
C
i

I
a

b

a

A
R
R
A
A

K
M
C
C
W
P
H
E

1

c
e
t
c
i
(
r
m
s
c
c

t
t
c

t
T

(
(

0
d

Sensors and Actuators B 160 (2011) 327– 333

Contents lists available at ScienceDirect

Sensors  and  Actuators  B:  Chemical

journa l h o mepage: www.elsev ier .com/ locate /snb

omparing  sensitivities  of  differently  oriented  multi-walled  carbon  nanotubes
ntegrated  on  silicon  wafer  for  electrochemical  biosensors

rene  Taurinoa,b,∗, Sandro  Carraraa,  Mauro  Giorcelli b,  Alberto  Tagliaferrob,  Giovanni  De  Micheli a

Laboratory of Integrated Systems, EPFL – École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Department of physics, Polytechnic of Turin, 10129 Torino, Italy

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 28 April 2011
eceived in revised form 12 July 2011
ccepted 27 July 2011
vailable online 3 August 2011

eywords:
ulti-walled carbon nanotubes

a  b  s  t  r  a  c  t

In  this  study,  we  report  on multi-walled  carbon  nanotubes  fabricated  on  silicon  substrate  with  four  dif-
ferent  orientations  via  chemical  vapor  deposition.  It is  well-known  that  chemical  treatments  improve
the  nanotube  electrochemical  reactivity  by  creating  edge-like  defects  on their  exposed  sidewalls.  Before
use, we  performed  an  acid  treatment  on  carbon  nanotubes.  To prove  the  effect  of  the  treatment  on  these
nanostructured  electrodes,  contact  angles  were  measured.  Then,  sensitivities  and  detection  limits  were
evaluated  performing  cyclic  voltammetry.  Two  target  molecules  were  used:  potassium  ferricyanide,  an
inorganic  electroactive  molecule,  and  hydrogen  peroxide  that  is  a product  of  reactions  catalyzed  by  many
hemical vapor deposition
yclic voltammetry
ettability

otassium ferricyanide
ydrogen peroxide
lectrochemical biosensors

enzymes,  such  as oxidases  and  peroxidases.  Carbon  nanotubes  with  tilted  tips  become  hydrophilic  after
the treatment  showing  a contact  angle  of  22◦ ±  2◦. This  kind of  electrode  has  shown  also  the best  elec-
trochemical  performance.  Sensitivity  and  detection  limit  values  are  110.0  ± 0.5 �A/(mM  cm2)  and  8  �M
for  potassium  ferricyanide  solutions  and  16.4  ± 0.1  �A/(mM  cm2) and  24  �M  using hydrogen  peroxide
as  target  compound.  Considering  the results  of wettability  and voltammetric  measurements,  nanotubes

ctrod
with  tilted  tips-based  ele

. Introduction

Since their discovery, carbon nanotubes (CNTs) have attracted
onsiderable interest in many different fields due to their good
lectric, chemical and mechanical properties [1].  CNTs include two
ypes of structures. Single-walled carbon nanotubes (SWCNTs) are
ylindrical graphite sheets capped by hemispherical ends with typ-
cal diameter of 1–2 nm [2],  whereas multi-walled carbon nanotubes
MWCNTs) comprise several to tens of concentric cylinders of the
espective graphytic shells separated by a distance of approxi-
ately 0.34 nm [2].  SWCNTs can be metallic, semi-conductors, or

mall band gap semiconductors depending on their diameter and
hirality. MWCNTs, which behave as metallic conductors are good
andidates for different electrochemical applications [2].

The improvement in the active surface area [3],  their capability

o facilitate redox reactions of many compounds [4],  the increase in
he sensitivity from millimolar [5] to micromolar ranges [6] advo-
ate to the use of nanotubes as key building blocks to fabricate
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es  are  found  to be  the  most  promising  for future  biosensing  applications.
Crown Copyright ©  2011 Published by Elsevier B.V. All rights reserved.

electrodes. In particular, electrochemical biosensing for medical
purposes is one of the most promising application of MWCNTs [7].

The electrochemical performance of CNT-based electrodes
depends on many factors, such as the synthesis method [8],  treat-
ment [9],  binding with the substrate [7,10],  orientation of tubes
and type of target compounds [11]. Most of the literature on CNTs
is based on the assumption that tips are responsible for their elec-
trochemical activity. The role of the CNT sidewall is presently under
investigation [12]. However, recent studies demonstrate a large
contribution from the sidewalls in case of randomly oriented CNTs
[13]. Moreover, treatments generate alterations on CNT sidewalls
changing their electrochemical properties [12,14].

In this paper, we  describe a method to produce MWCNTs onto
a silicon wafer via chemical vapor deposition (CVD). We  selected
ferrocene as the catalyst material and commercial camphor as
the carbon source. Images from field emission scanning microscopy
(FE-SEM) show nanotubes with four types of orientation with
respect to the substrate. In order to create edge-like defects on
nanotube sidewalls and to improve CNT electrocatalytic activity,
the nanostructured electrodes were treated with sulfuric acid. The
electrochemical properties, sensitivity and detection limit, were
investigated by using cyclic voltammetry (CV). Potassium ferri-

cyanide (K4Fe(CN)6) and hydrogen peroxide (H2O2) were chosen
as target molecules. The first compound was selected for the well-
defined response at carbon materials, the latter for its significant
importance in the biomedical field.

ghts reserved.
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Table 1
Growth parameters.

Substrate temperature [◦C] Rotational velocity [r/min] Ferrocene flow time [min] Camphor flow time [min]
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. Experimental procedure

.1. Synthesis of carbon nanotubes

We grew MWCNTs directly onto silicon wafer (Si-mat,
ermany) with a diameter of 10.16 cm via CVD. We  used commer-
ial camphor as the carbon precursor, because the 3D structure of
his material helps the formation of nanotube rings [15]. Ferrocene
98% purity in weight, Aldrich) was the organometallic chemical
ompound acting as both a catalyst and a carbon source. It creates
ron atoms that agglomerate in clusters on which the CNTs grow.

e utilized a reactor consisting of a furnace (Kenosistec, Milan,
taly) fed with only two evaporation chambers where the precur-
ors were heated. The silicon substrate was located on a graphite
late in a deposition chamber (IONVACPROCESS SRL, Rome, Italy)
nd was heated up at the desired temperature (700–925 ◦C). Differ-
nt nanostructured electrodes were obtained. Selected parameters
or each growth are listed in Table 1.

Islands of horizontally/randomly oriented MWCNTs, hereinafter
called horizontal CNTs. The substrate was heated at 925 ◦C. Fer-
rocene and camphor were contemporary introduced in the
deposition chamber by only their evaporation pressure for
10 min. The substrate holder rotated at 12 r/min and, after the
deposition, it was kept at 925 ◦C for 30 min  before cooling to room
temperature.
Densely packed vertical MWCNTs and pillars of double-bedded
MWCNTs, hereinafter called vertical CNTs and pillars of CNTs,
respectively. The substrate was kept at 850 ◦C and its holder
rotated at 12 r/min. Ferrocene was introduced by a laminar flow of
nitrogen (0.83 cm3/s) for 3 min  and contemporary camphor with
no carrier gas for 10 min. After the deposition, the substrate was
immediately cooled to room temperature in inert atmosphere.
In different regions we detected various kinds of CNTs. The two
types of orientations correspond to different positions onto the
Si-wafer.
Vertically aligned MWCNTs with oriented tilted tips, hereinafter
called CNTs with tilted tips. The substrate was kept at 775 ◦C with
a rotational velocity of 40 r/min. Ferrocene was introduced in the
deposition chamber for 3 min  and, then, camphor for 7 min  both
with carrier gas. The substrate was cooled to room temperature
inside the chamber in inert atmosphere immediately after the
deposition.

.2. Chemicals and materials

We  prepared all solutions using 0.01 M Phosphate Buffer Saline
PBS, Sigma) at pH 7.4. We  treated pristine MWCNTs in 6 M H2SO4
Sigma, 95–98% vol) solution for 6 h [16]. We  utilized potassium
erricyanide in the form of powder and hydrogen peroxide (30%
ol) from Sigma.

.3. FE-SEM and contact angle
We used a SUPRATM 40 (ZEISS) to acquire FE-SEM images with a
ominal resolution of 1.5 nm at 10 kV. We  measured contact angles
sing PBS drops (20 �l) cast onto the surface of MWCNT-based
lectrodes either before and after the treatment. The images were
10 10
3 (N2 flow) 10
3 (N2 flow) 7 (N2 flow)

acquired with a digital camera. For each sample, we  averaged five
measurements from five different images.

2.4. Electrochemical apparatus

We performed CV using Versastat 3 potentiostat (Princeton
Applied Technologies) with a standard three electrode configura-
tion. A platinum wire served as counter electrode, while we  chose
a wire in Ag|AgCl saturated with KCl (3 M)  as reference electrode
(Roschi Rohde and Schwarz AG, Switzerland). We  used acid treated
MWCNTs on silicon substrate as working electrode. All experiments
were carried out under aerobic conditions at room temperature.

Voltammograms were recorded using different K4Fe(CN)6 con-
centrations (from 0 to 25 mM  by steps of 5 mM)  at scan rates in the
range 25–200 mV/s. K4Fe(CN)6 was  chosen because it is a redox
analyte widely used in electrochemistry. The redox reaction at
+300 mV  is:

[Fe(CN)6]−3 + e− → [Fe(CN)6]−4 (1)

The cathodic peak currents (Ipc) were taken from the baseline of the
voltammogram [17,18]. The baseline current was  determined by a
linear fit of the voltammogram where no electrochemical analyte
activity was  observed. For a reversible reaction at standard tem-
perature the expected peak current, Ip, can be computed referring
to the Randles-Sevcik equation [17,18]

Ip = 2.69 × 102AD1/2n3/2v1/2C, (2)

where A is the surface area of the electrode, D is the diffusion coef-
ficient of the analyte, n is the number of electrons transferred in the
redox reaction, v is the scan rate and C is the bulk analyte concentra-
tion. Based on expression (2), sensitivity (S) per electrode area was
computed from the angular coefficient of the straight line obtained
by plotting the current density versus the analyte concentration at
a scan rate of 100 mV/s [7]. We  define the smallest detectable cur-
rent signal as the mean square root deviation of the voltammogram
line with no electrochemical analyte activity. Detection limit was
computed as three times the signal-to-noise ratio according to the
expression 3ıi/S where ıi is the average standard error relative to
the measurements performed for different target concentrations
[19].

CV was also evaluated using solutions with different H2O2 con-
centrations for its importance in biosensing. H2O2 was selected
since it is the product of reaction based on oxidases [13]. A potential
of +650 mV causes the oxidation of hydrogen peroxide, according
to the reaction

2H2O2 → 2H2O + O2
+ + 4e− (3)

Using hydrogen peroxide as target, we  varied the concentrations
from 0 to 50 mM by steps of 10 mM at a scan rate of 100 mV/s. We
also performed CVs in 30 mM of H2O2 solutions with scan rates in
the range 25–200 mV/s.

3. Results and discussion
3.1. Morphological characterization

Fig. 1 depicts FE-SEM images of MWCNTs directly grown on
silicon wafer. The diameter of the tubes is not uniform ranging
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sigmoidal in shape similarly to a nano-electrode ensemble (see
Fig. 1(D) with CNTs aggregates). More well-defined peaks result
from the other nanostructured electrodes more similarly to a
macro-electrode electrochemical behavior. The cyclic voltammetry

Table 2
Contact angle measurements before and after the acid treatment.

Before After
Fig. 1. FE-SEM images of CNT diameters (A), pillars of CNTs (B

rom 5 to 100 nm (see Fig. 1(A)). In Fig. 1(B), we observe pillars
f vertically aligned double-bedded nanotubes and in Fig. 1(C)

 “carpet” of vertically oriented MWCNTs that exposes only the
NT edge ends (length 60–100 �m).  Fig. 1(D) shows aggregates
f CNTs with exposed sidewalls separated by areas of more hori-
ontally/randomly oriented ones. Finally, Fig. 1(E) shows a FE-SEM
mage of nanotubes with oriented tilted tips. Note that, in this case,
he density of the vertical nanotubes (length 20–30 �m)  is higher
han that of tilted tips (few �m in length). The average inclination
f the tubes in respect to the substrate is of 30◦. Considering hori-
ontal CNTs, pillars of CNTs and CNTs with tilted tips both tips and
idewalls are wet by the electrolyte during measurements.

.2. Contact angle measurements

Pristine MWCNTs show a hydrophobic behavior which is
xplained by the size and the intrinsic disorder of the tubes [20]. To
nvestigate the effect of treatment on multiple oriented MWCNTs,

e measured contact angles. Vertical CNTs maintain a characteris-
ic hydrophobicity (average contact angle: 107◦), while CNTs with
ilted tips become hydrophilic after the acid treatment (average
ontact angle: 22◦). As a result of the activation, contact angle val-
es for horizontal CNTs and pillars of CNTs result of 62◦ and 96◦,
espectively. Accordingly, it is clear that acid treatment improves

he CNT wettability acting on the sidewalls (see Table 2). The sig-
ificant decrease in the contact angle in case of CNTs with tilted
ips is due to the larger exposition of the sidewalls to the acid
olution. Indeed, in the top layer tip-containing, the tube density
ical (C) and horizontal (D) CNTs and CNTs with tilted tips (E).

is lower than the above layer as we can observe from Fig. 1(E).
On the other hand, the well-packing of the vertical aligned nan-
otubes prevents the acid action. The lower density of the CNTs
organized in pillars enables a slight wall modification. Considering
the system with CNTs clusters, the treatment is allowed only on
the areas with horizontally/randomly oriented tubes. A schematic
explanation of the acid activation for the four system of nanotubes
is shown in Fig. 2. Since greater hydrophilicity is required to inte-
grate biomacromolecules, treated nanotubes with exposed walls
could be the most suitable for bio-applications.

3.3. Electrochemical characterization with potassium
ferricyanide

Fig. 3 shows cyclic voltammogramms obtained using K4Fe(CN)6
as target. Horizontal CNTs show a cyclic voltammogram more
Vertical 109◦ ± 2◦ 107◦ ± 4◦

Tilted tips 101◦ ± 7◦ 22◦ ± 2◦

Horizontal 108◦ ± 6◦ 62◦ ± 5◦

Pillars 102◦ ± 7◦ 96◦ ± 5◦
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Fig. 4. Cyclic voltammograms obtained using pillars of CNTs showing the effect of

cathodic peaks of voltammograms obtained for different K4Fe(CN)6
concentrations (see example in Fig. 5(A)). A calibration curve is
shown in Fig. 5(B). CNTs with tilted tips show the highest sensitivity
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ig. 2. A schematic representation of the sidewall alteration during acid treatment
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NTs (D).

s also investigated at scan rates ranging from 25 mV/s to 200 mV/s.

ig. 4 shows voltammograms obtained at various scan rates in case
f pillars of MWCNTs. For all the investigated electrodes, the vari-
tion of the peak currents with the square root of the scan rate
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ig. 3. Voltammograms obtained with horizontal (a) and vertical CNTs (b), pillars of
NTs (c) and CNTs with tilted tips (d). K4Fe(CN)6 concentration: 25 mM.  Scan rate:
00 mV/s.
the scan rate on the electrochemistry of K4Fe(CN)6 (5 mM in 0.01 M PBS solutions;
scan rates of 25, 50, 100, 150 and 200 mV/s). The shows the cathodic peak currents
as  a function of the square root of the scan rates.

was found to be linear (inset Fig. 4) and the peak-to-peak sepa-
ration expands gradually. The absolute values of the anodic and
cathodic peak currents are found to be almost equal and the peak-
to-peak separation �Ep was large, which means an high electrode
resistance (see Table 3) [21].

We computed sensitivity and detection limit in reference to
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Fig. 5. Voltammmograms obtained for 5, 10, 15, 20 and 25 mM of K4Fe(CN)6 concen-
trations at pillars of CNTs (A) and relative calibration curve in reference to cathodic
peaks (B).
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Table 3
Anodic Epa and cathodic Epc peak potentials, peak-to-peak separation �Ep ,
half-wave potentials E1/2 and peak current ratio Ipc/Ipa for the redox couple
[Fe(CN)6]−3/[Fe(CN)6]−4 (K4Fe(CN)6 concentration: 5 mM;  scan rate: 100 mV/s).

Epa [mV] Epc [mV] �Ep [mV] E1/2 [mV] Ipc/Ipa

Vertical 397 67 330 232 0.9
Tilted tips 300 134 166 217 0.8
Horizontal 467 25 442 246 1
Pillars 441 16 425 228 0.8

Table 4
Electrochemical sensing parameters computed using multiple oriented MWCNTs
for  K4Fe(CN)6 and H2O2 solutions.

Sensitivity [�A/(mM cm2)] Detection limit [�M]

K4Fe(CN)6

Vertical 71.5 ± 0.3 28.233 ± 0.003
Tilted tips 110.0 ± 0.5 8.3095 ± 0.0001
Horizontal 62.8 ± 0.3 78.56 ± 0.03
Pillars 101.5 ± 0.5 51.57 ± 0.01

H2O2

Vertical 10.08 ± 0.04 252.4 ± 0.1
Tilted tips 16.4 ± 0.1 23.9872 ± 0.0001
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Fig. 7. Cyclic voltammograms obtained using horizontal CNTs showing the effect of
Horizontal 1.81 ± 0.01 1534 ± 2
Pillars 3.26 ± 0.02 1623 ± 3

pproximately twice higher than the value obtained with horizon-
al CNTs (110.0 ± 0.5 �A/(mM cm2) and 62.8 ± 0.3 �A/(mM cm2),

espectively). The detection limit for vertical CNTs and pillars of
anotubes is almost the same. We  obtained the highest detection

imit using horizontal CNTs (79 �M).  On the contrary, the lowest
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ig. 6. Voltammmograms obtained for 10, 20, 30, 40 and 50 mM of H2O2 concen-
rations at horizontal CNTs (A) and relative calibration curve (B).
the  scan rate on the electrochemistry of H2O2 (30 mM in 0.01 M PBS solutions; scan
rates of 25, 50, 100 and 200 mV/s). The inset shows the anodic peak currents as a
function of the square root of the scan rates.

value corresponds to CNTs with tilted tips that is equal to 8 �M.
Table 4 reports sensing values for K4Fe(CN)6 at different electrode
interfaces.

3.4. Detection of hydrogen peroxide

We  also used H2O2 as analyte because it is a product of reac-
tions catalyzed by many enzymes [13]. This molecule is not as
electroactive as the potassium ferrycianide. Indeed, only less well-
shaped anodic peak currents appear in CVs (see Fig. 6(A)) [22].
In addition, with this compound, the CV curves were registered
at various scan rates. An increase of the peak currents was found
as the scan rate increased (inset of Fig. 7) and the anodic poten-
tial becomes more positive as shown in Fig. 7. Voltammograms
obtained for different H2O2 concentrations at horizontal CNTs are
shown in Fig. 6(A). The related calibration curve is reported in
Fig. 6(B). Also with this molecule, we  obtained the highest sensitiv-
ity and the lowest detection limit using CNTs with tilted tips equal
to 16.4 ± 0.1 �A/(mM cm2) and 24 �M,  respectively. Lower sensi-
tivities and higher detection limits were measured for the other

nanostructured electrodes as shown in Table 4.

The different results obtained with the two probes are due to
the specific electrochemical sensitivity of potassium ferricyanide
and hydrogen peroxide to various surface electrode states [11].
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Fig. 8. Voltammograms obtained with pillars of CNTs (a), vertical CNTs (b), CNTs
with tilted tips (c) and horizontal CNTs (d). H2O2 concentration: 30 mM.  Scan rate:
100 mV/s.
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onetheless, in both cases, vertical CNTs with tilted tips show the
ighest sensitivity and the lowest limit of detection.

Cyclic voltammograms measured using the four nanostructured
lectrodes in 0.01 PBS solution and containing 30 mM of H2O2 are
hown in Fig. 8. For vertical CNTs, the hydrogen peroxide elec-
roxidation is observed at 718 mV.  Values of potential peaks for
illars of nanotubes and horizontal CNTs appear at 593 mV and
33 mV,  respectively. The accelerated electron transfer reaction at
NTs with oriented tilted tips allows the detection of hydrogen per-
xide at the lowest potential (570 mV)  and, consequently, at the
owest energy cost. Moreover, it is well-shaped if compared with
he oxidation peaks obtained using the other types of electrodes
see Fig. 8).

. Conclusion

This study reports the preparation and the characterization of a
ew type of CNT-based electrode. We  obtained multiple oriented
WCNTs via CVD onto silicon substrates. In CNT-based bioelec-

rochemistry, two important factors should be emphatized: CNT
eactivity, which increases with the introduction of topological
efects, and the nanotube wettability by the solvent/electrolyte
edium. Taking into account of these two points, we  used acid

reatment to facilitate electron transfer and also to decrease
he well-known CNT hydrophobicity. The considerable change of
ettability on CNTs with more exposed sidewalls confirms the

ssumption that acid treatment causes a predominant change on
idewalls [23].

The most interesting properties for sensing applications, namely
ensitivity and detection limit, were investigated by CV. By using
otassium ferricyanide and hydrogen peroxide solutions, CNTs
ith tilted tips show the best electrochemical behavior. This result

s due to the electroactivity contribution of both edge-plane-
raphite-like open ends and defects sites. The lowest sensitivity
nd the highest detection limit found using horizontally/randomly
riented CNTs are due to the lowest exposition of the tips and the
owest density of the active sites.

Interestingly, electrochemical responses at the electrode sur-
ace depend on the type of target. We  demonstrated that the
ntroduction of wall defects influences more nanotube–potassium
erricyanide interaction rather than the interaction between MWC-
Ts and hydrogen peroxide. Nonetheless, CNTs with tilted tips

esulted in the most effective electrode to detect both the targets.
n addition to providing the best electrocatalytic activity in terms of
ensitivity and limit of detection, the last nanostructure offers the
owest oxidation potential of hydrogen peroxide. Considering also
he large increase in wettability, we can argue that CNTs with tilted
ips are the most suitable for an efficient immobilization of oxidases
roducing hydrogen peroxide in order to develop amperometric
iosensors.

The chance to increase the reactivity of CNTs by varying both
retreatments and the CNT tilt with respect to the electrode sub-
trate offers the opportunity to fabricate biodevices with promising
arget-selective electroanalytical performance. Moreover, the CNT
anometer size favors the fabrication of miniaturized transducers
lso usable for real-time in vivo measurements.
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