing the
nvestigation of cell metabolism during different cell states.

In the present work we develop biosensors nanostructured with
ulti-walled carbon nanotubes (MWCNT) and we  exploit them

or sensing relevant metabolites in SN56 cell line. We  show how
roteins arrange themselves onto carbon nanotube surface. We  cal-

brate the biosensors for the detection of glucose and lactate in cell
edium. We  monitor glucose uptake and lactate production during

roliferative and differentiate states. Finally, we  investigate lactate
oncentration in conditions of glucose deprivation, showing direct
onfirmation of the hypothesis on metabolite transportation. Thus,
e demonstrate that the proposed method is suitable for stem cell
onitoring as well as cell biology investigations.

. Material and methods

.1. Reagents

Carbon paste Screen-printed electrodes (SPE - model DRP-
10) and multi-walled carbon nanotubes were purchased from
ropsens (Spain). Carbon nanotubes (diameter 10 nm,  length
–2 �m)  were purchased in powder (90% purity), and subse-
uently diluted in chloroform to the concentration of 1 mg  ml−1

8].  Samples were then sonicated in order to obtain a homogeneous
olution. Glucose oxidase from Aspergillus Niger (GOD, EC 1.1.3.4,
29.9 units/mg solid), lactate oxidase from Pediococcus species
LOD, EC 1.13.12.4, ≥20 units/mg solid), d-(+)-glucose, and lithium
-lactate were purchased from Sigma–Aldrich (Switzerland) in
yophilized powder. All the proteins were dissolved in Phosphate
uffer Saline (PBS) 0.01 M at pH 7.4, while glucose and lactate were
issolved in Milli-Q.

.2. Apparatus

The electrochemical response of the functionalized MWCNT
or glucose or lactate detection is investigated by chronoamper-
metry under aerobic conditions. Electrochemical measurements
re acquired by using Versastat 3 potentiostat (Princeton Applied
echnologies). Experiments are carried out using a conventional
hree-electrode system. The screen-printed electrode consists of a
raphite working electrode, which presents an active area equal
o 13 mm2; a counter electrode, also made of graphite; a reference
lectrode, made of Ag/AgCl. The total area of the cell is 22 mm2.

Imaging of multi-walled carbon nanotubes are acquired by using
 Philips/FEI XL-30 F (Netherlands) scanning electron microscope
SEM). The resolution in UHR mode is 2.5 nm at 1 kV. Pictures of
iving cells are captured by inverted Olympus IX70 optical micro-
cope equipped with a digital photo camera Camedia C-5060 and
hase 100 contrast filter. Fluorescent images are captured with a
ikon Eclipse E600 microscope equipped 101 with a Nikon Digital
amera DXM1200 (ATI system) appropriate filters for fluorescence
taining.
.3. Nanostructured electrodes preparation

To prepare nanostructured electrodes, 40 �l of MWCNT-
hloroform solution is spread (in drops of 5 �l each) onto the
tors B 157 (2011) 216– 224 217

working electrode and allowed to dry.Then, the MWCNT are func-
tionalized by using the probe enzyme in order to obtain biosensors
for glucose and lactate detection. A volume of 20 �l of glucose or lac-
tate oxidase (15 mg  ml−1 and 125 mg  ml−1, respectively) is dropped
onto the MWCNT and stored overnight at +4 ◦C, in order to allow
protein adsorption onto the electrode surface. Then, the drop is
rinsed out with Milli-Q and the electrode is conditioned for 10 min
at constant potential (+550 mV)  before the first use. All the func-
tionalized electrodes are stored at +4 ◦C and covered with PBS, after
use.

2.4. Cell culture

SN56 cell line (clone SN56.B5.G4), derived from the fusion of
septal neurons of postnatal day 21 mice with N18TG2 murine neu-
roblastoma cells [14], is a generous gift of Prof. Bruce H. Wainer
(Emory University, Atlanta, GA, USA). Proliferating cells are main-
tained in Dulbecco’s modified Eagle’s medium (DMEM, Sigma, Saint
Louis, Missouri USA), supplemented with 10% Foetal Bovine Serum
(FBS, Gibco/BRL, Rockville, MD,  USA), 2 mM l-glutamine (Sigma),
and 40 U/ml penicillin/streptomycin (Gibco), in 25 cm2 culture
flasks (Corning, New York, NY USA) in a 5% CO2 atmosphere at
37 ◦C. Medium in the stock flasks is changed every 48 h and the cells
are sub-cultured when they reached 80–90% of confluence. Cells
are seeded at 5 × 103, 2.5 × 104, 2 × 105 cell cm−2, after four pas-
sages from thawing. Then, cells are cultured onto uncoated wells
in proliferating conditions for 48 h or onto poly-l-lysine (Sigma)-
coated wells when induced to differentiate, with or without covers
lips, depending on the experiment. Differentiating cells are let
adhere to coated substrates for further 48 h in the same, but serum
free, growth medium; afterwards, they are supplemented with
1 �M all-trans-retinoic acid (RA) from Sigma–Aldrich (Switzerland)
for 48 h [15]. Surnatant conditioned medium is collected for glu-
cose and lactate level measurements at 4, 24 and 48 h after RA
supply.

2.5. Glucose deprivation

After 48 h of proliferation and induction of differentiation by
RA treatment, cells at 2.5 × 104 are subjected to glucose depriva-
tion. Briefly, complete medium (glucose 22.4 mM)  is removed and
cells are washed twice with glucose-free DMEM (Cat N◦ D5030,
Sigma, Switzerland), 2 mM l-glutamine (Sigma), 44 mM NaHCO3
(Sigma), 40 U/ml penicillin/streptomycin, supplemented or not
with FBS. Cells are glucose-deprived for 48 h by using the glucose-
free medium described above.

2.6. MTT assay

Cell growth and viability are studied by MTT  biochemical
approach on cells seeded at 2.5 × 104, based on the reduction of MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide,
Sigma) into formazan crystals by the action of the mitochondrial
dehydrogenase enzymes present in viable cells. The so-formed
crystals are then dissolved in acidified isopropanol, giving a spec-
trophotometrically measurable purple solution. Cells are treated
with a solution of 5 mg  ml−1 of MTT. After 2 h at 37 ◦C the formed
formazan crystals are dissolved in a solution consisting of 10% Tri-
ton X-100/0.1 N HCl/isopropanol and incubated for 1 h at room

temperature in the dark. Absorbance is read at a wavelength of
570 nm.  Blanks are prepared as the same way as samples but with-
out cells. Absorbance values correspond to the number of viable
cells.
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Fig. 1. SEM images of multi-walled carbon nanotubes. (A) and (B) illustrate MWCNT drop-cast onto screen-printed electrodes from a chloroform solution of mono-dispersed
t CNT; E
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ubes; (C) and (D) depict the surface of the screen-printed electrodes without MW
he  case of MWCNT functionalized by using lactate oxidase are similar to pictures (

.7. Immunocytochemistry

Cells are seeded at a density of 2.5 × 104 cells cm−2. At the
ppropriate time points, cells are washed with ice-cold phos-
hate buffered saline and fixed with a solution of 4% ice-cold
ara-formaldehyde for 20 min  at 4 ◦C followed by PBS washes.
he following antisera have been used in this study: intracellu-
ar p75NTR 1:600 (Rabbit, anti-p75, Promega Corporation, Madison,

I,  USA), 1:200, ChAT (Goat, anti-ChAT, Chemicon International,
emecula, CA, USA) 1:500; BetaIII-Tubulin at 1:1000 (Mouse, anti-
etaIII Tubulin, R&D, R&D systems, Minneapolis, MN,  USA). Cells are
hen incubated for 30 min  at 37 ◦C with secondary antibodies (Don-
ey anti-goat and anti-mouse cy-2, at 1:100; donkey anti-rabbit
RX at 1:100) (all from Jackson Immunoresearch laboratories, West
rove, PA, USA). After immunofluorescence staining, cells are incu-

ated with the nuclear dye Hoechst33258 (1 �g ml−1 in PBS, 0.2%
ritonX-100) for 20 min  at room temperature, washed with PBS and
ounted in a solution containing para-phenylendiamine to reduce

ading.
 and F show MWCNT functionalized by using glucose oxidase. Images acquired in
 (F) (data not shown).

3. Results and discussion

3.1. Enzyme immobilization

Fig. 1 shows acquired SEM pictures of carbon nanotubes cast
onto screen-printed electrodes, and functionalized with oxidases.
Since nanotubes walls are highly hydrophobic [16], they tend to
form bundles, as depicted in Fig. 1A, even if they consist of indi-
vidual carbon fibers, as detailed in Fig. 1B. The morphology of
nanostructured electrodes is clearly related to carbon nanotubes
(CNT) properties, as demonstrated by the flatness of the bare elec-
trode surface (Fig. 1C), where graphite nanoparticles can be clearly
identified (Fig. 1D). In the case of nanotubes functionalized with
enzymes, the protein layer entirely covers the free-space within
bundles (Fig. 1E), and wraps each carbon nanotube (Fig. 1F). The

fiber size spans from 10.98 ± 1.64 nm,  in the case of CNT, up to
18.90 ± 2.09 nm,  in the case of CNT functionalized with glucose oxi-
dase. The glucose oxidase (GOD) from Aspergillus niger is illustrated
in Fig. 2A and B, which structure has been obtained at 1.9 Å reso-
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Fig. 2. Crystallographic 3D structure of oxidases. Lateral (A) and top (B) view of glucose oxidase from penicillium amagasakiense are depicted in the on the top of the
figure.  Lateral (C) and top (D) view of lactate oxidase with pryruvte complex are illustrated on the bottom. Both images have a resolution of 1.9 Å. Glucose oxidase is a two
sub-units protein, which may  be included within a cube with size equal to 10 nm × 9 nm × 8 nm,  while lactate oxidase is a protein with 4 sub-units approximately sized
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.6  nm × 5 nm × 4 nm.  The whole protein structure can be included within a cube w
atabank (http://www.rcsb.org)

ution [17]. It is composed by two sub-units with individual size
anging from 3 up to 7.5 nm.  Similarly, the lactate oxidase is a pro-
ein composed by four sub-units, which measure within 4.6 and
.7 nm,  as shown in Fig. 2C and D. Lactate oxidase (LOD) from Aero-
occus viridans has been investigate in interaction with pyruvate
nd the LOD-pyruvate complex has been solved at a resolution of
.90 Å resolution [18]. Crystallographic models confirm that size
nlargement measured in SEM images is compatible with a single
ayer of proteins around the nanotubes.

.2. Biosensor calibration

For calibration and investigation of the detection limit, the elec-
rode is dipped into the PBS solution with a volume of 25 ml  under
tirring conditions. A volume of 25 �l per step of the target molecule
s successively added into the solution with a time-step of 2 min.
o perform measurements, we apply a potential of +550 mV vs.
g/AgCl, which corresponds to the oxidation potential of hydro-
en peroxide [19]. For glucose biosensor, we obtain a sensitivity of
7.7 �A mM−1 cm−2, a linear range within 0.5–4.0 mM,  and detec-
ion limit of 73 �M (considering a signal-to-noise ratio of 3). For
actate detection, we achieve a sensitivity of 40.1 �A mM−1 cm−2, a
inear range within 0.5–2.5 mM,  and detection limit of 28 �M (data
ot shown).

For medium measurements, we change a little bit the exper-
mental setup. Instead of dipping the sensor into the solution,
ince we work with small cell flasks, we perform measurements

n quiescent conditions. For this reason, for each new electrode

e perform a two-point calibration with nominal concentration
n diluted DMEM,  before measuring medium coming from the cell
ulture. Hence, screen-printed electrodes are covered with a drop
ze equal to 9 nm × 8 nm × 5 nm.  The two protein structures are from RCSB Protein

of 100 �l of diluted medium. For glucose calibration the DMEM
is used as it is, while lactate is added for the calibration in the
case of lactate sensor calibration. The rate of dilution is chosen
according to the fact that the concentration of glucose in DMEM
used for the present experiments is of 22.4 mM (4.5 g l−1). Since
it is not possible to perform measurements in pure DMEM,  due
to the interferences arising from easily electro-oxidizable com-
pounds at the same oxidation potential, all the measurements
are performed in 1:10 diluted DMEM in PBS, so that the maxi-
mum  concentration of interest is 2.24 mM.  From the calibration
curves it is possible to notice that the concentrations of inter-
est belong to the linear range of the developed biosensor. For the
case of lactate, a mean value of 10.9 mM is reported in literature
in the case of murine embryonic stem cells [20]. Since the linear
range of the lactate biosensor is within 0.5 and 2.5 mM,  the dilu-
tion 1:10 of the DMEM is also suitable in this case. A potential of
+550 mV  is applied to the electrochemical cell also in this case.
The current is recorded for 5 min, but mean value and standard
deviation are calculated when the system reaches the steady-state
(approximately the last 3 min  for each measurement). Baseline, cor-
responding to a concentration of 0 mM of substrate, is subtracted
from each measurement. No crosstalk is observed when glucose
is measured with an electrode functionalized with LOD, and vice
versa.

3.3. Metabolites in proliferation and differentiation states
With the aforementioned assumptions, we employed randomly
distributed carbon nanotubes onto screen-printed electrodes to
develop biosensors for glucose and lactate detection in cell cul-
ture medium. We  chose an exclusively neuronal system in vitro, the

http://www.rcsb.org/
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Fig. 3. Images from optical microscopy of different cell culture experiments. Neuronal phenotype is induced by 48 h exposure to RA, as indicated by morphology (�III-tubulin
b noreac
g

S
a
m
t

c
a
c
F
i
o
2
b
(
r
fi
[

efore (A) and after (B) RA supply), neurochemical marker expression (ChAT–immu
rowth  factor low affinity receptor p75 before (E) and after (F) RA supply).

N56 cell line. We  validate and characterize our in vitro system by
nalyzing cell morphology, expression of neuronal and cholinergic
arkers, and cell viability both in proliferation and in differentia-

ion phases.
Neuronal phenotype is induced by 48 h exposure to RA, as indi-

ated by branched arborization (Fig. 3A and B, betaIII-Tubulin)
nd expression of neurochemical marker associated with mature
holinergic phenotype (Fig. 3C and D, ChAT-immunoreactivity;
ig. 3E and F, nerve growth factor low affinity receptor (p75)-
mmunoreactivity). To verify the effect of treatment with RA
n cell number, cell viability is evaluated at a cell density of
.5 × 104 cell cm−2 by MTT  assay. SN56 proliferation is confirmed
y the progressive increase of viable cells over the culture time

superimposed bars on Fig. 4A and C), whereas RA exposure
esults in a decrease of viability over the culture time, con-
rming the interruption of proliferation (bars on Fig. 4B and D)
15].
tivity before (C) and after (D) RA supply) and cholinergic marker expression (nerve

These neurons uptake glucose from the medium, and partly con-
vert it via anaerobic glycolysis into lactate. Assuming this metabolic
mechanism, we  plate the SN56 cells at different cell concentra-
tions, collecting surnatants at 3 time points, to challenge our sensor
with different glucose consumption (Fig. 4A and B) and lactate pro-
duction rates (Fig. 4C and D). Therefore, we  compare metabolite
dynamics during proliferation (Fig. 4A and C) and differentiation
(Fig. 4B and D) conditions (obtained in the absence and in the pres-
ence of RA, respectively), to validate our sensors for neural cell
monitoring.

Nanostructured sensors detect a progressive uptake of glu-
cose in the media over the time, depending on cell density
and time in culture, as illustrated in Fig. 4A and B. Glucose

uptake in mature neurons (Fig. 4B) occurs at a lower rate than
in proliferating cells (Fig. 4A), with the exception of the lowest
cell density. It can be also observed that glucose concentra-
tion changes extremely fast in the case of proliferating cells
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Fig. 4. Effect of cell density and state on glucose and lactate levels in cell cultures. Dot-plots represent glucose (A) and (B) and lactate (C) and (D) concentrations (indicated
on  left y-axis) in SN56 supernatants collected from cell cultures at three different densities, at 4, 24, 48 h (as indicated on the x-axis). The superimposed bar graphs point out
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ontrol  groups (100% of viable cells). Data are represented as means ± SD (dot-plots

Fig. 4A), while shows more stable curves during differentiation
Fig. 4B).

Neuronal lactate production in proliferating and differentiat-
ng cells is demonstrated by Fig. 4C and D, respectively. Lactate
evels progressively rise accordingly to cell number and prolifer-
tion/differentiation state, in a symmetrical manner with respect
o glucose shapes. A sharp decrease in glucose concentration, as
btained with higher cell densities, corresponds to an increase
f the same extent in lactate levels. Furthermore, lactate produc-
ion is affected by cell state, occurring earlier and in a sharper

anner in differentiating cells (Fig. 4D) than during proliferation
Fig. 4C). Note that in the case of 5 × 103 cell cm−2, lactate amount
s below the detection limit of the sensor. Glucose and lactate
ehaviors found with the developed biosensors are also confirmed
y measurements performed with a commercially available spec-
rophotometer assay (data not shown).

.4. Measurements in glucose deprivation

To further explore the effectiveness of our biosensors in mon-
toring cell state changes, we dramatically modified neuronal

etabolism by removing glucose from the culture medium, thereby
nducing a metabolic stress. The glucose deprivation model is then
pplied to SN56 cultures after 48 hours of proliferation or differen-
iation, and both glucose (Fig. 5A and B) and lactate (Fig. 5C and D)
ere measured in the surnatants.

Fig. 5A and B describe glucose levels in complete and glucose-
ree culture medium in proliferating and differentiating cells,

espectively. Glucose levels are low and stable at this time, indepen-
ently of cell state (Fig. 5A and B, grey round dots), while values in
eprived media are below the detection limit of the sensor (Fig. 5A
nd B, white square dots). Fig. 5C and D describe lactate levels in
d (D) media. The right y-axis indicates the percentages of viable cells respect to the
EM (bar-graphs).

complete and glucose-free media, in proliferating and differentiat-
ing cells, respectively. Lactate levels are higher and more dynamic
in the proliferating cultures (Fig. 5C and D, grey round dots) than
in the differentiated ones (Fig. 5C and D, white square dots). The
superimposed bars refer to cell viability measured by MTT  assay in
presence (grey bars) or absence (white bars) of glucose, and clearly
indicate cell death in glucose-deprived cells, particularly in the case
of differentiating cells.

Cell death induced by glucose deprivation was  previously
reported in SN56 cells [21,22] and neurons in culture [23]. SN56 is
a line of cholinergic neurons which are highly sensitive to several
stressors and to metabolic alterations. The interest about cholin-
ergic neurons is connected to Alzheimer’s disease, where their
early loss is associated with a metabolic impairment in brain,
whose extent is proportional to the severity of the cognitive deficits
[24,25]. Furthermore, RA treatment increases SN56 vulnerability to
oxidative stress, as demonstrated by an increase of caspase-3 medi-
ated cell death [26,27] and lactate dehydrogenase activity, which
is responsible for lactate production and consumption [28]. From
the detected responses we  can infer that the amount of glucose
is not enough for a correct cell feeding, as recorded just after 4 h.
Coherently, in proliferating cells our biosensors measure a massive
lactate production after 4 hours, followed by a dramatic decrease
within 24 h, and a sharp increase between 24 and 48 h. Further-
more, our results show that in actively proliferating cells, the lack
of glucose for 24 h results in the consumption of neuronal lactate,
dynamically released into the medium.

These data confirm the idea that glucose consumption during

increased neuronal activity might be nonoxidative [29–31] and
results in lactate production. It has been hypothesized that astro-
cytes may  produce lactate during neuronal activation. Lactate is
then oxidized by neurons to yield energy, playing a neuroprotective
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ole after cerebral ischemia [32,33]. According to other authors, oxi-
ation of lactate by neurons would only be possible if the glycolytic
onsumption of glucose or its transport were inhibited [34]. The
ellular system employed in this study contains uniquely neuronal
ells [35]. Thus, it offers the chance to make assumptions about
euronal behavior.

. Conclusion

The present research is focused on the development of nanos-
ructured electrodes by using multi-walled carbon nanotubes for

etabolite detection in cell culture medium. We  show how nanos-
ructuration can significantly improve the sensitivity of biosensors,
hile functionalization with oxidases offers high specificity. SEM

mages of the electrodes show that CNT form bundles and the
rotein layer wraps each carbon nanotube, forming a single layer
f proteins onto nanotube surface. The measured thickness of
NT confirms this hypothesis. Then, we calibrate the developed
iosensor for the detection of glucose and lactate. For glucose
e found a sensitivity of 27.7 �A mM−1 cm−2, a linear range
ithin 0.5–4.0 mM,  a detection limit of 73 �M.  For lactate we

bserved a sensitivity of 40.1 �A mM−1 cm−2, a linear range within
.5–2.5 mM,  and detection limit of 28 �M.  We  tested our biosen-

ors in a cell culture along 48 h and we record the different behavior
f such metabolites. Results clearly show a glucose uptake and

 lactate production over the time, and different rate according
o different cell seeding and cell state. Concentrations vary faster
ve been calculated using the standard curve. Data are represented as means ± SD

in proliferation state, while they are more stable during differ-
entiation. Moreover, lactate dynamics progressively change in a
symmetrical manner with respect to glucose shape, confirming
the strong relationship between these two  metabolites. Finally, we
monitor lactate level in glucose deprivation conditions. The data
confirm the idea that the oxidation of lactate is possible when the
glycolytic consumption of glucose is inhibited, offering the chance
to make assumption about neuronal behavior. Whereas it is still
under debate the fate of neuronal or astrocytic lactate produced by
glycolysis, our sensors provide new insight because of their higher
sensitivity with respect to the state-of-the-art [36]. Indeed, our
experiments have measured a production and uptake of lactate in
neuronal cell cultures. The possibility to functionalize nanomate-
rials with different oxidases opens to the possibility of monitoring
many different compounds, offering unique properties to enhance
the detection of metabolites released in cell cultures.
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