$\mathrm{Pd}(0)$-Catalyzed Oxy- and AminoAlkynylation of Olefins for the Synthesis of Tetrahydrofurans and Pyrrolidines.

Stefano Nicolai and Jérôme Waser*
Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
jerome.waser@epfl.ch

Received Date (will be automatically inserted after manuscript is accepted)

ABSTRACT

Abstract

The first $\operatorname{Pd}(0)$-catalyzed intramolecular oxy- and amino- alkynylation of non-activated olefins is reported. The reaction gives access to important tetrahydrofuran and pyrrolidine heterocycles with high diastereoselectivity. The unique synthetic potential of acetylenes is further exploited to access key building blocks for the synthesis of bioactive natural products.

Heterocycles are essential structural elements for the bioactivity of natural and synthetic molecules. Among them, tetrahydrofurans and pyrrolidines are particularly important in natural products, such as the antitumoral annonaceous acetogenins gigantecin (1) and squamostatin C (2), ${ }^{1}$ or the antibiotic alkaloid preussin (3) (Figure 1). ${ }^{2}$ Consequently, the stereoselective synthesis of tetrahydrofurans and pyrrolidines has been extensively investigated. ${ }^{3}$ Particularly interesting are methods using cyclization of alcohols or amines onto non-activated olefins combined with a further bond forming event. Iodoetherification or amination reactions have been often used in the synthesis of heterocycles. ${ }^{4}$ Recently, the power of metal catalysis has been harnessed to achieve multiple functionalizations of olefins ${ }^{5}$ for the synthesis of tetrahydrofurans and pyrrolidines together with further C $\mathrm{N},{ }^{6} \mathrm{C}-\mathrm{O}^{7}$ or $\mathrm{C}-\mathrm{C}$ bond formation. ${ }^{8}$

Impressive progress has been realized in Pd-catalyzed domino reactions involving cyclization on olefins to form a tetrahydrofuran or a pyrrolidine followed by carbonylation, ${ }^{8 \mathrm{a}-\mathrm{c}}$ vinylation ${ }^{8 d-e}$ or arylation. ${ }^{8 \mathrm{f}-\mathrm{j}}$ Despite these recent breakthroughs, there are currently no
examples of an oxy- or amino- alkynylation reaction for the synthesis of tetrahydrofurans or pyrrolidines. ${ }^{9}$ Such a process would be highly useful, as the functionalization of alkynes through cross-coupling, reduction, addition, cyclization, cycloisomerization or cycloaddition gives access to important building blocks used in synthetic chemistry, chemical biology and material sciences. ${ }^{10}$

Figure 1. Tetrahydrofuran and pyrrolidines natural products.

Our group has developed the $\mathrm{Pd}(\mathrm{II})$-catalyzed oxy- and amino-alkynylation of olefins with EBX (ethynyl benziodoxolone) reagent $\mathbf{4}$ for the synthesis of lactones and lactams (Scheme 1). ${ }^{11}$ However, the developed
methods could not be used to access tetrahydrofurans or pyrrolidines and $\mathrm{C}-\mathrm{C}$ bond formation was limited to primary positions. Herein, we report a different approach for the oxy- and amino- alkynylation of olefins using $\operatorname{Pd}(0)$ catalysis and triisopropylsilyl ethynyl bromide (5a), which allowed us to override both limitations (Scheme 1). To the best of our knowledge, this is the first example of $\operatorname{Pd}(0)$ catalysis for the oxy- and amino- alkynylation of olefins or for any $\mathrm{C}-\mathrm{X} / \mathrm{C}\left(\mathrm{SP}^{3}\right)$-C(SP) domino sequence on alkenes. Tetrahydrofurans and pyrrolidines were obtained in good yields and diastereoselectivities, and examples of alkynylation at secondary positions are also reported. The synthetic potential of the obtained acetylenes is demonstrated in further transformations giving access to the core structures of acetogenin natural products.

Scheme 1. Oxy- and Amino Alkynylation of Alkenes.

The oxyalkynylation of penten-5-ol (6a) with TIPSEBX (4) as reagent and a $\mathrm{Pd}(\mathrm{II})$ catalyst gave only low yields ($<25 \%$), and no conversion was observed with halogeno acetylenes. At this point, we decided to reconsider our working model for the reaction (Scheme 2). For lactonization ${ }^{11 a}$ we had used an electron-poor $\operatorname{Pd}(\mathrm{II})$ catalyst I, which would react with the strong oxidant 4 to form a putative $\mathrm{Pd}(\mathrm{IV})$ intermediate III only after oxy-palladation to give II had occurred. However, the use of a $\operatorname{Pd}(0)$ catalyst IV with 4 led to fast formation of a diyne product and to silylation of alcohol $\mathbf{6 a}$ (Table 1, entry 1). ${ }^{12}$ We speculated that a weaker and less electrophilic oxidant, such as a halogeno acetylene should be less prone to the observed side reactions. Instead, oxypalladation and reductive elimination via VI and VII would give the product 7 , opening a new $\mathrm{Pd}(0) / \mathrm{Pd}(\mathrm{II})$ manifold for the reaction.

When Wolfe's conditions ${ }^{8 f-\mathrm{j}}$ were used with phenyl- or phenylethyl- ethynyl bromides (5b) and (5c) (Table 1, entries 2-3), complex mixtures of products were obtained. At this point, we decided to turn towards triisopropylsilyl acetylenes derivatives, which had demonstrated exceptional properties in metal catalysis. ${ }^{11,13}$ Gratifyingly, whereas chloroacetylene 5d displayed only low conversion (entry 4) and iodoacetylene 5e lead to dimerization (entry 5), ${ }^{14}$ a promising 69% of yield was obtained using $2 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and DPE-Phos as ligand with bromoacetylene 5a (entry 6).

Scheme 2. Working Models for the Oxyalkynylation of Penten-5-ol (6a).

Further optimization studies allowed us to identify toluene as the optimal solvent and confirmed DPE-Phos as the ideal ligand (entry 7). ${ }^{15}$ Under these conditions, 7a could be isolated in 92% yield using only 1.33 equivalent of bromide 5a (Table 2, entry 1).

Table 1. Optimization of the Oxyalkynylation Reaction.

			TIPS	
entry	reagent	ligand	solvent	yield $^{\text {a }}$
1	TIPS-EBX	DPE-Phos	THF	<5\%
2	$\mathrm{Ph}=\mathrm{Br}(\mathbf{5 b})$	DPE-Phos	THF	_-
3	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}=\mathrm{Br}(\mathbf{5 c})$	DPE-Phos	THF	-b
4	TIPS $=\mathrm{Cl}(\mathbf{5 d})$	DPE-Phos	THF	22\%
5	TIPS $=1$ (5e)	DPE-Phos	THF	31%
6	TIPS $=\mathrm{Br}(\mathbf{5 a})$	DPE-Phos	THF	69\%
7	TIPS $\overline{=} \mathrm{Br}(\mathbf{5 a})$	DPE-Phos	toluene	87\%

${ }^{\text {a Reaction conditions: } 0.15 \mathrm{mmol} \mathbf{6 a}, 0.20 \mathrm{mmol} \mathrm{5}, 0.20 \mathrm{mmol}}$ $\mathrm{NaO} t \mathrm{Bu}, 0.003 \mathrm{mmol}_{\mathrm{Pd}}^{2}$ (dba) $)_{3}, 0.006 \mathrm{mmol}$ ligand, 0.8 mL dry solvent under N_{2} at $65-70{ }^{\circ} \mathrm{C}$. Yield determined via GC-MS. ${ }^{\mathrm{b}}$ Complex mixture of non-separable products.

We then examined the scope of the reaction (Table 2). The cyclization of primary alcohols proceeded in 79-92\% yield (entries 1-3). We then turned to the use of secondary alcohols in the cyclization reaction (entries 4-7). This class of substrates is particularly interesting, as trans 2,5disubstituted tetrahydrofurans are often represented in natural products, such as acetogenins (Figure 1). The reaction worked in $60-80 \%$ yield and excellent trans diastereoselectivity ($>95: 5$) (entries 5-7), with the exception of the small Me substituent (entry 4). The reaction tolerated a second double bond in the molecule (entry 6) and gave access to bicyclic heterocycles (entry 7). Useful yields could be obtained with tertiary alcohols
(entries 8-9), including for the formation of a spirobicyclic heterocycle 7i (entry 9).

Table 2. Scope of the Alkynylation Reaction.
entry

12

80\% (94:6 dr)

13

14

6n

15

$71 \%{ }^{\mathrm{b}}$ $70^{(>95: 5 \mathrm{dr})}$

6p

aReaction conditions: $0.40 \mathrm{mmol} \mathbf{6}, 0.53 \mathrm{mmol}$ alkyne 5a, 0.53 mmol $\mathrm{NaO} t \mathrm{Bu}, 0.008 \mathrm{mmol} \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 0.016 \mathrm{mmol}$ DPE-Phos, 2.1 mL toluene under N_{2} at $65-70{ }^{\circ} \mathrm{C}$ for 3 h . Isolated yield after column chromatography. ${ }^{\text {b At }} 110{ }^{\circ} \mathrm{C}$.

In our previous work, completely different conditions had to be used when going from lactonization to lactamization. ${ }^{11}$ However, this was not the case when using $\operatorname{Pd}(0)$ catalysis, and no further optimization was required in the case of Boc-protected amines as substrates
(entries 10-13). Excellent cis selectivity was observed in the formation of 2,5 -disubstituted pyrrolidines (entries 1213), which is the same relative stereochemistry as observed in preussin (3) (Figure 1). Up to now, we had examined only monosubstituted olefins involving most probably a primary Pd-alkyl intermediate. The use of 1,2 disubstituted olefins would require a challenging SP^{3} - SP reductive elimination at a secondary position. Such processes are difficult in Pd catalysis. ${ }^{16}$ Gratifyingly, the reaction also worked well for disubstituted olefins, both in the case of alcohols and amines (entries 14-16). Preorganization through rigidification was not required, and even simple acyclic substrate $\mathbf{6 0}$ could be used (entry 15). In the case of bicyclic products $\mathbf{7 n}$ and $\mathbf{7 p}$, an all-cis relationship of the substituents was observed. This is in accordance with the mechanism we proposed in our working model (Scheme 2) involving binding of the heteroatom to Pd, followed by syn oxy-palladation and reductive elimination.

We then shortly investigated the transformation of the obtained acetylenes into important building blocks (Scheme 3). TIPS deprotection and Sonogashira coupling on $7 \mathbf{7 a}$ can be done in one-pot to give aryl acetylene $\mathbf{8}$ in 87% yield (Scheme 3, (1)). ${ }^{17}$ A Larock annulation ${ }^{18}$ gave indole 9 with perfect regioselectivity, albeit in moderate yield (43\%). With 7e, deprotection proceeded in good yield, and the terminal alkyne could be converted in two steps to known 11, ${ }^{19}$ which allowed us to confirm definitively the trans relationship of the substituents (Scheme 3, (2)). Hydration using the method developed by Hintermann ${ }^{20}$ gave access to versatile aldehyde 12 in 87% yield, resulting in an overall addition of an oxygen atom and acetaldehyde to an olefin. We then introduced an oxygen group in propargylic position using Breit's method. ${ }^{21}$ The desired allylic ester $\mathbf{1 3}$ was obtained in 34% yield and 73:27 dr. This preliminary result is highly interesting, especially when considering that the reaction had been reported for the acid as limiting agent, and no effort has yet been done to improve the reaction with only one equivalent of alkyne. Building blocks for the synthesis of acetogenins were accessed starting from enantioenriched alcohol 14 (Scheme 3, (3)). ${ }^{22}$ High diastereoselectivity for the desired trans product $\mathbf{1 5}$ was observed, giving an asymmetric entry to the α monohydroxylated tetrahydrofuran ring of gigantecin (1) or squamostatin C (2) (Figure 1). A second hydroxy group could be introduced using Breit's method to access the bis α-hydroxylated tetrahydrofuran ring.

In summary, we have reported the first oxy- and aminoalkynylation reactions of alkenes catalyzed by a $\operatorname{Pd}(0)$ catalyst. Tetrahydrofurans and pyrrolidines were obtained in good yield and diastereoselectivity with simultaneous installation of a triple bond. The utility of the alkyne was demonstrated through its transformation in other functional groups and into key building blocks for the synthesis of acetogenin natural products. Principles applied in arylation chemistry could be transferred to alkynylation reactions if a triisopropylsilyl protecting group was present. This discovery will probably be of
broad use in the development of other reactions involving acetylenes. Further investigations along this line, as well
as the development of asymmetric methods, are currently ongoing in our group.

Scheme 3. Functionalization of the Products.

Ph.., $\underbrace{}_{11} \mathrm{Me}^{\longleftarrow} \begin{aligned} & \text { 1) } n \mathrm{BuLi}, \mathrm{HMPA}, \mathrm{THF},-78{ }^{\circ} \mathrm{C} \text { to rt, } 12 \mathrm{~h}, 62 \% \\ & \text { 2) } \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}, 6 \mathrm{~h}, 72 \%\end{aligned}$
(2)

$10 \mathrm{~mol} \%\left[\mathrm{CpRu}\right.$ (naphthalene)] PF_{6}
$20 \mathrm{~mol} \%$ 2-(diphenyl-phosphino)-6-(tert-pentyl)pyridine

Acknowledgment EPFL, F. Hoffmann-La Roche Ltd and SNF (grant number 200021_119810) are acknowledged for financial support.

Supporting Information Available Experimental

 details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.
References

(1) (a) Crimmins, M. T.; She, J. J. Am. Chem. Soc. 2004, 126, 12790. (b) Spurr, I. B.; Brown, R. C. D. Molecules 2010, 15, 460.
(2) Johnson, J. H.; Phillipson, D. W.; Kahle, A. D. J. Antibiot. 1989, 42, 1184.
(3) Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261.
(4) Mphahlele, M. J. Molecules 2009, 14, 4814.
(5) For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (c) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368. (d) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (e) Muniz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
(6) Using Pd catalysis: (a) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. J. Am. Chem. Soc. 2005, 127, 14586. (b) Muniz, K. J. Am. Chem. Soc. 2007, 129, 14542. (c) Muniz, K.; Hovelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763. (d) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737. (e) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945. Selected examples for other methods: (f) Zabawa, T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005, 127, 11250. (g) Muniz, K.; Streuff, J.; Hoevelmann, C. H.; Nunez, A. Angew. Chem., Int. Ed. 2007, 46, 7125.
(7) Using Pd catalysis: (a) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962. (b) Jensen, K. H.; Webb, J. D.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 17471. (c) Liskin, D. V.; Sibbald, P. A.; Rosewall, C. F.; Michael, F. E. J. Org. Chem. 2010, 75, 6294. (d) Kang, Y. B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658. Selected examples for other methods: (e) Donohoe, T. J.; Butterworth, S. Angew. Chem., Int. Ed. 2005, 44, 4766. (f) Blanc, A.; Toste, F. D. Angew. Chem., Int. Edit. 2006, 45, 2096. (g) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249. (h) Cheng, H.; Stark, C. B. W. Angew. Chem., Int. Ed. 2010, 49, 1587. (i) de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2011, 50, 906.
(8) Using Pd catalysis: carbonylation: (a) Hegedus, L. S.; Allen, G. F.; Olsen, D. J. J. Am. Chem. Soc. 1980, 102, 3583. (b) Semmelhack, M. F.; Zhang, N. J. Org. Chem. 1989, 54, 4483. (c) Cernak, T. A.;

Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 3124. Vinylation: (d) Semmelhack, M. F.; Epa, W. R. Tetrahedron Lett. 1993, 34, 7205. (e) Ney, J. E.; Hay, M. B.; Yang, Q. F.; Wolfe, J. P. Adv. Synth. Catal. 2005, 347, 1614. Arylation (f) Lira, R.; Wolfe, J. P. J. Am. Chem. Soc. 2004, 126, 13906. (g) Ney, J. E.; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605. (h) Wolfe, J. P.; Rossi, M. A. J. Am. Chem. Soc. 2004, 126, 1620. (i) Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157. (j) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 6276. Synthesis of epoxides or aziridines: (k) Hayashi, S.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2009, 131, 2052. (1) Hayashi, S.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2009, 48, 7224. Selected examples for other methods: (m) Zhang, G. Z.; Cui, L.; Wang, Y. Z.; Zhang, L. M. J. Am. Chem. Soc. 2010, 132, 1474. (n) Brenzovich, W. E.; Benitez, D.; Lackner, A. D.; Shunatona, H. P.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 5519.
(9) With the exception of conjugate addition of alkynes on Michael acceptors, the alkynylation of olefins has only been achieved in a few rare cases in the past. See for a few selected examples: (a) Catellani, M.; Chiusoli, G. P. Tetrahedron Lett. 1982, 23, 4517. (b) Larock, R. C.; Narayanan, K. Tetrahedron 1988, 44, 6995. (c) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 5410. (d) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 5060. (e) Kohno, K.; Nakagawa, K.; Yahagi, T.; Choi, J. C.; Yasuda, H.; Sakakura, T. J. Am. Chem. Soc. 2009, 131, 2784. (f) Li, Y. B.; Liu, X. H.; Jiang, H. F.; Liu, B. F.; Chen, Z. W.; Zhou, P. Angew. Chem., Int. Ed. 2011, 50, 6341.
(10) Diederich F.; Stang, P. J.; Tykwinski, R. R.; Acetylene Chemistry: Chemistry, Biology and Material Science; Wiley-VCH, Weinheim, 2005.
(11) (a) Nicolai, S.; Erard, S.; González Fernández, D. ; Waser, J. Org. Lett. 2010, 12, 384. (b) Nicolai, S.; Piemontesi, C.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 4680.
(12) On a 0.40 mmol scale, 1,4-bis(triisopropylsilyl)buta-1,3-diyne and triisopropyl(pent-4-enyloxy)silane were obtained in 8 and 84% yield respectively using the conditions of entry 1, Table 1. See supporting information.
(13) (a) Rucker, C. Chem. Rev. 1995, 95, 1009. (b) Nishimura, T. Sawano, T.; Hayashi, T. Angew. Chem., Int. Ed. 2009, 48, 8057. (c) Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984. (d) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009, 48, 9346. (e) Brand, J. P.; Waser, J. Angew. Chem., Int. Ed. 2010, 49, 7304. (f) Brand, J. P.; González Fernández, D.; Nicolai, S.; Waser, J. Chem. Comтип. 2011, 47, 102.
(14) On a 0.40 mmol scale, 1,4-bis(triisopropylsilyl)buta-1,3-diyne and tetrahydrofuran 7 a were both obtained in 34% yield using the conditions of entry 5 , Table 1 . See supporting information.
(15) See supporting information for further tested conditions.
(16) (a) Altenhoff, G.; Wurtz, S.; Glorius, F. Tetrahedron Lett. 2006, 47, 2925. (b) de Carne-Carnavalet, B.; Archambeau, A.; Meyer, C.; Cossy, J.; Folleas, B.; Brayer, J. L.; Demoute, J. P. Org. Lett. 2011, 13,
956. (c) Thaler, T.; Guo, L. N.; Mayer, P.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 2174.
(17) Sun, J. ; Conley, M. P.; Zhang, C.; Kosmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705.
(18) Grunenthal GMBH, Patent: US2009/247505 A1, 2009
(19) Shi, H.; Liu, H.; Bloch, R.; Mandville, G. Tetrahedron 2001, 57, 9335.
(20) Labonne, A.; Kribber, T.; Hintermann, L. Org. Lett. 2006, 8, 5853.
(21) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit, B. J. Am. Chem. Soc. 2011, 133, 2386.
(22) Zhao, H. ; Gorman, J. T. ; Pagenkopf, B. L. Org. Lett. 2006, 8, 4379.

Supporting information

Pd(0)-Catalyzed Oxy- and Amino- Alkynylation of Olefins for the Synthesis of Tetrahydrofurans and Pyrrolidines.

Stefano Nicolai and Jérôme Waser
Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland

jerome.waser@epfl.ch
77 Pages

1. General Methods p. S2
2. Preparation of Reagents p. S3
3. Preparation of Substrates p. S6
4. Optimization of the Reaction p. S21
5. Scope of the Reaction p. S24
6. Functionalization of the Products p. S33
7. Spectra of New Compounds p. S40

1. General Methods

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography technical grade solvents were used. For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$, toluene, hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passage over activated alumina under nitrogen atmosphere $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<30 \mathrm{ppm}$, Karl-Fischer titration). All chemicals were purchased from Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, $60 \AA$, using the solvents indicated as eluent with 0.1-0.5 bar pressure (unprotected pyrrolidines were eluted using DCM/ULTRA; ULTRA; ULTRA: $\mathrm{DCM} / \mathrm{MeOH} /\left(\mathrm{NH}_{3} 25 \%\right.$ inwater) 75/25/5). TLC was performed on Merck silica gel 60 F254 TLC glass plates or aluminium plates and visualized with UV light, permanganate stain, CAN stain or Anisaldehyde stain. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is uncorrected. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm . The data is being reported as ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, quint $=$ quintet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad signal, coupling constant(s) in Hz , integration; interpretation). ${ }^{13} \mathrm{C}$-NMR spectra were recorded with ${ }^{1} \mathrm{H}$-decoupling on a Brucker DPX-400 100 MHz spectrometer in chloroform-d, DMSO-d ${ }_{6}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm^{-1} ($\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{sh}=$ shoulder, $\mathrm{br}=$ broad). Gas chromatographic and low resolution mass spectrometric measurements were performed on a Perkin-Elmer Clarus 600 gas chromatographer and mass spectrometer using a Perkin-Elmer Elite fused silica column (length: 30 m , diameter: 0.32 mm) and Helium as carrier gas. High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. HPLC measurement were done on a JASCO HPLC system with an AS2055 Autosampler, a PU 2089 Pump, a UV 2075 detector and a SEDEX 85 (SEDERE) detector using a CHIRALPAK IC column from DAICEL Chemical Industries Ltd. HPLC grade solvents from Sigma-Aldrich were used.

2. Preparation of the reagents

1-Hydroxy-1,2-benziodoxol-3-(1H)-one (18)

Following the reported procedure, ${ }^{1} \mathrm{NaIO}_{4}$ ($7.24 \mathrm{~g}, 33.8 \mathrm{mmol}, 1.05$ equiv) and 2-iodobenzoic acid (17) ($8.00 \mathrm{~g}, 32.2 \mathrm{mmol}, 1.00$ equiv) were suspended in 30% ($\mathrm{v}: \mathrm{v}$) aq. AcOH (48 mL). The mixture was vigorously stirred and refluxed for 4 h . The reaction mixture was then diluted with cold water (180 mL) and allowed to cool to rt , protecting it from light. After 1 h , the crude product was collected by filtration, washed on the filter with ice water ($3 \times 20 \mathrm{~mL}$) and acetone ($3 \times 20 \mathrm{~mL}$), and air-dried in the dark to give the pure product $18(8.3 \mathrm{~g}, 31 \mathrm{mmol}, 98 \%)$ as a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 8.02(\mathrm{dd}, 1 \mathrm{H}, J=7.7,1.4 \mathrm{~Hz}, \mathrm{ArH}), 7.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.85$ (dd, $1 \mathrm{H}, J=8.2,0.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.71$ (td, $1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 167.7,134.5,131.5,131.1,130.4,126.3,120.4$; IR v 3083 (w), 3060 (w), 2867 (w), 2402 (w), 1601 (m), 1585 (m), 1564 (m), 1440 (m), 1338 (s), 1302 (m), 1148 (m), 1018 (w), 834 (m), $798(\mathrm{w}), 740(\mathrm{~s}), 694(\mathrm{~s}), 674(\mathrm{~m}), 649(\mathrm{~m})$; the reported values correspond to the ones in literature. ${ }^{1}$

Triisopropylsilyl trimethylsilylacetylene (19)

Following a reported procedure, ${ }^{2} n$-butyllithium (2.5 m in hexanes, $12.0 \mathrm{~mL}, 29.9 \mathrm{mmol}, 0.98$ equiv) was added dropwise to a stirred solution of ethynyltrimethylsilane (20) (3.0 g, 30 mmol , 1.0 equiv) in THF (48 mL) at $-78{ }^{\circ} \mathrm{C}$. The mixture was then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 min . The mixture was then cooled back to $-78{ }^{\circ} \mathrm{C}$ and chlorotriisopropylsilane $(6.4 \mathrm{~mL}, 30$ mmol, 1.0 equiv) was added dropwise. The mixture was then allowed to warm to room temperature and stirred overnight. A saturated solution of ammonium chloride (40 mL) was added, and the reaction mixture was extracted with diethyl ether ($2 \times 60 \mathrm{~mL}$). The organic layer was washed with water and brine, then dried over MgSO_{4}, filtered and concentrated under reduced pressure to obtain a colorless liquid which was further purified by Kugelrohr distillation $\left(56-57^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}\right)$ to yield $19(7.16 \mathrm{~g}, 28.0 \mathrm{mmol}, 92 \%$ yield $)$ as a colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08$ (m, $21 \mathrm{H}, \mathrm{TIPS}$), 0.18 (s, $9 \mathrm{H}, \mathrm{TMS}$). IR v 2959 (m), 2944 (m), 2896 (w), 2867 (m), 1464 (w), 1385 (w), 1250 (m), 996 (w), 842 (s), 764 (s), 675 (m), 660 (m). Characterization data of $\mathbf{1 9}$ corresponded to the literature values. ${ }^{2}$
(1) Kraszkiewicz, L.; Skulski, L. Arkivoc. 2003, 6, 120.
(2) Helal, C J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938.

1-[(Triiso-propylsilyl)ethynyl]-1,2-benziodoxol-3(1H)-one (TIPS-EBX)

Following a reported procedure, ${ }^{3}$ 2-iodosylbenzoic acid (18) ($21.7 \mathrm{~g}, 82.0 \mathrm{mmol}, 1.0$ equiv) was charged in oven-dried three-neck 1L flask equipped with a magnetic stirrer. After 3 vacuum/nitrogen cycles, anhydrous acetonitrile (500 mL) was added via canula and cooled to 4 ${ }^{\circ}$ C. Trimethylsilyltriflate ($16.4 \mathrm{~mL}, 90.0 \mathrm{mmol}, 1.1$ equiv) was added dropwise via a dropping funnel over 30 min (no temperature increase was observed). After 15 min , (trimethylsilyl)(triisopropylsilyl)acetylene (19) ($23.0 \mathrm{~g}, 90.0 \mathrm{mmol}, 1.1$ equiv) was added via canula over 15 min (no temperature increase was observed). After 30 min , the suspension became an orange solution. After 10 min , pyridine ($7.0 \mathrm{~mL}, 90 \mathrm{mmol}, 1.1$ equiv) was added via syringe. After 15 min , the reaction mixture was transferred in a one-neck 1L flask and reduced under vacuum until a solid was obtained. The solid was dissolved in DCM (200 mL) and transferred in a 1L separatory funnel. The organic layer was added and washed with 1 m HCl $(200 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic layers were combined, washed with a saturated solution of $\mathrm{NaHCO}_{3}\left(2 \times 200 \mathrm{~mL}\right.$), dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. Recrystallization from acetonitrile (ca 120 mL) afforded $4(30.1 \mathrm{~g}, 70.2 \mathrm{mmol}, 86 \%)$ as colorless cristals.
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 1.16(\mathrm{~m}$, 21 H, TIPS). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,134.6,132.3,131.4,131.4,126.1,115.6,114.1$, $64.6,18.4,11.1$. IR v $2943(\mathrm{~m}), 2865(\mathrm{~m}), 1716(\mathrm{~m}), 1618(\mathrm{~m}), 1604(\mathrm{~s}), 1584(\mathrm{~m}), 1557(\mathrm{~m}), 1465$ (m), 1439 (w), 1349 (m), 1291 (m), 1270 (w), 1244 (m), 1140 (m), 1016 (m), 999 (m), 883 (m), 833 $(\mathrm{m}), 742(\mathrm{~m}), 702(\mathrm{~s}), 636(\mathrm{~m})$; Melting point (Dec.) $170-176^{\circ} \mathrm{C}$; The values for the characterization of TIPS-EBX correspond to the ones reported in literature. ${ }^{3}$

2-Bromo-1-triisopropylsilyl acetylene (5a)

Following a reported procedure, ${ }^{4}$ triisopropylsilylacetylene (21) ($813 \mathrm{mg}, 4.45 \mathrm{mmol}, 1.00$ equiv) was dissolved in acetone (30 mL). N-bromosuccinimide ($925 \mathrm{mg}, 5.19 \mathrm{mmol}, 1.16$ equiv) was added, followed by $\mathrm{AgNO}_{3}(76 \mathrm{mg}, 0.44 \mathrm{mmol}, 0.1$ equiv). The resulting mixture was stirred at room temperature for 3 h and it was then poured onto ice. After ice being allowed to melt, the aqueous layer was extracted with pentane ($3 \times 30 \mathrm{~mL}$). The combined organic layers

[^0]were dried over MgSO_{4}, filtered and concentrated in vacuo to afford pure 2-bromo-1triisopropylsilyl acetylene (5a) ($1.16 \mathrm{~g}, 4.43 \mathrm{mmol}, 99 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.20-0.97(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 83.5,61.7$, 18.5, 11.3; the reported values corresponded to the ones in literature. ${ }^{4}$

(4-Bromobut-3-ynyl)benzene (5c)

Following a reported procedure, ${ }^{5}$ 4-phenyl-1-butyne (22) ($0.432 \mathrm{mg}, 3.07 \mathrm{mmol}, 1.00$ equiv) was dissolved in acetone (20 mL). N-bromosuccinimide ($637 \mathrm{mg}, 3.58 \mathrm{mmol}, 1.16$ equiv) was added, followed by $\mathrm{AgNO}_{3}(50 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.1$ equiv). The resulting mixture was stirred at room temperature for 5 h . The solids were then filtered off and the solvent was removed by distillation under reduced pressure. The residual oil was treated with hexane (10 mL) to induce the further precipitation of solids, which were also removed by filtration. After removal of the organic solvent in vacuo, the resulting crude oil was purified by column chromatography (SiO_{2}, pentane) to afford pure alkyne $\mathbf{5 c}(608 \mathrm{mg}, 2.91 \mathrm{mmol}, 95 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 2.83(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$, CH_{2}), $2.49\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2,128.4,128.4,126.4$, 79.6, 65.8, 34.7, 21.8. The ${ }^{1} \mathrm{H}$ NMR values for the characterization of $\mathbf{5 c}$ correspond to the ones reported in literature. ${ }^{5}$

(Chloroethynyl)triisopropylsilane (5d)

Following a reported procedure, ${ }^{6}$ triisopropyl silyl acetylene (21) ($2.2 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF (12.5 mL) and the solution was stirred at $0^{\circ} \mathrm{C}$ for $5 \mathrm{~min} . n \mathrm{BuLi}(2.5 \mathrm{~m}$ in hexanes, $4.4 \mathrm{~mL}, 11 \mathrm{mmol}, 1.1$ equiv) was added dropwise and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . N-chloro succinimide ($1.6 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and then at rt overnight. The reaction was then quenched by the addition of water (12.5 mL). The two layers were separated and the aqueous one was extracted with EtOAc ($3 \times 12 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, hexane) afforded 2-iodo-1-triisopropylsilyl acetylene ($\mathbf{5 d}$) $(1.67 \mathrm{mg}, 7.70 \mathrm{mmol}, 77 \%$ yield) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14-1.06(\mathrm{~m}, 21 \mathrm{H}, \operatorname{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 80.0,71.2$, $18.5,11.3$. The values for the characterization of $\mathbf{5 d}$ correspond to the ones reported in literature. ${ }^{6}$
(5) Mu, F.; Lee, D. J.; Pryor, D. E.; Hamel, E.; Cushman, M. J. Med. Chem., 2002, 45, 4774.
(6) Wada, T. ; Masayuki, J.; Azusa, K.; Hideki, Y.; Oshima, K. Chem. Eur. J. 2010, 16, 10671.

2-Iodo-1-triisopropylsilyl acetylene (5e)

Following a reported procedure, ${ }^{7} \mathrm{MeLi} \cdot \mathrm{LiBr}(1.5 \mathrm{~m}$ in diethyl ether, $1.1 . \mathrm{mL}, 1.6 \mathrm{mmol}, 1.0$ equiv) was added to a stirred solution of triisopropylsilylacetylene ($\mathbf{2 1}$) $(0.36 \mathrm{~mL}, 1.6 \mathrm{mmol}, 1.0$ equiv) in dry THF (1.8 mL), cooled at $-78{ }^{\circ} \mathrm{C}$, and the mixture was allowed to react for 1 h at that temperature. A solution of $\mathrm{I}_{2}(457 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.25$ equiv) in dry THF (2.7 mL) was then added dropwise and the mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$. The mixture was then diluted with brine (6 mL) and the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography (SiO_{2}, hexane) afforded 2-iodo-1-triisopropylsilyl acetylene (5e) ($0.470 \mathrm{~g}, 1.52 \mathrm{mmol}, 94 \%$ yield) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.10-1.04(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 100.8,18.5$, 11.4 (one acetylene carbon was not resolved); the reported values correspond to the ones in literature. ${ }^{7}$

3. Preparation of the substrates

2-((Triisopropylsilyloxy)methyl)pent-4-en-1-ol (6b):

According to a reported procedure, ${ }^{8}$ a solution of dimethyl 2-allylmalonate (23) ($1.77 \mathrm{~mL}, 11.0$ mmol, 1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(1.25 \mathrm{~g}, 33.0$ mmol, 3.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(31 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 3 h ; it was then cooled back to $0^{\circ} \mathrm{C}$ and the reaction was quenched by slow addition of water (1.05 mL). The mixture was allowed to warm to rt and treated with aqueous $\mathrm{NaOH}(15 \%, 1.05 \mathrm{~mL})$ and water $(3.2 \mathrm{~mL})$. The resulting white slurry was filtered through Celite and then washed with EtOAc (4 x 50 mL). After removal of the solvent by distillation under reduced pressure, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}\right)$ to afford diol 24 as a colorless oil (744 $\mathrm{mg}, 6.40 \mathrm{mmol}, 58 \%$ yield).

[^1]Following a reported procedure, ${ }^{9}$ a solution of diol $24(581 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv) in THF $(4.0 \mathrm{~mL})$ was added dropwise to a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 120 mg , $5.00 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL). The mixture was stirred at rt for 50 min and then a solution of triisopropyl silyl chloride ($0.96 \mathrm{~mL}, 4.5 \mathrm{mmol}, 0.9$ equiv) in THF (4.0 mL) was slowly added. After stirring for 2 h , the reaction was quenched by treatment with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.0 \mathrm{M}, 15 \mathrm{~mL})$. The aqueous layer was separated from the organic one and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (15 mL), dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 95/5) afforded the monoprotected diol $\mathbf{6 b}$ as a colorless oil ($1.15 \mathrm{~g}, 4.23 \mathrm{mmol}$, 85% yield).
$\mathrm{R}_{\mathrm{f}} 0.57$ (Pentane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77$ (ddt, $1 \mathrm{H}, J=17.2,10.1,7.2$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.07-4.98 (m, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $3.88\left(\mathrm{dd}, 1 \mathrm{H}, J=9.8,4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OTIPS}\right)$, 3.79$3.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTIPS}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.03(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OTIPS}\right), 1.23-0.94\left(\mathrm{~m}, 21 \mathrm{H}\right.$, TIPS); ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 136.3,116.3,67.2,66.3,41.9,32.4,17.9,11.7$; IR 3419 (br, w), 3078 (w), 2943 (m), 2922 (m), 2892 (m), 2866 (m), 2726 (w), 1642 (w), 1464 (m), 1442 (w), 1416 (w), 1385 (w), 1368 (w), 1249 (w), 1099 (m), 1040 (m), 1014 (m), 995 (m), 913 (m), 882 (s), 787 (m), 736 (w), $681(\mathrm{~s}), 660(\mathrm{~s}), 652(\mathrm{~s}), 637(\mathrm{~s}), 627(\mathrm{~m}), 613(\mathrm{w})$; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 273.2244; found 273.2253 .

3-(Benzyloxymethyl)pent-4-en-1-ol (6c)

Following a reported procedure, ${ }^{10}$ cis-4-(benzyloxy)but-2-en-1-ol (25) (5.11 g, $28.6 \mathrm{mmol}, 1.0$ equiv) was dissolved in triethyl orthoacetate ($31.5 \mathrm{~mL}, 171 \mathrm{mmol}, 6.0$ equiv). Propionic acid $\left(0.75 \mathrm{~mL}, 10 \mathrm{mmol}, 0.35\right.$ equiv) was added and the mixture was stirred at $135^{\circ} \mathrm{C}$ until no more EtOH could be distilled off. The mixture was then stirred at $150^{\circ} \mathrm{C}$ for 2.5 h . It was then allowed to cool down to rt. $\mathrm{Et}_{2} \mathrm{O}$ (ca. 70 mL) and aqueous $\mathrm{KHSO}_{4}(1.0 \mathrm{~m}, \mathrm{ca} .100 \mathrm{~mL})$ were added and the biphasic system was stirred overnight at rt. The two layers were then separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 80/20) afforded ester 26 as a pale yellow oil ($4.42 \mathrm{~g}, 17.8 \mathrm{mmol}, 62 \%$ yield).

[^2]Following a reported procedure, ${ }^{11}$ ester $26(3.72 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.0$ equiv) was carefully added dropwise to a suspension of $\mathrm{LiAlH}_{4}(512 \mathrm{mg}, 13.5 \mathrm{mmol}, 0.9$ equiv $)$ in THF $(12.5 \mathrm{~mL})$ at rt . The mixture was stirred at rt for 2 h and then the reaction was quenched by addition of wet THF, until no more gas was released. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 3 mL) was added and the resulting slurry was filtered through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. After removal of the organic solvents in vacuo, the resulting crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 97 / 3\right.$ to $\left.95 / 5\right)$ to afford alcohol $\mathbf{6 c}$ as a pale yellow oil (2.37 $\mathrm{g}, 11.5 \mathrm{mmol}, 77 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.14$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.39-7.27 (m, $5 \mathrm{H}, \mathrm{Ph}$), 5.72 (ddd, $1 \mathrm{H}, J=17.3,10.3,8.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.12 (ddd, $1 \mathrm{H}, J=17.4,1.7,1.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.08 (ddd, $1 \mathrm{H}, J=10.5,1.7,0.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), $4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.63$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.47\left(\mathrm{dd}, 1 \mathrm{H}, J=9.2,5.5 \mathrm{~Hz}, C H_{2} \mathrm{OBn}\right), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=9.2,7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OBn}\right), 2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 2.02(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{OH}), 1.77(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $1.65\left(\mathrm{dt}, J=7.9,5.8 \mathrm{~Hz}, \mathrm{CHCH} \mathrm{CH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.4, 138.0, 128.3, 127.5, 127.5, 115.7, 73.7, 73.0, 60.6, 41.1, 34.7; IR 3390 (br, m), 2859 (m), 1767 (w), 1725 (w), 1698 (m), 1653 (w), 1641 (w), 1607 (w), 1587 (w), 1574 (w), 1569 (w), 1554 (w), 1537 (w), 1516 (w), 1496 (w), 1477 (w), 1455 (m), 1420 (w), 1360 (w), 1347 (w), 1313 (w), 1280 (w), 1279 (w), 1269 (w), 1205 (w), 1089 (m), 1061 (m), 1030 (w), 995 (w), 952 (w), 918 (m), 852 (w), 819 (w), 809 (w), 782 (w), 740 (s), 714 (w), 698 (s), 678 (s), 668 (w), 662 (w), 654 (w), 643 (w), 622 (w), 610 (w). The values for the characterization of $\mathbf{6 c}$ correspond to the ones reported in literature. ${ }^{11}$

Hex-5-en-2-ol (6d)

Following a reported procedure, ${ }^{12} \mathrm{LiAlH}_{4}(708 \mathrm{mg}, 18.6 \mathrm{mmol}, 0.75$ equiv) was suspended in $\mathrm{Et}_{2} \mathrm{O}(52 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. A solution of 5-hexen-2-one $27\left(2.9 \mathrm{~mL}, 25 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(8.7$ mL) was then added dropwise. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min and then at rt for 3 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and water (4.4 mL) was cautiously added. The resulting white slurry was filtered though Celite and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layers were combined and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 97 / 3\right)$ afforded secondary alcohol $\mathbf{6 d}$ as a pale yellow oil ($1.27 \mathrm{~g}, 12.6 \mathrm{mmol}, 51 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.30$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83$ (ddt, $1 \mathrm{H}, J=16.9,10.2,6.6$ $\left.\mathrm{Hz}, C H=\mathrm{CH}_{2}\right), 5.04\left(\mathrm{dd}, 1 \mathrm{H}, J=17.1,1.4 \mathrm{~Hz}, \mathrm{CH}=C H_{2}\right), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}, \mathrm{CH}=C H_{2}\right)$,

[^3] 1998, 9, 657.
$3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH})$, 1.19 (d, $3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 138.4,114.5,67.3,38.1,30.0$, 23.3; IR 3358 (m), 3079 (w), 2970 (m), 2931 (m), 2857 (w), 1692 (w), 1642 (m), 1454 (w), 1416 (w), 1375 (w), 1308 (w), 1122 (m), 1085 (w), 1033 (w), 995 (w), 952 (m), 935 (m), 910 (s), 847 (w), 735 (m), 714 (w), 700 (w), 678 (s), 667 (w), 645 (m), 632 (w), 617 (w); The values for the characterization of $\mathbf{6 d}$ correspond to the ones reported in literature. ${ }^{12}$

1-Phenylpent-4-en-1-ol (6e)

Following a reported procedure, ${ }^{13}$ a solution of 4-bromobutene (28) ($2.0 \mathrm{~mL}, 20 \mathrm{mmol}, 1.15$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(7.8 \mathrm{~mL}$) was added dropwise to a suspension of Mg turnings ($853 \mathrm{mg}, 35.1$ mmol, 2.05 equiv) in $\mathrm{Et}_{2} \mathrm{O}(15.6 \mathrm{~mL})$ at rt . The mixture was then stirred at rt for 1 h and further refluxed for 1 h . A solution of benzaldehyde ($1.75 \mathrm{~mL}, 17.1 \mathrm{mmol}, 1.0$ equiv) in (7.8 mL) was then added dropwise and the mixture was refluxed for 2 h . It was then poured onto ice (ca .10 g) and treated by dropwise addition of HCl (aqueous solution 2.0 M). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 20 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 95/5) afforded benzyl alcohol 6e as a colorless oil ($1.19 \mathrm{~g}, 7.35 \mathrm{mmol}, 43 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.30$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}, P h), 7.29(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{Ph}), 5.85$ (ddt, $1 \mathrm{H}, J=16.9,10.2,6.6 \mathrm{~Hz}, C H=\mathrm{CH}_{2}$), 5.05 (ddd, $1 \mathrm{H}, J=17.1,3.4,1.6 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}_{2}$), $4.99\left(\mathrm{ddd}, J=10.1,3.1,1.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.70(\mathrm{ddd}, 1 \mathrm{H}, J=7.9,5.5,3.4 \mathrm{~Hz}$, $\mathrm{CHOH}), 2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.97-1.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 144.6,138.1,128.5,127.6,125.9,114.9,74.0,38.0,30.0$; IR 3359 (br, w), 2932 (w), 1721 (w), 1721 (w), 1642 (w), 1603 (w), 1591 (w), 1493 (w), 1453 (w), 1416 (w), 1416 (w), 1400 (w), 1305 (w), 1270 (w), 1239 (w), 1239 (w), 1200 (w), 1200 (w), 1175 (w), 1104 (w), 1061 (m), 1023 (m), 1013 (m), 913 (m), 760 (m), 701 (s), 675 (m), 668 (m), 667 (m), $650(\mathrm{~m})$, $638(\mathrm{~m}), 629(\mathrm{w}), 616(\mathrm{w}), 606(\mathrm{w})$. The values for the characterization of $\mathbf{6 e}$ correspond to the ones reported in literature. ${ }^{13}$

Nona-1,8-dien-5-ol (6f)

[^4]Following a reported procedure, ${ }^{14}$ a solution of 4-bromobutene (28) ($2.0 \mathrm{~mL}, 20 \mathrm{mmol}, 2.5$ equiv) in THF (16 mL) was added dropwise to a suspension of Mg turnings ($486 \mathrm{mg}, 20 \mathrm{mmol}$, 2.5 equiv) in THF (2 mL) at rt . After stirring the resulting mixture for 1 h at rt , it was cooled to $0^{\circ} \mathrm{C}$ and a solution of ethyl formate ($0.65 \mathrm{~mL}, 8.0 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) was added dropwise. The mixture was stirred at rt for 4 h and then the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 30 mL). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $90 / 10$ to $\left.70 / 30\right)$ afforded secondary alcohol $\mathbf{6 f}$ as a colorless oil ($1.03 \mathrm{~g}, 7.38 \mathrm{mmol}, 92 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.29$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83$ (ddt, $2 \mathrm{H}, J=16.9,10.2,6.7$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.04 (ddd, $2 \mathrm{H}, J=17.1,3.4,1.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 4.96 (ddd, $2 \mathrm{H}, J=10.2,3.2,1.5$ $\left.\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 2.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.68-1.45(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$ and OH); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,114.7,70.9,36.4,30.0$; IR 3359 (w), 3078 (w), 2997 (w), 2979 (w), 2934 (m), 2869 (w), 2850 (w), 1642 (w), 1450 (w), 1416 (w), 1338 (w), 1317 (w), 1126 (w), 1126 (w), 1080 (w), 1061 (w), 1053 (w), 994 (m), 947 (w), 910 (s), 736 (w), $650(\mathrm{w}), 650(\mathrm{w}), 636(\mathrm{w}), 624$ (w), 614 (w). The values for the characterization of 6f correspond to the ones reported in literature. ${ }^{14}$

2-Allylcyclohexanol (6g)

Following a reported procedure, ${ }^{15}$ allyl magnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 20 \mathrm{~mL}, 20 \mathrm{mmol}$, 3.0 equiv) was diluted with $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. Cyclohexene oxide 29 ($0.67 \mathrm{~mL}, 6.6 \mathrm{mmol}, 1.0$ equiv) was added dropwise to the resulting solution at rt over 15 min . The mixture was refluxed for 3 h and then the reaction was quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 30 mL). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times 20 \mathrm{~mL}$) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, DCM/MeOH 99/1 to 96/4) afforded secondary alcohol $\mathbf{6 g}$ as a colorless oil ($0.838 \mathrm{~g}, 5.98 \mathrm{mmol}$, 90\% yield).
$\mathrm{R}_{\mathrm{f}} 0.44$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89$ (ddt, $1 \mathrm{H}, J=17.2,10.1,7.4$ $\left.\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 3.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 2.48(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.09-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ and OH$), 1.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Cy}), 1.65(\mathrm{~m}, 2 \mathrm{H}$,

[^5]Cy), 1.43-1.12 (m, $4 \mathrm{H}, C y$), $0.98(\mathrm{~m}, 1 \mathrm{H}, C y) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,115.9$, 74.5, 44.8, 37.4, 35.5, 30.3, 25.5, 24.9; IR 3332 (w), 2927 (s), 2856 (s), 1639 (w), 1462 (w), 1462 (w), 1449 (m), 1415 (w), 1352 (w), 1308 (w), 1234 (w), 1214 (w), 1195 (w), 1151 (w), 1132 (w), 1081 (w), 1061 (s), 1037 (s), 997 (w), 965 (w), 965 (w), 940 (w), 908 (m), 844 (w), 824 (w), 790 (w), 736 (m), 709 (w), 697 (w), 687 (w), 666 (w), 647 (m), 638 (m), 629 (w), 629 (w), $620(\mathrm{w}), 611(\mathrm{~m})$. The values for the characterization for $\mathbf{6 g}$ correspond to the ones reported in literature. ${ }^{16}$

2-Methylhex-5-en-2-ol (6h)

Following a reported procedure, ${ }^{17}$ methyl magnesium bromide ($3.0 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{O}_{2} \mathrm{O}, 6.3 \mathrm{~mL}, 19 \mathrm{mmol}$, 1.1 equiv) was diluted with $\mathrm{Et}_{2} \mathrm{O}(10.3 \mathrm{~mL})$. 5-hexen-2-one $\mathbf{3 0}(2.0 \mathrm{~mL}, 17 \mathrm{mmol}, 1.0$ equiv) was cautiously added dropwise at rt and the resulting mixture was stirred for 1 h at rt . The reaction was then quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 5.1 mL) followed by aqueous $\mathrm{NaHSO}_{4}(1.0 \mathrm{M}, 3.4 \mathrm{~mL})$. The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 99 / 1\right.$ to $\left.96 / 4\right)$ afforded tertiary alcohol $\mathbf{6 h}$ as a colorless oil ($1.38 \mathrm{~g}, 12.1 \mathrm{mmol}, 71 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.40$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.85$ (ddt, $1 \mathrm{H}, J=16.9,10.2,6.6$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.04 (ddd, $1 \mathrm{H}, J=17.1,3.5,1.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 4.95 (ddd, $1 \mathrm{H}, J=10.2,3.1,1.3$ $\left.\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH})$, 1.23 (s, $\left.6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.0,114.4,70.9,42.8,29.3$, 28.8; IR 3381 (br, w), 3079 (w), 2974 (m), 2931 (w), 2879 (w), 2852 (w), 1642 (w), 1559 (w), 1542 (w), 1471 (w), 1456 (w), 1436 (w), 1416 (w), 1378 (w), 1290 (w), 1221 (w), 1149 (w), 1082 (w), 995 (w), 909 (s), 772 (w), 759 (w), 735 (s), 700 (w), 686 (w), 671 (w), 666 (w), 640 (w), 629 (w), $620(\mathrm{w}), 610(\mathrm{w})$. The values for the characterization of $\mathbf{6 h}$ correspond to the ones reported in literature. ${ }^{17}$

1-(But-3-enyl)cyclohexanol (6i)

[^6]4-Bromobutene 28 ($0.140 \mathrm{~mL}, 0.138 \mathrm{mmol}, 0.115$ equiv) was added dropwise to a suspension of Mg turnings ($350 \mathrm{mg}, 14.4 \mathrm{mmol}, 1.2$ equiv) in THF (2.9 mL), with only occasional stirring. A solution of 4-bromobutene ($1.26 \mathrm{~mL}, 13.7 \mathrm{mmol}, 1.03$ equiv) in THF (2.9 mL) was then added dropwise. The resulting mixture was refluxed for 2 h and then diluted with THF (5.4 mL) and cooled to 0° C. Cyclohexanone ($1.24 \mathrm{~mL}, 12.0 \mathrm{mmol}, 1.0$ equiv) dissolved in THF (11.0 mL) was added at the same temperature and the mixture was allowed to warm to rt under stirring over 3 h . The reaction was then quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 20 mL). The two layers were separated and the aqueous one was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 98/2 to 90/10) afforded tertiary alcohol $\mathbf{6 i}$ as a colorless oil $(0.556 \mathrm{~g}, 3.60 \mathrm{mmol}, 30 \%$ yield $)$.
$\mathrm{R}_{\mathrm{f}} 0.34$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86$ (ddt, $1 \mathrm{H}, J=16.9,10.2,6.6$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.04\left(\mathrm{dd}, 1 \mathrm{H}, J=17.1,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=10.2,1.2 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 2.20-2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.68-1.38\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Cy}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.28$ (m, $1 \mathrm{H}, \mathrm{Cy}$), $1.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,114.2,71.3,41.3,37.4$, 27.4, 25.8, 22.2; IR 3385 (w), 3077 (w), 2976 (w), 2931 (s), 2853 (m), 1676 (w), 1641 (m), 1449 (m), 1415 (w), 1415 (w), 1346 (w), 1294 (w), 1259 (w), 1259 (w), 1164 (w), 1149 (w), 1149 (w), 1141 (w), 1120 (w), 1120 (w), 1084 (w), 1067 (w), 1040 (w), 1040 (w), 997 (w), 982 (w), 982 (w), 964 (m), 911 (s), 853 (w), 853 (w), 836 (w), 836 (w), 773 (w), 744 (w), 716 (w), 665 (w), 664 (w), 654 (w), 645 (w), 637 (m), 629 (w). The values for the characterization for $\mathbf{6 i}$ correspond to the ones reported in literature. ${ }^{18}$

Tert-butyl pent-4-enylcarbamate ($6 \mathbf{j}$)

Following a reported procedure, ${ }^{19}$ a solution of 4-pentenoyl chloride ($\mathbf{3 1}$) ($3.72 \mathrm{~g}, 31.4 \mathrm{mmol}$) in THF (63 mL) was added dropwise to an aqueous solution of $\mathrm{NH}_{3}(25 \% \mathrm{w} / \mathrm{w}, 63 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to rt and stirred for 6 h . THF then was removed by distillation under reduced pressure and the residual aqueous layer was diluted with water (20 mL) and extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo to afford 4-pentenamide $(2.66 \mathrm{~g}, 26.5 \mathrm{mmol}, 85 \%$ yield), which did not require further purification.

[^7]Following a reported procedure, ${ }^{20}$ a suspension of $\mathrm{LiAlH}_{4}\left(1.72 \mathrm{~g}, 45.1 \mathrm{mmol}, 1.7\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(45 \mathrm{~mL})$ was slowly added to a solution of 4 -pentenamide ($2.65 \mathrm{~g}, 26.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(26 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt overnight and then diluted with $\mathrm{Et}_{2} \mathrm{O}(300$ mL). Aqueous $\mathrm{NaOH}(10.0 \mathrm{M})$ was cautiously added dropwise, until complete precipitation of the insoluble materials. After filtration, the solids were washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, DCM/ULTRA $95 / 5$ to $50 / 50$) afforded 4pentenamine (32) as a colorless oil ($0.907 \mathrm{~g}, 10.5 \mathrm{mmol}, 40 \%$ yield).

Following a slightly modified version of a reported procedure, ${ }^{21}$ triethyl amine ($3.25 \mathrm{~mL}, 23.4$ mmol, 2.2 equiv) was added to a solution of ditert-butyl dicarbonate ($1.27 \mathrm{~g}, 5.83 \mathrm{mmol}, 1.1$ equiv) in DCM (16 mL) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min . 4-Pentenamine (32) (0.907 $\mathrm{g}, 10.6 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(16 \mathrm{~mL})$ was then added at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at rt overnight. The solution was then washed with aqueous citric acid ($0.1 \mathrm{M}, 20 \mathrm{~mL}$). The aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$); the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 20 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 95/5 to 80/20) afforded protected pentenamine $\mathbf{6 j}$ as a pale yellow oil (0.678 g , $3.66 \mathrm{mmol}, 63 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.32$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80$ (ddt, $1 \mathrm{H}, J=16.9,10.2,6.7$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.03\left(\mathrm{dq}, 1 \mathrm{H}, J=17.1,1.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.97(\mathrm{ddd}, 1 \mathrm{H}, J=11.3,2.0,1.1 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.13\left(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 1.58 (quint, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}, C H_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.44 (s, $9 \mathrm{H}, B o c$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl3) $\delta 155.9,137.7,114.9,78.9,40.0,30.9,29.1,28.3$; IR 3349 (w), 2978 (m), 2933 (m), 2870 (w), 1692 (s), 1643 (w), 1525 (m), 1453 (w), 1392 (w), 1367 (m), 1271 (m), 1252 (m), 1173 (s), 1044 (w), 995 (w), 977 (w), 913 (m), 874 (w), 782 (w), 666 (w), 638 (w). The ${ }^{1}$ H NMR values for the characterization for $\mathbf{6 j}$ correspond to the ones reported in literature. ${ }^{21}$

Tert-butyl 3-(benzyloxymethyl)pent-4-enylcarbamate (6k)

[^8]

Following a reported procedure, ${ }^{22}$ phthalimide ($1.65 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.25$ equiv) and triphenyl phosphine ($2.95 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.25$ equiv) were dissolved in THF (63 mL). Primary alcohol $\mathbf{6 c}$ ($1.86 \mathrm{~g}, 9.00 \mathrm{mmol}, 1.0$ equiv) was added; DEAD (40% solution in toluene, $5.8 \mathrm{~mL}, 13 \mathrm{mmol}$, 1.4 equiv) was then added dropwise at rt over 20 min . The reaction mixture was stirred at rt for 23 h . The solvent was removed under reduced pressure and the resulting crude oil was triturated with petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}$ ($2: 1$ mixture) until complete precipitation of the solids. The latter were filtered off and washed with the same mixture of solvents. The organic layers were combined and the solvents were removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 90/10 to 80/20) afforded phthalimide 33 as a colorless oil ($1.99 \mathrm{~g}, 5.94$ mmol, 66% yield).

Phthalimide 33 ($1.99 \mathrm{~g}, 5.94 \mathrm{mmol}, 1.0$ equiv) was dissolved in EtOH (52 mL). Hydrazine hydrate ($0.610 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.10$ equiv) was added and the mixture was refluxed for 2 h (during this time a white solid precipitated). The mixture was allowed to cool down to rt and concentrated $\mathrm{HCl}(37 \% \mathrm{w} / \mathrm{w})$ was added dropwise to quench the reaction. The solid was filtered off and the organic solvent was removed in vacuo. The residual aqueous solution was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and treated with solid NaOH until pH 12 . It was then extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. Primary amine 34 was obtained as a pale yellow oil ($1.09 \mathrm{~g}, 5.30 \mathrm{mmol}, 89 \%$ yield), which did not require further purification.

Following a reported procedure, primary amine 34 ($0.616 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.0$ equiv) was dissolved in DCM (9 mL). Triethyl amine (freshly distilled on $\mathrm{CaH}_{2}, 0.92 \mathrm{~mL}, 6.6 \mathrm{mmol}, 2.2$ equiv) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. Ditert-butyl dicarbonate ($0.720 \mathrm{~g}, 3.30$ mmol, 1.1 equiv) was added in two portions and the resulting mixture was stirred at rt for 6 h . The solution was then washed with aqueous citric acid ($0.1 \mathrm{M}, 10 \mathrm{~mL}$). The aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$); the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 10 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $95 / 5$ to $\left.90 / 10\right)$ afforded protected amine $\mathbf{6 k}$ as a pale yellow oil ($0.800 \mathrm{~g}, 2.61 \mathrm{mmol}, 87 \%$ yield $)$.
$\mathrm{R}_{\mathrm{f}} 0.51$ (Pentane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}$), 5.67 (ddt, $1 \mathrm{H}, J=10.3,8.5,8.5 \mathrm{~Hz}, C H=\mathrm{CH}_{2}$), $5.11\left(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}=C H_{2}\right), 5.08$ (br s, 1 H , $\left.\mathrm{CH}=C H_{2}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}, N H), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.2,6.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$), 3.37 (dd, $1 \mathrm{H}, \mathrm{J}=8.8,6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$), $3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.09(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.53-1.36(\mathrm{~m}, 10 \mathrm{H}$,

[^9]$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ and Boc); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,139.1,138.3,128.3,127.5,127.5$, 116.3, 79.0, 73.5, 73.0, 42.0, 38.5, 31.5, 28.4; IR 3426 (sh, w), 3359 (br, w), 3067 (w), 3031 (w), 3003 (w), 2978 (w), 2933 (w), 2862 (w), 2248 (w), 1698 (s), 1642 (w), 1512 (m), 1480 (w), 1455 (w), 1392 (w), 1366 (m), 1271 (w), 1249 (m), 1170 (s), 1100 (m), 1077 (w), 1041 (w), 1029 (w), 1014 (w), 996 (w), 914 (m), 870 (w), 780 (w), 733 (s), 698 (m), 681 (w), 672 (w), 662 (w), 648 (w), 647 (w), 624 (w), 610 (w); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 306.2064$; found 306.2065.

Tert-butyl 1-phenylpent-4-enylcarbamate (61)

Following a reported procedure, ${ }^{23}$ a solution of 4-bromobutene ($1.6 \mathrm{~mL}, 16 \mathrm{mmol}, 1.0$ equiv) in THF (18 mL) was added dropwise to a suspension of Mg turnings ($397 \mathrm{mg}, 16.3 \mathrm{mmol}, 1.02$ equiv) in THF (2 mL) at rt ; the resulting mixture was then stirred at rt for $1 \mathrm{~h} . \mathrm{CuI}(152 \mathrm{mg}$, $0.798 \mathrm{mmol}, 0.05$ equiv) was added to a solution of benzoyl chloride ($\mathbf{3 5)}$ ($1.9 \mathrm{~mL}, 16 \mathrm{mmol}, 1.0$ equiv) in THF (17 mL) at $-15^{\circ} \mathrm{C}$ and the resulting mixture was stirred at the same temperature for 10 min . The Grignard reagent previously prepared was then added dropwise over 1 h at $-15^{\circ} \mathrm{C}$. The mixture was stirred at $-15^{\circ} \mathrm{C}$ for additionally 2 h and then allowed to warm to rt . THF was removed by distillation under reduced pressure and the residue was treated with DCM (30 mL) and aqueous $\mathrm{HCl}(1.0 \mathrm{M}, 20 \mathrm{~mL})$. The two layers were separated and the aqueous one was extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with aqueous NaHCO_{3} (saturated solution), dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 95/5) afforded ketone 36 as a pale yellow oil ($2.44 \mathrm{~g}, 15.2 \mathrm{mmol}, 95 \%$ yield).

Ketone 36 ($2.30 \mathrm{~g}, 14.3 \mathrm{mmol}, 1.0$ equiv) was dissolved in MeOH (43 mL). Ammonium acetate $\left(18.0 \mathrm{~g}, 233 \mathrm{mmol}, 16.3\right.$ equiv), $\mathrm{NaBH}_{3} \mathrm{CN}(1.53 \mathrm{~g}, 24.4 \mathrm{mmol}, 1.7$ equiv) and activated molecular sieves $4 \AA$ were added and the resulting mixture was stirred at rt for 24 h . The reaction was then quenched by dropwise addition of aqueous $\mathrm{HCl}(37 \% \mathrm{w} / \mathrm{v}$, ca. 20 mL$)$ until pH 2 . The organic solvent was removed under reduced pressure and the residue diluted with water (15 mL). The aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 35 \mathrm{~mL})$ and treated by addition of solid KOH until pH 12. It was then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 25 \mathrm{~mL})$, the combined organic layers were dried over
(23) Gribkov, D. V.; Hultzsch,K. C.; Hampel, F. J. Am. Chem. Soc., 2006, 128, 3748.

KOH , filtered and the solvent was removed in vacuo to afford secondary amine $\mathbf{3 7}$ as a colorless oil ($1.44 \mathrm{~g}, 8.95 \mathrm{mmol} 62 \%$ yield), which was not further purified.

Secondary amine 37 ($0.564 \mathrm{~g}, 3.50 \mathrm{mmol}, 1.0$ equiv) was dissolved in DCM (10.5 mL). Triethyl amine (freshly distilled on $\mathrm{CaH}_{2}, 1.1 \mathrm{~mL}, 7.7 \mathrm{mmol}, 2.2$ equiv) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. Ditert-butyl dicarbonate $(0.840 \mathrm{~g}, 3.85 \mathrm{mmol}, 1.1$ equiv) was added in two portions and the resulting mixture was stirred at rt overnight. The solution was then washed with aqueous citric acid ($0.1 \mathrm{M}, 10 \mathrm{~mL}$). The aqueous layer was extracted with DCM ($3 \times 12 \mathrm{~mL}$); the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 12 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $98 / 2$ to $\left.95 / 5\right)$ afforded protected amine $\mathbf{6 l}$ as a colorless solid ($0.815 \mathrm{~g}, 3.11 \mathrm{mmol}, 89 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.51$ (Pentane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.25 (m, 3 H , $P h$), 5.81 (ddt, $1 \mathrm{H}, J=16.8,10.2,6.5 \mathrm{~Hz}, C H=\mathrm{CH}_{2}$), 5.01 (ddd, $J=16.1,3.5,2.0 \mathrm{~Hz}, \mathrm{CH}=C H_{2}$), 4.99-4.96 (m, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.64(\mathrm{~m}, 1 \mathrm{H}, N H), 2.09(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.2, 142.7, 137.6, 128.5, 127.2, 126.3, 115.2, 79.3, 55.1, 36.0, 30.4, 28.4; IR 3382 (w), 3078 (w), 3064 (w), 3030 (w), 3004 (w), 2978 (w), 2933 (w), 2360 (w), 2342 (w), 1685 (s), 1643 (w), 1519 (s), 1452 (w), 1414 (w), 1391 (w), 1365 (m), 1321 (w), 1297 (m), 1254 (m), 1213 (w), 1175 (s), 1122 (w), 1047 (m), 1026 (w), 1018 (w), 1000 (w), 912 (m), 868 (w), 779 (w), 765 (m), 752 (m), 703 (s), 686 (w), 670 (w), 660 (w), 648 (w), 632 (w), 613 (w); Melting Point: 81.9$84.4^{\circ} \mathrm{C}$. The values for the characterization for $\mathbf{6 l}$ correspond to the ones reported in literature. ${ }^{19}$

Tert-butyl nona-1,8-dien-5-ylcarbamate (6m)

Following a reported procedure, ${ }^{22}$ phthalimide ($1.93 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.40$ equiv) and triphenyl phosphine ($3.44 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.40$ equiv) were dissolved in THF (74 mL). Secondary alcohol 6f ($1.59 \mathrm{~g}, 10.5 \mathrm{mmol}, 1.0$ equiv) was added; DEAD (40% solution in toluene, $6.6 \mathrm{~mL}, 15 \mathrm{mmol}$, 1.4 equiv) was then added dropwise at rt over 20 min . The reaction mixture was stirred at rt for 23 h . The solvent was removed under reduced pressure and the resulting crude oil was triturated
with petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}$ ($2: 1$ mixture) until complete precipitation of the solids. The latter were filtered off and washed with the same mixture of solvents. The organic layers were combined and the solvents were removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 98/2 to 95/5) afforded phthalimide 38 as a colorless oil ($2.32 \mathrm{~g}, 8.61$ mmol, 82% yield).

Phthalimide 38 ($2.32 \mathrm{~g}, 8.61 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{EtOH}(76 \mathrm{~mL})$. Hydrazine hydrate ($0.870 \mathrm{~mL}, 17.8 \mathrm{mmol}, 2.07$ equiv) was added and the mixture was refluxed for 7 h (during this time a white solid precipitated). The mixture was allowed to cool down to rt and concentrated $\mathrm{HCl}(37 \% \mathrm{w} / \mathrm{w}$, ca. 20 mL$)$ was added dropwise to quench the reaction. The solvent was removed by distillation under reduced pressure and the residual aqueous solution was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and treated with solid NaOH until pH 12. It was then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, DCM/ULTRA $95 / 5$ to $50 / 50$) afforded secondary amine 39 as a colorless oil (0.631 g , $4.53 \mathrm{mmol}, 53 \%$ yield).

Secondary amine 39 ($0.631 \mathrm{~g}, 4.53 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{DCM}(10.5 \mathrm{~mL})$. Triethyl amine (freshly distilled on $\mathrm{CaH}_{2}, 1.6 \mathrm{~mL}, 11 \mathrm{mmol}, 2.5$ equiv) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. Ditert-butyl dicarbonate ($1.38 \mathrm{~g}, 6.34 \mathrm{mmol}, 1.4$ equiv) was added in two portions and the resulting mixture was stirred at rt overnight. The solution was then washed with aqueous citric acid ($0.1 \mathrm{~m}, 10 \mathrm{~mL}$). The aqueous layer was extracted with DCM (3 x 10 mL); the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 10 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $95 / 5$ to $90 / 10$) afforded protected amine $\mathbf{6 m}$ as a colorless solid ($0.749 \mathrm{~g}, 3.13 \mathrm{mmol}, 69 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.59$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.81$ (ddt, $2 \mathrm{H}, J=16.9,10.2,6.6$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.02 (ddd, $2 \mathrm{H}, J=17.1,3.2,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), $4.96(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 2.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.56(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.44$ (s, $\left.9 \mathrm{H}, \mathrm{Boc}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,138.2,114.8,78.9,49.9$, 34.8, 30.2, 28.4; IR 3439 (w), 3341 (w), 3077 (w), 3002 (w), 2978 (m), 2933 (m), 2853 (w), 1685 (s), 1642 (w), 1525 (m), 1452 (w), 1391 (w), 1366 (m), 1302 (w), 1269 (w), 1248 (m), 1172 (s), 1102 (w), 1046 (w), 1023 (w), 994 (w), 910 (s), 875 (w), 861 (w), 778 (w), 748 (w), $681(\mathrm{w}), 664$ (w), 644 (w), $631(\mathrm{w}), 610$ (w); Melting Point: $35.8-36.8^{\circ} \mathrm{C}$ (expected), $38.5-$ $40.5^{\circ} \mathrm{C}$ (found). The values for the characterization for $\mathbf{6 m}$ correspond to the ones reported in literature. ${ }^{24}$

1-(Cyclopent-2-enyl)-2-methylpropan-2-ol (6n)

(24) Legeay, J. C.; Lewis, W.; Stockman R. A. Chem. Comm. 2009, 2207.

Following a reported procedure, ${ }^{25}$ 2-cyclopentene-1-acetic acid (40) ($1.92 \mathrm{~mL}, 15.8 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{DCM}(5 \mathrm{~mL})$. MeOH ($1.9 \mathrm{~mL}, 48 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (96% $\mathrm{w} / \mathrm{w}, 0.120 \mathrm{~mL}$) were added and the mixture was stirred at reflux for 24 h . It was then allowed to cool down to rt and treated with water (7 mL). The two layers were separated and the aqueous one was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (saturated solution, $2 \times 10 \mathrm{~mL}$), water ($1 \times 10 \mathrm{~mL}$) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM}\right)$ afforded methyl ester 41 as a pale yellow oil $(2.16 \mathrm{~g}, 15.4 \mathrm{mmol}, 97 \%$ yield $)$.

Methyl magnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 6.6 \mathrm{~mL}, 20 \mathrm{mmol}, 3.3$ equiv) was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(12 \mathrm{~mL})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Methyl ester $41(0.84 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.0$ equiv) was then added dropwise and the mixture was stirred at rt for 1.5 h . The reaction was then quenched by dropwise addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, ca. 18 mL). The aqueous layer was extracted with EtOAc (3 x 18 mL), the combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH} 99 / 1\right.$ to $\left.97 / 3\right)$ afforded tertiary alcohol $\mathbf{6 n}$ as a colorless oil $(0.547 \mathrm{~g}, 3.90$ mmol, 65% yield).
$\mathrm{R}_{\mathrm{f}} 0.27$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76-5.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), 2.81 (m, 1 H, $\mathrm{CHCH}=\mathrm{CH}$), $2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 2.15$ (dddd, 1 H , $\left.J=16.4,8.1,4.0,4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.67\left(\mathrm{dd}, 1 \mathrm{H}, J=14.1,5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.49(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=14.3,7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 1.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,129.9,71.2,50.0,41.4,32.1,32.0,30.1$, 29.5; IR 3404 (br, m), 3052 (w), 2968 (m), 2915 (m), 2875 (w), 2849 (m), 1614 (w), 1469 (w), 1441 (w), 1428 (w), 1399 (w), 1378 (m), 1362 (m), 1341 (w), 1314 (w), 1288 (w), 1223 (m), 1147 (m), 1117 (s), 1075 (w), 1023 (w), 994 (w), 958 (w), 907 (s), 843 (w), 767 (w), 717 (s), 687 (w), 682 (w), 674 (w), 657 (w), $648(\mathrm{w}), 638(\mathrm{w}), 630(\mathrm{w}), 614(\mathrm{w})$; Low resolution mass (obtained by GC-MS): calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 158$; found 158 . The compound is reported in the literature. ${ }^{25}$

2-Methylhept-5-en-2-ol (60)

(25) Chapman, O. L.; Mattes, K. C.; Sheridan, R. S.; Klun, J. A. J. Am. Chem. Soc., 1978, 100, 4878.

Following a modified version of a reported procedure, ${ }^{26}$ 3-buten-2-ol (42) ($1.74 \mathrm{~mL}, 20.0 \mathrm{mmol}$, 1.0 equiv) was dissolved in triethyl orthoacetate ($26 \mathrm{~mL}, 140 \mathrm{mmol}, 7.0$ equiv). Pivalic acid ($0.24 \mathrm{~g}, 1.2 \mathrm{mmol}, 0.12$ equiv) was added and the mixture was stirred at $140^{\circ} \mathrm{C}$ until no more EtOH could be distilled off. The temperature was then increased to $160^{\circ} \mathrm{C}$ and the mixture was stirred overnight. It was then allowed to cool down to rt, diluted with THF (40 mL) and stirred with aqueous $\mathrm{HCl}(1.0 \mathrm{~m}, 40 \mathrm{~mL})$ for 1 h . The two layers were separated, the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 40 mL), dried over MgSO_{4}, filtered and the solvent was removed in vacuo to afford ethyl ester $\mathbf{4 3}$ as a pale yellow oil ($1.70 \mathrm{~g}, 11.9 \mathrm{mmol}, 60 \%$ yield), which was not subjected to further purification.

Methyl magnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{~mL}, 18 \mathrm{mmol}, 3.0$ equiv) was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(11.5 \mathrm{~mL})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Ethyl ester $43(0.80 \mathrm{~g}, 5.6 \mathrm{mmol}, 1.0$ equiv) was then added dropwise and the mixture was stirred at rt for 4 h . The reaction was then quenched by dropwise addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, ca. 18 mL). The aqueous layer was extracted with EtOAc (3 x 18 mL), the combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, $\mathrm{DCM} / \mathrm{MeOH} 99 / 1$ to $97 / 3$) afforded tertiary alcohol $6 \mathbf{0}$ as a colorless oil ($0.520 \mathrm{~g}, 4.06$ $\mathrm{mmol}, 73 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.35$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.46-5.40 (m, $2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$), 2.05 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}\right), 1.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.19\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 131.3,124.7,70.8,43.4$, 29.1, 27.5, 17.8; IR 3373 (m), 3017 (w), 2970 (s), 2934 (s), 2887 (w), 2856 (m), 2360 (w), 2337 (w), 2336 (w), 1470 (w), 1453 (w), 1379 (m), 1366 (m), 1260 (w), 1216 (m), 1151 (m), 1088 (w), 966 (s), 935 (s), 914 (m), 796 (w), 760 (w), 750 (w), 741 (w), 704 (w), 694 (w), 676 (w), 663 (w), $654(\mathrm{w}), 636(\mathrm{w}), 606(\mathrm{w})$. The values for the characterization for $\mathbf{6 0}$ correspond to the ones reported in literature. ${ }^{26}$

Tert-butyl 2-(cyclopent-2-enyl)ethylcarbamate (6p)

(26) Hay, M. B.; Wolfe, J. P. J. Am. Chem. Soc., 2005, 127, 16468.

Following a reported procedure, ${ }^{27}$ thionyl chloride ($6.9 \mathrm{~mL}, 95 \mathrm{mmol}, 4.0$ equiv) was cautiously added dropwise to 2 -cyclopentene-1-acetic acid ($\mathbf{4 0}$) ($2.85 \mathrm{~mL}, 23.8 \mathrm{mmol}, 1.0$ equiv) and the mixture was stirred at rt for 3 h . The excess of thionyl chloride was then removed by simple distillation and the resulting acyl chloride was added dropwise to aqueous $\mathrm{NH}_{3}(25 \% \mathrm{w} / \mathrm{w}, 140$ mL). The mixture was stirred at rt for 60 h and then the aqueous solution was extracted with EtOAc ($3 \times 80 \mathrm{~mL}$). The combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 80 mL), brine and dried over MgSO_{4}. Removal in vacuo of the solvent afforded the amide $\mathbf{4 4}$ as a colorless solid ($1.51 \mathrm{~g}, 12.0 \mathrm{mmol}, 51 \%$ yield), which was not further purified.

Amide 44 ($1.51 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$. A suspension of $\mathrm{LiAlH}_{4}\left(1.59 \mathrm{~g}, 41.9 \mathrm{mmol}, 3.47\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(42 \mathrm{~mL})$ was added dropwise to the previous solution at rt and the resulting mixture was stirred at rt for 24 h . It was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and the reaction was quenched by dropwise addition of aqueous NaOH $(10.0 \mathrm{M})$ until no more solid precipitated. The resulting slurry was filtered through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. After removal of the aqueous layer, the organic one was further diluted with pentane (100 mL), dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, DCM/ULTRA 30/70 to 70/30) afforded primary amine $\mathbf{4 5}$ as a pale yellow oil ($1.33 \mathrm{~g}, 12.0 \mathrm{mmol}, 85 \%$ yield).

Primary amine 45 ($0.400 \mathrm{~g}, 3.60 \mathrm{mmol}, 1.0$ equiv) was dissolved in DCM (10.5 mL). Triethyl amine (freshly distilled on $\mathrm{CaH}_{2}, 1.3 \mathrm{~mL}, 9.5 \mathrm{mmol}, 2.6$ equiv) was added and the solution was cooled to $0^{\circ} \mathrm{C}$. Ditert-butyl dicarbonate ($1.04 \mathrm{~g}, 4.76 \mathrm{mmol}, 1.3$ equiv) was added in two portions and the resulting mixture was stirred at rt overnight. The solution was then washed with aqueous citric acid ($0.1 \mathrm{~m}, 10 \mathrm{~mL}$). The aqueous layer was extracted with DCM ($3 \times 10 \mathrm{~mL}$); the combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 10 mL) and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc 98/2 to $\left.95 / 5\right)$ afforded protected amine $\mathbf{6 p}$ as a colorless oil ($0.627 \mathrm{~g}, 2.97 \mathrm{mmol}, 82 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.31$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 5.68$ (ddd, $1 \mathrm{H}, J=6.1,4.2,2.1 \mathrm{~Hz}, C H=C H), 4.53(\mathrm{~m}, 1 \mathrm{H}, N H), 3.18\left(\mathrm{~m}, 2 \mathrm{H}, C H_{2} \mathrm{NH}\right), 2.70(\mathrm{~m}, 1 \mathrm{H}$, CHCH=CH), 2.43-2.24 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), $2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 1.62(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.55-1.34 (m, $11 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$ and Boc$) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $155.9,134.3,130.7,78.9,43.0,39.3,36.2,31.9,29.6,28.4$; IR 3456 (sh, w), 3360 (br, w), 3051 (w), 2977 (m), 2933 (m), 2862 (w), 2853 (w), 1691 (s), 1517 (m), 1455 (w), 1392 (w), 1366 (m), 1271 (m), 1251 (m), 1170 (s), 1087 (w), 1041 (w), 1009 (w), 968 (w), 952 (w), 912 (w), 912 (w), 867 (w), 782 (w), 758 (w), 719 (m), 696 (w), 696 (w), 687 (w), 687 (w), 678 (w), 653 (w), 639 (w), 627 (w). The values for the characterization for $\mathbf{6 p}$ correspond to the ones reported in literature. ${ }^{19}$
(27) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc., 2005, 127, 8644.

4. Optimization of the Reaction

General procedure for reaction optimization:

Under inert atmosphere $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.7 \mathrm{mg}, 0.0030 \mathrm{mmol}, 0.02$ equiv), the ligand (0.06 mmol , 0.04 equiv) and the base ($0.2 \mathrm{mmol}, 1.33$ equiv) were introduced into a 2 mL vial, which was then sealed. The solvent was added $(0.8 \mathrm{~mL})$, followed by the alkyne reagent $(0.2 \mathrm{mmol}, 1.33$ equiv), 4-penten-1-ol ($15.5 \mu \mathrm{~L}, 0.150 \mathrm{mmol}, 1.00$ equiv) and the internal standard (pentadecane, $21 \mu \mathrm{~L}, 0.076 \mathrm{mmol}$). The mixture was stirred at $65-70^{\circ} \mathrm{C}$ (or $110^{\circ} \mathrm{C}$, where specified) for 3 h and then allowed to cool to room temperature. Circa 0.2 mL of the reaction mixture were filtered through a short plug of Celite, which was then washed with DCM (2 mL). The so obtained solution was injected into a GC-MS chromatographer (the following oven program was followed: Initial temperature: $50^{\circ} \mathrm{C}$, Ramp: $10.0^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$, hold 25 min at $250{ }^{\circ} \mathrm{C}$). Yield was determined by GC-MS, based on the following calibration.

Preparative Reaction for the conditions of Table 1, Entry 1

1,4-Bis(triisopropylsilyl)buta-1,3-diyne (46)

Under inert atmosphere $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(7.3 \mathrm{mg}, 0.0080 \mathrm{mmol}, 0.02$ equiv), DPE-Phos ($8.6 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 0.04$ equiv) and $\mathrm{NaO} t \mathrm{Bu}(51.2 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.33$ equiv) were introduced into a 5 mL vial, which was then sealed. Toluene was added (2.1 mL), followed by bromo triisopropylsilyl acetylene ($139 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.33$ equiv) and the starting material ($0.4 \mathrm{mmol}, 1.00$ equiv). The mixture was stirred at $65-70^{\circ} \mathrm{C}$ (or $110^{\circ} \mathrm{C}$, where specified) for 3 h and then allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The crude mixture was then directly purified by column chromatography (SiO_{2}, pentane/EtOAc 98/2 to 95/5). R_{f} (Pentane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ; IR . The values for the characterization for $\mathbf{6 p}$ correspond to the ones reported in literature. ${ }^{28}$

GC-MS Quantification:

A 0.0 .25 M standard solution was prepared by dissolving pentadecane ($0.200 \mathrm{~mL}, 0.728 \mathrm{mmol}$) in DCM (28.8 mL).

Triisopropyl(3-(tetrahydrofuran-2-yl)prop-1-ynyl)silane (7a) ($24.8 \mathrm{mg}, 0.0931 \mathrm{mmol}$) was dissolved in DCM (ca. 3.72 mL) (solution O).

- $\quad 0.1 \mathrm{~mL}$ of solution O were diluted by adding $\mathrm{DCM}(0.9 \mathrm{~mL})$ to obtain solution A ;
- 0.1 mL of solution O were mixed with 0.05 mL standard solution 0.025 M and diluted by adding $\mathrm{DCM}(0.85 \mathrm{~mL})$ to obtain solution B ;
- 0.1 mL of solution O were mixed with 0.10 mL standard solution 0.025 M and diluted by adding DCM $(0.80 \mathrm{~mL})$ to obtain solution C ;

[^10]- 0.1 mL of solution O were mixed with 0.15 mL standard solution 0.025 M and diluted by adding $\mathrm{DCM}(0.75 \mathrm{~mL})$ to obtain solution D .

GC-MS chromatograms were acquired for solutions A, B, C and D and in each of them the ratio between the integrals of the signals corresponding to the internal standard (retention time: 16.7 min) and to the compound $\mathbf{7 a}$ (retention time: 19.8 min) was calculated. These observed ratios by integration of the chromatogram peaks and the ratios (mmol pentadecane $/ \mathrm{mmol} 7 \mathbf{7 a}$) were used as the axis of the calibration graph.

Calibration Curve

Detailed results for the optimization studies

Entry	Reagent	Catalyst	Base	Solvent	Yield
1	TIPS $=\mathrm{Cl}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	15\%; 22\% (14 hrs)
2	TIPS $=\mathrm{Br}$	DPE-Phos	NaOtBu	THF	69\%
3	TIPS $=$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	31\%
4		DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	< 5%
5	TIPS $=\mathrm{Br}$	DPE-Phos	NaOtBu	THF	48\% ${ }^{\text {a }}$
6	TIPS $=\mathrm{Br}$	DPE-Phos	NaOtBu	THF	$47 \%{ }^{\text {b }}$
7	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	$71 \%^{\text {c }}$
8	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	$72 \%{ }^{\text {d }}$
9	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	$78 \%{ }^{\text {e }}$
10	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	THF	$57 \%{ }^{\text {f }}$
11	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	DME	80\%
12	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	87\%
13	TIPS $=\mathrm{Br}$	DPE-Phos	NaOtBu	DCE	34\%
14	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	DMF	nr
15	TIPS $=\mathrm{Br}$	DPE-Phos	$\mathrm{NaO} t \mathrm{Bu}$	MeCN	$n \mathrm{r}$
16	TIPS $=\mathrm{Br}$	DPE-Phos	LiOtBu	Toluene	75\%
17	TIPS $=\mathrm{Br}$	DPE-Phos	KOtBu	Toluene	nr
18	TIPS $=\mathrm{Br}$	DPE-Phos	CsO tBu	Toluene	< 5%
19	TIPS $=\mathrm{Br}$	DPE-Phos	DBU	Toluene	$n \mathrm{r}$
20	TIPS $=\mathrm{Br}$	DPE-Phos	Hünig's Base	Toluene	$n \mathrm{r}$
21	TIPS $=\mathrm{Br}$	dppp	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	$<5 \%$
22	TIPS $=\mathrm{Br}$	dppe	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	< 5%
23	TIPS $=\mathrm{Br}$	Xant-Phos	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	50\%
24	TIPS $=\mathrm{Br}$	Ru-Phos	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	18\%
25	TIPS $=\mathrm{Br}$	Seg-Phos	NaOtBu	Toluene	20\%
26	TIPS $=\mathrm{Br}$	BINAP	$\mathrm{NaO} t \mathrm{Bu}$	Toluene	32\%

Standard conditions: 0.15 mmol 4 -pentenol, 0.2 mmol reagent (1.33 equiv), 0.2 mmol base (1.33 equiv), 0.003 $\mathrm{mmol} \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%), 0.006 \mathrm{mmol}$ ligand $(4 \mathrm{~mol} \%)$ in 0.8 mL solvent at $65-70^{\circ} \mathrm{C}$; (a) 0.003 mmol ligand ($2 \mathrm{~mol} \%$); (b) Premixing of catalyst and ligand in 0.4 mL THF before the starting material and the reagent were added and heating was started; (c) in 0.3 mL THF; (d) in 3 mL THF; (e) 0.0075 mmol catalyst ($5 \mathrm{~mol} \%$), 0.015 mmol ligand ($10 \mathrm{~mol} \%$); (f) 0.0015 mmol catalyst ($1 \mathrm{~mol} \%$), 0.03 mmol ligand ($2 \mathrm{~mol} \%$);

5. Scope of the Reaction

General procedure for the intramolecular oxy- and aminoalkynylation of olefins (GP1): Under inert atmosphere $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(7.3 \mathrm{mg}, 0.0080 \mathrm{mmol}, 0.02$ equiv), DPE-Phos ($8.6 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 0.04$ equiv) and $\mathrm{NaO} t \mathrm{Bu}(51.2 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.33$ equiv) were introduced into a 5 mL vial, which was then sealed. Toluene was added (2.1 mL), followed by bromo triisopropylsilyl acetylene ($139 \mathrm{mg}, 0.533 \mathrm{mmol}, 1.33$ equiv) and the starting material ($0.4 \mathrm{mmol}, 1.00$ equiv). The mixture was stirred at $65-70^{\circ} \mathrm{C}$ (or $110^{\circ} \mathrm{C}$, where specified) for 3 h and then allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The crude mixture was then directly purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $98 / 2$ to $\left.95 / 5\right)$.

General procedure for the deprotection of 2-propargyl \mathbf{N}-Boc pyrrolidines (GP2): The N Boc pyrrolidine is dissolved in DCM (20 mL per mmole of protected pyrrolidine) and the resulting solution is cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (10 mL per mmole of protected pyrrolidine) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min . The volatiles were then removed by distillation under reduced pressure. The residue was taken up in DCM and the solution as washed with aqueous NaOH (2 m , three times). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO_{2}, short plug; DCM/ULTRA $85 / 15$ to $70 / 30$).

Triisopropyl(3-(tetrahydrofuran-2-yl)prop-1-ynyl)silane (7a): was obtained as a pale yellow
 oil ($100 \mathrm{mg}, 0.370 \mathrm{mmol}, 92 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.53$ (Pentane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.07$ (ddd, $1 \mathrm{H}, J=14.6,6.9,4.3 \mathrm{~Hz}$, $\left.\mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.60(\mathrm{dd}, 1 \mathrm{H}$, $J=16.6,4.3 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}$), 2.43 (dd, $\left.1 \mathrm{H}, J=16.6,7.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.04-1.76 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.14-0.98 (m, $21 \mathrm{H}, T I P S$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 105.2$, 81.8, 77.4, 68.5, 30.6, 26.7, 25.8, 18.6, 11.2; IR 2957 (s), 2956 (s), 2942 (s), 2891 (m), 2175 (m), 1746 (w), 1463 (m), 1383 (w), 1367 (w), 1239 (w), 1033 (m), 1018 (w), 1017 (w), 997 (m), 921 (w), 884 (s), 842 (w), 810 (w), 744 (w), 674 (s), 641 (s), 633 (s), 618 (m), 607 (w); HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{AgOSi}^{+}[\mathrm{M}+\mathrm{Ag}]^{+} 373.1111$; found 373.1112.

The same reaction was performed on a 5.00 mmol scales using: 4-penten-1-ol ($431 \mathrm{mg}, 5.00$ mmol, 1.0 equiv), bromo triisopropyl silyl acetylene ($1.74 \mathrm{~g}, 6.67 \mathrm{mmol}, 1.33$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($91.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.02$ equiv), DPE-Phos ($108 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.04$ equiv) and $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}$ ($0.641 \mathrm{~g}, 6.67 \mathrm{mmol}, 1.33$ equiv). Compound $7 \mathrm{a}(1.15 \mathrm{~g}, 4.30 \mathrm{mmol})$ was obtained in 86% yield.

Triisopropyl((5-(3-(triisopropylsilyl)prop-2-ynyl)tetrahydrofuran-3-yl)methoxy)silane (7b): TIPSO TIPS was obtained as a pale yellow oil $(160 \mathrm{mg}, 0.352 \mathrm{mmol}, 88 \%$ yield; mixture of inseparable diastereoisomers, d.r. 67:33); R_{f} 0.76 (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.10$ (ddd, $1 \mathrm{H}, J=14.6,7.0,4.5 \mathrm{~Hz}$, $\mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 4.05-4.00 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$, minor diaster.), 4.00 (dd, $1 \mathrm{H}, J=8.5,7.0 \mathrm{~Hz}$, OCH_{2}), 3.84 (dd, $1 \mathrm{H}, J=8.5,8.0 \mathrm{~Hz}, \mathrm{OCH}_{2}$, minor diaster.), 3.73 (dd, $1 \mathrm{H}, J=8.5,6.5 \mathrm{~Hz}$,
OCH_{2}, minor diaster.), 3.70-3.58 (m, $3 \mathrm{H}, \mathrm{OCH}_{2}$, both diaster.), 2.62 (dd, $1 \mathrm{H}, J=16.6,4.4 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$, minor diaster.), 2.56-2.48 (m, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2}$, both diaster.) 2.55 (dd, $1 \mathrm{H}, J=$ $16.6,4.5 \mathrm{~Hz}, C_{2} \mathrm{C} \equiv \mathrm{C}$), 2.43 (dd, $1 \mathrm{H}, J=16.6,8.0 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}$, minor diaster.), 2.41 (dd, 1 $\mathrm{H}, J=16.6,7.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.18 (ddd, $1 \mathrm{H}, J=14.1,8.0,6.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$, minor diaster.), 1.94-1.89 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}$), 1.47 (ddd, $1 \mathrm{H}, J=12.5,8.5,8.5 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}$, minor diaster.), 1.14-0.96 (m, 21 H, TIPS, both diaster.).; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, the signals for the minor diastereoisomer are indicated in italics, some of them being not resolved) $\delta 105.1,104.9,81.9$, 81.9, 77.8, 77.1, 71.0, 70.9, 65.4, 64.8, 42.6, 41.8, 34.3, 33.4, 26.9, 26.6, 18.6, 18.0, 11.9, 11.2; IR 2942 (s), 2891 (m), 2865 (s), 2724 (w), 2175 (w), 1463 (m), 1432 (w), 1384 (w), 1367 (w), 1246 (w), 1159 (w), 1103 (s), 1072 (m), 1030 (w), 1014 (m), 996 (m), 920 (w), 883 (s), 793 (m), 738 (w), 678 (s), 665 (s), 638 (m), 613 (w), 606 (w); HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{2} \mathrm{Si}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 453.3579$; found 453.3589 .
(3-(3-(Benzyloxymethyl)tetrahydrofuran-2-yl)prop-1-ynyl)triisopropylsilane (7c): was
 obtained as a pale yellow oil ($142 \mathrm{mg}, 0.314 \mathrm{mmol}, 80 \%$ yield; mixture of inseparable diastereoisomers, d.r. 85:15); $\mathrm{R}_{\mathrm{f}} 0.33$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}$, both diast.), 4.53 (s, 2 H , $\mathrm{PhCH}_{2} \mathrm{O}$, both diast.), 4.08 (ddd, $1 \mathrm{H}, J=8.0,6.5,5.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}$, minor diaster.), 4.01 (dt, $1 \mathrm{H}, J=8.0,5.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}$, minor diaster.), 3.94 (dt, $1 \mathrm{H}, J=8.5,7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}$), 3.85-3.74 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OBn}$, minor diaster.), 3.82 (td, $1 \mathrm{H}, J=$ $\left.8.5,3.0, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.80-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.58\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}\right), 3.49$ (dd, $1 \mathrm{H}, J=9.0,7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OBn}$), 2.64 (dd, $2 \mathrm{H}, J=13.0,7.0 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}$, minor diaster.), $2.59\left(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.57-2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn} ; 2 \mathrm{H}, C H C H_{2} \mathrm{OBn}\right.$ and $\mathrm{OCH}_{2} \mathrm{CH}_{2}$, minor diaster.), $2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.17-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$, minor diaster.), 1.78 (ddd, $1 \mathrm{H}, J=13.6,12.5,6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.20-0.96 (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; the signals for the minor diastereoisomer are indicated in italics, some of them being not resolved) $\delta 138.3,138.2,128.3,128.3,127.5,127.5,127.4,105.4,105.1,81.9$, $79.8,78.6,73.2,73.0,72.2,69.2,67.7,67.1,43.5,41.3,29.9,29.1,26.3,22.2,18.6,11.2$; IR 2942 (s), 2890 (m), 2174 (m), 1739 (w), 1496 (w), 1496 (w), 1462 (m), 1381 (w), 1381 (w), 1365 (w), 1244 (w), 1243 (w), 1205 (w), 1205 (w), 1205 (w), 1098 (m), 1077 (m), 1030 (w), 1018 (w), 996 (m), 969 (w), 969 (w), 919 (w), 918 (w), 884 (m), 843 (w), 842 (w), 836 (w), 822 (w), 821 (w), 736 (s), 698 (m), 674 (s), 667 (s), 660 (s), $650(\mathrm{~m}), 636$ (m), 626 (m), 614 (w); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+} 387.2714$; found 387.2708.

The relative stereochemistry of the major diastereoisomer was assigned based on ROESY correlation between signals at $\delta 3.82\left(\mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$ and $\delta 2.59\left(\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$.

Triisopropyl(3-(5-methyltetrahydrofuran-2-yl)prop-1-ynyl)silane (7d): was obtained as a pale yellow oil ($89.7 \mathrm{mg}, 0.320 \mathrm{mmol}, 80 \%$ yield; mixture of inseparable diastereoisomers, d.r. 87:13); $\mathrm{R}_{\mathrm{f}} 0.58$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$ and $\left.\mathrm{OCHCH}_{3}\right), 3.98$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$ and OCHCH_{3}, minor diast.), $2.60(\mathrm{dd}, 1 \mathrm{H}, J=$ $16.6,4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$, minor diast.), 2.55 (dd, $1 \mathrm{H}, J=16.6,4.0 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}$), 2.42 (dd, $1 \mathrm{H}, J$ $=16.6,8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.41 (dd, $1 \mathrm{H}, J=16.6,8.0 \mathrm{~Hz}$, minor diast.), 2.20-2.03 (m, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2}$, both diast.), 1.92-1.81 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, both diast.), 1.47 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, both diast.), 1.24 (d, $3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}$, minor diast.), $1.21\left(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.12-$ 0.97 ($\mathrm{m}, 21 \mathrm{H}$, TIPS, both diast.); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, only major diastereoisomer) δ 105.2, 81.9, 76.9, 75.5, 33.9, 31.4, 27.0, 21.1, 18.6, 11.2; IR 2960 (w), 2942 (w), 2924 (w), 2865 (w), 2173 (w), 1717 (w), 1684 (w), 1559 (w), 1542 (w), 1508 (w), 1471 (w), 1471 (w), 1459 (w), 1420 (w), 1383 (w), 1376 (w), 1367 (w), 1088 (w), 1088 (w), 1018 (w), 996 (w), 996 (w), 919 (w), 918 (w), 883 (m), 723 (w), 713 (w), 677 (s), 660 (s), 648 (m), 641 (s), 605 (w); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{AgOSi}^{+}[\mathrm{M}+\mathrm{Ag}]^{+} 387.1268$; found 387.1276. The relative stereochemistry was assigned based on analogy with compound $7 \mathbf{7 e}$.

Triisopropyl(3-(5-phenyltetrahydrofuran-2-yl)prop-1-ynyl)silane (7e): was obtained as a
 pale yellow oil ($82.3 \mathrm{mg}, \quad 0.240 \mathrm{mmol}, 60 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.65$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (m, $4 \mathrm{H}, P h$), 7.25 (m, $1 \mathrm{H}, P h), 5.09$ (dd, $1 \mathrm{H}, J=8.1,6.3 \mathrm{~Hz}, C H P h), 4.40$ (ddd, $J=$ $14.0,7.3,4.4 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.67(\mathrm{dd}, 1 \mathrm{H}, J=16.6,4.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.56\left(\mathrm{dd}, 1 \mathrm{H}, J=16.6,7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}\right), 2.25(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{PhCHCH}_{2} \mathrm{CH}_{2}$), $2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}\right), 1.15-1.00(\mathrm{~m}, 21 \mathrm{H}$, TIPS); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.2,128.2,127.1,125.5,105.1,82.1,81.1,77.9,35.2$, 31.4, 27.1, 18.6, 11.3; IR 3288 (w), 2966 (w), 2941 (m), 2925 (w), 2893 (w), 2864 (m), 2174 (m), 1690 (w), 1494 (w), 1464 (w), 1449 (w), 1448 (w), 1383 (w), 1366 (w), 1314 (w), 1288 (w), 1284 (w), 1216 (w), 1198 (w), 1186 (w), 1181 (w), 1168 (w), 1159 (w), 1142 (w), 1112 (w), 1081 (w), 1060 (s), 1030 (m), 994 (m), 967 (w), 939 (w), 919 (w), 883 (s), 837 (w), 789 (w), 758 (m), 699 (s), 673 (s), 660 (s), 648 (m), 633 (w), 626 (w), 613 (w); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 343.2452$; found 343.2462 . The relative stereochemistry was assigned based on transformation into known compound 11.

The same reaction was performed on a 2.00 mmol scale using: 1-Phenylpent-4-en-1-ol ($\mathbf{6 e}$) (325 $\mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv), bromo triisopropyl silyl acetylene ($0.695 \mathrm{~g}, 2.66 \mathrm{mmol}, 1.33$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(37 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.02$ equiv), DPE-Phos ($43 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.04$ equiv) and $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}(0.236 \mathrm{~g}, 2.66 \mathrm{mmol}, 1.33$ equiv). Compound $7 \mathrm{e}(0.431 \mathrm{~g}, 1.26 \mathrm{mmol})$ was obtained in 63% yield.
(3-(5-(But-3-enyl)tetrahydrofuran-2-yl)prop-1-ynyl)triisopropylsilane (7f): was obtained as a pale yellow oil ($79.8 \mathrm{mg}, 0.249 \mathrm{mmol}, 65 \%$ yield; 95% pure based

on ${ }^{1} \mathrm{H}$ NMR); $\mathrm{R}_{\mathrm{f}} 0.65$ (Pentane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{~m}, 1 \mathrm{H}$, $C H=\mathrm{CH}_{2}$), $5.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.13$ (ddd, $1 \mathrm{H}, J=13.6,7.5,4.0$ $\mathrm{Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 4.03 (ddd, $1 \mathrm{H}, J=14.1,8.0,6.0 \mathrm{~Hz}, \mathrm{OCHCH}_{2}$), $2.55(\mathrm{dd}, 1 \mathrm{H}, J=16.6,4.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.42\left(\mathrm{dd}, 1 \mathrm{H}, J=16.6,7.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.21-2.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.61-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.12-1.01 (m, $21 \mathrm{H}, \mathrm{TIPS}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,114.5,105.4,81.9$, 79.2, 76.9, 35.0, 31.9, 31.2, 30.4, 27.0, 18.6, 11.3; IR 3079 (w), 2943 (w), 2923 (w), 2907 (w), 2895 (w), 2865 (w), 2845 (w), 2360 (w), 2342 (w), 2332 (w), 2174 (w), 1722 (w), 1721 (w), 1643 (w), 1464 (w), 1444 (w), 1418 (w), 1383 (w), 1366 (w), 1345 (w), 1192 (w), 1163 (w), 1124 (w), 1095 (w), 1075 (w), 1030 (w), 1017 (w), 996 (w), 958 (w), 941 (w), 912 (m), 883 (m), 737 (w), 678 (m), 670 (m), 664 (m), 635 (s), 627 (m), 613 (w); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 321.2608$; found 321.2600 . The relative stereochemistry was assigned based on analogy with compound 7e.

Triisopropyl(3-(octahydrobenzofuran-2-yl)prop-1-ynyl)silane (7g): was obtained as a pale yellow oil ($101 \mathrm{mg}, 0.316 \mathrm{mmol}, 79 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.65$ (Pentane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH} \mathrm{C}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.30$ (m, $1 \mathrm{H}, \mathrm{CyCHO}$), 2.58 (br s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.56(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.17 (ddd, $\left.1 \mathrm{H}, J=12.1,6.2,6.2 \mathrm{~Hz}, \mathrm{CyCHCH}_{2}\right), 2.06(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$ in Cy), 1.93 (m, $1 \mathrm{H}, \mathrm{Cy}$), 1.81 (m, $\left.1 \mathrm{H}, \mathrm{Cy}\right), 1.72(\mathrm{~m}, 1 \mathrm{H}$, $C y), 1.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{dd}, J=20.6,12.0 \mathrm{~Hz}, \mathrm{CyCHCH}_{2}\right), 1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 1.35-$ 1.10 (m, $4 \mathrm{H}, C y$), 1.12-0.95 (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 105.2,83.0,82.0$, 76.1, 46.3, 36.9, 31.3, 28.9, 27.4, 25.7, 24.3, 18.6, 11.3; IR 2935 (s), 2864 (s), 2173 (m), 1716 (w), 1462 (m), 1383 (w), 1366 (w), 1351 (w), 1243 (w), 1142 (w), 1071 (m), 1057 (m), 1025 (w), 1008 (w), 994 (m), 972 (w), 922 (w), 883 (m), 864 (w), 735 (w), 699 (w), 677 (s), 667 (s), 653 (m); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 321.2608$; found 321.2610.

The relative stereochemistry was assigned based on ROESY correlation between signals at δ $4.18\left(\mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$ and $1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$.

(3-(5,5-Dimethyltetrahydrofuran-2-yl)prop-1-ynyl)triisopropylsilane (7h): was obtained as a
 pale yellow oil ($81.0 \mathrm{mg}, 0.275 \mathrm{mmol}, 69 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.66$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.10$ (ddd, $1 \mathrm{H}, J$ $\left.=14.9,7.0,4.1 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.59(\mathrm{dd}, 1 \mathrm{H}, J=16.6,4.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.38 (dd, $1 \mathrm{H}, J=16.6,8.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.10(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.96-1.67 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.11-0.92 (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 105.2,81.4,81.3,76.7,38.2,31.1,29.0,27.9,27.2$,
18.6, 11.3; IR 2962 (m), 2942 (m), 2930 (m), 2893 (m), 2865 (s), 2174 (m), 1463 (m), 1381 (w), 1367 (m), 1302 (w), 1241 (w), 1145 (w), 1059 (m), 1027 (m), 996 (w), 964 (w), 953 (w), 920 (w), 884 (m), 864 (w), 736 (w), 677 (s), 663 (s), 628 (m), 617 (w); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 295.2452$; found 295.2459.
(3-(1-oxaspiro[4.5]decan-2-yl)prop-1-ynyl)triisopropylsilane (7i): The reaction was
 performed at $110^{\circ} \mathrm{C}$. The product was obtained as a pale yellow oil ($75.9 \mathrm{mg}, 0.227 \mathrm{mmol}, 57 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.48$ (Hexane/EtOAc 20/1.5); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.09$ (ddd, $1 \mathrm{H}, J=14.1,6.5,4.0 \mathrm{~Hz}$, $\left.\mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.59\left(\mathrm{dd}, 1 \mathrm{H}, J=16.6,4.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.37(\mathrm{dd}, 1 \mathrm{H}, J=16.6,8.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.94-1.63\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, cyclohexyl), 1.59-1.44 (m, 4 H , cyclohexyl), 1.44-1.28 (m, 4 H , cyclohexyl), 1.16-0.93 (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 105.5,83.4,81.7,76.3,38.5,37.4,35.7,30.7,27.4,25.7,24.1,23.8,18.6,11.3$; IR 2931 (s), 2892 (m), 2864 (s), 2174 (m), 2074 (w), 1660 (w), 1615 (w), 1615 (w), 1615 (w), 1567 (w), 1463 (m), 1449 (m), 1383 (w), 1383 (w), 1365 (w), 1365 (w), 1345 (w), 1345 (w), 1345 (w), 1323 (w), 1310 (w), 1305 (w), 1255 (w), 1251 (w), 1240 (w), 1240 (w), 1213 (w), 1209 (w), 1199 (w), 1199 (w), 1199 (w), 1150 (w), 1150 (w), 1128 (w), 1075 (m), 1059 (m), 1025 (m), 996 (w), 969 (w), 969 (w), 951 (w), 951 (w), 950 (w), 950 (w), 920 (w), 920 (w), 884 (m), 847 (w), 742 (w), 742 (w), 717 (w), 696 (w), 677 (s), 661 (s), 640 (w), 632 (w), 621 (w), 614 (w); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 335.2765$; found 335.2758.

Tert-butyl 2-(3-(triisopropylsilyl)prop-2-ynyl)pyrrolidine-1-carboxylate (7j): was obtained
 as a pale yellow oil ($118 \mathrm{mg}, 0.323 \mathrm{mmol}, 81 \%$ yield; mixture of rotamers); $\mathrm{R}_{\mathrm{f}} 0.65$ (Pentane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 55^{\circ} \mathrm{C}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.81\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.62(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.51 (br m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.09-1.71 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.45(\mathrm{~m}, 9 \mathrm{H}$, Boc), 1.14$0.92\left(\mathrm{~m}, 21 \mathrm{H}\right.$, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (rotamers!) $\delta 154.3,105.9,105.6,81.9,81.5$, $79.2,79.0,56.2,47.1,46.6,30.7,29.8,28.4,25.4,24.5,23.6,22.9,11.2$; IR 2960 (m), 2943 (m), 2904 (w), 2891 (w), 2866 (m), 2365 (w), 2359 (w), 2341 (w), 2331 (w), 2173 (w), 1698 (s), 1654 (w), 1463 (w), 1394 (s), 1366 (m), 1341 (w), 1329 (w), 1254 (w), 1246 (w), 1213 (w), 1173 (m), 1120 (m), 1097 (w), 1030 (w), 1019 (w), 996 (w), 954 (w), 920 (w), 905 (w), 884 (m), 866 (w), 774 (w), 756 (w), 744 (w), 740 (w), 679 (m), 662 (m), 634 (m), 619 (w), 609 (w); HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.2823$; found 366.2825 .

Tert-butyl 3-(benzyloxymethyl)-2-(3-(triisopropylsilyl)prop-2-ynyl)pyrrolidine-1carboxylate (7k): was obtained as a mixture of separable diastereoisomers. Major diastereoisomer: pale yellow oil ($128 \mathrm{mg}, 0.263 \mathrm{mmol}, 66 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.66$ (Pentane/EtOAc 20/3). Minor diastreoisomer: pale yellow oil ($19.2 \mathrm{mg}, 0.0395 \mathrm{mmol}, 10 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.57$ (Pentane/EtOAc 20/3). 76\% overall yield, d.r.: 87:13.

Both diastereoismers were obtained as mixtures of rotamers. In order to characterize them, they were subjected to deprotection of the amino group according to the general procedure GP2.

Major Diastereoisomer: pale yellow oil (99.1 mg, 0.256 mmol , quant. yield); ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.50(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OBn}$), 3.04 (ddd, $1 \mathrm{H}, J=10.5,7.6,5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 2.97 (q, 1 $\mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.88 (ddd, $1 \mathrm{H}, J=10.4,7.4,7.4 \mathrm{~Hz}$, $\left.C H_{2} \mathrm{~N}\right), 2.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.9,5.2 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=16.9$,
$5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, 1.59 (ddd, $1 \mathrm{H}, J=13.0,13.0,6.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{OBn}$), 1.17-0.95 (m, $21 \mathrm{H}, \mathrm{TIPS}$); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,138.5,128.3,127.5,105.9,82.1,73.1,73.0,60.8,45.9,43.4,30.1,25.9$, 18.6, 11.2; IR 3032 (w), 2942 (m), 2942 (m), 2890 (m), 2890 (m), 2864 (s), 2864 (s), 2170 (m), 1697 (w), 1629 (w), 1558 (w), 1507 (w), 1497 (w), 1462 (m), 1457 (m), 1406 (w), 1383 (w), 1365 (w), 1242 (w), 1203 (w), 1098 (m), 1076 (m), 1029 (w), 1018 (w), 996 (w), 919 (w), 910 (w), 884 (m), 811 (w), 735 (s), 698 (m), 678 (s), 669 (s), 662 (s), 639 (s), 628 (s), 619 (m); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NOSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 386.2874$; found 386.2868.

The relative stereochemistry of the major diastereoisomer was assigned based on the ROESY correlation observed between signals at $\delta 3.50\left(\mathrm{CHCH}_{2} \mathrm{OBn}\right)$ and $\delta 2.97\left(\mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$.

Minor Diastereoisomer: pale yellow oil ($15.3 \mathrm{mg}, 0.0394 \mathrm{mmol}$, quant. yield); ${ }^{1} \mathrm{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.57(\mathrm{~d}, 2$ $\mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{OBn}$), $3.40(\mathrm{dd}, 1 \mathrm{H}, J=14.0,7.0 \mathrm{~Hz}$, $\mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 3.45-3.26 (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.17 (ddd, $1 \mathrm{H}, J=10.4,9.1$, $4.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), 2.97 (ddd, $\left.1 \mathrm{H}, J=10.3,8.5,7.6 \mathrm{~Hz}, C H_{2} \mathrm{~N}\right), 2.61-2.43\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$ and $\mathrm{CHCH}_{2} \mathrm{OBn}$), $2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.16-0.93\left(\mathrm{~m}, 21\right.$, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0,128.4,127.7,127.7,105.7,82.5,73.4,70.2,59.4,44.8,40.4$, 28.5, 21.4, 18.6, 11.2; IR 2946 (w), 2923 (w), 2891 (w), 2881 (w), 2864 (m), 2170 (w), 1676 (w), 1463 (w), 1463 (w), 1421 (w), 1420 (w), 1378 (w), 1366 (w), 1202 (w), 1188 (w), 1182 (w), 1161 (w), 1132 (w), 1100 (w), 1081 (w), 1073 (w), 1029 (w), 1015 (w), 997 (w), 884 (w), 799 (w), 741 (m), 738 (m), 721 (w), 714 (w), 696 (m), 679 (s), 662 (m), 657 (m), 645 (w), 636 (m), 621 (w), 611 (w); HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NOSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 386.2874$; found 386.2876.

Tert-butyl 2-phenyl-5-(3-(triisopropylsilyl)prop-2-ynyl)pyrrolidine-1-carboxylate (71): was obtained as a pale yellow oil $(141 \mathrm{mg}, 0.319 \mathrm{mmol}, 80 \%$ yield; mixture of inseparable
diastereosiomers, d.r. 94:6); $\mathrm{R}_{\mathrm{f}} 0.64$ (Pentane/EtOAc 20/3). The product was obtained as a mixture of rotamers. In order to characterize it, it was subjected to deprotection of the amino group according the general procedure GP2.

2-Phenyl-5-(3-(triisopropylsilyl)prop-2-ynyl)pyrrolidine (71') was obtained as a pale yellow oil ($109 \mathrm{mg}, 0.319 \mathrm{mmol}$, quantitative yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.31$ (m, 2 H, Ph), $7.24(\mathrm{~m}, 1 \mathrm{H}, P h), 4.20(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{PhCHN}), 3.43(\mathrm{dt}, J=13.6,6.0 \mathrm{~Hz}$, $\mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.54\left(\mathrm{~d}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right.$), $2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.17(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.13-1.00(\mathrm{~m}, 21 \mathrm{H}, \mathrm{TIPS}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.4,128.3,126.8,126.5,106.3,81.7,62.8,57.6,34.2,30.7,27.1,18.6$, 11.3; IR 3064 (w), 3026 (w), 2955 (s), 2941 (s), 2891 (m), 2865 (s), 2171 (m), 1604 (w), 1491 (w), 1463 (m), 1435 (w), 1427 (w), 1413 (w), 1402 (w), 1383 (w), 1366 (w), 1279 (w), 1249 (w), 1106 (w), 1074 (w), 1030 (w), 1016 (m), 996 (w), 971 (w), 920 (w), 883 (s), 756 (m), 701 (s), 678 (s), 667 (s), 666 (s), $654(\mathrm{~s}), 643(\mathrm{~m}), 634(\mathrm{~m}), 620(\mathrm{w}), 607(\mathrm{w})$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$342.2617; found 342.2602.

The relative stereochemistry of the major diastereoisomer was assigned based on the ROESY correlation observed between signals at $\delta 4.20(\mathrm{PhCHN})$ and $\delta 3.43\left(\mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$.

Tert-butyl 2-(but-3-enyl)-5-(3-(triisopropylsilyl)prop-2-ynyl)pyrrolidine-1-carboxylate (7 m): was obtained as a dark yellow oil $(103 \mathrm{mg}, 0.245 \mathrm{mmol}$,
 57% yield); $\mathrm{R}_{\mathrm{f}} 0.66$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.57^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta 5.81\left(\mathrm{ddt}, 1 \mathrm{H}, J=16.8,10.2,6.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.01 (ddd, $\left.J=17.1,3.5,1.5 \mathrm{~Hz}, \mathrm{CH}=C H_{2}\right), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=10.2$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}_{2}$), $3.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$), 2.81 (dd, $1 \mathrm{H}, J=16.5,2.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.36 (dd, $1 \mathrm{H}, J=16.6,9.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.16-1.83 (m, $7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.15-0.94$ (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, 57^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) $\delta 154.8,138.4,114.5,106.0,82.1,79.3,58.7,57.8,35.0$, 30.8, 29.1, 28.7, 28.6, 26.4, 18.6, 11.5; IR 3079 (w), 3078 (w), 2972 (w), 2962 (w), 2942 (w), 2933 (w), 2865 (w), 2364 (w), 2358 (w), 2171 (w), 1695 (s), 1642 (w), 1462 (w), 1426 (w), 1389 (s), 1366 (m), 1322 (w), 1254 (w), 1173 (m), 1109 (m), 1030 (w), 995 (w), 969 (w), 940 (w), 911
(m), 884 (m), 858 (w), 774 (w), 735 (w), 678 (m), 668 (m), $660(\mathrm{~m}), 635(\mathrm{w}), 622(\mathrm{w}), 612(\mathrm{w})$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+} 420.3292$; found 420.3279. The relative stereochemistry was assigned based on analogy with compound (7l).
((2,2-Dimethylhexahydro-2H-cyclopenta[b]furan-6-yl)ethynyl)triisopropylsilane (7n): was
 obtained as a pale yellow oil ($111 \mathrm{mg}, 0.345 \mathrm{mmol}, 86 \%$ yield); R_{f} 0.64 (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.38$ (dd, $1 \mathrm{H}, J=6.8,6.2 \mathrm{~Hz}, C H O), 2.82(\mathrm{~m}, 1 \mathrm{H}, C H C \equiv \mathrm{C}), 2.51$ (ddd, $J=$ $10.6,6.2,5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $1.98(\mathrm{dd}, 1 \mathrm{H}, J=12.1,9.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}$), 1.90-1.74 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}\right.$), 1.27 ($\mathrm{s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), 1.26 (dd, $1 \mathrm{H}, \mathrm{J}=12.2,8.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}$), $1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-0.97(\mathrm{~m}, 21 \mathrm{H}$, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.8,82.9,82.1,81.9,46.6,43.4,38.1,31.5,31.4,27.8$, 26.0, 18.7, 11.4; IR 2960 (s), 2942 (s), 2893 (m), 2865 (s), 2723 (w), 2717 (w), 2359 (w), 2240 (w), 2180 (m), 2153 (w), 2152 (w), 1463 (m), 1382 (w), 1367 (m), 1302 (w), 1273 (w), 1246 (w), 1159 (m), 1112 (w), 1091 (w), 1080 (m), 1065 (m), 1034 (w), 1010 (m), 994 (m), 925 (m), 911 (s), 884 (s), 821 (w), 788 (w), 736 (s), 687 (s), 674 (s), 657 (s), 643 (m), 629 (m), 618 (m), 606 (w); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 321.2608$; found 321.2607.

The relative stereochemistry of the major diastereoisomer was assigned based on the ROESY correlations observed between signals at $\delta 4.38(\mathrm{CHO}), \delta 2.82(\mathrm{CHC} \equiv \mathrm{C})$ and $\delta 2.51$ $\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$.

(3-(5,5-Dimethyltetrahydrofuran-2-yl)but-1-ynyl)triisopropylsilane (7o): The reaction was
 performed at $110^{\circ} \mathrm{C}$. The product was obtained as a yellow oil (87.4 mg , $0.283 \mathrm{mmol}, 71 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.77$ (Hexane/EtOAc 20/2); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.08(\mathrm{td}, 1 \mathrm{H}, J=7.1,4.1 \mathrm{~Hz}, C H O), 2.72(\mathrm{ddd}, 1 \mathrm{H}, J=$ $\left.14.1,7.0,4.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{C}\right)$, $2.05-1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.78-1.67 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.22 (s, 3 $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C} \equiv \mathrm{C}\right), 1.11-1.01(\mathrm{~m}, 21 \mathrm{H}, \operatorname{TIPS}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 110.9,81.2,81.0,80.1,38.4,31.4,28.5,28.1,27.7,18.6,15.8,11.3$; IR 2965 (s), 2942 (s), 2906 (m), 2892 (m), 2866 (s), 2165 (m), 1463 (m), 1380 (w), 1366 (m), 1301 (w), 1246 (w), 1155 (w), 1061 (m), 1051 (m), 998 (m), 912 (m), 884 (s), 867 (w), 867 (w), 862 (w), 862 (w), 822 (w), 785 (w), 737 (w), 737 (w), 675 (s), 634 (w), 634 (w); HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 309.2608$; found 309.2605.

Tert-butyl 6-((triisopropylsilyl)ethynyl)hexahydrocyclopenta[b]pyrrole-1(2H)-carboxylate ($7 \mathbf{p}$): was obtained as a yellow oil ($134 \mathrm{mg}, 0.346 \mathrm{mmol}, 86 \%$ yield); $\mathrm{R}_{\mathrm{f}} 0.48$ (Hexane/EtOAc

20/3). The product was obtained as a mixture of rotamers. In order to characterize it, it was subjected to deprotection of the amino group according the general procedure GP2.

((Triisopropylsilyl)ethynyl)octahydrocyclopenta[b]pyrrole (7p') was obtained as a yellow oil (79.2 mg, $0.272 \mathrm{mmol}, 85 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.63(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $C H \mathrm{~N}), 2.98\left(\mathrm{dt}, 1 \mathrm{H}, J=9.1,7.2 \mathrm{~Hz}, C H_{2} \mathrm{~N}\right), 2.82\left(\mathrm{dt}, 1 \mathrm{H}, J=9.1,6.4 \mathrm{~Hz}, C H_{2} \mathrm{~N}\right), 2.73(\mathrm{dt}, 1 \mathrm{H}$, $J=10.1,6.5 \mathrm{~Hz}, C H C \equiv \mathrm{C}), 2.62(\mathrm{~m}, 1 \mathrm{H}, C H C H N), 2.09-1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}$ and NH), $1.78-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}\right), 1.49(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHC} \equiv \mathrm{C}$), $1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.16-0.95(\mathrm{~m}, 21 \mathrm{H}, T I P S) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 108.7,83.1,64.4,47.4,42.2,38.8,34.2,33.4,32.7,18.6,11.2$; IR 2942 (s), 2892 (w), 2864 (s), 2175 (w), 1710 (w), 1462 (m), 1383 (w), 1365 (w), 1312 (w), 1116 (w), 1077 (w), 1015 (w), 997 (w), 919 (w), 883 (m), 829 (w), 806 (w), 734 (w), 674 (s), 662 (m), 643 (s), 633 (m), $622(\mathrm{~m}), 607(\mathrm{w}) ;$ HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{NSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 292.2455$; found 292.2453.

The relative stereochemistry was assigned based on ROESY correlations observed between signals at $\delta 3.63(\mathrm{CHN}), \delta 2.73(\mathrm{CHC} \equiv \mathrm{C})$ and $\delta 2.62(\mathrm{CHCHN})$.

6. Functionalizations of the products

2-(3-(4-Methoxyphenyl)prop-2-ynyl)tetrahydrofuran (8)

Following a reported procedure, ${ }^{29}$ TBAF (1.0 M in THF, $0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}, 2.0$ equiv) was added dropwise to a solution of propargyl tetrahydrofuran $7 \mathbf{7 a}(80 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) in THF (1.5 mL) and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . It was then allowed to cool down to rt and p-iodoanisole (47) ($87 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) was added, followed by $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17$ $\mathrm{mg}, 0.024 \mathrm{mmol}, 0.08$ equiv) and $\mathrm{CuI}(69 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv). After stirring at rt overnight, SiO_{2} was added and the solvent was removed in vacuo. Column chromatography purification of the crude product preadsorbed on silica gel (SiO_{2}, Hexane/EtOAc 95/5) afforded alkyne $\mathbf{8}(56.8 \mathrm{mg}, 0.262 \mathrm{mmol}, 87 \%)$ as a pale yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.46$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~m}, 2 \mathrm{H}, ~ A r), 6.80(\mathrm{~m}, 2 \mathrm{H}$, $\left.A r), 4.10\left(\mathrm{dt}, J=12.0,6.7 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH})_{2}\right), 3.82-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.66\left(\mathrm{dd}, 1 \mathrm{H}, J=16.6,5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=16.6,6.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.02-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,132.9,115.8,113.7,85.0,81.4,77.4,68.4,55.2,30.7,26.2$, 25.7; IR 2954 (w), 2930 (w), 2908 (w), 2868 (w), 2839 (w), 1607 (m), 1569 (w), 1509 (s), 1462 (w), 1442 (w), 1417 (w), 1365 (w), 1290 (m), 1246 (s), 1173 (m), 1107 (w), 1067 (s), 1034 (m), 920 (w), 832 (s), 811 (w), 801 (w), 735 (w), 647 (w), 636 (m); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 217.1223$; found 217.1217.

3-((Tetrahydrofuran-2-yl)methyl)-2-(triisopropylsilyl)-1H-indole (9)

Following a reported procedure, ${ }^{30}$ 2-iodo aniline (48) ($92 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($185 \mathrm{mg}, 1.75 \mathrm{mmol}, 5.0$ equiv) and PEPPSI-iPr ($24 \mathrm{mg}, 0.035 \mathrm{mmol}, 0.1$ equiv) were introduced into a vial, which was then sealed. Propargyl tetrahydrofuran $7 \mathbf{a}$ ($93 \mathrm{mg}, 0.35 \mathrm{mmol}$, 1.0 equiv) was added by syringe, followed by DMF (previously degassed, 2.1 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 40 h and then allowed to cool down to rt , diluted with water (5 mL) and extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine and

[^11](30) Grunenthal GMBH, Patent: US2009/247505 A1, 2009.
dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, hexane/EtOAc $99 / 1$ to $98 / 2$) afforded indole $9(54.5 \mathrm{mg}, 0.152 \mathrm{mmol}$, 43% yield) as a colorless solid.
$\mathrm{R}_{\mathrm{f}} 0.54$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ ($\mathrm{s}, 1 \mathrm{H}$, NH indole), 7.76 (d, 1 $\mathrm{H}, J=7.9 \mathrm{~Hz}$, indole $)$, $7.38(\mathrm{~m}, 1 \mathrm{H}$, indole $), 7.20(\mathrm{~m}, 1 \mathrm{H}$, indole $), 7.11(\mathrm{~m}, 1 \mathrm{H}$, indole $), 4.28$ (dt, $1 \mathrm{H}, J=13.3,6.7 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), $3.98\left(\mathrm{dt}, J=7.6,6.5 \mathrm{~Hz}, C H_{2} \mathrm{O}\right), 3.78(\mathrm{dt}, 1 \mathrm{H}, J=7.1$, $5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $3.23\left(\mathrm{dd}, 1 \mathrm{H}, J=14.2,6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ indole), $3.03(\mathrm{dd}, 1 \mathrm{H}, J=14.2,7.1 \mathrm{~Hz}$, CH_{2} indole), $1.92\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51$ (quint, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.26-1.10\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, TIPS carbon partially splitted) $\delta 138.6,130.0,129.1,123.3,122.0,119.8,118.8,110.6,80.4,67.7,33.0,31.7$, 25.8, 18.9, 18.8, 12.2; IR 3480 (w), 3361 (w), 3058 (w), 3057 (w), 2940 (m), 2890 (m), 1723 (w), 1504 (w), 1462 (m), 1419 (w), 1382 (w), 1368 (w), 1336 (w), 1285 (w), 1235 (w), 1151 (w), 1126 (w), 1092 (w), 1016 (w), 1016 (w), 996 (w), 909 (m), 884 (m), 801 (w), 740 (s), 679 (m), $672(\mathrm{~m}), 660(\mathrm{~m}), 648(\mathrm{~m})$; Melting point: $121.7-124.8^{\circ} \mathrm{C}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NOSi}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 358.2561$; found 358.2557.

2-Phenyl-5-(prop-2-ynyl)tetrahydrofuran (10)

TBAF (1.0 M in THF, $2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}, 2.0$ equiv) was added dropwise to a solution of tetrahydrofuran 7 e ($431 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.0$ equiv) in THF $(5.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at further rt for 1 h . The reaction was then quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 7 mL). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 98/2) afforded compound $10(202 \mathrm{mg}, 1.09 \mathrm{mmol}, 86 \%$ yield) as a yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.59$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.28(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{Ph}), 5.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHPh}), 4.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.61$ (ddd, $1 \mathrm{H}, J=16.6,5.0,2.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.52 (ddd, $1 \mathrm{H}, J=16.6,6.9,2.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), $2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}\right), 2.26$ $\left.(\mathrm{m}, 1 \mathrm{H}, \mathrm{PhCHCH})_{2}\right), 2.05(\mathrm{t}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 2.02-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,128.3,127.2,125.5,81.1,81.0,77.6,69.8,35.1,31.4,25.6$; IR 3298 (w), 3032 (w), 3028 (w), 2973 (w), 2938 (w), 2909 (w), 2873 (w), 2362 (w), 1493 (w), 1452 (w), 1435 (w), 1428 (w), 1420 (w), 1360 (w), 1343 (w), 1333 (w), 1332 (w), 1290 (w), 1217 (w), 1181 (w), 1083 (m), 1060 (s), 1029 (w), 1002 (w), 970 (w), 943 (w), 912 (w), 881 (w), 867 (w), 828 (w), 753 (m), 740 (m), 733 (m), 720 (m), 701 (s), 673 (s), 653 (s), 642 (s), 633 (s), $621(\mathrm{~s}), 607(\mathrm{~m})$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$187.1117; found 187.1113.

2-Butyl-5-phenyltetrahydrofuran (11)

Following a reported procedure, ${ }^{31} n \mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.15 \mathrm{~mL}, 0.38 \mathrm{mmol}, 1.09$ equiv) was added dropwise to a solution of phenyl propargyl tetrahydrofuran $10(65 \mathrm{mg}, 0.35 \mathrm{mmol}$, 1.00 equiv) in THF $(0.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 45 min , then at $0^{\circ} \mathrm{C}$ for 5 min and cooled back to $-78^{\circ} \mathrm{C}$ before adding methyl iodide $(110 \mu \mathrm{~L}, 1.75$ mmol, 5.00 equiv) and HMPA ($70 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1.13$ equiv). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for additional 40 min and then at rt overnight. The reaction was then diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and quenched by addition of water (5 mL). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 99/1 to 98/2) afforded alkyne 49 ($43.1 \mathrm{mg}, 0.215 \mathrm{mmol}, 62 \%$ yield) as colorless oil.

Alkyne 49 ($37 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL}$) and palladium on charcoal (40 mg) was added. The mixture was stirred under an H_{2} atmosphere at rt for 6 hours and it was then filtered through a Celite pad (which was washed several times with MeOH and DCM). The solvent was removed in vacuo and the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc 99/1 to 98/2) to afford butyl phenyl tetrahydrofuran $\mathbf{1 1}(27.2 \mathrm{mg}, 0.133$ mmol, 72% yield) as a colorless oil.
$\mathrm{R}_{\mathrm{f}} 0.51$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{Ph}), 5.00$ (dd, $1 \mathrm{H}, J=8.0,6.5 \mathrm{~Hz}, \mathrm{PhCHO}$), 4.19 (ddd, $1 \mathrm{H}, J=14.1,8.0,6.0 \mathrm{~Hz}, \mathrm{BuCHO}$), 2.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}$), $2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2}\right), 1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{CH}_{2}\right.$), 1.77-1.58 (m , $2 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{CH}_{2}$ and Bu), 1.58-1.27 (m, 5 H, Bu), $0.93\left(\mathrm{t}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,128.2,127.0,125.6,80.1,80.1,35.9,35.4,32.4,28.4,22.8,14.1$; IR 3064 (w), 3029 (w), 3029 (w), 2960 (m), 2930 (m), 2888 (w), 2872 (m), 2859 (m), 2363 (w), 1716 (w), 1493 (w), 1493 (w), 1465 (w), 1453 (w), 1379 (w), 1379 (w), 1368 (w), 1368 (w), 1363 (w), 1363 (w), 1362 (w), 1362 (w), 1361 (w), 1361 (w), 1329 (w), 1329 (w), 1215 (w), 1092 (m), 1088 (m), 1051 (m), 1029 (m), 957 (w), 957 (w), 937 (w), 937 (w), 910 (w), 910 (w), 877 (w), 877 (w), 753 (m), 699 (s), 682 (w), 668 (w), 654 (w), 653 (w), 642 (w), 630 (w), 619 (w). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR values for the characterization for $\mathbf{1 1}$ correspond to the ones reported in literature. ${ }^{32}$

3-(5-Phenyltetrahydrofuran-2-yl)propanal (12)

[^12]

Following a reported procedure, ${ }^{33}\left[\mathrm{CpRu}\left(\eta^{6}\right.\right.$-naphthalene $\left.)\right] \mathrm{PF}_{6}(13 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.1$ equiv $)$ and ligand 50 ($20 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.2$ equiv) were stirred in previously degassed $\mathrm{CH}_{3} \mathrm{CN}(1.8$ mL) at $60^{\circ} \mathrm{C}$ for 6 hours. Passed this time, the solvent was removed by distillation under reduced pressure to afford a yellow resinous solid. A solution of tetrahydrofuran $\mathbf{1 0}(56 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1.0 equiv) in acetone (0.8 mL) was prepared. Water ($162 \mu \mathrm{~L}, 9.00 \mathrm{mmol}, 30$ equiv) was added and the resulting solution was degassed and added to the previously prepared solid. The mixture was then stirred at $55^{\circ} \mathrm{C}$ for 12 h , before the solvent was removed in vacuo. The resulting crude oil was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $95 / 5$ to $\left.90 / 10\right)$ to afford aldehyde $\mathbf{1 2}$ ($59.5 \mathrm{mg}, 0.291 \mathrm{mmol}, 87 \%$ yield) as a colorless oil.
$\mathrm{R}_{\mathrm{f}} 0.35$ (Hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{t}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{HC=O}$), 7.38-7.28 (m, $4 \mathrm{H}, \mathrm{Ph}), 7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 4.96$ (dd, $1 \mathrm{H}, J=8.1,6.4 \mathrm{~Hz}, \mathrm{PhCHO}), 4.24(\mathrm{~m}, 1 \mathrm{H}$, OCHCH_{2}), $\left.\left.2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH})_{2}\right), 2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH})_{2}\right), 2.00-$ $1.80\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right.$ and $\left.\mathrm{PhCHCH}_{2} \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,143.4,128.3,127.1,125.5,80.2,78.7,40.7,35.2,32.0,28.3$; IR 3063 (w), 3029 (w), 2962 (w), 2937 (w), 2872 (w), 2725 (w), 1722 (s), 1604 (w), 1493 (w), 1452 (w), 1412 (w), 1390 (w), 1353 (w), 1342 (w), 1335 (w), 1307 (w), 1306 (w), 1215 (w), 1186 (w), 1107 (w), 1082 (m), 1069 (m), 1027 (m), 993 (w), 987 (w), 975 (w), 953 (w), 912 (m), 878 (w), 756 (m), 733 (s), 701 (s), 676 (w), $667(\mathrm{w}), 648$ (w), $623(\mathrm{w})$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 205.1223; found 205.1222.

1-(5-Phenyltetrahydrofuran-2-yl)allyl benzoate (13)

Following a reported procedure, ${ }^{34}[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(8.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.05$ equiv), DPE-Phos ($17.3 \mathrm{mg}, 0.0322 \mathrm{mmol}, 0.10$ equiv) and benzoic acid ($59 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.5$ equiv) were introduced into a vial, which was then sealed. Alkyne $10(60 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0$ equiv) was added, followed by DCE (freshly distilled on CaH_{2} and degassed, 3.2 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 17 h . It was then allowed to cool down to rt and filtered through a short plug of silica gel, which was then washed several times with DCM. After removal of the solvent by distillation under reduced pressure, the crude product was purified by column

[^13]chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $98 / 2$ to $\left.95 / 5\right)$ to afford the pure compound $\mathbf{1 3}(34 \mathrm{mg}$, $0.11 \mathrm{mmol}, 34 \%$ yield, mixture of inseparable diastereoisomers, d.r.: 73:27) as a pale yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.48$ (pentane/EtOAc 20/1.5); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCO}$, both diaster.), 7.58 (m, $1 \mathrm{H}, \mathrm{PhCO}$, both diaster.), 7.47 (m, $2 \mathrm{H}, \mathrm{PhCO}$, both diaster.), 7.41-7.15 (m, 5 $\mathrm{H}, \mathrm{CH} P h$, both diaster.), 6.02 (ddd, $J=17.0,10.5,6.2 \mathrm{~Hz}, C H=\mathrm{CH}_{2}$), $6.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$, minor diaster.), 5.68 (dd, $1 \mathrm{H}, J=5.8,4.8 \mathrm{~Hz}, \mathrm{CHOBz}$), 5.65 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHOBz}$, minor diaster.), $5.48\left(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.45\left(\mathrm{dt}, J=17.4,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right.$, minor diaster. $)$, 5.35 (d, $1 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}$, both diaster.), 5.09 (dd, $J=8.1,6.5 \mathrm{~Hz}, \mathrm{PhCHO}$, minor diaster.), 5.05 (dd, $1 \mathrm{H}, J=8.1,6.2 \mathrm{~Hz}, \mathrm{PhCHO}$), 4.43-4.55 (m, $1 \mathrm{H}, \mathrm{OCHCHOBz}$, minor diaster.), 4.49 (ddd, $1 \mathrm{H}, J=7.1,7.1,4.8 \mathrm{~Hz}$, OCHCHOBz), $2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$, both diaster.), 2.29-1.99 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, both diaster.), 1.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, both diaster.); ${ }^{3} \mathrm{C}$ NMR (101 MHz , CDCl_{3}; some peaks are not resolved) $\delta 165.8,165.6,142.8,133.2,133.1,133.0,133.0,130.3$, $129.9,129.7,129.6,128.4,128.3,128.3,127.2,125.6,125.5,118.5,81.6,81.1,80.6,80.1,77.1$, 76.7, 35.0, 28.1, 27.8; IR 3087 (w), 3063 (w), 3030 (w), 3009 (w), 2972 (w), 2945 (w), 2906 (w), 2874 (w), 1720 (s), 1602 (w), 1585 (w), 1585 (w), 1493 (w), 1452 (m), 1337 (w), 1315 (w), 1268 (s), 1177 (w), 1111 (m), 1097 (m), 1061 (m), 1027 (m), 991 (w), 991 (w), 957 (w), 935 (m), 883 (w), 883 (w), 805 (w), 756 (m), 710 (s), 700 (s), 674 (w), 668 (w), 649 (w), 632 (w); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 309.1485$; found 309.1490.

6-Hydroxydeca-1,9-dien-5-yl acetate (14)

Following a reported procedure, ${ }^{35}$ a solution of trans-1,4-dibromobutene (51) ($2.99 \mathrm{~g}, 14.0$ mmol, 1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise to an solution of allyl magnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 45 \mathrm{~mL}, 45 \mathrm{mmol}, 3.2$ equiv) at 0°. The resulting mixture was stirred overnight, allowing the temperature to increase to $22^{\circ} \mathrm{C}$. The reaction was then quenched by addition of aqueous acetic acid ($10.5 \mathrm{M}, 1.55 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. The mixture was poured onto ice (ca. 70 g). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 50 mL). The combined organic layers were washed with aqueous $\mathrm{NaHCO}_{3}(10 \% \mathrm{w} / \mathrm{w}, 2 \times 50 \mathrm{~mL})$ and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. The crude product was purified by filtration through a short silica plug (elution with pentane) to afford triene 52 (1.505 $\mathrm{g}, 11.07 \mathrm{mmol}, 79 \%$ yield) as a colorless oil.
(35) Braddock, D. C.; Cansell, G.; Hermitage, S. A.; White, A. J. P. Tetrahedron: Asymmetry 2004, 15, 3123.

Following a reported procedure, ${ }^{34}$ triene $52(1.50 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.0$ equiv) was added to a suspension of Admix β (15.4 g : (DHQD$)_{2} \mathrm{Phal}, 0.105$ mmoles (0.0095 equiv); $\mathrm{K}_{2} \mathrm{CO}_{3}, 32.7$ mmoles (3.0 equiv); $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 32.7$ mmoles (3.0 equiv); $\mathrm{K}_{2} \mathrm{OsO}_{4} \mathrm{H}_{2} \mathrm{O}$, 0.0459 mmoles (0.0042 equiv)) and methanesulfonamide ($1.05 \mathrm{~g}, 11.1 \mathrm{mmol}, 1.01 \mathrm{equiv}$) in a solution of tert-butanol and water $(54 \mathrm{~mL} / 54 \mathrm{~mL})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 7 h and then the reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (ca. 15 g) and allowed to warm to rt. The aqueous layer was extracted with EtOAc ($4 \times 50 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc $75 / 25$ to $40 / 60$) afforded diol $53(0.782 \mathrm{~g}, 4.60 \mathrm{mmol}$, 41% yield) as colorless oil.

Following a reported procedure, ${ }^{36}$ triethyl orthoacetate ($1.8 \mathrm{~mL}, 9.7 \mathrm{mmol}, 3.0$ equiv) and p-TSA ($62 \mathrm{mg}, 0.32 \mathrm{mmol}, 0.1$ equiv) were added to a solution of diol $53(0.553 \mathrm{~g}, 3.25 \mathrm{mmol}, 1.0$ equiv) in DCM (6.5 mL). The mixture was stirred at rt overnight and then the solvent was removed by distillation under reduced pressure. The residue was taken up in DCM (4.4 mL) and treated with aqueous acetic acid ($80 \% \mathrm{v} / \mathrm{v}, 2.4 \mathrm{~mL}$) for 1.5 h . The two layers were then separated and the aqueous one was extracted with DCM ($2 \times 5 \mathrm{~mL}$). The combined organic layers were washed with aqueous NaHCO_{3} (saturated solution, 5 mL), water and brine, dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, pentane/EtOAc 90/10 to 80/20) afforded compound 14 ($0.634 \mathrm{~g}, 2.99 \mathrm{mmol}, 92 \%$ yield) as colorless oil.
$\mathrm{R}_{\mathrm{f}} 0.56$ (hexane/EtOAc 17/7); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.08-4.94$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 4.86 (ddd, $1 \mathrm{H}, J=7.6,6.2,4.0 \mathrm{~Hz}, \mathrm{CHOAc}$), 3.62 (ddd, $1 \mathrm{H}, J=12.2,8.2$, $4.2 \mathrm{~Hz}, \mathrm{CHOH}), 2.29-2.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}, A c), 1.73(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8$, 138.0, 137.5, 115.2, 115.2, 75.9, 71.8, 32.8, 29.8, 29.8, 29.6, 21.0; IR 3384 (w), 3076 (w), 2937 (w), 2854 (w), 1737 (s), 1721 (s), 1642 (w), 1450 (w), 1417 (w), 1374 (m), 1239 (s), 1028 (m), 999 (w), 912 (s), 673 (w), 637 (w), $630(\mathrm{w}) ;[\alpha]_{D}^{20}=+18.8^{\circ}$. The values for the characterization for $\mathbf{1 4}$ correspond to the ones reported in the literature. ${ }^{35}$

1-(5-(Prop-2-ynyl)tetrahydrofuran-2-yl)pent-4-enyl acetate (15)

Under inert atmosphere $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(172 \mathrm{mg}, 0.187 \mathrm{mmol}, 0.085$ equiv), DPE-Phos (202 mg , $0.187 \mathrm{mmol}, 0.17$ equiv) and $\mathrm{NaOt} \mathrm{Bu}(303 \mathrm{mg}, 3.15 \mathrm{mmol}, 1.43$ equiv) were introduced into a

[^14]20 mL vial, which was then sealed. Toluene was added (21 mL), followed by bromo triisopropylsilyl acetylene (5a) ($3.15 \mathrm{~g}, 3.15 \mathrm{mmol}, 1.43$ equiv) and alcohol $\mathbf{1 4}(465 \mathrm{mg}, 2.20$ $\mathrm{mmol}, 1.00$ equiv). The mixture was stirred at $75^{\circ} \mathrm{C}$ for 3 h and then allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The crude mixture was then directly purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane/EtOAc $98 / 2$ to $\left.95 / 5\right)$ to afford compound 54 ($510 \mathrm{mg}, 1.30 \mathrm{mmol}, 59 \%$ yield) as a pale yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.79$ (hexane/EtOAc 17/7); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79$ (ddt, $J=16.8,10.1,6.5 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}_{2}$), $5.08-4.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.89(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.8 \mathrm{~Hz}, \mathrm{OCHCHO}), 4.13$ (ddd, 1 $\mathrm{H}, J=13.7,7.6,4.5 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$), 4.08 (td, $1 \mathrm{H}, J=7.2,5.5 \mathrm{~Hz}, \mathrm{OCHCHO}$), 2.54 (dd, 1 $\left.\mathrm{H}, J=16.6,4.3 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.40\left(\mathrm{dd}, 1 \mathrm{H}, J=16.6,7.6 \mathrm{~Hz}, C H_{2} \mathrm{C} \equiv \mathrm{C}\right), 2.17-1.96(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.09-1.01 (m, 21 H, TIPS); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,137.7,115.0,105.0,82.0,80.0$, 77.5, 74.6, 31.0, 30.3, 29.6, 28.1, 26.7, 21.2, 18.6, 11.2; IR 2942 (m), 2895 (w), 2865 (m), 2364 (w), 2336 (w), 2174 (w), 1742 (s), 1643 (w), 1464 (w), 1373 (m), 1236 (s), 1072 (m), 1028 (m), 996 (m), 974 (w), 948 (w), 914 (m), 884 (m), 735 (m), 701 (w), 677 (s), 661 (m), 646 (w), 639 (w), 628 (w), $620(\mathrm{w}) ;$ HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+} 393.2819$; found 393.2811.

TBAF (1.0 M in THF, $2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}, 2.0$ equiv) was added dropwise to a solution of tetrahydrofuran 54 ($450 \mathrm{mg}, 1.15 \mathrm{mmol}, 1.0$ equiv) in THF $(5.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at further rt for 1 h . The reaction was then quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (saturated solution, 7 mL). The two layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and the solvent was removed in vacuo. Purification by column chromatography (SiO_{2}, hexane/EtOAc 96/4) afforded compound $\mathbf{1 5}(256 \mathrm{mg}, 1.08 \mathrm{mmol}, 94 \%$ yield) as a yellow oil.
$\mathrm{R}_{\mathrm{f}} 0.39$ (hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.79$ (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH}_{2}$), $5.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.90(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.8 \mathrm{~Hz}$, OCHCHO), 4.18-4.04 (m, $2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{C} \equiv \mathrm{C}$ and OCHCHO), 2.47 (ddd, $1 \mathrm{H}, J=16.5,4.6,2.6$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.36 (ddd, $1 \mathrm{H}, \mathrm{J}=16.5,7.0,2.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}$), 2.18-1.98 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.96(\mathrm{t}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH}), 1.84-1.58(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,137.5,115.0,79.8,77.0$, 74.5, 69.7, 69.7, 30.9, 30.1, 29.6, 27.9, 25.0, 21.1; IR 3299 (w), 3290 (w), 3078 (w), 2976 (w), 2953 (w), 2918 (w), 2876 (w), 1736 (s), 1643 (w), 1464 (w), 1447 (w), 1437 (w), 1374 (w), 1239 (s), 1073 (m), 1030 (m), 1001 (w), 943 (w), 917 (w), 916 (w), 886 (w), 740 (w), 732 (w), 711 (w), $696(\mathrm{w}), 670(\mathrm{~s}), 656(\mathrm{~m}), 644(\mathrm{~m}), 633(\mathrm{w}), 611(\mathrm{w}) ;[\alpha]_{D}^{20}=+25.1^{\circ}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$237.1485; found 237.1492.

1-(5-(1-Acetoxypent-4-enyl)tetrahydrofuran-2-yl)allyl 4-bromobenzoate (16)

Following a reported procedure, ${ }^{33}[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(8.6 \mathrm{mg}, 0.017 \mathrm{mmol}, 0.07$ equiv), DPE-Phos ($18.8 \mathrm{mg}, 0.0350 \mathrm{mmol}, 0.14$ equiv) and 4 -bromobenzoic acid ($75.4 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv) were introduced into a vial, which was then sealed. Alkyne 15 ($59 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) was added, followed by DCE (freshly distilled on CaH_{2} and degassed, 2.5 mL). The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . It was then allowed to cool down to rt and filtered through a short plug of silica gel, which was then washed several times with DCM. After removal of the solvent by distillation under reduced pressure, the crude product was purified by column chromatography (SiO_{2}, pentane/EtOAc 97/3 to 90/10) to afford the pure compound $\mathbf{1 6}$ (39.8 mg , $0.0 .910 \mathrm{mmol}, 36 \%$ yield, mixture of inseparable diastereoisomers, d.r.: 64:36) as a colorless oil.
$\mathrm{R}_{\mathrm{f}} 0.33$ (hexane/EtOAc 20/3); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.58 (m, 2 H , Ar), 5.99-5.85 (m, $1 \mathrm{H}, \mathrm{OCHCH}=\mathrm{CH}_{2}$, both diaster.), $5.86-5.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.57 (ddt, $1 \mathrm{H}, J=7.5,2.5,1.5 \mathrm{~Hz}, \mathrm{OCHCH}=\mathrm{CH}_{2}$), $5.49\left(\mathrm{tt}, 1 \mathrm{H}, J=6.0,1.0 \mathrm{~Hz}, \mathrm{OCHCH}=\mathrm{CH}_{2}\right.$, minor diaster.), 5.46-5.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCHCH}=\mathrm{CH}_{2}$, both diaster.), $5.06-4.95(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.91 (ddd, $1 \mathrm{H}, J=13.8,4.7,4.7 \mathrm{~Hz}$, OCHCHOAc, both diaster.), 4.29-4.18 (m, $1 \mathrm{H}, \mathrm{OCHCHCH}=\mathrm{CH}_{2}$, both diaster.), 4.05 (ddd, $1 \mathrm{H}, J=19.3,6.8,6.8 \mathrm{~Hz}, \mathrm{OCHCHOAc}$, both diaster.), 2.13-1.86 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$, both diaster.), 2.07 (s, $3 \mathrm{H}, \mathrm{Ac}$), 1.98 (s, 3 H, Ac, minor diaster.), 1.79-1.51 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, both diaster.); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CDCl} 3) ~ \delta 170.8,164.8,137.6,132.9,132.8,131.8,131.7,131.7,131.4,131.2,131.1,129.2$, $129.2,128.1,128.0,118.9,118.5,115.1,115.1,80.4,79.9,79.8,79.4,76.9,76.7,74.3,74.2$, 30.1, 30.1, 29.6, 29.6, 28.0, 27.9, 27.8, 27.2, 21.1, 21.0; IR 3077 (w), 2973 (w), 2955 (w), 2927 (w), 2872 (w), 2858 (w), 2857 (w), 2358 (w), 1728 (s), 1727 (s), 1643 (w), 1591 (m), 1486 (w), 1464 (w), 1448 (w), 1398 (w), 1373 (w), 1269 (s), 1238 (s), 1174 (w), 1103 (m), 1069 (w), 1027 (w), 1012 (m), 994 (w), 921 (w), 848 (w), 757 (s), 726 (w), 708 (w), 684 (w), 673 (w), 660 (w), 652 (w), 643 (w), 633 (w), 619 (w), 604 (w); HRMS (ESI) calcd for $\mathrm{C}_{21}{ }^{79} \mathrm{BrH}_{26} \mathrm{O}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 437.0958; found 437.0967.

8. Spectra of New Compounds

solvent: CDCI3
Frequency. 100.61 MHz

solvent:CDC13
Frequency 100.61 MHz

Solvent: CDCI3
Frequency. 100.61 MHz

Solvent:CDCI3
TIPSO
7b

solvent:CDCI3
Frequency. 100.61 MHz

Solvent: CDCI3
Frequency. 100.61 MHz

solvent: CDCI3
Frequency. 400.61 MHz

solvent: $C D C I 3$
Frequency. 100.61 MHz

solvent:CDCI
Frequency. 100.58 MHz

solvent: CDCI3
Frequency. 100.61 MHz

solvent: CDCI3
Frequency. 100.61 MHz

solvent:CDCI3
Frequency. 100.61 MHz

solvent: CDCI3

$7 i$

Frequency. 100.61 MHz

Solvent: CDCI3
Frequency. 400.13 MHz

7j

solvent: CDCI3
Frequency. 100.61 MHz

solvent: CDCI3
Frequency 400.13 MHz

7k', Major diaster.

solvent: CDCI3
Frequency. 100.61 MHz

Frequency. 400.13 MHz

7k', Minor diaster.

solvent:CDC13
Frequency. 10
Frequency. 100.61 MHz

Frequency. 100.61 MHz

solvent:CDCI3
Frequency. 400.13 MHz

solvent:CDCI3
Frequency. 100.61 MHz

solvent: CDCI3
Frequency. 100.61 MHz

Frequency. 100.61 MHz

Solvent: CDCI3
Frequency. 100.61 MHz

Frequency. 400.13 MHz

Frequency. 100.61 MHz

solvent: CDCI3
Frequency. 400.13 MHz

15

solvent: CDCI3
Frequency. 100.61 MHz

solvent: CDCI3
Frequency 400.13 MHz

16
Frequency. 100.61 MHz

[^0]: (3) J. P. Brand, J. Waser, Angew. Chem., Int. Ed. 2010, 49, 7304.
 (4) Jiang, M. X.; Rawat, M.; Wulff, W. D. J. Am. Chem. Soc., 2004, 126, 5970.

[^1]: (7) López S.; Fernández-Trillo F.; Midón P.; Castedo L.; Saá J. Org. Chem., 2005, 70, 6346.
 (8) Macsári, I.; Szabó, K. J. Chem. Eur. J. 2001, 7, 4097.

[^2]: (9) Zhang, Q.; Rivkin, A.; Curran, D. P. J. Amer. Chem. Soc. 2002, 124, 5774.
 (10) S. Couty, C. Meyer, J. Cossy, Tetrahedron 2009, 65, 1809.

[^3]: (11) Marotta, E.; Righi, P.; Rosini, G. Org. Lett. 2000, 2, 4145.
 (12) Conti, P.; Dallanoce, C.; De Amici, M.; De Micheli, C.; Carrea, G.; Zambianchi, F. Tetrahedron: Asymmetry

[^4]: (13) Janza, B.; Studer, A. J. Org. Chem. 2005, 70, 6991.

[^5]: (14) Lemière, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009, 131, 2993.
 (15) Schomaker, J. M.; Travis, B. R.; Borhan, B. Org. Lett., 2003, 5, 3089.

[^6]: (16) Wang, L.; Thai, K.; Gravel, M. Org. Lett., 2009, 11, 891.
 (17) Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc., 2001, 123, 10127.

[^7]: (18) Caggiano, L.; Fox, D. J.; House, D.; Jones, Z. A.; Kerr, F.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 2002, 2634
 (19) Bertrand, M. B.; Wolfe, J. P. Tetrahedron 2005, 61, 6447.

[^8]: (20) Yang, Q.; Ney, J. E.; Wolfe, J. P. Org. Lett., 2005, 7, 2575.
 (21) Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc., 2006, 128, 4246.

[^9]: (22) Ma, S.; Ni, B. Chem. Eur. J. 2004, 10, 3286.

[^10]: (28) Alonso, D. A.; Najera, C.; Pacheco, M. C. Adv. Synth. Catal. 2003, 345, 1146.

[^11]: (29) Sun, J. ; Conley, M. P.; Zhang, C.; Kosmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705.

[^12]: (31) Schweizer, S.; Tokan, W. M.; Parsons, P. J.; de Meijere, A. Eur. J. Org. Chem. 2010, 4687.
 (32) Shi, H.; Liu, H.; Bloch, R.; Mandville, G. Tetrahedron 2001, 57, 9335.

[^13]: (33) Labonne, A. 1.; Kribber, T.; Hintermann, L. Org. Lett., 2006, 8, 5853.
 (34) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit, B. J. Am. Chem. Soc., 2011, 133, 2386.

[^14]: (36) Zhao, H. ; Gorman, J. T. ; Pagenkopf, B. L. Org. Lett. 2006, 8, 4379.

