
Comparison of six implicit real-time
optimization schemes

Grégory François1, Bala Srinivasan2, Dominique Bonvin3

1. Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

gregory.francois@epfl.ch

2. École Polytechnique de Montréal, Montreal, H3C 3A7 Canada

bala.srinivasan@polymtl.ca

3. Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne,
CH-1015 Lausanne, Switzerland

dominique.bonvin@epfl.ch

ABSTRACT.Real-time optimization (RTO) is a class of methods that use measurements to reject the
effect of uncertainty on optimal performance. This articlecompares six implicit RTO schemes,
that is, schemes that implement optimality not through numerical optimization but rather via
the control of appropriate variables. For unconstrained processes, the ideal controlled variable
is the cost gradient. It is shown that, because of their structural differences, model-free and
model-based techniques exhibit different features in terms of required excitation, convergence,
scalability with the number of inputs and rejection of uncertainty. This comparison is illustrated
through a simulated CSTR.

RÉSUMÉ.L’optimsation en temps réel (RTO) est une classe de méthodesoù les mesures sont util-
isées pour rejeter l’effet de l’incertitude. Cet article compare six techniques de RTO implicites
qui optimisent un procédé en contrôlant certaines variables. En l’absence de contraintes, la
grandeur commandée idéale est le gradient de la fonction coût. A cause de leurs différences
structurelles, les méthodes sans modèle et les méthodes basées sur le modèle se comportent
différemment en termes de besoin d’excitation, de temps de convergence, de capacité de mise à
l’échelle et d’aptitude à rejeter l’effet d’incertitudes.Cette comparaison est illustrée en simu-
lation au moyen d’un réacteur chimique à marche continue.
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1. Introduction

The use of process optimization has become so widespread (Rotava, Zanin, 2005)
that optimization is seen today as a viabletechnology(Boyd, Vandenberghe, 2004).
One of the main difficulties associated with process optimization regards the use of
a possibly inaccurate process model. A process model is typically a set of differen-
tial and algebraic equations, which invariably representsan oversimplification of the
reality. Model prediction will differ from plant behavior because of uncertainty in
the form of plant-model mismatch, parametric uncertainty and process disturbances.
Model uncertainty is detrimental, as model-based optimization leads to the computa-
tion of inputs that are optimal for the model and not for the plant. This can be seen
as the inability of the model to predict the necessary conditions of optimality (NCO)
of the plant. Because the plant NCO include conditions on both plant constraints
and plant sensitivities, the inability of model-based optimal inputs to predict the plant
NCO will lead to constraint violations and/or suboptimal performance.

An efficient way to combat the detrimental effect of model uncertainty on the plant
performance is to incorporate process measurements in the optimization framework.
There are two wide classes of methods that use measurements.With explicit optimiza-
tion methods, the optimization problem is solved repeatedly, while measurements are
used to either adapt the model parameters, thus leading to anupdated model that is
used for optimization (Marlin, Hrymak, 1997), or update correction terms that are
added to the cost and constraint functions of the optimization problem (Marchettiet
al., 2009). The second class of measurement-based optimization methods is referred
to asimplicit optimizationand proposes to use measurements to adapt the process in-
puts directly, that is, without repeating the optimization. This can be done in three dif-
ferent manners. In (zeroth-order) techniques labeled evolutionary optimization (Box,
Draper, 1987), a simplex-type algorithm is used to approachthe optimum, with the
cost function being measured experimentally for every visited operating condition.
In perturbation (first-order) techniques, such as extremum-seeking control (Ariyur,
Krstic, 2003), the gradients are estimated experimentallyusing sinusoidal excitation;
this scheme uses only the measurement of the cost function. The third family of
schemes includes NCO tracking (Francoiset al., 2005) and self-optimizing control
(Skogestad, 2000), which formulate the optimization as thecontrol of certain vari-
ables, whose optimal values are (approximately) invariantto uncertainty; in contrast
to perturbation methods, these schemes use output information.

This paper compares several model-free and model-based implicit optimization
schemes. Optimality implies meeting the plant NCO, that is,both constraint and sen-
sitivity requirements. To simplify the presentation, and also since it is widely accepted
that experimental gradients are more difficult to evaluate than constraint values, this
paper will only consider the case of unconstrained optimization. Hence, real-time
optimization will amount to controlling the gradient to zero. Three model-based tech-
niques, for which the gradient is estimated on the basis of a process model, are com-
pared to three model-free techniques, where the gradient information is constructed
from process measurements. The comparison is performed using several criteria, with
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the objective to evaluate qualitatively the main features of the techniques and not to
rank them in any way. Hence, the contribution of this paper isto provide guidelines
that help choose an appropriate implicit optimization scheme for the problem at hand,
while highlighting potential difficulties that could be faced during implementation.

The paper is organized as follows. In Section 2, the problem of unconstrained RTO
using gradient control is formulated. Six implicit RTO schemes are described in Sec-
tion 3 and compared in Section 4. The illustrative example ofa simulated continuous
stirred-tank reactor is presented in Section 5. Finally, Section 6 concludes the paper.

2. Unconstrained Real-time Optimization via Gradient Control

2.1. Problem Formulation

In its general formulation, RTO addresses the minimizationor maximization of
some steady-state cost function. It is useful to distinguish between static RTO, for
which only steady-state measurements are used, and RTO for the steady-state opti-
mization of a dynamical plant, where online measurements are used. In the latter case
the inputs will lead the system to settle at some optimal steady-state operating point.

An unconstrained steady-state optimization problem can beformulated as follows:

min
u

Jp(u) := φp(u,yp) (1)

where the subscriptp stands for "plant",Jp is the scalar performance index to be
minimized,u ∈ ℜm are the inputs,yp ∈ ℜp are the plant outputs, andφp : ℜm ×

ℜp → ℜ is the scalar cost function to be minimized.

Problem [1] can be solved using a steady-state model of the plant. The model is
typically inaccurate since the plant mappingyp(u) is unlikely to be perfectly known.
Assuming that the model outputsy can be expressed explicitly as functions of the
inputsu and the parametersθ, i.e. y = H(u, θ), the following model-based opti-
mization problem can be written:

min
u

J(u) = Φ(u, θ) (2)

whereJ is the scalar performance index of the model andθ ∈ ℜq are uncertain model
parameters. A solution to Problem [2] can be found by solving∂Φ

∂u
= 0.

However, solving these equations for the model does not necessary lead toplant
optimality. The difficulty arises from the fact that plant-model mismatch, paramet-
ric uncertainty and process disturbances lead to an inaccurate prediction of the plant
gradient∂φp

∂u
. Measurement-based RTO techniques propose to use measurements to

satisfy theplant NCO. With implicit optimization, this will be performed by driving
the plant gradient to zero instead of repeating model-basedoptimization.

Remark: Although the focus is here on unconstrained optimization, the RTO
schemes discussed in this paper can also be applied to constrained optimization prob-
lems. For example, when there are more inputs than active constraints, some input
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directions can be computed to meet the active constraints, while the other directions
are used to force the reduced gradients to zero (Francoiset al., 2005).

2.2. Gradient Control

For unconstrained optimization, the NCO indicate that the plant gradientgp :=
∂Jp

∂u
should be zero for optimality. Implicit RTO methods will adapt the inputs to

force the estimated plant gradient to zero, with the methodsdiffering in the way the
gradient is computed. When only steady-state measurementsare used, the following
discrete adaptation law can be used:

uc,i+1 = uc,i − κPgi (3)

whereuc are thecomputedoptimal inputs (by opposition tou, which represent the
applied inputs, as will be seen later),g is the estimated gradient,κ is the adaptation
gain,P is an approximation of the inverse of the Hessian, andi is the iteration number.

Theoretically, the gradientg is only defined when the system is at steady state. In
practice, however,g(t) corresponds to an estimated quantity, whose limiting valueis
the gradient∂J

∂u
when the system reaches steady state. For the sake of simplicity, g(t)

will also be referred to as the"gradient" hereafter. When continuous-time measure-
ments are available, the following integral adaptation lawcan be used:

u̇c(t) = −κPg(t) (4)

3. Gradient Estimation Techniques

This section describes 3 model-free and 3 model-based gradient estimation tech-
niques.

3.1. Model-free Techniques

The model-free techniques assume that the cost function canbe directly measured,
i.e. there is the single outputy = J , p = 1. The gradient is obtained by exciting the
system through its inputs and calculating the gradient fromthe corresponding output
values. The model-free techniques are presented hereafterfor the monovariable case,
with an indication on how the scheme extends to the multivariable case.

Gradient from finite differences (FD): Two different constant input values are
applied, each for the durationT , which is sufficiently long to allow the system to
reach steady state; the gradient is computed using the finite-difference approximation:

u(t) =

{

uc,i 2iT ≤ t < (2i + 1)T
uc,i + ∆ (2i + 1)T ≤ t < (2i + 2)T

gi =
J((2i + 2)T )− J((2i + 1)T )

∆
(5)
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Note that FD is the only method discussed in this paper, for which only steady-state
measurements are used. Hence,gi corresponds to the gradientstricto sensoat theith

iteration. In the multivariable case, each input is perturbed individually in a similar
way, and the corresponding perturbed cost is measured once steady state has been
reached.

Gradient from extremum-seeking control (ESC): Excitation is added in the
form of a dither sinusoidal signal, and the gradient is estimated by correlation. The
approach includes high-pass filtering to remove the constant term in the cost and low-
pass filtering to help compute the derivative of the gradient(Krstic, Wang, 2000). The
various operations can be formulated in the following compact mathematical form:

u(t) = uc(t) + ∆ sin(ωt),
dJ̄(t)

dt
= α(J(t) − J̄(t))

dg(t)

dt
= β

(

2(J(t) − J̄(t)) sin(ωt)

∆
− g(t)

)

(6)

whereJ̄ is a filtered cost, andα andβ represent filter coefficients. The gradient is
then obtained by numerical integration of Equation 6 as shown in Figure 1.

Extremum-seeking control has three time scales; the fastest scale corresponds to
the controlled plant, the medium scale is associated with the periodic excitation, while
the slowest scale deals with the two filters. The reason for using a slow periodic ex-
citation is to avoid that the system dynamics interfere withthe computation of the
gradient; furthermore, with slow excitation, the plant canbe seen as a static map. To
extend this scheme to the multivariable case, one needs to excite each input individu-
ally, i.e. with its own excitation frequency.

Gradient from multiple units (MU): This method assumes the availability of
multiple similar units. The inputs to the various units differ by an offset, and the
gradient is estimated delay-free from the difference in themeasured costs (Srinivasan,
2007). With the units labeled ’a’ and ’b’, one has:

ua(t) = uc(t) +
∆

2
, ub(t) = uc(t) −

∆

2
, g(t) =

Ja(t) − Jb(t)

∆
(7)

as illustrated in Figure 1. The typical configuration for themultivariable case is to
work with m + 1 units. Only one input direction is perturbed for each of the first
m units, while the last unit has no input offset. The gradient is computed in them
directions by comparing the cost of each of the firstm units to the last one, as in the
mono-dimensional case.

3.2. Model-based Techniques

Model-based techniques include the following assumptions: (i) the model isstruc-
turally correct; (ii) there are no process disturbances. Hence, only parametric uncer-
tainty is considered, that is, the source of uncertainty is known (so-called expected
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Figure 1. Extremum-seeking control (left) Multiple-unit approach (right).

uncertainty). It is furthermore assumed that there are at least as many measurements
as there are uncertain parameters, i.e.p ≥ q, which provides sufficient information to
estimate the uncertain parameters without having to excitethe system. The model is
then used to compute the gradient and subsequently the optimal inputs.

Gradient from adapted model (AM): This corresponds to the classical two-step
approach, whereby the model parameters are estimated and the updated model is used
for optimization. In this work, the recursive parameter identification algorithm is writ-
ten in continuous time as the associated differential equation (Ljung, 1999), which is
justified by the difference in dynamics between the plant andthe (slower) parameter
estimation. Numerical optimization is implemented by forcing the gradient to zero.
Hence, the scheme can be written as (Figure 2):

˙̂
θ(t) = kθ

(

∂H(u, θ)

∂θ

)+
∣

∣

∣

∣

∣

u(t), θ̂(t)

(

yp(t) − H(u(t), θ̂(t))
)

, θ̂(0) = θ0

g(t) =
∂Φ(u, θ)

∂u

∣

∣

∣

∣

u(t), θ̂(t)

(8)

where θ̂ represents the parameter estimates andkθ is the gain used for parameter
estimation. The deviations between predicted and measuredoutputs are used to adapt
the values of the uncertain parameters. The gradient estimate is computed from the
adapted model and used in the gradient control law (4).

PlantController

Model

- Parameter

Estimation

g(t) = dΦ(Θ)/du 

u(t) y
p
(t)

H(u,Θ)

Θ(t)

Figure 2. Gradient calculation from adapted model.
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Gradient from neighboring-extremal control (NEC): Uncertainty causes the
optimal inputs and outputs as well as the gradient to deviatefrom their nominal values.
NEC proposes to estimate the gradient on the basis of a variational analysis around the
nominaloperating point for which the nominal gradientg0 = 0 (Groset al., 2009).

The variation of the outputs at steady state can be written as:

δy =
∂H

∂u
δu +

∂H

∂θ
δθ (9)

with δy := y − y0, δu := u − u0 andδθ := θ − θ0. For p ≥ q, the variation
of the uncertain parameters can be estimated using output and input measurements as
δθ =

(

∂H
∂θ

)+ [
δy − ∂H

∂u
δu
]

.

Similarly, the gradient can be written as:

∂Φ

∂u
=

∂2Φ

∂uT ∂u
δu +

∂2Φ

∂uT ∂θ
δθ (10)

which, with the expression forδθ, allows writing the gradient in terms ofδy and
δu. Hence, the use of the measured valuesδy(t) andδu(t) leads to the following
expression for the gradient estimateg(t):

g(t) =
∂2Φ

∂uT ∂θ

(

∂H

∂θ

)+

δy(t)+

(

∂2Φ

∂uT ∂u
−

∂2Φ

∂uT ∂θ

(

∂H

∂θ

)+
∂H

∂u

)

δu(t) (11)

Gradient from self-optimizing control (SOC): This method uses the sensitivity
of the optimal inputs and outputs with respect to the uncertain model parameters.
Noting that the optimal inputsuopt have to satisfy Equation 10 with∂Φ

∂u
= 0, and

using Equation 9 written foryopt and uopt, the [(p + m) × q] variational matrix
becomes:

Sθ =

[

∂yopt

∂θ
∂uopt

∂θ

]

=







∂H
∂θ

− ∂H
∂u

(

∂2Φ
∂uT ∂u

)

−1
∂2Φ

∂uT ∂θ

−
(

∂2Φ
∂uT ∂u

)

−1
∂2Φ

∂uT ∂θ






(12)

One way to perform SOC, referred to as the null-space method,relies on the com-
putation of the[(p + m)× (p + m− q)] matrixN that describes the left null space of
Sθ (Alstad, Skogestad, 2007). This matrix is guaranteed to exist from the assumption
p ≥ q. Since there arem manipulated variables, it has been proposed to choose the

m controlled variables asc = NT

[

y

u

]

, or δc = NT

[

δy

δu

]

upon subtracting the

relationship at the optimal nominal operating point, whereN is any arbitrary full-rank
[(p+m)×m] submatrix ofN . SinceN lies in the left null space ofSθ, the optimal val-
ues ofc are locally insensitive to the expected uncertainty, and keeping them constant
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at their nominal optimal values will reject the effect of uncertainty. Forp = q, these
controlled variables represent the gradient (Jaeschke, Skogestad, 2010) and therefore

∂δc
∂u

= NT

[

∂y

∂u
∂u
∂u

]

represents an estimate of the Hessian. Hence, choosing

P =

(

NT

[

∂H
∂u

Im

])

−1

(13)

enforces local decoupling between the controlled variables.

Figure 3 illustrates the similarity in philosophy behind NEC and SOC. Input and
output measurements are used to compute either the gradientg or the CVsδc, which
are controlled to zero to enforce optimality.

Remark:Forp = q and with only parametric uncertainty, NEC and SOC are equiv-
alent. Forp > q, there are several possible choices ofN, but this choice is not im-
portant to reject expected uncertainty at steady state. However, the convergence paths
might be different for NEC and SOC. The situation is different in the presence of pro-
cess disturbances, sayd. In this case,N will still lie in the left null space ofSθ, but
not in the null space of the sensitivity matrixSd. In general, the CVs determined using
Sθ will have different sensitivities with respect tod, and the steady-state performance
of SOC will be affected by the choice ofN.

Plant

Gradient

Estimation

δu

Gradient 

setpoint = 0

disturbances

Gradient  g

δy

NEC

Controller

Plant

Computation

of CV

δu

CV 

setpoint = 0

disturbances

CV  δc

δy

SOC

Controller

Figure 3. Optimizing control via NEC (left) and SOC (right).

4. Comparison of Implicit RTO Schemes

The goal of this section is to compare six RTO schemes in termsof accuracy,
required excitation, convergence properties, implementation issues and sensitivity to
measurement noise. The results are given in Table 1 and discussed next.

1. This condition becomesp ≥ q + m if Sθ does not include the term
∂uopt

∂θ
.

2. SOC is affected ifSθ does not include the term∂uopt

∂θ
. In this case,p needs to be larger thanq + m

and thus increases linearly withm.
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Table 1. Comparison of six gradient estimation techniques (FD: finite difference;
ESC: extremum-seeking control; MU: multiple units; AM: adapted model; NEC:

neighboring-extremal control; SOC:self-optimizing control)

Model-free methods Model-based methods
FD ESC MU AM NEC SOC

Accurate with yes yes yes no no no
plant-model
mismatch?
Handles large yes yes yes yes no no
perturbations?

Number of p = 1 p = 1 p = 1 p ≥ q p ≥ q p ≥ q1

outputs
Excitation temporal temporal multiple

units
none none none

Convergence slow slow fast slow fast fast
Scalability with slower even more unaf- unaf- unaf-
number inputs slower units fected fected fected2

Plant model: Model-based methods require a plant model, while no such model
is needed for model-free methods. Another important difference between the two
classes regards the measurements. Model-free methods require direct measurement of
the objective function, whereas the model creates a link between the outputsy and the
objective functionJ , thereby making the measurement ofJ unnecessary. Among the
different model-based techniques studied here, only the AMscheme uses the model
on-line, while NEC and SOC use the model off-line to design the controller.

Accuracy: This is clearly an area where the model-free techniques excel. Model-
based techniques work well if the uncertainty can be anticipated (the model is struc-
turally correct, there are no process disturbances, and theuser knows which param-
eters can vary). With structural plant-model mismatch or unmeasured process dis-
turbances, convergence will not be to the plant optimum (Chachuatet al., 2009).
Furthermore, since NEC and SOC are based on a linearization around the nominal
operating point, these two methods give good results aroundthat nominal point, while
they cannot cope with large variations.

Excitation: In principle, no temporal excitation is necessary for model-based tech-
niques since one can get the gradient information from thep outputs. However, note
that excitation is required to estimate the model parameters in the AM scheme. On
the other hand, model-free techniques withp = 1 require excitation to estimate the
gradient. Temporal excitation is provided in the FD and ESC schemes, while the use
of multiple units provides the necessary excitation in the MU approach.

Convergence:Model-based techniques have a clear edge when it comes to con-
vergence speed. Except for MU, all other model-free methodsare slow since the
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excitation has to respect a time-scale separation and be slower than the system settling
time. MU is faster than the other model-free techniques since the dynamics of the
units cancel out between similar units. Among the model-based techniques, AM is
slower due to the dynamics of the embedded parameter estimation. On the other hand,
the gradients in NEC and SOC are computed directly fromδy andδu, which makes
the techniques fast.

Implementation issues:The performance of model-free techniques rely heavily
on the tuning parameters. In particular, in addition to the controller gains, the ampli-
tude∆ for FD, ESC and MU needs to be selected in such a way that the system is
sufficiently excited, while ensuring that the finite-difference approximation is a good
estimate of the gradient. Each input has to be perturbed individually for FD and ESC,
which limits the use of such methods for multi-input systems. In addition, for FD,
constant inputs are applied during transients and reachingsteady state has to be de-
tected (Jianget al., 2002). Despite these difficulties, the FD and ESC schemes have
been applied successfully to a wide range of systems in various fields, generally at
the level of a single unit. The MU method requires that several identical units be
available, with the number of units increasing with the number of inputs. This is the
case for processes assembled in stacks such as fuel cells andmicro reactors. In con-
trast, the MU technique has little chance to be applicable for plant-wide optimization.
Also, reducing the effect of differences between units is still an issue, although it has
been investigated in two recent papers for both the static (Woodwardet al., 2009) and
dynamic (Reneyet al., 2009) cases.

In contrast, model-based techniques do not suffer from these difficulties and are
typically more likely to be implemented on large-scale systems as (i) no temporal
excitation is necessary, (ii) convergence is relatively fast, and (iii) good scalability with
the number of inputs can be ensured. The key issues relate to the presence or absence
of a reliable model and the characterization of the main sources of uncertainty. Clearly,
in the absence of a reasonably accurate process model, model-based techniques will
be of little help, as their accuracy decreases with the size of the uncertainty.

Sensitivity to measurement noise:Measurement noise will affect all schemes,
though those based on numerical differentiation will be more affected. Noise will also
affect the MU method, as adding units also implies adding sensors that may not be
identical, thus leading to potentially biased gradient estimates. Furthermore, handling
measurement noise for MU is still an open issue. The use of NECand SOC in the
presence of noise is questionable, as noisy measurements are used for gradient es-
timation. Although this point requires further investigation, it has been shown that
NEC should only be considered when the level of noise is small, i.e. the potential
cost improvement should not be buried in the measurement noise (Groset al., 2009).
Also, for the casep > q, (p − q) output measurements can be discarded as onlyq

measurements are required. These(p− q) outputs can be chosen as the most sensitive
to measurement noise as suggested in (Alstad, Skogestad, 2007).
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5. Illustrative Example

This section illustrates by means of a simple MIMO example the general trends
discussed in the previous section. It may well happen that, for other examples, a
quantitative comparison would give slightly different results. For instance, in many
cases, the ESC method could converge faster than FD. Keep in mind that the goal of
this paper is not to rank the six methods on the basis of a single example but rather to
illustrate the discussion of Section 4. The example involves the steady-state optimiza-
tion of an isothermal continuous stirred-tank reactor, where the reactionsA+B → C,
2B → D take place. There are two manipulated variables, the feed rates ofA andB.
The goal is to maximize the productivity ofC.

5.1. Problem Formulation

The problem can be formulated mathematically as follows:

max
uA,uB

J =
c2
C (uA + uB)

2

uAcAin

− w(u2
A + u2

B) (14)

ċA = −k1 cA cB +
uA

V
cAin −

uA + uB

V
cA cA(0) = cA,s (15)

ċB = −k1 cA cB − 2 k2 c2
B +

uB

V
cBin −

uA + uB

V
cB cB(0) = cB,s (16)

ċC = k1 cA cB −
uA + uB

V
cC cC(0) = cC,s (17)

ċD = k2 c2
B −

uA + uB

V
cD cD(0) = cD,s (18)

wherecX denotes the concentration of speciesX andcX,s the corresponding steady-
state value,V is the reactor volume,uA anduB are the feed rates ofA andB, cAin and
cBin are the inlet concentrations,k1 andk2 are the rate constants of the two chemical
reactions, andw a weighting parameter. The numerical values of the model param-
eters are given in Table 2. Two scenarios are investigated. In Scenario A, the plant
differs from the model by the values of the rate constants,k1plant = 1.4 l

mol min and
k2plant = 0.4 l

mol min . Hence, there is only parametric uncertainty, and the vector of
uncertain parameters is known to beθ = [k1 k2]

T . In scenario B, there is, in addition,
the possibility of having an unexpected (unmodeled and unmeasured) disturbance in
the form of a step variation ofcAin, with cAin,plant = 2.5mol

l . Note also that the
values of the plant rate constants and of the disturbance arenot known to the RTO
schemes. The plant settling timeτ is approximately 50 min. This example has 2 ma-
nipulated feed rates (m = 2), 4 measured concentrations (p = 4) and two uncertain
kinetic parameters (q = 2).
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Table 2. Nominal model parameters

k1 0.75 l
molmin cAin 2 mol

l

k2 1.5 l
molmin cBin 1.5 mol

l

V 500 l w 0.004 mol min
l2

5.2. Performance Comparison of Six Implicit RTO Schemes

The adaptation gains for the various schemes are0.003, 0.001, 0.02, 0.1, 1 and
1 l

min
for FD, ESC, MU, AM, NEC and SOC, respectively. These gains were tuned

manually and chosen rather aggressively, that is, somewhatlarger values would either
induce large oscillations without leading to significant reduction in convergence time,
or worse, would not guarantee convergence.

For gradient control, all methods useP =
(

∂2J
∂uT∂u

)

−1

evaluated at the optimal

nominal operating point, except for SOC that uses [13], which is also an estimate of
the inverse of the Hessian forp = q. All model-free methods use∆ = 0.4 l

min
. The

ESC scheme usesω1 = 2π
150 , ω2 = 2π

200 , andα = β1 = β2 = 1
200min−1. These

frequencies were chosen in such a way that they respect a time-scale separation with
the natural frequency of the system, as suggested in (Krstic, Wang, 2000). The param-
eter estimation uses the gainkθ = 1 min−1. Table 3 summarizes the results obtained
with the various approaches in terms of both convergence time and accuracy for two
situations, namely without and with unexpected disturbance in cAin. Figure 4 depicts
the time evolution of the normalized cost for the six schemeswhen the disturbance is
present. Note that MU has been plotted together with model-based techniques because
of its fast convergence. Note also that, although it has beennormalized with respect
to the steady-state plant optimal cost, the running cost canhave values larger than1
before steady state is reached.

Table 3. Convergence time, convergence time relative to theplant settling time, and
accuracy of the six RTO schemes, without (scenario A) and with unexpected

disturbance incAin (scenario B).

Convergence Relative Optimatlity
time [min] convergence time loss [%]

Scenario A B A B A B
No adaptation - - - - 19 26

FD 1200 1200 24τ 24τ 0.2 0.3
ESC 3000 4000 60τ 80τ 0.6 0.5
MU 150 150 3τ 3τ 0 0
AM 75 75 1.25τ 1.25τ 0 7
NEC 45 50 0.9τ τ 0.5 6
SOC 45 60 0.9τ 1.2τ 0.8 18
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Figure 4. Evolution of the cost ratioJ(t)
Jp,opt

and of the inputs for six RTO schemes in
the presence of an unexpected disturbance incAin. Note the large difference in time
scales between FD and ESC on the one side, and the other schemes on the other. For

the sake of clarity, only the four input profiles with the widest ranges are plotted.

As seen from Table 3, all methods are quite accurate in the absence of unexpected
disturbances, although FD and ESC exhibit slow convergence. Optimality loss is
nearly zero with the MU and AM schemes, while small errors persist with NEC and
SOC because of the linearization introduced in the control design step. Forp > q,
the observed small difference between NEC and SOC can be explained by the differ-
ent paths that the two schemes follow to convergence. In terms of convergence time,
AM is slightly inferior to both NEC and SOC due to the time taken for parameter
estimation.

The situation is quite different in the presence of the unexpected disturbance in
cAin. In this example, NEC outperforms SOC, but it could also happen that, for
a specific choice of CVs, the performance of SOC would be better (for instance if
the CVs happen to be in the null space ofSd). The model-free methods FD, ESC
and MU are able to reject the effect of both parametric uncertainty and unexpected
disturbances. This is due to the fact that these methods use only measurements and
not a (possibly inaccurate) plant model. The price to pay forthis improved accuracy
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is slower convergence. Note that MU is the method with the best overall performance,
as the optimal solution can be reached in3τ with nearly perfect accuracy.

6. Conclusions

This paper has investigated the use of measurements to drivea plant towards op-
timality in the presence of both expected and unexpected uncertainty. Six implicit
schemes that implement optimality via gradient control have been considered; three
of them are model-free (FD, ESC and MU) and rely exclusively on measurements,
whereas the other three are model-based and rely both on a process model and mea-
surements to estimate the plant gradient and compute the optimal inputs. Although
some of these techniques could be combined (for instance, all techniques could be
modified to benefit from the presence of multiple units or the possibility of repeating
the optimization), the schemes have been investigated in their original formulation
so as to focus the discussion around the strengths and weaknesses of the individual
approaches.

It has been observed that model-based techniques based on linearization are able
to quickly reject the effect of expected parametric uncertainty. The AM method ex-
hibits the slowest convergence, while NEC and SOC are very similar. However, the
AM scheme is appropriate when the uncertainty is large since, in contrast to NEC and
SOC, there is no underlying linearization. All three model-based techniques require
the availability of at least as many independent output measurements as there are un-
certain parameters in order to compute the gradients. The slow convergence of the
AM scheme is due to the dynamics of the parameter estimation,whereas NEC and
SOC use input and output measurements to infer the gradients.

In contrast, model-free techniques are able to reject the effect of both expected
and unexpected disturbances. However, gradient computation requires input excita-
tion, which is of temporal nature in the FD and ESC schemes, thus requiring a time-
scale separation, which penalizes the rate of convergence.This even worsen when the
number of inputs increases, as each input has to be excited individually. In contrast,
the MU scheme does not require time-scale separation as the excitation is not tem-
poral but between units. In comparison, model-based techniques do scale better with
the number of inputs. Note also that, regardless of the number of uncertain parame-
ters, model-free techniques only need the cost measurement, while, for model-based
techniques, an increase in the number of uncertain parameters requires more output
measurements. The only technique that combines the advantages of model-free and
model-based techniques is the MU approach. A single measurement suffices and fast
convergence is obtained. However, MU relies on the strong assumption that several
identical units are available. Since the number of units increases with the number
of inputs, this assumption will tend to become unrealistic for systems with a large
number of inputs.

This paper has investigated and compared the basic featuresof various model-
free and model-based RTO schemes. Future work needs to include an analysis of
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the impact of measurement noise, although it is quite clear that techniques based on
numerical differentiation will be more affected.
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