000170546 001__ 170546
000170546 005__ 20190528160601.0
000170546 0247_ $$2doi$$a10.1016/j.cma.2012.05.017
000170546 022__ $$a0045-7825
000170546 02470 $$2ISI$$a000307158800016
000170546 037__ $$aARTICLE
000170546 245__ $$aA two-level time step technique for the partitioned solution of one-dimensional arterial networks
000170546 269__ $$a2012
000170546 260__ $$bElsevier$$c2012$$aLausanne
000170546 300__ $$a15
000170546 336__ $$aJournal Articles
000170546 520__ $$aIn this work a numerical strategy to address the solution of the blood flow in one-dimensional arterial networks through a topology-based decomposition is presented. Such decomposition results in the local analysis of the blood flow in simple arterial segments. Hence, iterative methods are used to perform the strong coupling among the segments, which communicate through non-overlapping interfaces. Specifically, two approaches are considered to solve the associated nonlinear interface problem: (i) the Newton method and (ii) the Broyden method. Moreover, since the modeling of blood flow in compliant vessels is tackled using explicit finite element methods, we formulate the coupling problem using a two-level time stepping technique. A local (inner) time step is used to solve the local problems in single arteries, meeting thus local stability conditions, while a global (outer) time step is employed to enforce the continuity of physical quantities of interest among the one-dimensional segments. Several examples of application are presented. Firstly a study about spurious reflexions produced at interfaces as a consequence of the two-level time stepping technique is carried out. Secondly, the application of the methodologies to physiological scenarios is presented, specifically addressing the solution of the blood flow in a model of the entire arterial network.
000170546 6531_ $$aOne-dimensional model
000170546 6531_ $$aArterial network
000170546 6531_ $$aWave propagation
000170546 6531_ $$aHemodynamics
000170546 6531_ $$aGeometrical multiscale modeling
000170546 6531_ $$aIterative methods
000170546 700__ $$0242880$$g190300$$aMalossi, Adelmo Cristiano Innocenza
000170546 700__ $$aBlanco, Pablo Javier
000170546 700__ $$g121157$$aDeparis, Simone$$0241667
000170546 773__ $$j237-240$$tComputer Methods in Applied Mechanics and Engineering$$q212-226
000170546 8564_ $$uhttps://infoscience.epfl.ch/record/170546/files/MalossiBlancoDeparis_TwoLevelTimeStepTechnique.pdf$$zPublisher's version$$s1774967$$yPublisher's version
000170546 909C0 $$xU10797$$0252102$$pCMCS
000170546 909CO $$qGLOBAL_SET$$pSB$$ooai:infoscience.tind.io:170546$$particle
000170546 909C0 $$0265782$$pSCI-SB-SD$$xU13680
000170546 917Z8 $$x190300
000170546 917Z8 $$x190300
000170546 917Z8 $$x190300
000170546 917Z8 $$x190300
000170546 917Z8 $$x121157
000170546 917Z8 $$x190300
000170546 937__ $$aEPFL-ARTICLE-170546
000170546 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000170546 980__ $$aARTICLE