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ABSTRACTReal-time optimization (RTO) is a class of methods that wesssarements to reject the
effect of uncertainty on optimal performance. This artimbenpares six implicit RTO schemes,
that is, schemes that implement optimality not through migaleoptimization but rather via
the control of appropriate variables. For unconstrainedpesses, the ideal controlled variable
is the cost gradient. It is shown that, because of their $tnat differences, model-free and
model-based techniques exhibit different features in$eshrequired excitation, convergence,
scalability with the number of inputs and rejection of uiaerty. This comparison is illustrated
through a simulated CSTR.

RESUMEL'optimsation en temps réel (RTO) est une classe de métloades mesures sont util-
isées pour rejeter I'effet de I'incertitude. Cet articleropare six techniques de RTO implicites
qui optimisent un procédé en contrblant certaines variablEn I'absence de contraintes, la
grandeur commandée idéale est le gradient de la fonction. cAlcause de leurs différences
structurelles, les méthodes sans modele et les méthodésshasr le modele se comportent
differemment en termes de besoin d'excitation, de tempsregence, de capacité de mise a
I'échelle et d'aptitude a rejeter I'effet d’incertitude€ette comparaison est illustrée en simu-
lation au moyen d’un réacteur chimique a marche continue.
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1. Introduction

The use of process optimization has become so widespreaaMR@anin, 2005)
that optimization is seen today as a viatdehnology(Boyd, Vandenberghe, 2004).
One of the main difficulties associated with process opttiin regards the use of
a possibly inaccurate process model. A process model isalpia set of differen-
tial and algebraic equations, which invariably represantsversimplification of the
reality. Model prediction will differ from plant behavioresause of uncertainty in
the form of plant-model mismatch, parametric uncertaimigt process disturbances.
Model uncertainty is detrimental, as model-based optitidrdeads to the computa-
tion of inputs that are optimal for the model and not for thenpl This can be seen
as the inability of the model to predict the necessary camtbtof optimality (NCO)
of the plant. Because the plant NCO include conditions ot fpdént constraints
and plant sensitivities, the inability of model-based et inputs to predict the plant
NCO will lead to constraint violations and/or suboptimatfpemance.

An efficient way to combat the detrimental effect of modelentainty on the plant
performance is to incorporate process measurements irptiaipation framework.
There are two wide classes of methods that use measuremétitexplicit optimiza-
tion methods, the optimization problem is solved repeatedljlewheasurements are
used to either adapt the model parameters, thus leading updeated model that is
used for optimization (Marlin, Hrymak, 1997), or updatereation terms that are
added to the cost and constraint functions of the optinoratiroblem (Marchettét
al., 2009). The second class of measurement-based optinnizatthods is referred
to asimplicit optimizationand proposes to use measurements to adapt the process in-
puts directly, that is, without repeating the optimizatidhis can be done in three dif-
ferent manners. In (zeroth-order) techniques labeledugioolary optimization (Box,
Draper, 1987), a simplex-type algorithm is used to appraheroptimum, with the
cost function being measured experimentally for everytetisioperating condition.
In perturbation (first-order) techniques, such as extremeagking control (Ariyur,
Krstic, 2003), the gradients are estimated experimentaiiyg sinusoidal excitation;
this scheme uses only the measurement of the cost functitwe. tiiird family of
schemes includes NCO tracking (Francetsal, 2005) and self-optimizing control
(Skogestad, 2000), which formulate the optimization ascitvatrol of certain vari-
ables, whose optimal values are (approximately) invatianincertainty; in contrast
to perturbation methods, these schemes use output inflomat

This paper compares several model-free and model-basditiingptimization
schemes. Optimality implies meeting the plant NCO, thab@h constraint and sen-
sitivity requirements. To simplify the presentation, afgbasince it is widely accepted
that experimental gradients are more difficult to evaluagatconstraint values, this
paper will only consider the case of unconstrained optitiona Hence, real-time
optimization will amount to controlling the gradient to @efhree model-based tech-
niques, for which the gradient is estimated on the basis abegss model, are com-
pared to three model-free techniques, where the gradiérhiation is constructed
from process measurements. The comparison is performeg several criteria, with



Gradient estimation techniques 3

the objective to evaluate qualitatively the main featurethe techniques and not to
rank them in any way. Hence, the contribution of this papéo igrovide guidelines
that help choose an appropriate implicit optimization scaéor the problem at hand,
while highlighting potential difficulties that could be feat during implementation.

The paper is organized as follows. In Section 2, the problieimoonstrained RTO
using gradient control is formulated. Six implicit RTO soies are described in Sec-
tion 3 and compared in Section 4. The illustrative exampla simulated continuous
stirred-tank reactor is presented in Section 5. FinallgtiSa 6 concludes the paper.

2. Unconstrained Real-time Optimization via Gradient Contol
2.1. Problem Formulation

In its general formulation, RTO addresses the minimizatomaximization of
some steady-state cost function. It is useful to distinyistween static RTO, for
which only steady-state measurements are used, and RT@dateéady-state opti-
mization of a dynamical plant, where online measurememtsised. In the latter case
the inputs will lead the system to settle at some optimabstesdate operating point.

An unconstrained steady-state optimization problem cdntmeulated as follows:
min Jy(w) = 6,(u,yp) (1)

where the subscript stands for "plant".J,, is the scalar performance index to be
minimized,u € R are the inputsy, € R? are the plant outputs, ang, : ™ x
RP — R is the scalar cost function to be minimized.

Problem [1] can be solved using a steady-state model of #r@.pThe model is
typically inaccurate since the plant mapping(u) is unlikely to be perfectly known.
Assuming that the model outpugscan be expressed explicitly as functions of the
inputsu and the paramete i.e. y = H(u, 8), the following model-based opti-
mization problem can be written:

min  J(u) = &(u,0) 2

u

where/J is the scalar performance index of the model 8ne R? are uncertain model
parameters. A solution to Problem [2] can be found by sol\gﬁgt 0.

However, solving these equations for the model does notssacg lead tglant
optimality. The difficulty arises from the fact that planbdel mismatch, paramet-
ric uncertainty and process disturbances lead to an inatzprediction of the plant
gradient%. Measurement-based RTO techniques propose to use measuiseim
satisfy theplant NCO. With implicit optimization, this will be performed byrigding
the plant gradient to zero instead of repeating model-bagtnhization.

Remark: Although the focus is here on unconstrained optimizatibe, RTO
schemes discussed in this paper can also be applied to @oestoptimization prob-
lems. For example, when there are more inputs than activstreonts, some input
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directions can be computed to meet the active constrairiite whe other directions
are used to force the reduced gradients to zero (Fraetais 2005).

2.2. Gradient Control

For unconstrained optimization, the NCO indicate that tltpgradientg, :=
%‘{f should be zero for optimality. Implicit RTO methods will gilahe inputs to
force the estimated plant gradient to zero, with the methiffisring in the way the
gradient is computed. When only steady-state measurerasntssed, the following
discrete adaptation law can be used:

Uci+1 = Ue,i — kPg; (3)

whereu, are thecomputedoptimal inputs (by opposition ta, which represent the
appliedinputs, as will be seen laterg, is the estimated gradient,is the adaptation
gain,P is an approximation of the inverse of the Hessian,@sdhe iteration number.

Theoretically, the gradierg is only defined when the system is at steady state. In
practice, howeveg(t) corresponds to an estimated quantity, whose limiting value
the gradien% when the system reaches steady state. For the sake of stjplic)
will also be referred to as thigradient” hereafter. When continuous-time measure-
ments are available, the following integral adaptation ¢amn be used:

u.(t) = —kPg(t) 4)

3. Gradient Estimation Techniques

This section describes 3 model-free and 3 model-basedayraestimation tech-
nigues.

3.1. Model-free Techniques

The model-free techniques assume that the cost functiobedirectly measured,
i.e. there is the single outpyt= J, p = 1. The gradient is obtained by exciting the
system through its inputs and calculating the gradient filmencorresponding output
values. The model-free techniques are presented heréaftte monovariable case,
with an indication on how the scheme extends to the multdei case.

Gradient from finite differences (FD): Two different constant input values are
applied, each for the duratidhi, which is sufficiently long to allow the system to
reach steady state; the gradient is computed using the-fliffezence approximation:

= Ue,i 20T <t < (2i4+1)T
u = { Ui + A (2i4+ 1T <t < (20+2)T
J((2i +2)T) — J((2i + 1)T)

gi = A ()
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Note that FD is the only method discussed in this paper, fachvbnly steady-state
measurements are used. Hengesorresponds to the gradiestticto sensat the;t"
iteration. In the multivariable case, each input is perdrindividually in a similar
way, and the corresponding perturbed cost is measured ¢eadysstate has been
reached.

Gradient from extremum-seeking control (ESC): Excitation is added in the
form of a dither sinusoidal signal, and the gradient is estéd by correlation. The
approach includes high-pass filtering to remove the constam in the cost and low-
pass filtering to help compute the derivative of the gradikrtic, Wang, 2000). The
various operations can be formulated in the following coatp@athematical form:

u(t) = wuc(t) + Asin(wt), %it) =a(J(t) — J(t))
dil_it) _ (2(J(t) - JA(t))sin(wt) B g(t)) ©)

where.J is a filtered cost, and: and 3 represent filter coefficients. The gradient is
then obtained by numerical integration of Equation 6 as shiowigure 1.

Extremum-seeking control has three time scales; the fastate corresponds to
the controlled plant, the medium scale is associated wélp#riodic excitation, while
the slowest scale deals with the two filters. The reason fioigus slow periodic ex-
citation is to avoid that the system dynamics interfere wlith computation of the
gradient; furthermore, with slow excitation, the plant denseen as a static map. To
extend this scheme to the multivariable case, one need<tie @ach input individu-
ally, i.e. with its own excitation frequency.

Gradient from multiple units (MU): This method assumes the availability of
multiple similar units. The inputs to the various units difoy an offset, and the
gradient is estimated delay-free from the difference imtleasured costs (Srinivasan,
2007). With the units labeled 'a’ and 'b’, one has:

A Ja(t) — Jp(t)

walt) = uet) + 2, unl(t) = uelt) — =, g(t) =

2 2 A @

as illustrated in Figure 1. The typical configuration for theltivariable case is to
work with m + 1 units. Only one input direction is perturbed for each of thst fi
m units, while the last unit has no input offset. The gradisntomputed in then
directions by comparing the cost of each of the firstinits to the last one, as in the
mono-dimensional case.

3.2. Model-based Techniques

Model-based techniques include the following assumpti@ihpthe model isstruc-
turally correct; (ii) there are no process disturbances. Hencg,parametric uncer-
tainty is considered, that is, the source of uncertaintyniswn (so-called expected
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Figure 1. Extremum-seeking control (left) Multiple-unit@oach (right).

uncertainty). It is furthermore assumed that there areast l@s many measurements
as there are uncertain parameters,j.e. ¢, which provides sufficient information to
estimate the uncertain parameters without having to ekoéesystem. The model is
then used to compute the gradient and subsequently theadptiputs.

Gradient from adapted model (AM): This corresponds to the classical two-step
approach, whereby the model parameters are estimatedengdiated model is used
for optimization. In this work, the recursive parametemitiication algorithm is writ-
ten in continuous time as the associated differential eguékjung, 1999), which is
justified by the difference in dynamics between the plant ted(slower) parameter
estimation. Numerical optimization is implemented by fogcthe gradient to zero.
Hence, the scheme can be written as (Figure 2):

0t) = ko (Wy

u(t), H(t)
0P (u,0)

5u (8)

glt) =

u(t), O(t)

where d represents the parameter estimates &nds the gain used for parameter
estimation. The deviations between predicted and measurtpdts are used to adapt
the values of the uncertain parameters. The gradient dstim@omputed from the
adapted model and used in the gradient control law (4).

¥,

Parameter
Estimation

t
—>| Controller v »| Plant

R Model
o)

o(t) = dD(®)/du |

Figure 2. Gradient calculation from adapted model.
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Gradient from neighboring-extremal control (NEC): Uncertainty causes the
optimal inputs and outputs as well as the gradient to defriate their nominal values.
NEC proposes to estimate the gradient on the basis of aieexdhtinalysis around the
nominaloperating point for which the nominal gradiegt = 0 (Groset al., 2009).

The variation of the outputs at steady state can be written as

dy = g—ljéu + %—1360 9)
with §y := y — yg, du := u — ug andéf := 0 — 0y. Forp > ¢, the variation
of the uncertain parameters can be estimated using outgubpat measurements as
56 = (Z1)" [sy — PHgu].

Similarly, the gradient can be written as:

o0 9’® n %P
u _ oulou’" " ouToe
which, with the expression fof@, allows writing the gradient in terms dfy and

du. Hence, the use of the measured valdg&) anddu(t) leads to the following
expression for the gradient estimafe):

9?® (oH\" FoRT: 9?® (oH\" oH
&) = GuToa <%) oy(t)+ <auTau T T8 <%) E) du(t) (1)

Gradient from self-optimizing control (SOC): This method uses the sensitivity
of the optimal inputs and outputs with respect to the uncertain model petens
Noting that the optimal inputs,,; have to satisfy Equation 10 Wit%% = 0, and
using Equation 9 written foy,,, andu,,, the [(p + m) x ¢] variational matrix
becomes:

50 (10)

—1
Oy opt oH _ oH ( 9% ) R
Sy = 90 06 ou \ OuTou ouT oo (12)
Oop: e \7' ot
o6 - (auTau) BuT 90

One way to perform SOC, referred to as the null-space metkbds on the com-
putation of the(p + m) x (p + m — q)] matrix A/ that describes the left null space of
Sy (Alstad, Skogestad, 2007). This matrix is guaranteed tst ésdm the assumption
p > q. Since there aren» manipulated variables, it has been proposed to choose the

m controlled variables as = NT [ 3’1 ] oréc = NT { gi } upon subtracting the

relationship at the optimal nominal operating point, whsres any arbitrary full-rank
[(p+m) xm] submatrix ofA/. SinceN lies in the left null space @&y, the optimal val-
ues ofc are locally insensitive to the expected uncertainty, arepkey them constant
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at their nominal optimal values will reject the effect of en@inty. Forp = ¢, these
controlled variables represent the gradient (Jaeschlagesiad, 2010) and therefore

9y
% =N7T { gu } represents an estimate of the Hessian. Hence, choosing
ou

OH -1
o (v [ ])
enforces local decoupling between the controlled vargable

Figure 3 illustrates the similarity in philosophy behind Glland SOC. Input and
output measurements are used to compute either the gradagrihe CVsioc, which
are controlled to zero to enforce optimality.

RemarkForp = ¢ and with only parametric uncertainty, NEC and SOC are equiv-
alent. Forp > ¢, there are several possible choice\gfbut this choice is not im-
portant to reject expected uncertainty at steady state.eMexythe convergence paths
might be different for NEC and SOC. The situation is diffar@arthe presence of pro-
cess disturbances, sdy In this caseN will still lie in the left null space ofSy, but
notin the null space of the sensitivity mat8y. In general, the CVs determined using
Sy will have different sensitivities with respecté and the steady-state performance
of SOC will be affected by the choice d¥.

Gradient Cv
setpoint = 0 setpoint =
Gradient g [ NEC CVdc | socC
| Controller | Controller
Gradient < du Computation| du
Estimation of CV h
A Y A Y
disturbances disturbances
Plant |¢—— Plant |€¢———
dy dy

Figure 3. Optimizing control via NEC (left) and SOC (right).

4. Comparison of Implicit RTO Schemes

The goal of this section is to compare six RTO schemes in tefraccuracy,
required excitation, convergence properties, implentemassues and sensitivity to
measurement noise. The results are given in Table 1 andsdisdunext.

1. This condition becomes > ¢ + m if Sy does not include the ter a';,‘,‘épt .

2. SOC is affected iy does not include the terrg%. In this casep needs to be larger than+ m
and thus increases linearly with.
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Table 1. Comparison of six gradient estimation techniq&k (inite difference;
ESC: extremum-seeking control; MU: multiple units; AM: atkd model; NEC:
neighboring-extremal control; SOC:self-optimizing colit

Model-free methods Model-based methods

FD | ESC | MU AM | NEC | sOC
Accurate with || yes yes yes no no no
plant-model
mismatch?
Handles large || yes yes yes yes no no
perturbations?
Number of p=1 p=1 p=1 p>q |p=q [p=>d
outputs
Excitation temporal | temporal | multiple | none | none | none

units

Convergence | slow slow fast slow | fast fast
Scalability with || slower even more unaf- | unaf- | unaf-
number inputs slower units fected | fected | fected

Plant model: Model-based methods require a plant model, while no suctemod
is needed for model-free methods. Another important difiee between the two
classes regards the measurements. Model-free methoderdijact measurement of
the objective function, whereas the model creates a linkden the outputg and the
objective function/, thereby making the measurementiofinnecessary. Among the
different model-based techniques studied here, only thesBMeme uses the model
on-line, while NEC and SOC use the model off-line to designdbntroller.

Accuracy: This is clearly an area where the model-free techniqued.eiMwozlel-
based techniques work well if the uncertainty can be ardteiph (the model is struc-
turally correct, there are no process disturbances, andséeknows which param-
eters can vary). With structural plant-model mismatch ameasured process dis-
turbances, convergence will not be to the plant optimum ¢Bhatet al, 2009).
Furthermore, since NEC and SOC are based on a linearizatiemeé the nominal
operating point, these two methods give good results arthatshominal point, while
they cannot cope with large variations.

Excitation: In principle, no temporal excitation is necessary for meuketed tech-
niques since one can get the gradient information fronptbatputs. However, note
that excitation is required to estimate the model pararaétethe AM scheme. On
the other hand, model-free techniques with= 1 require excitation to estimate the
gradient. Temporal excitation is provided in the FD and ESliemes, while the use
of multiple units provides the necessary excitation in tHeg &pproach.

Convergence:Model-based techniques have a clear edge when it comes {0 con
vergence speed. Except for MU, all other model-free mettardsslow since the
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excitation has to respect a time-scale separation and weistban the system settling
time. MU is faster than the other model-free techniquesesthe dynamics of the
units cancel out between similar units. Among the modek@dschniques, AM is
slower due to the dynamics of the embedded parameter estim&in the other hand,
the gradients in NEC and SOC are computed directly fognanddju, which makes
the techniques fast.

Implementation issues: The performance of model-free techniques rely heavily
on the tuning parameters. In particular, in addition to thetwmller gains, the ampli-
tude A for FD, ESC and MU needs to be selected in such a way that thensyis
sufficiently excited, while ensuring that the finite-di#eice approximation is a good
estimate of the gradient. Each input has to be perturbedithdilly for FD and ESC,
which limits the use of such methods for multi-input systertrs addition, for FD,
constant inputs are applied during transients and reacteagly state has to be de-
tected (Jianget al,, 2002). Despite these difficulties, the FD and ESC schemess ha
been applied successfully to a wide range of systems in waffields, generally at
the level of a single unit. The MU method requires that sevielentical units be
available, with the number of units increasing with the nemaf inputs. This is the
case for processes assembled in stacks such as fuel celtsienodreactors. In con-
trast, the MU technique has little chance to be applicablpfant-wide optimization.
Also, reducing the effect of differences between unitsilkast issue, although it has
been investigated in two recent papers for both the statao@iardet al., 2009) and
dynamic (Renet al,, 2009) cases.

In contrast, model-based techniques do not suffer frometldé@iculties and are
typically more likely to be implemented on large-scale sys$ as (i) no temporal
excitation is necessary, (ii) convergence is relativedy,fand (iii) good scalability with
the number of inputs can be ensured. The key issues reldie fwrésence or absence
of areliable model and the characterization of the mainesiof uncertainty. Clearly,
in the absence of a reasonably accurate process model, 4askd techniques will
be of little help, as their accuracy decreases with the dileeouncertainty.

Sensitivity to measurement noise:Measurement noise will affect all schemes,
though those based on numerical differentiation will be eredffected. Noise will also
affect the MU method, as adding units also implies adding@enthat may not be
identical, thus leading to potentially biased gradientestes. Furthermore, handling
measurement noise for MU is still an open issue. The use of BERCSOC in the
presence of noise is questionable, as noisy measurementsed for gradient es-
timation. Although this point requires further investigat, it has been shown that
NEC should only be considered when the level of noise is small the potential
cost improvement should not be buried in the measuremeseérfGroset al, 2009).
Also, for the case > ¢, (p — ¢) output measurements can be discarded as @nly
measurements are required. Thgse ¢) outputs can be chosen as the most sensitive
to measurement noise as suggested in (Alstad, Skogestd), 20
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5. lllustrative Example

This section illustrates by means of a simple MIMO examptdkneral trends
discussed in the previous section. It may well happen tlatpther examples, a
guantitative comparison would give slightly differentu#ts. For instance, in many
cases, the ESC method could converge faster than FD. Keemiahthat the goal of
this paper is not to rank the six methods on the basis of aesexgmple but rather to
illustrate the discussion of Section 4. The example invethe steady-state optimiza-
tion of an isothermal continuous stirred-tank reactor, igtike reactiongl + B — C,
2B — D take place. There are two manipulated variables, the faed cdA and B.
The goal is to maximize the productivity 6f.

5.1. Problem Formulation

The problem can be formulated mathematically as follows:

J_ CQC (ua +uB)2

max —w(u? 4+ u¥) (14)
UAUB UACAin

. UA uA+up

éa=—kicacg+ —cCajyy — ————Ca ca(0)=cas (15)

14 |4
éB = —k/’l Cp CB — 2 k/’g CQB + u—BCBin — MCB CB(O) = CB.s (16)
|4 14 ’

¢c = ki cacp— gavun J‘;uB co cc(0)=ccs (A7)

. 2 up +up

Cp = k2 cp — TCD CD(O) =CD,s (18)

wherecx denotes the concentration of speciésindcx s the corresponding steady-
state valueV is the reactor volume; 4 andu are the feed rates ef and B, c 44, and
cpqn are the inlet concentrations, andk, are the rate constants of the two chemical
reactions, andv a weighting parameter. The numerical values of the moderpar
eters are given in Table 2. Two scenarios are investigate&cénario A, the plant
differs from the model by the values of the rate constats,,,; = 1.4—L— and

mol min

k2piant = 0.4mollmin. Hence, there is only parametric uncertainty, and the vexfto
uncertain parameters is known toe-= [k; k2]7. In scenario B, there is, in addition,
the possibility of having an unexpected (unmodeled and @asored) disturbance in
the form of a step variation afa;,,, With c4;,, piant = 2.5%01. Note also that the
values of the plant rate constants and of the disturbancearknown to the RTO
schemes. The plant settling timds approximately 50 min. This example has 2 ma-
nipulated feed ratesi{ = 2), 4 measured concentrations£ 4) and two uncertain

kinetic parameters)(= 2).
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Table 2. Nominal model parameters

ki 075 ——|cam 2 ol
k/’g 1.5 $ CBin 1.5 LIOI
V500 1 w  0.004 molmin

5.2. Performance Comparison of Six Implicit RTO Schemes

The adaptation gains for the various schemesbdie3, 0.001, 0.02, 0.1, 1 and
1 # for FD, ESC, MU, AM, NEC and SOC, respectively. These gainswened
manually and chosen rather aggressively, that is, somdaigatr values would either
induce large oscillations without leading to significarduetion in convergence time,
or worse, would not guarantee convergence.

-1

For gradient control, all methods ue= (83;;‘9“ evaluated at the optimal
nominal operating point, except for SOC that uses [13], Wlscalso an estimate of
the inverse of the Hessian fpr= ¢. All model-free methods us& = 0.4 ﬁ The
ESC scheme uses; = 25, wy = 2%, anda = f; = 2 = zsmin~". These
frequencies were chosen in such a way that they respect estiale separation with
the natural frequency of the system, as suggested in (KWtag, 2000). The param-
eter estimation uses the gdip = 1 min~!. Table 3 summarizes the results obtained
with the various approaches in terms of both convergence éind accuracy for two
situations, namely without and with unexpected disturledne 4;,,. Figure 4 depicts
the time evolution of the normalized cost for the six schemlesn the disturbance is
present. Note that MU has been plotted together with modstéth techniques because
of its fast convergence. Note also that, although it has beemalized with respect
to the steady-state plant optimal cost, the running costhear values larger than
before steady state is reached.

Table 3. Convergence time, convergence time relative tpltre settling time, and
accuracy of the six RTO schemes, without (scenario A) ardumiéxpected
disturbance incy4,,, (scenario B).

Convergence Relative Optimatlity

time [min] | convergencetime loss [%]

Scenario A B A B A B
No adaptation| - - - - 19 26
FD 1200 | 1200 | 2471 24t 0.2 0.3
ESC 3000 | 4000 | 607 80T 06| 0.5

MU 150 150 3T 3T 0 0

AM 75 75 1.257 1.257 0 7
NEC 45 50 0.97 T 0.5 6
SOC 45 60 0.97 1.27 0.8 18
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Figure 4. Evolution of the cost ratqu(L)t and of the inputs for six RTO schemes in

the presence of an unexpected diétﬁ%ano&%. Note the large difference in time
scales between FD and ESC on the one side, and the other ssberttee other. For
the sake of clarity, only the four input profiles with the vsitlanges are plotted.

As seen from Table 3, all methods are quite accurate in thengleof unexpected
disturbances, although FD and ESC exhibit slow convergei@gtimality loss is
nearly zero with the MU and AM schemes, while small errorsigemwith NEC and
SOC because of the linearization introduced in the conteslgh step. Fop > ¢,
the observed small difference between NEC and SOC can baiegglby the differ-
ent paths that the two schemes follow to convergence. Inst@fraonvergence time,
AM is slightly inferior to both NEC and SOC due to the time taki®r parameter
estimation.

The situation is quite different in the presence of the ueetgd disturbance in
cain- In this example, NEC outperforms SOC, but it could also leapthat, for
a specific choice of CVs, the performance of SOC would be béfibe instance if
the CVs happen to be in the null spaceSyf). The model-free methods FD, ESC
and MU are able to reject the effect of both parametric uagsst and unexpected
disturbances. This is due to the fact that these methodsnigemeasurements and
not a (possibly inaccurate) plant model. The price to payHts improved accuracy
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is slower convergence. Note that MU is the method with thé de=rall performance,
as the optimal solution can be reache@inwith nearly perfect accuracy.

6. Conclusions

This paper has investigated the use of measurements toadpilant towards op-
timality in the presence of both expected and unexpectedrtainty. Six implicit
schemes that implement optimality via gradient controlehbgen considered; three
of them are model-free (FD, ESC and MU) and rely exclusivelyneeasurements,
whereas the other three are model-based and rely both orcegsrsmodel and mea-
surements to estimate the plant gradient and compute timalphputs. Although
some of these techniques could be combined (for instancgcliniques could be
modified to benefit from the presence of multiple units or thegibility of repeating
the optimization), the schemes have been investigatedein ¢higinal formulation
so as to focus the discussion around the strengths and wsssaef the individual
approaches.

It has been observed that model-based techniques baseteaniation are able
to quickly reject the effect of expected parametric unéetya The AM method ex-
hibits the slowest convergence, while NEC and SOC are venmifasi However, the
AM scheme is appropriate when the uncertainty is large sinamntrast to NEC and
SOC, there is no underlying linearization. All three mobaked techniques require
the availability of at least as many independent output oreasents as there are un-
certain parameters in order to compute the gradients. Tdve gbnvergence of the
AM scheme is due to the dynamics of the parameter estimatibrreas NEC and
SOC use input and output measurements to infer the gradients

In contrast, model-free techniques are able to reject tfextedf both expected
and unexpected disturbances. However, gradient compnteguires input excita-
tion, which is of temporal nature in the FD and ESC schemess, taquiring a time-
scale separation, which penalizes the rate of convergdini®even worsen when the
number of inputs increases, as each input has to be excidaddunally. In contrast,
the MU scheme does not require time-scale separation atfitat®n is not tem-
poral but between units. In comparison, model-based tgalesido scale better with
the number of inputs. Note also that, regardless of the nuwibencertain parame-
ters, model-free techniques only need the cost measurembite, for model-based
techniques, an increase in the number of uncertain parasmetguires more output
measurements. The only technique that combines the adyentd model-free and
model-based techniques is the MU approach. A single memsintesuffices and fast
convergence is obtained. However, MU relies on the strosgraption that several
identical units are available. Since the number of unitseases with the number
of inputs, this assumption will tend to become unrealistic Systems with a large
number of inputs.

This paper has investigated and compared the basic featfinegious model-
free and model-based RTO schemes. Future work needs ta@ealu analysis of
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the impact of measurement noise, although it is quite cleatrtechniques based on
numerical differentiation will be more affected.
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