TY - EJOUR
DO - 10.1016/j.cma.2012.05.017
AB - In this work a numerical strategy to address the solution of the blood flow in one-dimensional arterial networks through a topology-based decomposition is presented. Such decomposition results in the local analysis of the blood flow in simple arterial segments. Hence, iterative methods are used to perform the strong coupling among the segments, which communicate through non-overlapping interfaces. Specifically, two approaches are considered to solve the associated nonlinear interface problem: (i) the Newton method and (ii) the Broyden method. Moreover, since the modeling of blood flow in compliant vessels is tackled using explicit finite element methods, we formulate the coupling problem using a two-level time stepping technique. A local (inner) time step is used to solve the local problems in single arteries, meeting thus local stability conditions, while a global (outer) time step is employed to enforce the continuity of physical quantities of interest among the one-dimensional segments. Several examples of application are presented. Firstly a study about spurious reflexions produced at interfaces as a consequence of the two-level time stepping technique is carried out. Secondly, the application of the methodologies to physiological scenarios is presented, specifically addressing the solution of the blood flow in a model of the entire arterial network.
T1 - A two-level time step technique for the partitioned solution of one-dimensional arterial networks
DA - 2012
AU - Malossi, Adelmo Cristiano Innocenza
AU - Blanco, Pablo Javier
AU - Deparis, Simone
JF - Computer Methods in Applied Mechanics and Engineering
SP - 212-226
VL - 237-240
EP - 212-226
PB - Elsevier
PP - Lausanne
ID - 170546
KW - One-dimensional model
KW - Arterial network
KW - Wave propagation
KW - Hemodynamics
KW - Geometrical multiscale modeling
KW - Iterative methods
SN - 0045-7825
UR - http://infoscience.epfl.ch/record/170546/files/MalossiBlancoDeparis_TwoLevelTimeStepTechnique.pdf
ER -