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ABSTRACT

In this work a numerical strategy to address the solution of the blood flow in one-dimensional arterial
networks through a topology-based decomposition is presented. Such decomposition results in the local
analysis of the blood flow in simple arterial segments. Hence, iterative methods are used to perform the
strong coupling among the segments, which communicate through non-overlapping interfaces. Specifi-
cally, two approaches are considered to solve the associated nonlinear interface problem: (i) the Newton
method and (ii) the Broyden method. Moreover, since the modeling of blood flow in compliant vessels is
tackled using explicit finite element methods, we formulate the coupling problem using a two-level time
stepping technique. A local (inner) time step is used to solve the local problems in single arteries, meeting
thus local stability conditions, while a global (outer) time step is employed to enforce the continuity of
physical quantities of interest among the one-dimensional segments. Several examples of application are
presented. Firstly a study about spurious reflections produced at interfaces as a consequence of the two-
level time stepping technique is carried out. Secondly, the application of the methodologies to physiolog-
ical scenarios is presented, specifically addressing the solution of the blood flow in a model of the entire
arterial network. The effects of non-uniformities of the material properties, of the variation of the radius,
and of viscoelasticity are taken into account in the model and in the (local) numerical scheme; they are

quantified and commented in the arterial network simulation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerical simulations of the cardiovascular system using a col-
lection of simple distributed one-dimensional (1-D), or even
lumped zero-dimensional (0-D), models have proven to be able
to provide useful information under physiological and pathophys-
iological conditions. They give insight about the main characteris-
tics of the flow and about the interplay among physical
phenomena taking place in the systemic arteries [1-9].

From the computational viewpoint, there are some situations in
which it is convenient to split the solution process into simpler
problems, for instance: (i) in cases where the available computa-
tional implementations are based on black-box codes which can-
not be accessed by the user [6], or (ii) in cases in which the
number of arteries grows significantly, and the computational cost
increases substantially [10]. Those situations pose the problem of
developing decomposition strategies to deal with the coupled
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problem in an iterative manner. This implies resorting to numeri-
cal methods for solving the resulting nonlinear equations corre-
sponding to the continuity equations considered at the interfaces
among arterial segments.

Several approaches can be used for the solution of the blood
flow in the entire arterial network. A first one corresponds to
solve at each time step a trivial system of equations with infor-
mation coming from the previous time step. This approach has
drawbacks concerning stability due to continuity conditions at
branching sites. A second option is to solve at each time step
an algebraic system of equations in which all the unknowns are
properly coupled. Unlike the first approach, this is stable but
may be expensive in view of the large level of coupling among
degrees of freedom within arterial segments. To overcome these
issues, in this work we use a combination of both methods to
solve the stability issues of the first case still making possible
to perform explicit computations within each arterial segment
due to the implicit coupling at the interfaces among them. This
mixed approach is achieved by planning a numerical method that
makes use of a two-level time discretization as will be explained
afterwards.
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The decomposition of an arterial network into subdomains can
be performed in different ways. A first option is to split the entire
cardiovascular system into subregions corresponding to specific
vascular areas, for instance legs, arms, head, organs, and so on,
see e.g. [11]. A second option, followed in the present work, is to
explore the system into the constituent arterial segments as done
in [12].

Each arterial segment is represented by the 1-D Fluid-Structure
Interaction (FSI) model developed in [6] and is fed with proper
boundary conditions at both segment boundaries. The discretiza-
tion is carried out using a Taylor-Galerkin approach which yields
an explicit scheme to solve for the volumetric flow rate, the pres-
sure, and the lumen area for a single pipe. Moreover, in the present
work the numerical scheme presented in [6] is further extended to
deal with material and geometrical spatial inhomogeneities. In
addition, the compatibility conditions that arise at the discrete le-
vel to close the discrete problem are adapted to this more general
situation.

Continuity conditions are imposed among arterial segments,
leading to a coupled network of deformable vessels. We propose
to solve iteratively this coupled problem following the ideas
developed in [13] for linear problems and recently extended in
[14,15] to flow problems in rigid pipes and in [11] to hemodynam-
ics. Previous developments of iterative techniques to couple
iteratively 1-D FSI models with Taylor-Galerkin explicit numerical
formulations can be found in [12]. There, the authors use relaxed
Gauss-Seidel iterations that relies on a hierarchy among the local
models, dictating a compatible choice of the coupling conditions
(volumetric flow rate versus average pressure). The poor conver-
gence properties and lack of flexibility in setting boundary condi-
tions at the arterial segment interfaces of such method can
create difficulties in real situations in which we need to couple
hundreds of arterial segments.

In view of these problems, we resort to two alternatives to solve
the nonlinear coupling problem: (i) the Newton method and (ii)
the Broyden method. The performance of these methods is as-
sessed through several examples of application.

Another contribution of the present work is the development of
a two-level time step technique to increase computational effi-
ciency. Firstly, we recognize an inner local time step; it is used to
solve the blood flow dynamics at each arterial segment and it is
in general determined by the Courant-Friedrichs-Lewy (CFL) con-
dition. Secondly, we consider an outer global time step which is
used to match the physical quantities of interest at interfaces
among arterial segments. In other words, the global time step is
the one responsible for enforcing the strong coupling among the
segments. This is convenient also when coupling 1-D and three-
dimensional (3-D) FSI problems to reduce the number of solutions
of expensive 3-D problems with very small time steps (needed by
time discretization strategy of the 1-D problem).

The generation of spurious reflections at interfaces between
segments as a consequence of the proposed two-level time step
technique is analyzed. In this regard we unveil the dependence
of these reflections upon the wavelength and upon the ratio
between the local and global time steps. In addition, we propose
a simple interpolation scheme to reduce the reflections at inter-
faces whenever the local time step is different from the global time
step.

Another aspect of the formulation, specific to the Newton meth-
od, is related to the approximation of the Jacobian in the presence
of the two-level time step technique. Two procedures are com-
pared which lead to different ways of approximating the Jacobian,
and therefore to different versions of the (actually inexact) Newton
method: (i) Jacobian computed using a finite difference scheme
and (ii) Jacobian computed using an approximated tangent prob-
lem formulation.

Finally, to include the viscoelastic properties of the vessel wall
in the 1-D model (see, e.g., [6,16-18]) we propose a split time
advancing scheme. To consider non-uniformities of the material
properties and a the variation of the radius [17] we have added
some additional terms in the original model. Indeed, these have
non-negligible effects, as we show in the results.

All the developments in the present contribution are mainly
envisaged for the hemodynamics field. Therefore, besides the
study of spurious reflections carried out in academic situations,
the solution of an entire arterial tree model is presented to
show the robustness of the strategy in a far more complex
system.

This work is organized as follows. Section 2 presents the gov-
erning equations, in continuous and discrete forms, for the 1-D
FSI model of a single arterial segment. Section 3 presents the global
arterial network problem and corresponding coupling equations,
together with the proposed iterative methods. Section 4 deals with
academic applications focusing on iterations numbers and spuri-
ous reflections, while Section 5 presents a series of comparisons
of the performance of the different developed alternatives in phys-
iological scenarios. Section 6 closes this work with the final
remarks.

2. 1-D FSI model equations

The 1-D FSI model provides a simplified representation of the
blood flow in deformable vessels. Although incapable to give a
detailed description of the full 3-D structure of the flow field
(such as recirculation or wall shear stress), it can effectively
describe the wave propagation phenomena due to the compli-
ance of the wall. In this section we first describe the governing
equations for the 1-D FSI model. Then we introduce a numerical
discretization of the problem. Finally, we close the resulting
discrete formulation with an appropriate set of compatibility
conditions.

2.1. Mass and momentum conservation laws

The 1-D FSI model is derived from the incompressible Navier-
Stokes equations, by making some simplifying assumptions and
integrating over the cross-section of the artery S(t,z), being
t € (0,T] the time and z € [0,L] the axial coordinate, with L the
length of the vessel (see Fig. 1). The pressure on each transversal
section is assumed to be constant, and the axial velocity profile
s(r) is chosen a priori through the power-law relation
s(r) =07""(0 +2)(1 — r’), where r is the relative radial coordinate
and 0 is a proper coefficient. This is a commonly accepted approx-
imation (see, for instance, [19,20]), where 6 = 2 leads to a parabolic
velocity profile, while 0 = 9 leads to a more physiological profile,
following the Womersley theory.

The resulting state variables are

At,z)= [ dS,

S(t,z)

Qt.z) = /S (6,235

P(t,2) = ——

t,z)dS
A(t,2) S(t‘z)pF( )

where A is the cross-sectional area, Q the volumetric flow rate, u,;
the fluid axial velocity, and P the average pressure. A straightfor-
ward derivation of the 1-D FSI model can be found in [21]. The
resulting governing equations for continuity of mass and momen-
tum are
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(b)

Fig. 1. Scheme of the 1-D FSI model. (a) The vessel is assumed to be a straight
cylinder with a circular cross-section: red and black colors indicate the reference
and current configurations, respectively. (b) The resulting 1-D model is a straight
line with two boundary interfaces. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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EJ’,&_O in (0,L) x (0,T],

aQ o, Q° Ao Q . . (1)
E+&(“FW)+FF&+KFX_O in (0,L) x (0,T],

A=A Q-0 in (0,L) x {0},

where or and kr are the Coriolis and friction coefficients, respec-
tively defined as

2T -1
O = l / / rs(r)zdrdg, Kp = —271&é
TJo Jo

being (r,0) € [0,1] x [0, 27] the two-dimensional polar coordinates,
U the fluid viscosity, and p; the fluid density. In (1) we also provide
two initial values for the area A and for the volumetric flow rate Q.
The initial condition for the average pressure can be retrieved from
the pressure-area relation introduced in the next section.

2.2. Constitutive law of the arterial wall

The reduced Navier-Stokes equations (1) are coupled with a
simple 1-D structural model for the vessel wall, which is assumed
to be axial symmetric and only radial displacements are consid-
ered. This results in a pressure-area relation, which may account
for several phenomena [6]. In this work we consider the elastic
and viscoelastic responses of the vessel wall, since the other terms
(e.g., wall inertia and longitudinal prestress) provide negligible
contributions in the cardiovascular 1-D modeling context (see,
for instance, [17,22])

P = Y(A) = Pexc + ¥(A) +¥(A) in (0,1) x (0,T], (2)

being Py a reference pressure, i.e., the pressure level at which the
vessel area A is equal to the reference area A°, and

. A ~ 1 0A
W(A)=ﬁs<%;1>7 i) =95(57 %)

with

ﬂ _ 1 hsES 7T5tan¢>s hsEs
STVAT 0 T Tayg 1w

where hs, Es, and vs are the wall thickness, elastic Young modulus,
and Poisson ratio, respectively. In addition, Ts is the wave character-
istic time and ¢ the viscoelastic angle. In cardiovascular applica-
tions Ts is usually taken equal to the systolic period, while the
viscoelastic angle is a parameter which provides a measure of the
relative magnitude of the parietal viscosity force to the elastic
one. The 1-D FSI problem is finally closed by providing a proper
set of boundary conditions. Recall that in a cardiovascular physio-
logical range the flow regime is typically sub-critical; the eigen-
values of the hyperbolic problem have opposite sign leading to
the imposition of one boundary condition on each side of the model.
These conditions can be either given data (such as time-dependent
flow rate or terminal absorbing condition [23]) or coupling condi-

tions relating a certain arterial segment with the surrounding ves-
sels. We postpone the discussion of the latter case to Section 3.

2.3. Numerical approximation

By plugging (2) into (1), we get a closed system of differential
equations. On the one hand, the elastic component of the pres-
sure-area relation is an algebraic expression and can be easily
manipulated. On the other hand, the viscoelastic term depends on
the temporal derivative of the area and requires a special treatment.

In the literature, several approaches have been proposed for the
numerical approximation of the 1-D FSI problem, ranging from ex-
plicit discontinuous Galerkin [23], implicit finite difference [17], or
implicit finite element [22] methods. Following [6], in this work we
use an operator splitting technique based on an explicit second or-
der Taylor-Galerkin discretization, where the volumetric flow rate
is split into two components such that Q = Q + Q, being Q the
solution of the pure elastic problem and Q the viscoelastic correc-
tion. The main advantage of this approach resides in its very low
computational cost, due to the explicit treatment of the main
terms. The global time interval [0, T] is divided into several uniform
subintervals [t",t""1], with n=0,1,2,..., such that t" = nAt, At
being the time step. On each time subinterval, we solve the 1-D
FSI problem by performing two steps.

First step (elastic response). By removing the viscoelastic com-
ponent from the formulation we can write the closed system of
equations in the classical conservative form as
oU  OF(U)

ot 0z

where U = [A,Q]" and U = [A,Q]" are the total and elastic conserva-
tive variables, respectively, F=[Q,F,]" are the corresponding
fluxes, and S = [0,S,]" accounts for the friction and the non-unifor-
mity of the geometry and the material, with

+S(U)=0 in (0,L)x (0,T], (3)

o (AN 0A 0 A, 0

=575 o oe 08 oz "o o o oA o
being

QA (o) oA oy Ops
BZ?KFA—FPF <BA0 0z +8ﬁs oz |

Remark 1. Since in general the only non-uniformities present in a
cardiovascular setting are related to the reference area A° = A%(z)
and to the elastic coefficient s = S5(z), for the sake of simplicity,
we assume that all the other parameters are constant along the z-
axis. The extension of the present formulation to other non-
uniformities (e.g., o) is straightforward.

The flux F is algebraic, since it includes only the elastic part of
(2). In particular,

_ﬁs(A0)3 A\32 Q?
T ((AO> EVARES

while S is
B Ty LN
Sz—KFA pF(A A)az

3 (A 00Bs P OPs
+2—pp<<ﬁ> ‘Q("??E)'

The derivatives of these quantities with respect to the conservative
variables are
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with
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0A A2 pe\24°VA%) 9z pr\ VA 0z
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Let Uy, be the discrete counterpart of U, where h refers to the spatial
discretization. In addition, let V4 and V; be two sets of piecewise
linear finite element functions with adequate boundary conditions
and V; and V; the associated linear spaces of admissible variations.
From (3) the Taylor-Galerkin formulation for the elastic problem
reads: given Uy, = [A}, Qp]", find U! = [Ap"",Q*']" € Va ® V, such
that

fyn 1 n 0
U, @) = (Uhv(ph) +At(F(Uh),%)

A (OFUD) () , LD )

2 ou 0z T 0z
At? (0S(U}) . OF(UT)
+T< ou (S(U“)+ oz >"Ph>
— At(S(UR). @y). Vo, €V, @ V5. (4)

We remark that in (4) the solution of the problem for the area (mass
conservation equation) is decoupled from the one for the volumet-
ric flow rate (momentum conservation equation). At the discrete le-
vel, the numerical problem is closed by introducing two
compatibility conditions, as we discuss in Section 2.4.

Second step (viscoelastic correction). By using the mass con-
servation equation, we remove the time dependence from the vis-
coelastic wall term. The resulting problem is

aQ 8()25 Q

Ww) =0 in(0,L) x (0,T],

which is closed by a proper set of homogeneous boundary condi-
tions for Q, as we deepen later. The corresponding finite element
formulation reads: given (A}"", Qi) e Va® Vy, find Q' € Y, such
that

Q" ) 0QpT g,
(A;:M”h MV

er: Vs 6Qﬁ+1 oPy
= s At| —2—— s
<AL'“ ’(ph> (pF(A;“)”Z 0z ’ 0z

. L
Vs aQ;™!
pF(A’r;+1)3/2 a9z G 0’ Vo, € Vo (5)

+ At

where V; is a set of piecewise linear finite element functions with
adequate boundary conditions and Va is the associated linear space
of admissible variations. From Eq. (5) it is clear that we have consid-
ered homogeneous Neumann boundary conditions for Q;}* 1. An-
other possibility is to consider homogeneous Dirichlet boundary

conditions as proposed in [6]. The former choice suits situations
in which the boundary information is the area or the pressure,
while the later choice suits when the volumetric flow rate is im-
posed as boundary data. We remark that eventual non-uniformities
related to the viscoelastic coefficient y¢ are already included in (5).

2.4. Compatibility conditions

As mentioned in Section 2.3, even if the differential problem re-
quires only one physical boundary condition at each interface of
the 1-D FSI model, the solution of the Taylor-Galerkin problem in-
volves the computation of a full set of values for A and Q at the first
and the last node. We thus need two extra relations, namely com-
patibility conditions, which can be recovered by extrapolating the
outgoing characteristic variables. In [6] the authors provide the
main ingredients of this technique for the fully uniform case. In
the present work we extend that result to the case of non-unifor-
mity of the geometry and of the material.

Let us introduce the non-conservative form of problem (3):

—+H(U)—+B(U) =0, (6)

where H = 9F/oU and B = [0,B,] ' is the counterpart of S. Let A and
L be the eigenvalue and left eigenvectors matrices of H, respectively,
such that LHL™' = A. In particular they read

)»1 0 _}~2 1
A= L=c¢ .
[o },J’ 5[—;4 1}

where ¢ can be chosen equal to 1/A [6] and

) =
21'2 = O{F%i \/(O(]% — OC]:) <%> +%%

We define the pseudo-characteristic variable Z as

oz
8_U — L.
From (6), after some manipulations, we get

ou 0Z oL
LE+A{§—&U}+LB(U):0, (7)

where 9Z/9z = 0 over each pseudo-characteristic and

02

a_ | "a ©
627 a/q ’
“oz °
with
A Pb o P g,
821,2_811,287140 a;vu%_inF OAOAY 0z  0AOBs 0z

0z~ 9A® 0z @ 9By 0z 2 -
’ \/(ocf—ocp)<g> +A%

A pr OA
where
o) _ Bs (AN
0A  2A°\A°)

o’ b <A>*“2.

0AOA° ~ (2A°)2 \A°
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By introducing the same time discretization used in the Taylor-
Galerkin problem, we write (7) on the pseudo-characteristic depart-
ing from U, towards one of the two boundary sides of the 1-D seg-
ment (more generally we use the subscript % for all the quantities
evaluated at the foot of the pseudo-characteristic),

aL"

L'om' = '0 +At(/1" o

) - L"B<U';>). (8)

Finally, at the numerical level, we need to balance the equations to
avoid the presence of fictitious boundary flows in the reference case

U° = [A°,0]". From (8), the balanced version of the compatibility
condition reads
n/fm+1 0 n/ym 0 n aLn n 0
L0~ U°) = L'(0} — U3) + AtA" (U3 - US)
— AtL"(B(UY) — B(U3)).

The full set of boundary conditions for the finite element problem is
computed solving a 2 x 2 linear system on each side of the 1-D seg-
ment. There are four possible cases depending on the side and type
of physical boundary condition applied to the model:

given Q, : L L | (A (& inz=0
L: 1 QE“ Q )
iven Qg : Ly L] (A _( inz=1L
g R - 1 QZ+1 - QR — L
given A, : Ly Ly | (A7 - h inz=0
1o \gr Al ’
given Ay : Ly L) (4" _ (R inz=1L
1o\ Ar ’

where the subscripts L and R stand for left and right sides, respec-
tively, A, Ar, Qy, and Qg are the prescribed physical boundary con-
ditions on the two sides of the segment, and

(AR, QR Q) =15, (A° + A, —A3) +15,Q%
L L

+Amz<8821 (AL —A%) + 822Q*>

— AtLy, (B, (U}) — By (U3)) — AL, (B, (U} ) — By (UY)),

o

o

fe(A.QR Q) =11, (A% + A, —AS) +11,Q%

oLt oL}
+At)»1< a11(An 0) IZQ*>

— ALLY, (B1(U}) — By (UY,)) — ALY, (B (U ) — By (UY)).

At the discrete level, the position of the foot of the pseudo-charac-
teristic is computed by evaluating the CFL number of the corre-
sponding wave

At At
NEFL = |/L2.L‘F-, NEFL = Vvl.R|F

More precisely, since we use an explicit method, the CFL number is
supposed to be less than one, i.e., the foot of the pseudo-character-
istic is placed in the first, last respectively, finite element of the seg-
ment. Therefore, depending from the boundary side, we
approximate the quantities in the foot of the pseudo-characteristic
by using one of the following first order Lagrange polynomial
interpolation:

left : U}, = (1 - N;™MU}|,_, + N;"U}

—h’

right : U, = (1 - N{"U}|,_, +N"U; .

—L-h

3. Coupling techniques

In this section we briefly recall from [14] the coupling equa-
tions and the numerical algorithms we use to solve a connected
network of 1-D models. Then we discuss some issues related to
the explicit nature of the Taylor-Galerkin scheme presented in
Section 2.3; these issues are solved by introducing a two-level
time step technique. With these we account for an implicit cou-
pling of the entire 1-D network while keeping an explicit time
discretization at each 1-D segment. The implicit treatment at
the global level is mandatory to capture the correct flow rate
and pressure wave propagation, especially in presence of
branching sites and large networks. These schemes are also
envisaged for the coupling of heterogeneous models in a geo-
metrical multiscale setting, e.g., the coupling of 1-D FSI arterial
networks with 3-D FSI problems. Finally, following the idea of
[11], we show how to further reduce the computational cost of
our approach, by combining the methodology proposed in this
work with a Broyden strategy for the update of the Jacobian
matrix.

3.1. Interface equations

The solution of the 1-D problem is given in terms of averaged/
integrated scalar quantities which are the volumetric flow rate Q,
the area A, and the average pressure P. Eq. (2) provides an univocal
relation between A and P, such that the imposition of a pressure
boundary condition corresponds to the imposition of an equivalent
area in (9).

The coupling of different 1-D models can be addressed by
employing the same approach proposed in [14] for a more general
setting. More precisely, let us consider a general network of models
connected by C coupling nodes: at the c-th coupling node we im-
pose the conservation of mass and the continuity of average pres-
sure as

Ic

QZO,
; ci (10)
P4 —P,;=0, i=2,...,Z,

where Z, is the number of interfaces connected by the c-th coupling
node,c=1,...,C

Remark 2. In (1), and more generally in all the equations of the
1-D model, the volumetric flow rate is assumed to be positive in
the direction of the axial coordinate z (say from the left to the right
of each 1-D segment). However, (10) is written for quantities
evaluated at the boundaries of the 1-D model (the coupling
interfaces), where it is more convenient to assume a positive flow
rate in the outgoing direction.

Remark 3. In [14] Eq. (10) is written in terms of the average of the
normal component of the traction vector. However, for 1-D prob-
lems, the same conservation equations can be satisfied by impos-
ing directly the continuity of the pressure at the interfaces.
Indeed, the average of the normal component of the traction vector
is equal to —P for the 1-D FSI model.

Remark 4. Eq. (10) does not take into account any energy loss at
bifurcations. In the literature there are several proposed models
(see, for instance, [6,24]) to include this effect, however, as demon-
strated in [[25], Section 3.2], their impact on the main physical
quantities is negligible for this class of models.
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3.2. Numerical approach

To satisfy the set of Eqs. (10), different strategies can be used,
corresponding to the imposition of different quantities on the
boundaries. In other words, we can set up each subproblem with
different combinations of boundary data over the coupling inter-
faces. Three examples are provided in [14, Section 2.5]. Each strat-
egy has a different set of interfaces quantities, which are the
unknowns of the interface problem.

Independently of the chosen strategy, we can arrange the
interfaces unknowns of all the C interfaces in a global vector g,.
The global coupled problem is then solved by using a nonlinear
Richardson strategy

k k S npk
1 =25+ o

until convergence to a suitable tolerance has been achieved. The up-
date 5% is computed by using either a Newton or inexact-Newton
method

Tr(15)0xs = ~Rz(x5),

which requires the computation of the residual vector R;(x%) and
of the Jacobian matrix Jz(x¥) at each kth iteration. The graph of
the Jacobian matrix depends not only on the topology of the net-
work of models, but also on the strategy used at each coupling
interface. In [14, Section 3.2.1] a general and efficient procedure
to assemble the Jacobian matrix is provided.

In the forthcoming sections we describe several approaches
which allow to compute the Jacobian entries for the 1-D FSI prob-
lem, ranging from exact/approximated tangent problem formula-
tions to finite difference methods. In addition, in Section 3.5 we
describe an alternative strategy based on the update of an existing
Jacobian matrix by the Broyden method.

3.3. Jacobian entries computation

Due to the hyperbolic nature of the problem, we can assume
that a perturbation on the boundary condition imposed on one side
of the 1-D segment does not have any effect on the other side dur-
ing a single time step. This amounts to consider a block-diagonal
structure for the Jacobian matrix. Therefore, there exist only four
different cases, leading to four different Jacobian coefficient types,
as described in Fig. 2.

The computation of the Jacobian entries can be achieved by dif-
ferent strategies. In particular, in this work we select two different
approaches. The first is to estimate the value of the entries by a
simple finite-difference approximation. The second one is to derive
the exact tangent problem formulation of the 1-D model, which
leads to the analytical expression of the entries.

3.3.1. Finite difference approximation
Following the approach of [11,13], we use a finite difference
approximation to estimate the value of the Jacobian entries. Since,

op,  fQu=1 BCr =0
— = .
0Qr,

(@)
, 5P, =1 BCr =0
d& -~ L R.
P R

(c)

as shown in Fig. 2, we have both pressure and volumetric flow rate
derivatives, we have to consider two different cases. The value of
the pressure and of the volumetric flow rate on the left boundary
of the model can be expressed through the following operators:

PL=P(QL), QL= Qi(Pr). (11)

The pressure and the volumetric flow rate on the right boundary are
equivalently defined; for the sake of clarity, in the following we re-
frain from defining both left and right quantities when unnecessary.
The boundary pressure operator P.(-) is defined as

PUQ) = (AT =y (T, Q)] ), (12)

being TgQPA(-) the Taylor-Galerkin operator (see problem (4) with
boundary conditions (9);) that, given the elastic volumetric flow
rate on the left side of the model, returns the area along the 1-D
FSI segment.

Remark 5. As mentioned in Section 2.3, when the volumetric flow
rate is imposed on a side of the 1-D segment, an homogeneous
Dirichlet boundary condition is applied to the same side in the
viscoelastic problem (5). Therefore, the following holds in (12):
QL=0and Q. =Q..

The boundary volumetric flow rate operator Q(-) is given by

QP =Qr + QT (13)
where the elastic contribution is defined as
=Tg, (W '(PI')

and the viscoelastic one is

)

A 1
=T, (AT

L L

An+1 _
L =Ve

An+l gn+1
QAT

QA-Q (

= Ve g 0Ty o 07 LU P

where ! is the inverse of the pressure-area operator (see Eq. (2)),
TgALHQ(') the Taylor-Galerkin operator (see problem (4) with
boundary conditions (9)s) that, given the area on the left side of
the model, returns the elastic volumetric flow rate along the 1-D
FSI segment, and v, o (+,-) the viscoelastic operator (see problem
(5)) that, given the elastic flow rate and the area computed with
the Taylor-Galerkin scheme, returns the viscoelastic flow rate
correction along the 1-D segment. Due to the differential form of
the viscoelastic term, we do not have the analytical expression for
the relation A =y~ (P), which is solved numerically by using the
Newton method.

The finite difference formulation for the left pressure derivative
(see Fig. 2a) is

oPI _ PuQIT +6Q) — PLQT)

Q. Q '
BCL.: 0 6QR. -1 _on
L R 0Qr
(b)
BC, =0 6Pr =1 .
L R dQR

I

0Py

(d)

Fig. 2. Scheme for the computation of the Jacobian entries of the 1-D model. On the top of the coupling nodes (represented by a dot) it is shown the imposed boundary
condition in the case of the tangent problem formulation. The corresponding finite difference case is straightforward. BC stands for a generic boundary condition on the left/

Py

right side of the segment. (a) Computation of ﬁ (b) Computation of
Q. Qg

. (c) Computation of & (d) Computation of
P
L

205
oPy”
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where 6Q is a properly chosen volumetric flow rate perturbation
parameter. A similar result is reached for the left volumetric flow
rate coefficient (see Fig. 2¢)

aQnH N (PEH +(3P) _ QL(PEH)
oP, oP ’

where 6P is a properly chosen pressure perturbation parameter. In-
deed, the main drawback of the finite difference approach is that
the accuracy of the approximation may depend on the choice of
the perturbation parameter magnitude to be applied to the coupling
quantity. In particular, when not chosen adequately, this may have
a strong impact on the global convergence of the Newton scheme.

3.3.2. Exact tangent problem formulation

To overcome the limitations of the finite difference approach
described in Section 3.3.1, we compute the Jacobian entries of
the 1-D FSI model by solving the associated exact tangent problem.
Deriving (12) with respect to the volumetric flow rate we get the
analytical formulation of the left pressure derivative (see Fig. 2a)

P!
Q.

8!&(14““)
Q.

8W(An+]) 8TgQL>—vA( n+1)

0 -
Q= e X

0QL =

5QL7

where the first term is computed by deriving (2)

WA _ P s (3 A
aA \/W ZAt An+1 3/2 AnH ’

in which we approximate the temporal derivative of the area with a
first order finite difference, and the second one is obtained from (4)
and (9)

0Te, QD 1,

aQ, Ly
L

n+1 n
( ) L]Z

9T 6g (") _ i
Qg . Ly’

where we remark that the expressions for the left and right sides
are different. In a similar way, deriving (13) with respect to the
pressure we get the analytical formulation of the left volumetric
flow rate derivatives (see Fig. 2c)

8Qn+l

8QH+1 8Qn+1
oh = P,

P, op, Lt

oPL,

where the elastic contribution is given by

aQEJrl P — aTgALHQ (AE+1) 611171 (P;_Hl)

op, Tt 0AL oP,
L

6PL!

where, from (4) and (9), we get
+1
aTgAL,_,Q (Az ) Lg]
O0AL L’
L

n+1
8TgAR>—»Q (ARJr ) qul
A [
R

such that, again, the expressions for the left and right sides are not
the same. The viscoelastic contribution is

o o Ve fanca (@A™ 9 p
op, Tt 20 0P, t
ov. QAHQ(Qn+] An+1) 0A sP
* oA ap, O

L
where we remark that at the discrete level it becomes

~ A n+1
aQ! inavf@.m(gw A™) W%HQ(AJ)
8PL 3 8Q1 L 8AL )
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op, & A, oA |,
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being ng; the total number of finite element nodes used to discretize
the 1-D segment. Note also that, for the reasons discussed before,
the derivative of ! is approximated by finite differences.

3.4. Two-level time step technique

As described in Section 2.3, the 1-D problem is solved using an
explicit numerical scheme. The main advantage of this approach is
the very low computational cost required by the solution of the
1-D problem. However, the explicit second order Taylor-Galerkin
scheme entails a strong limitation on the time step due to the
CFL condition, which in this case reads [26]

At V3

R

This may be an issue when dealing with large networks of segments,
since to perform the nonlinear Richardson iterations on the global
coupled problem, the time step of all the elements of the network
must be the same, i.e., the element with the most restricting time step
forces the entire system to advance the computations at that time
step. In particular, for the case of arterial networks, the heterogeneity
of the elements is such that the difference between the desired time
step and the one required by the CFL condition is around two orders of
magnitude, leading to a sensible increase of the computational cost.
This drawback is even more visible when including some computa-
tionally expensive 3-D FSI elements in the analysis; indeed it is desir-
able to solve any 3-D problem as few times as possible, i.e., using a
very large time step, to reduce the computational time.

In order to satisfy the CFL condition of each 1-D FSI model with-
out imposing a global limitation on the time discretization of the
other models, we devise a two-level time step technique where
the inner time step meets the local 1-D CFL requirements, being
different for each model, while the outer time step is used for
the global coupling between the models, i.e., (10) is satisfied just
at this outer level. Note that in presence of any 3-D FSI model,
the outer global time step can be chosen accordingly to the
requirement of the 3-D problem.

3.4.1. Inner time step interpolation

In the two-level time step approach the interface equations are
satisfied at the outer time level. A possible way to provide the
boundary conditions at the inner, and finer, time level for the 1-
D FSI problems is to use interpolation. In particular, in this work
we use Lagrange polynomial interpolation, whose order can be
tuned to improve the final result (cf. Fig. 3).

In general, in presence of large ratios between the global and
the local time steps, it is expected that a linear interpolation poly-
nomial is able to capture well long wavelength (characteristic of
the arterial tree). However, in presence of short wavelengths, an
inaccurate approximation of the shape of the wave during the in-
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Fig. 3. Two-level time step technique interpolation example: four local inner time
steps (vertical dashed blue lines) are performed inside the global outer time step
(vertical dashed black lines). The blue dots represent the boundary conditions
imposed on the 1-D segment at each inner time step. (a) The linear interpolation
does not capture the shape of the short wavelength. (b) The quadratic interpolation
improves slightly the results with respect to the linear case. (c) The cubic
interpolation almost capture the true shape of the wave. (d) Increasing too much
the order of the interpolation may be counter-productive, as in this case for the
quartic interpolation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

ner time steps can generate some spurious numerical reflections at
the coupling interfaces, due to the fact that (10) is satisfied just for
the outer global time steps. An alternative is either to reduce the
outer time step (i.e., reduce the ratio with respect to the inner time
step) or to use higher order interpolation polynomials, as described
with a schematic example in Fig. 3.

Further discussions and analysis about the numerical reflec-
tions are postponed to Section 4.2.

3.4.2. Jacobian entries approximation

The presence of inner time steps in the 1-D FSI model introduces
additional difficulties in the calculation of the Jacobian entries. The
finite difference approximation described in Section 3.3.1 is still

valid, since the local inner time steps are hidden behind the pressure
and volumetric flow rate operators (11). However, the analytical
formulation of the tangent problem derived in Section 3.3.2 does
not hold anymore, since it does not keep into account the recursion
of the problem at each inner time step.

The derivation of the analytical formulation of the tangent
problem for the most general case is complex and computationally
expensive. Hence we devised an approximated version of the tan-
gent problem formulation by neglecting all the recursions present
in the formulation, assuming a single global time step for the
approximation of the Jacobian entries. This is equivalent to the ap-
proach described in Section 3.3.2 with a fictitious larger time step.

Aswe will show in Section 4.1, both the finite difference approach
and the approximated tangent formulation lead to convergent inex-
act-Newton schemes in simple academic cases. However, in more
complex and general scenarios, like the one presented in Section 5.5,
the later approach might not converge for large outer time steps.

3.5. Broyden method with matrix initialization

The computation of the Jacobian matrix at each iteration of the
Newton method may be expensive from the computational view-
point. This is even more critical when dealing with many 3-D FSI
boundary interfaces, where each interface requires the solution
of a 3-D FSI problem. Moreover, as discussed in the previous sec-
tion, the Jacobian entries are approximated when using the two-le-
vel time step technique, leading to an inexact version of the
Newton method, which is only linear convergent.

Following the idea in [11], we combine our approach with a
Broyden strategy for the update of the Jacobian matrix [27]. More
precisely, we initialize the Jacobian matrix at the first iteration of
the first time step by using one of the approaches described in
the previous sections. Then, for the rest of the simulation, we up-
date the Jacobian matrix by using the Broyden method:

(Ra(xf) —Ra (x5 ") 025"
(o) oxk!
_ (JI(Z’%ﬁl)éxléil)(éxéil)T (-14)
o) ot

Eq. (14) does not require the solution of any tangent problem and it
is based just on the evaluation of the residual of the interface
problem, which is needed in any case by the Newton method. On
the basis of these considerations, the second algorithm in [14] can
be upgraded to the version described in Algorithm 1, where Q;

Tr(xf) =T (k) +

Algorithm 1. Parallel time advancing with Newton and Broyden

l:forn=1,2,... T/At

2: if n = 1 (first time step)

3 initialize 32 =0

4 else

5: extrapolate x2 from previous time steps

6 end

7 solve @;, j=1,...,n% and compute Rz(x?) [parallel step]
8 while Rz (%) > tolerance

9: if n =1 and k = 0 (very first nonlinear iteration)

10: initialize 77 (%) with the finite difference approximation [parallel step]
11: else

12: update 77 (%) with Broyden [parallel step]
13: end

14: solve J7(xk)oxk = —Rz(x%) and compute gk+! = yk + ok

15: solve ©;,j = 1,...,n%, and compute Rkt [parallel step]
16: end

17: end
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indicates the j-th model of the network and n® is the total number
of coupled 1-D models.

Remark 6. As suggested in [11], we also considered the orthog-
onalized version of the Broyden method. Nevertheless, in all our
tested cases, this approach does not perform better than the
classical version.

Remark 7. A simpler approach would be to initialize the Jacobian
matrix with the identity matrix, in order to avoid, at all, the need
of the techniques devised in the previous sections. However, this
strategy leads to non-convergent schemes in all the tested cases.
Moreover, the initialization of the Jacobian matrix is needed only
at the very first iteration of the nonlinear Richardson algorithm,
such that its impact on the global computational cost is
negligible.

4. Benchmark examples

In this section we make use of simple benchmark examples to
analyze the behaviour of the two-level time step technique intro-
duced in Section 3.4.

To set up these analyses, we consider the benchmark case de-
scribed in Fig. 4, where two 1-D segments are coupled by imposing
a pressure boundary data over the interfaces. This approach corre-
sponds to satisfy (10) through the following local residual (here
written in a general form)

R.(P;) =0,
being

(15)

Re(Po) = 3Qui(Po),
i=1

which corresponds to a compact version of the second strategy
presented in [14, Section 2.5]. In particular, (10), is satisfied
implicitly by imposing the same pressure P, (which is the local
unknown, i.e., x.=P:) on all the interfaces of the c-th node,
while (10); is enforced through the local residual form (15). Since
in a 1-D setting the solution of the coupled problem does not
depend on the type of the boundary data, we do not investigate
other strategies in this work.

L Interface L

Q) -

Fig. 4. Schematic representation of the benchmark case.

- Absorbing
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Remark 8. If more than one node is present in the network, the
global residuals vector R7 of the interface problem described in
Section 3.2 is assembled by concatenating all the c-th local residual
forms, c=1,...,C, as detailed in [14].

For the benchmark example in Fig. 4 we set the tolerance of the
residual equation of the interface problem to 10~°. On the leftmost
side we impose a given volumetric flow rate Q(t) and on the
rightmost one an absorbing boundary condition. The dimension-
less parameters that define the problem are: p. =1, y; =0 (i.e,
Kr=0), o =11, Per =0, A’ =7, hs = 0.1, Es = 3000000, vs =
0.5 (i.e., s =400000), and s = 0. The spatial discretization h is
set equal to 0.01, independently of the length L of the elements.
In all the simulated cases, the inner time step is fixed to 107°
and the outer time step is chosen accordingly to the desired num-
ber of inner time steps to be performed per each outer time step.

4.1. Iterations analysis

First of all, we study the sensitivity of the number of iterations
required for the solution of the coupled problem, with respect to
the number of inner time steps, the order of the Lagrange polyno-
mial interpolation, and the applied numerical method. For this
analysis we impose a periodic flow rate wave Q(t) = sin(2xt/Tyw),
where T,, = 0.00512 is the chosen wave period. The length of each
1-D segment is set equal to 3.

The number of nonlinear iterations is shown in Fig. 5. We can
observe that, for the selected example, there is no evident depen-
dence of the average number of iterations from the chosen iterative
method. The Broyden method and both versions of the inexact-
Newton algorithm behave similarly. In all the three cases, for a
small number of inner time steps per outer time step, increasing
the order of the Lagrange polynomial decreases the average num-
ber of iterations. However, when the number of inner time steps
per outer time step is larger than 8, the curves cross each others
more than once. Finally, we can observe a slightly increase of the
average number of iterations with respect to the increase in the ra-
tio between outer and inner time steps. This behavior is mainly due
to the approximations introduced in the Jacobian matrix. More
precisely, the accuracy of the Jacobian entries computed with the
three approaches decreases by increasing the outer time step.
However, even in the worse presented case (128 inner time steps
per outer time step), the average number of iterations is quite
small (between three and four).

4.2. Reflections analysis

A second study regards the possible presence of numerical
reflections at the coupling interfaces, which are due to the
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Fig. 5. Average number of nonlinear Richardson iterations as a function of the number of inner time steps and of the Lagrange interpolation order. (a) Approximated tangent

problem formulation. (b) Finite difference approximation. (c) Broyden method.
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(T = 0.320) for different Lagrange interpolation orders.

interpolation at the level of the inner time steps. For this analysis
we impose a single flow rate wave defined as

./ 2mt\? Tw
Q(t) = 51n<ﬁ> t<7.,
0 otherwise.

The length of each 1-D element is set equal to 75, such that the lon-
gest considered wave fits in a single 1-D segment. This choice al-
lows to easily identify the reflected wave in the first segment,
after the end of the prescribed wave crosses the coupling interface.

In Fig. 6(a) we can observe a clear dependence of the amplitude
of the reflection with respect to the wavelength and the number of
inner time steps performed per outer time step. As expected, the
longest the wave, the smallest the numerical reflection. Note that
the longest considered wave has a period similar to the one of
the human systolic phase. Hence, as we show in the next section,
in a cardiovascular setting the magnitude of the numerical reflec-
tions is negligible when considering up to 128 inner time steps,
i.e., an outer time step of 10~ s. Finally, in Figs. 6(b) and (c) we
can observe that, as for the number of coupling iterations, the ben-
efits of a higher order Lagrange polynomial are visible only when
the inner time step is close to the outer time step.

5. Modeling of the human arterial tree

In this section we apply our methodology to the arterial net-
work provided in [17]. First of all, we recall a model for the termi-
nal nodes of the arterial network. Then, we analyze the results,
both from the modeling and the algorithmic viewpoints.

5.1. Terminals lumped parameter model
The peripheral 1-D arterial vessels are terminated with a three-
element windkessel model (see Fig. 7), which accounts for the

cumulative effects of all distal vessels (small arteries, arterioles,
and capillaries).

Ry Ry
Pip Qoo AAN AN Pu @y

__C

Fig. 7. Three-element windkessel model.

The three-element windkessel model consists of two resis-
tances R; and R, and a capacitor C. The values of these parameters
are given by in vivo measurements and reasonable assumptions
[17]. This model leads to a differential relation between the pres-
sure and the volumetric flow rate in the time domain, namely

dQ; p
dt ’

dpPy_p

Pip—Py+CR, ar

= (Rl + RZ)QlfD + CR]RZ

(16)

where P;_p and Q;_p are the pressure and the volumetric flow rate
at the terminal node of the 1-D segment, respectively, and
P, = 6666 dyn/cm? is the prescribed venous pressure. Eq. (16) can
be solved for the pressure or for the volumetric flow rate. By intro-
ducing the approximation

n+l Qn
Ql—D(t) ~ Qr]17D + lt;][i] _ t,]fD (t - tn)’
dQ]—D _ qu) - QT—D
df - tn+1 " ’

we can integrate (16) analytically, leading to an algebraic expres-
sion for the unknown pressure. The same approach holds when
solving for the volumetric flow rate. In the following, we couple
the terminal 1-D segments to the windkessel models through
(15), therefore we solve (16) for the pressure.

5.2. Model predictions

The arterial model provided in [17, Fig. 1 and Table 2] is com-
posed by 103 elements (4 coronary, 24 aortic, 51 cerebral, 10 upper
limbs, and 14 lower limbs) and includes all the values of the
parameters required to describe the blood flow, such as the data
for the terminals, which are modeled as 0-D windkessel elements,
and the geometrical properties of the vessels (Iength and proximal/
distal areas). These values have been obtained both from in vivo
measurements and averaged literature data. We remark that the
proximal/distal areas data are used to impose a linear variation
of the reference radius along the vessels.

Regarding the parameters of the wall, since we use a different
model with respect to that used in [17], we estimate these values
from other sources. In particular, the value of the Young modulus
Es for each arterial segment has been taken from [2] (for the body
and the cerebral parts) and from [28] (for the coronaries). The Pois-
son ratio vs has been set equal to 0.5, as the arterial wall is as-
sumed to be incompressible. The thickness of the vessels wall
has been estimated equal to 10% of the local radius, which is a
commonly accepted approximation, leading to a non-uniform
distribution of the coefficient B along the narrowed segments.
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Regarding the viscoelastic properties, we set the viscoelastic angle
¢s equal to 10° for all the vessels, while the systolic period (for the
prescribed flow) is equal to 0.24 s. Note that, to enhance the com-
parison with the results presented in [17], we impose the same
time-dependent volumetric flow rate at the inflow of the arterial
network.

Finally, the other parameters that define the problem are:
pr = 1.04 g/cm®, u; = 0.035 g/cm/s, and Pex = 100000 dyn/cm?.
The power law coefficient 0 is set equal to 9, leading to a Womers-
ley profile and to a value of the Coriolis coefficient of 1.1. The outer
time step is set equal to 10~ s, while the inner time step is com-
puted to meet the local CFL requirements, and is different in each
segment. Because of this, in general, the ratio between inner and
outer time steps ranges approximately from 0.1 to 0.02.

Figs. 8 and 9 show the global and the cerebral views of the re-
sult obtained for the full 1-D arterial tree. The results refer to the
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last of seven cardiac cycles, when the periodic regime has been
reached. From the analysis of the images, we can observe that
the results of our simulation match the ones given in [17, Figs. 4
and 5], even if some differences are present due to the different
choice of the arterial wall model. Nevertheless, the predictions of
our model are very accurate, especially when compared with the
averaged in vivo measurements.

Since the validation of this model is not a matter of this work,
no further comments are added here. Investigations in this direc-
tion are subject of future works.

5.3. Error analysis
To assess the accuracy of the numerical predictions of volumet-

ric flow rate and pressure in presence of the two-level time step
technique, we make a comparison with the solution of the same
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Fig. 8. Periodic flow rate (solid line) and pressure (dashed line) results in ten different arterial segments. The color in the central image represents the pressure field at the
end-systole of the seventh heart beat (t = 5.2 s), where the color bar ranges from blue (80000 dyn/cm?) to red (175000 dyn/cm?). Positioning of 1-D network elements is
purely visual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Periodic flow rate (solid line) and pressure (dashed line) results in eight different cerebral arterial segments. The color in the central image represents the pressure field
at the end-systole of the seventh heart beat (t = 5.2 s), where the color bar ranges from blue (80000 dyn/cm?) to red (175000 dyn/cm?). Positioning of 1-D network elements
is purely visual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

problem when the outer time step is equal to the inner time step,
i.e., no inner time step is performed. Note that the required number
of inner time steps is different for each 1-D segment, since it is
computed automatically on the basis of the known value of the
CFL condition and of the local properties of the element. Therefore,
to avoid performing inner time steps in all the segments, the outer
time step must be smaller enough to satisfy the CFL condition in
the most restricting vessel of the network. Being At; jeve; = 107 s
the global time step used for the case when the inner time step dif-
fers from the outer time step, and At{_jeve; = 107> s the one chosen
in order to have the outer time step equal to the most restrictive
inner time step, we calculate the relative error between the two
cases at each time t} ., = NAty_jevel, With n=0,1,2,... by com-
puting the quantities

£5°" = mean(&y),

17
&P = mean(&p), £ = max(&y), {17
with
n n n n
n __ Q2—level - Q-l—level n _ | 2—level — ' 1—level
= |/ === [ e —
Q maX(Ql—level) r11—1evel

where the operators mean(-) and max(-) calculate the mean and
maximum values, respectively, over all the performed time steps
of the last cardiac beat.

From the analysis of the values in Table 1, we can observe that

the average pressure error 3" and the maximum pressure error

&P are always less than 0.5% and 1.0%, respectively. Regarding
volumetric flow rate, the average error £5°" is less than 0.5% in
most of the segments, and never above 2.0%. The maximum error
EQ™ is usually around 1.0%, with a maximum of 2.5%. Increasing
the order of the interpolation, the magnitude of the value does
not change significantly. In view of these values, we confirm the re-
sult of Section 4.2, i.e., in a cardiovascular setting, where the wave-
length are long, a linear interpolation at the level of the inner time
steps leads to accurate results without significant numerical
reflections.

5.4. Modeling analysis

As we already discussed in Section 2, the inclusion of the visco-
elastic effect and of the local variation of the radius (and eventually
of other properties) along the vessel, leads to an increase of the
complexity of the model. In particular, the differential nature of
the viscoelastic term requires the introduction of an operator split-
ting technique for the solution of the numerical problem (see Sec-
tion 2.3), while the axial dependence of the reference area leads to
a more complex formulation for the compatibility conditions (see
Section 2.4). In view of these considerations, the reader may ask
if these ingredients are really necessary to capture the true physics
of the cardiovascular circulation. To answer this question, we per-
form a comparison between the results presented in Section 5.2
and the ones obtained removing these features from the model.
In particular, we set up three cases.
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Table 1
Relative errors (in %) computed applying (17) to all the 1-D arterial segments
presented in Figs. 8 and 9. A linear interpolation is used for the inner time steps.

Arterial segment EGM( %) EX(K)  EFEM(N)  ER(%)
Ascending aorta 2 0.01 0.13 0.40 0.49
Thoracic aorta A 0.17 0.49 0.31 0.37
Abdominal aorta A 0.23 0.49 0.27 0.33
Left common carotid 0.19 0.71 0.29 0.36
Right coronary RCA 0.29 0.61 0.32 0.48
Right subclavian B, axillary, 0.22 0.58 0.14 0.24
brachial
Left radial 0.13 0.33 0.16 0.27
Left external iliac 0.29 0.99 0.18 0.33
Right femoral 0.26 0.92 0.20 0.37
Right anterior tibial 0.17 0.63 0.21 0.42
Left internal carotid 0.48 1.02 0.21 0.36
Right vertebral 0.86 1.82 0.15 0.25
Basilar artery 2 1.43 2.47 0.11 0.22
Right ant. cerebral A2 0.24 0.64 0.24 0.59
Left middle cerebral M1 0.27 0.64 0.15 0.41
Right post. cerebral 2 0.22 0.53 0.22 0.48
Right ant. choroidal 0.21 0.59 0.20 0.52
Left ophthalmic 1.81 1.97 0.23 0.56

Model A. The segments in the 1-D network include both the elas-
tic and viscoelastic wall effects. An axial linear variation
of the reference radius and, consequently, of the wall
thickness is present on most of the vessels, using the
data in [17].
The segments in the 1-D network include only the elas-
tic wall effect. An axial linear variation of the reference
radius and, consequently, of the wall thickness is pres-
ent on most of the vessels, using the data in [17].
Model C. The segments in the 1-D network include only the elas-
tic wall effects. In each segment the radius and the wall
thickness are considered constant.

Model B.

The results of this comparison are shown in Fig. 10. As we can
see, a purely elastic model of the wall (red lines) induces additional

Abdominal aorta A 5

Left radial
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reflections along the segments, which are not dumped by the vis-
coelastic behavior. These reflections are further amplified when
the narrowed elements are replaced by equivalent segments with
a uniform reference area (blue lines). Neglecting the variation of
the vessels radius (model C) produces the largest differences in
term of flow rate and, at the left external iliac, an overshoot of
the pressure. In view of this behavior, we conclude that both ingre-
dients are mandatory for the correct prediction of the physical
quantities as stated also in [17].

5.5. Iterations analysis

To assess the efficiency of the methodology presented here, we
compare the number of iterations required by the different algo-
rithms to solve the full arterial network. The global coupled prob-
lem is composed of 99 interface variables. Even if this number is
relatively small, it represents the implicit coupling of 150 compo-
nents (103 1-D plus 47 0-D), in a complex network topology (that
includes bifurcations and closed loops).

The results of this comparison are shown in Fig. 11. First of all,
we observe that the number of iterations required for the conver-
gence to the solution of the global problem (up to an imposed tol-
erance of 107%) is always higher in the graphs in the second line
(two-level time step technique, using an outer time step equal to
102 s) with respect to the ones in the first line (no inner time
steps, using an outer time step equal to 107> s). This behavior is
more evident for the Broyden method rather than for the Newton
method with finite difference approximation. Moreover, when the
inner time step is different from the outer time step, the approxi-
mated tangent problem formulation does not converge at all.

In the second place, we also compare the results given by sim-
plifying the model, first neglecting the viscoelastic effect (second
column) and then averaging the radius along the narrowed vessels
(third column). The first approximation should decrease the num-
ber of iterations, since the nonlinearities of the viscoelastic term
disappear. However, comparing Fig. 11d with Fig. 11(e) we observe
this behavior only during the systolic phase, while in the diastolic
one the number of iterations increases. This can be justified by
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Fig. 10. Comparison, in terms of physical quantities, between model .4 (black lines: same as in Figs. 8 and 9), model B (red lines), and model C (blue lines) in six selected 1-D
segments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Comparison, in terms of number of iterations, of different algorithms for the coupling of the full 1-D arterial network. The acronyms FD and TP stand for finite
difference and tangent problem, respectively. The first six heart beats are shown. (a)-(c) Cases without inner time steps. (d)-(f) Cases with inner time steps. (a), (d) Model A.

(b), (e) Model B. (c), (f) Model c.

Table 2

Average number of iterations over six heart beats for different models and numerical
algorithms. The acronyms FD and TP stand for finite difference and tangent problem,
respectively. Note that the average number of iterations is less than one for the case of
the one-level time step technique applied to model A. This is due to the fact that, with
such a low time step, it may happen that the tolerance is satisfied without any
implicit iteration over the coupling quantities.

One-level time step Two-level time step

Model TP FD Broyden TP FD Broyden
A 0.87 0.87 0.93 - 2.10 4.02
B 1.00 1.00 1.20 - 2.69 4.82
c 1.00 1.00 1.25 - 2.49 4.37

observing the curves in Fig. 10, where the lack of the viscoelastic
effect leads to the introduction of some oscillations along the net-
work. On the contrary, averaging the radius along the vessels
seems to slightly speed up the convergence.

The results of these comparisons can be further summarized by
averaging the number of iterations over the entire simulation, as
done in Table 2.

Comparing the results of Table 2 with the ones presented in
Fig. 5 we observe that even if the simulated cardiovascular net-
work of arteries is composed by more than 100 of elements, the
average number of iterations required for the solution of the global
problem is almost the same of the very simple case with just two
elements. This can be explained from the fact that we are dealing
with hyperbolic problems in which, for the given speed of sound,
the perturbations at a given coupling interface do not spread out
instantaneously throughout the network like in an elliptic prob-
lem. Therefore, the physics of the problem couples just the adja-
cent segments. In fact, this is the result of the block-diagonal
structure of the Jacobian matrix in the Newton method. In the
Broyden method the approximation of the Jacobian does not meet

this block-diagonal structure, which possibly explains the increase
in the number of iterations.

6. Conclusions

In this work, we presented a numerical technique for the par-
titioned solution of 1-D FSI models in arterial networks. A full
description of the 1-D FSI model equations has been provided,
together with the strategies used to solve the numerical prob-
lem. In particular, we extended the approaches proposed in
previous works in order to include in the model some critical
features such as the viscoelastic response of the arterial wall
and the effect of non-uniform properties (e.g., reference area,
thickness, etc.) along the vessel. The importance of these
features is demonstrated by comparing the behaviour of the
main physical quantities of a full 1-D arterial network with
and without these ingredients.

In view of the future works involving coupling of 1-D FSI seg-
ments with other dimensionally-heterogeneous models, such as
3-D FSI models, we employed a partitioned approach for the solu-
tion of the global network of elements. Since we solve the 1-D FSI
problem through an explicit algorithm, we devised a two-level
time step technique for the solution of the global problem; this al-
lows to relax the time step limitation dictated by the CFL condition
in the 1-D FSI model. The problem at the coupling interfaces is
solved by a classical nonlinear Richardson approach. In particular,
two different numerical strategies have been selected: the Newton
and the Broyden methods. The former requires the computation of
the exact Jacobian matrix, which is quite complex in presence of
the two-level time step technique. Therefore, two approaches for
the approximation of the Jacobian have been tested, leading to
inexact-Newton formulations. The latter is based just on the eval-
uation of the residual, leading to a very cheap formulation. Note
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however that the Broyden matrix needs to be initialized with a
good approximation of the Jacobian, which can be obtained using
one of the two inexact-Newton techniques. Recalling the expensive
evaluation of the Jacobian matrix at each iteration, the Broyden
method turns to be the cheapest one in terms of computational
cost per time step.

The methodology presented here has been tested on several
cases, ranging from simple academic examples, consisting in serial
connection of elements, to physiological applications of the entire
arterial network. Indeed it has demonstrated to be robust and to
perform accurately in a wide range of applications.
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