
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Falsafi, président du jury
Prof. A. Lenstra, directeur de thèse

Dr P. C. Leyland, rapporteur 
P. L. Montgomery, rapporteur 
Prof. S. Vaudenay, rapporteur 

On the Cryptanalysis of Public-Key Cryptography

THÈSE NO 5291 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 24 février 2012

 À LA  FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE CRYPTOLOGIE ALGORITHMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Joppe Willem Bos





Dit proefschrift is opgedragen aan mijn ouders
Jaap & Bettien



ii



Acknowledgements

First and foremost I would like to thank my supervisor Arjen K. Lenstra for his guidance
and advice during my PhD. I don’t think there are many supervisors who give such detailed
and constructive feedback to their PhD students. After the invitation to come and visit his
laboratory for cryptologic algorithms (LACAL) at EPFL I quit my job in the Netherlands
and came to Switzerland to start my PhD. My first year at EPFL I spent at the mathematics
institute of geometry and applications at the chair of algebraic and geometric structures led
by Eva Bayer-Fluckiger. I would like to thank all members of this laboratory for their help
during my first year at EPFL.

I would like to thank all the post-doctoral researchers from LACAL who helped me during
these years: Nicolas Gama, Dimitar P. Jetchev, Marcelo E. Kaihara, Thorsten Kleinjung,
and Martijn Stam. Especially Thorsten, who was always patient and able to answer all my
questions and acted as my second supervisor. Furthermore, I would also like to thank all
the other PhD-students at LACAL: Maxime Augier, Alina Dudeanu, Andrea Miele, Seyyd
Hasan Mirjalili, Alexandre Karlov, Shahram Khazaei, Dag Arne Osvik, Onur Özen, and
Juraj Šarinay. Besides all the interesting discussions we also had a lot of fun during and after
work and I discovered many great movies during the LACAL lunch-entertainment sessions. A
special thanks goes out to the secretary of our lab: Monique Amhof. She was always available
to help and assist if I had trouble with the local language or sort out any administrative
troubles. Besides my colleagues I would like to thank Eline, which I married during my PhD,
for all her support and love during this period. Especially when I was working from home
and she noted that I was still looking at the “boring screen” (Linux terminal).

Part of this work was supported by the Swiss National Science Foundation under grant
numbers 200021-119776, 206021-117409 and 206021-128727 and by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.

iii



iv



Abstract

Nowadays, the most popular public-key cryptosystems are based on either the integer fac-
torization or the discrete logarithm problem. The feasibility of solving these mathematical
problems in practice are studied and techniques are presented to speed-up the underlying
arithmetic on parallel architectures.

The fastest known approach to solve the discrete logarithm problem in groups of elliptic
curves over finite fields is the Pollard rho method. The negation map can be used to speed
up this calculation by a factor

√
2. It is well known that the random walks used by Pollard

rho when combined with the negation map get trapped in fruitless cycles. We show that
previously published approaches to deal with this problem are plagued by recurring cycles,
and we propose effective alternative countermeasures. Furthermore, fast modular arithmetic
is introduced which can take advantage of prime moduli of a special form using efficient
“sloppy reduction.” The effectiveness of these techniques is demonstrated by solving a 112-
bit elliptic curve discrete logarithm problem using a cluster of PlayStation 3 game consoles:
breaking a public-key standard and setting a new world record.

The elliptic curve method (ECM) for integer factorization is the asymptotically fastest
method to find relatively small factors of large integers. From a cryptanalytic point of view
the performance of ECM gives information about secure parameter choices of some crypto-
graphic protocols. We optimize ECM by proposing carry-free arithmetic modulo Mersenne
numbers (numbers of the form 2M − 1) especially suitable for parallel architectures. Our
implementation of these techniques on a cluster of PlayStation 3 game consoles set a new
record by finding a 241-bit prime factor of 21181 − 1.

A normal form for elliptic curves introduced by Edwards results in the fastest elliptic
curve arithmetic in practice. Techniques to reduce the temporary storage and enhance the
performance even further in the setting of ECM are presented. Our results enable one to run
ECM efficiently on resource-constrained platforms such as graphics processing units.

Keywords: cryptanalysis, public-key cryptography, integer factorization, elliptic curve dis-
crete logarithm problem, arithmetic

v



vi



Résumé

De nos jours, les cryptosystèmes à clef publique les plus populaires sont basés soit sur le
problème de la factorisation des entiers, soit sur celui du logarithme discret. La faisabilité
de la résolution pratique de ces problèmes mathématiques est étudiée, et des techniques pour
l’accélération de l’arithmétique sous-jacente sur des architectures parallèles sont présentées.

La plus rapide approche connue pour la résolution du problème du logarithme discret
sur les groupes des courbes elliptiques sur corps finis est la méthode du Rho de Pollard.
L’application de négation permet d’accélérer le calcul par un facteur

√
2. Il est communé-

ment reconnu que les marches aléatoires utilisées par le Rho de Pollard, en combinaison
avec l’application de négation, s’égarent dans des cycles infructueux. Nous montrons que les
approches précédentes pour éviter cette difficulté sont pénalisées par des cycles récurrents,
et nous proposons des contre-mesures efficaces. De plus, nous introduisons une arithmé-
tique modulaire rapide, qui tire avantage de modules premiers de forme spéciale, en utilisant
l’efficace “réduction hâtive”. Nous montrons l’efficacité de ces techniques en résolvant un
problème de logarithme discret sur une courbe elliptique de 112 bits, sur un cluster de con-
soles de jeu PlayStation 3, cassant ainsi un standard de chiffrement à clef publique, et réalisant
un nouveau record mondial.

La méthode des courbes elliptiques (ECM) pour la factorisation des entiers est la méthode
la plus rapide asymptotiquement pour identifier de relativement petits facteurs de grands en-
tiers. D’un point de vue cryptanalytique, la performance d’ECM fournit des informations sur
la sûreté du choix des paramètres de certains protocoles cryptographiques. Nous optimisons
ECM en proposant une arithmétique modulo un nombre de Mersenne quelconque (nombres de
la forme 2M − 1) sans retenues, particulièrement adaptée aux architectures parallèles. Notre
implémentation de ces techniques sur un cluster de consoles de jeu PlayStation 3 réalise un
nouveau record en identifiant un facteur premier de 241 bits de 21181 − 1.

Une forme normale pour les courbes elliptiques, introduite par Edwards, donne en pra-
tique l’arithmétique la plus rapide pour les courbes elliptiques. Nous présentons des tech-
niques pour réduire le stockage temporaire et améliorer encore plus la performance dans le
contexte d’ECM. Nos résultats permettent d’utiliser ECM efficacement sur des plateformes
aux ressources limitées comme les GPU (processeurs graphiques).

Mots-clefs: cryptanalyse, cryptographie à clef publique, factorisation des entiers, problème
de logarithme discret sur une courbe elliptique, arithmétique

vii



viii



Zusammenfassung

Die gebräuchlichsten Public-key Kryptosysteme beruhen heutzutage entweder auf dem Fak-
torisierungsproblem oder dem diskreten Logarithmus-Problem. In dieser Arbeit wird zum
einen untersucht, inwieweit es möglich ist, diese mathematischen Probleme zu lösen, und
zum anderen werden Techniken zur Beschleunigung der zugrundeliegenden Arithmetik auf
parallelen Architekturen vorgestellt.

Pollard’s rho Verfahren ist der schnellste bekannte Ansatz, das diskrete Logarithmus-
Problem in der Gruppe der Punkte einer elliptischen Kurve über einem endlichen Körper zu
lösen. Dieses Verfahren kann mittels der Negationsabbildung um einen Faktor

√
2 beschleu-

nigt werden. Bekanntlich können dabei die Zufallswege aus Pollard’s rho Methode in frucht-
losen Zyklen enden. Wir zeigen, dass die bisherigen Ansätze, dieses Problem zu lösen, mit
dem Problem der wiederkehrenden Zyklen zu kämpfen haben, und schlagen effektive Al-
ternativen vor. Ausserdem stellen wir für Primmoduli einer speziellen Form eine schnelle
modulare Arithmetik vor, die effiziente „saloppe Reduktion“ benutzt. Mit der Lösung eines
112-Bit elliptischen diskreten Logarithmus-Problems auf einem Verbund von PlayStation 3
Spielkonsolen, was einen Public-key Standard bricht und einen neuen Weltrekord aufstellt,
wird die Effektivität dieser Techniken unter Beweis gestellt.

Die asymptotisch schnellste Methode, relativ kleine Faktoren grosser Zahlen zu finden, ist
die elliptische Kurven Methode (ECM). Für die Kryptographie ist sie wichtig, um Informa-
tionen über sichere Parameter für einige kryptographische Protokolle zu erhalten. Wir haben
ECM mit einer übertragsfreien Arithmetik optimiert, die für Arithmetik modulo Mersen-
nezahlen (Zahlen der Form 2M − 1) auf parallelen Architekturen besonders geeignet ist. Mit
unserer Implementierung dieser Techniken haben wir auf einem Verbund von PlayStation 3
Spielkonsolen mit einem 241-Bit Primfaktor von 21181 − 1 einen neuen Rekord aufgestellt.

Eine von Edwards eingeführte Normalform für elliptischen Kurven führt zur schnell-
sten Arithmetik auf elliptische Kurven in der Praxis. Im Falle der Anwendung auf ECM
stellen wir Techniken vor, die den temporären Speicherbedarf reduzieren und die Laufzeit
noch weiter verbessern. Dies erlaubt uns, ECM auf ressourcenbeschränkten Plattformen wie
Graphikprozessoren laufen zu lassen.

Schlagwörter: Kryptanalyse, Public-key Kryptographie, Primfaktorzerlegung, diskretes
Logarithmus-Problem für elliptische Kurven, Arithmetik

ix



x



Riassunto

Al giorno d’oggi, i sistemi crittografici a chiave pubblica più popolari, sono basati sul problema
della fattorizzazione di numeri interi o su quello del logaritmo discreto. Verrà presentato lo
studio relativo alla risoluzione di tali problemi matematici nella pratica e saranno presentate
tecniche per accelerare l’aritmetica utilizzata su architetture parallele.

L’approccio più veloce per risolvere il problema del logaritmo discreto in un un gruppo di
punti su una curva ellittica è il metodo rho di Pollard. L’utilizzo della “mappa di negazione”
può essere adottato per velocizzare l’elaborazione di un fattore

√
2. E’ ben noto che le passeg-

giate aleatorie usate da Pollard, combinate con la mappa di negazione, possono entrare in
cicli infruttuosi. Mostreremo che, gli approcci pubblicati precedentemente in letteratura per
affrontare questo problema, sono affetti da cicli ricorrenti e proporremo contromisure alter-
native efficaci. Inoltre, verrà introdotta un’aritmetica modulare veloce, per moduli dalla
forma speciale, basata su una tecnica di riduzione efficiente denominata “riduzione pigra”.
L’efficacia di tali tecniche è stata dimostrata risolvendo un’instanza del problema del logar-
itmo discreto su una curva ellittica a 112-bit usando un cluster di console PlayStation 3: uno
standard crittografico a chiave pubblica è stato attaccato con successo ed un nuovo record
mondiale è stato stabilito.

Il metodo delle curve ellittiche (ECM) per la fattorizzazione di interi è asintoticamente
il metodo più veloce per trovare fattori piccoli (relativamente) di interi molto grandi. Dal
punto di vista della crittanalisi le prestazioni di ECM influiscono sulla scelta dei parametri
di sicurezza di alcuni protocolli crittografici. Noi abbiamo ottimizzato ECM, proponendo
un’aritmetica senza resti particolarmente adatta ad architetture parallele e moduli definiti
da numeri di Mersenne: numeri della forma 2M − 1. La nostra implementazione di queste
tecniche, su un cluster di console PlayStation 3, ha stabilito un nuovo record: è stato trovato
un fattore di 241-bit del numero 21181 − 1.

Una forma normale per le curve ellittiche introdotta da Edwards consente di lavorare,
nella pratica, con l’aritmetica delle curve ellittiche più veloce in assoluto. Verrano presentate
tecniche pratiche per ridurre l’occupazione di memoria e per migliorare le prestazioni di tale
aritmetica. I nostri risultati consentono di eseguire ECM in maniera efficiente su piattaforme
dalle risorse limitate come i processori grafici.

Termini di indicizzazione: crittanalisi, crittografia a chiave pubblica, fattorizzazione di
numeri interi, problema del logaritmo discreto su una curva ellittica, aritmetica

xi



xii



Samenvatting

Tegenwoordig zijn de populairste asymmetrische cryptosystemen gebaseerd op het probleem
van de ontbinding van een geheel samengesteld getal in priemfactoren of op het discrete
logaritme probleem. De praktische mogelijkheden om deze wiskundige problemen op te lossen
worden bestudeerd en technieken worden gepresenteerd om de berekeningen te versnellen op
parallelle computerarchitecturen.

De snelste manier om het discrete logaritme probleem in groepen van elliptische krommen
over een eindig lichaam op te lossen is het Pollard rho algoritme. Spiegelbeelden kunnen wor-
den gebruikt om de berekening met een factor

√
2 te versnellen, tenzij de toevalsbewegingen

erdoor in nutteloze cycli terecht komen. We tonen aan dat eerder gepubliceerde methoden
om dit probleem op te lossen door terugkerende cycli niet werken en we laten zien hoe ook
dit probleem kan worden opgelost. Verder introduceren we “slordige reductie” om modu-
lair rekenen met getallen van een speciale vorm te versnellen. We laten zien dat dit in de
praktijk werkt door een 112-bit elliptische kromme asymmetrische standaard te kraken. De
berekening werd gedaan op een cluster bestaande uit PlayStation 3 spelcomputers en zette
een nieuw wereldrecord.

De elliptische kromme methode (ECM) is de asymptotisch snelste methode om kleine
priemfactoren te vinden. De grootte van de factoren die ermee gevonden kunnen worden
geeft aan hoe de parameters van sommige cryptosystemen gekozen moeten worden. Voor
toepassing van ECM op Mersenne getallen (getallen van de vorm 2M−1) hebben we een snelle
overdrachtsvrije rekenmethode ontwikkeld die zeer geschikt is voor parallelle computerarchi-
tecturen. Op het spelcomputercluster hebben we er een nieuw ECM record mee gevestigd
door een 241-bit priemfactor te vinden van 21181 − 1.

Een paar jaar geleden heeft Edwards de tot nu toe snelste manier bedacht om met ellip-
tische krommen te rekenen. We laten zien hoe de voor toepassing op ECM vereiste hoeveelheid
geheugen drastisch kan worden verminderd. Dit maakt het mogelijk ECM te versnellen op
architecturen met beperkt geheugen zoals grafische kernen (GPUs).

Sleutelwoorden: cryptanalyse, asymmetrische cryptografie, ontbinden in factoren, reken-
kunde, discrete logaritme probleem voor elliptische krommen

xiii



xiv



Contents

Acknowledgements iii

Abstract (English/Français/Deutsch/Italiano/Nederlands) v

1 Introduction 1
1.1 Publications and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7
2.1 Radix Representation and Bit Lengths . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Parallel Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 The Cell Broadband Engine . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Integer and Bit Arithmetic on the SPU . . . . . . . . . . . . . . . . . 9
2.2.3 Compute Unified Device Architecture . . . . . . . . . . . . . . . . . . 10

2.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Montgomery Modular Multiplication . . . . . . . . . . . . . . . . . . . 13

2.4 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 The Elliptic Curve Method . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Elliptic Curve Scalar Multiplication . . . . . . . . . . . . . . . . . . . 18

2.5 The Pollard Rho Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 High-Performance Arithmetic on Parallel Architectures 23
3.1 Fast Reduction using Special Primes . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 NIST Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Curve25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Representation of Long Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Representation of Long Integers on the SPU . . . . . . . . . . . . . . . 27
3.3.2 Representation of Long Integers on the GPU . . . . . . . . . . . . . . 29

xv



xvi

3.4 Finite Field Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Modular Addition and Subtraction . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Modular Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Fast Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Montgomery Multiplication on the SPU . . . . . . . . . . . . . . . . . 35

3.5 Elliptic Curve Arithmetic on the GPU . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Performance Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Results on the Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Results on Various GPUs . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Pollard Rho – Using the Negation Map 45
4.1 r-Adding and r + s-Mixed Walks . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Parallelized Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Unique Point Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Simultaneous Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Using Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Tag-Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Fruitless Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Improved Fruitless Cycle Handling . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8.1 Short Fruitless Cycle Reduction . . . . . . . . . . . . . . . . . . . . . . 55
4.8.2 Cycle Detection and Escape . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8.3 Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Follow-Up Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Solving ECDLPs on the Cell 65
5.1 A 112-bit Prime Field ECDLP . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Pollard’s Rho Method on the PS3 . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 4-way SIMD Long Integer SPU-Arithmetic . . . . . . . . . . . . . . . 67
5.2.2 SIMD Modular Inversion on the SPU . . . . . . . . . . . . . . . . . . 72

5.3 Timings and Solution of the Prime Field ECDLP . . . . . . . . . . . . . . . . 75
5.4 An Approach to Solve ECC2K-130 . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 ECC2K-130 and Choice of Iteration Function . . . . . . . . . . . . . . 77
5.4.2 Computing the Iteration Function . . . . . . . . . . . . . . . . . . . . 77
5.4.3 Polynomial or Normal Basis? . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 The Non-Bitsliced Implementation . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.2 Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.3 Basis Conversion and m-Squaring . . . . . . . . . . . . . . . . . . . . . 81
5.5.4 Modular Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xvii

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Efficient SIMD arithmetic modulo a Mersenne number 85
6.1 Arithmetic Modulo 2M − 1 on the SPE . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.2 Representation of 4-tuples of Integers Modulo N . . . . . . . . . . . . 87
6.1.3 Addition and Subtraction Modulo N . . . . . . . . . . . . . . . . . . . 87
6.1.4 Multiplication Modulo N using Radix Conversions . . . . . . . . . . . 88
6.1.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.6 Further Speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.7 Multiplication Modulo N using Signed Radix-213 . . . . . . . . . . . . 94
6.1.8 Comparison with other SPE Implementations . . . . . . . . . . . . . . 95

6.2 Application to ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.1 ECM on the Cell Applied to 2M − 1 . . . . . . . . . . . . . . . . . . . 97
6.2.2 Comparison Between Cell and Regular Processors . . . . . . . . . . . 99

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 ECM at Work 101
7.1 ECM in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Elliptic Curve Constant Scalar Multiplication . . . . . . . . . . . . . . . . . . 103

7.2.1 Addition/Subtraction Chains With Restrictions . . . . . . . . . . . . . 104
7.2.2 Generating Addition/Subtraction Chains . . . . . . . . . . . . . . . . 106
7.2.3 Combining Addition/Subtraction Chains . . . . . . . . . . . . . . . . . 109
7.2.4 Additional Multiplications . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Curriculum Vitae 117



xviii



Chapter1
Introduction

Obtaining the original meaning of encrypted data without using the corresponding secret ma-
terial is part of the research area known as cryptanalysis. Cryptanalysis, often referred to as
the practice of code breaking, together with cryptography, the science of hiding information,
are the two branches of the larger research area known as cryptology. Within cryptology one
can (roughly) distinguish three different research fields, each fulfilling a different practical
need: cryptographic hash functions, symmetric-key and asymmetric-key cryptography. The
latter is also known as public-key cryptography, here the methods used to hide the information
use different keys, a public and a private, for hiding and revealing the message respectively.
This thesis is concerned with both the theoretical and practical aspects of public-key crypt-
analysis.

In the late 1970s, Rivest, Shamir and Adleman proposed an approach to realize public-
key cryptography in practice which is known as the RSA algorithm [174]. The core idea
described in their paper is still valid today and resisted many years of cryptanalysis [28]. The
RSA algorithm is, without doubt, currently the most widely used public-key cryptosystem
and has been standardized in the public-key cryptography standard [112]. The mathematical
foundation of the RSA scheme is the integer factorization problem, this problem can be
defined as follows [201, (Integer Factoring, p. 290)].

Definition 1.1 (The Integer Factorization Problem). Integer factoring is the following problem:
given a positive integer n, find positive integers v and w, both greater than 1, such that
n = v · w.

Another approach to realize public-key cryptography is based on the algebraic structure of
elliptic curves over finite fields. Elliptic curve cryptography (ECC) [124,143] enjoys increasing
popularity since its invention in the mid 1980s. The attractiveness of small key-sizes [131,135]
has placed this public-key cryptosystem as the preferred alternative to RSA. This is empha-
sized by the current migration away from 80-bit to 112-bit security where, for instance, the
United States’ National Security Agency restricts the use of public key cryptography in “Suite
B” [151] to ECC. Popular ECC based schemes are based on the ElGamal cryptosystem [75]

1



2 INTRODUCTION

and the digital signature algorithm [199]. The mathematical problem used as the theoretical
foundation in these systems is known as the discrete logarithm problem and can be defined
as follows [201, (Discrete Logarithm Problem, p. 164)].

Definition 1.2 (The Discrete Logarithm Problem). Let g be a generator for a cyclic group G.
Given an element y ∈ G, the discrete logarithm problem is to find an integer x such that
gx = y.

Note that not all public-key schemes are based on these two problems; examples of other
mathematical problems used are the hardness of decoding a general linear code (used in the
McEliece cryptosystem [141]) and lattice based problems (used in the Goldreich-Goldwasser-
Halevi encryption [90] and NTRU [106]) but the use of such schemes in practice is limited.

Although the integer factorization and discrete logarithm problems are not proven to
be hard, many people believe that this is the case; e.g. there exists no polynomial time
integer factorization method (or (sub)exponential but feasible in practice) on a classical
computer (polynomial in the number of bits of the number to be factored). On a quantum
computer, however, one can factor (and compute discrete logarithms) in polynomial time
due to Shor’s algorithm [183]. This thesis is only concerned with methods and algorithms
running on classical (non-quantum) computers. To make the situation even worse, it is not
even known if breaking RSA is equivalent to factoring; there are results pointing in different
directions [1, 29].

This thesis studies how efficiently one can solve the mathematical problems stated in
Definition 1.1 and Definition 1.2. Obtaining the secret information by other means than
solving these problems is not considered. Examples of such other methods can be found in
the research area related to side channel attacks [126, 127]: attacks which use information
gained from the physical implementation of a certain scheme to break its security; e.g. the
elapsed time or power consumption.

A common approach to study to what extent these mathematical problems can be solved
in practice is combining the state-of-the-art algorithms and resources. It might be necessary
to adopt the algorithms to a specific architecture or to build a machine specifically designed
for such tasks. As an example, the world’s first programmable, digital, electronic, computing
device known as the Colossus [79] was designed for cryptanalytic purposes1. A current shift
in architecture design is to move towards many-core processors [159]. From a practical point
of view this thesis aims to present and optimize algorithms which are specifically suitable
to run on such parallel architectures (just as in the early 1990s, e.g. [70, 71]). The prime
candidates considered are the heterogeneous, multi-core, single-instruction, multiple data
Cell broadband engine (Cell) architecture and the single-instruction, multiple thread graphics
processing unit (GPU) architecture families. We think that the techniques described in this
thesis, and the implementation of these algorithms on parallel architectures, can be used to
better understand what practical parameters should be used to provide a sufficient level of
confidence in the security used in modern public-key cryptosystems. These fast (parallel)

1The Colossus machine was used to break the codes produced by the Lorenz SZ40/42 cipher machine in
the second world war.



3

arithmetic routines also find their application in cryptography by enhancing the performance
of asymmetric cryptographic primitives.

From a theoretical point of view, we adopt and optimize arithmetic procedures to these
architectures to lower the required run-time. We also study some problems when using the
negation map optimization, an approach which results in a constant factor speedup when
solving the elliptic curve discrete logarithm problem, and give solutions to circumvent them.
In the factorization setting we study methods to reduce the runtime and space (memory)
requirement when using Edwards curves to accelerate the elliptic curve factorization method.

1.1 Publications and Thesis Outline
During my time as a PhD student I had the opportunity to work together and learn from
many talented people. Not all the publications resulting from these fruitful collaborations
have made it into this thesis, still they deserve to be mentioned here.

A project performed together with Onur Özen when following the PhD course security
and cooperation in wireless networks by Prof. J.-P. Hubaux resulted in the publication:

• [41] J. W. Bos, O. Özen, and J.-P. Hubaux. Analysis and optimization of cryptograph-
ically generated addresses. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna,
editors, Information Security Conference - ISC 2009, volume 5735 of Lecture Notes in
Computer Science, pages 17-32. Springer, Heidelberg, 2009.

Different projects regarding techniques to implement and optimize symmetric schemes re-
sulted in publications. These papers do not fit the general topics discussed in this thesis
since they are mainly concerned with symmetric cryptography.

• [32] J. W. Bos, N. Casati, and D. A. Osvik. Multi-stream hashing on the PlayStation 3.
In Applied Parallel Computing - PARA 2008, volume 6126 of Lecture Notes in Computer
Science. Springer, Heidelberg, 2008.

• [157] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software AES encryp-
tion. In S. Hong and T. Iwata, editors, Fast Software Encryption - FSE 2010, volume
6147 of Lecture Notes in Computer Science, pages 75-93. Springer, Heidelberg, 2010.

• [43] J. W. Bos and D. Stefan. Performance analysis of the SHA-3 candidates on exotic
multi-core architectures. In S. Mangard and F.-X. Standaert, editors, Cryptographic
Hardware and Embedded Systems - CHES 2010, volume 6225 of Lecture Notes in Com-
puter Science, pages 279-293. Springer, Heidelberg, 2010.

• [42] J. W. Bos, O. Özen, and M. Stam. Efficient hashing using the AES instruction set.
In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2011, Lecture Notes in Computer Science. pages 507-522, Springer, Heidelberg,
2011.

A risk assessment concerning the higher security standards, is published as a technical paper:



4 INTRODUCTION

• [34] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
On the security of 1024-bit RSA and 160-bit elliptic curve cryptography. Cryptology
ePrint Archive, Report 2009/389, 2009. http://eprint.iacr.org/

Improved arithmetic techniques for the Cell architecture are described in:

• [33] J. W. Bos and M. E. Kaihara. Montgomery multiplication on the Cell. In R.
Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, editors, Parallel Process-
ing and Applied Mathematics - PPAM 2009, volume 6067 of Lecture Notes in Computer
Science, pages 477-485. Springer, Heidelberg, 2010.

I was also part of the international team which factored a 768-bit RSA integer, this new
integer factorization world record is described in:

• [120] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P.
Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P.
Zimmermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor, Crypto
2010, volume 6223 of Lecture Notes in Computer Science, pages 333–350. Springer,
Heidelberg, 2010.

• [121] T. Kleinjung, J. W. Bos, A. K. Lenstra, D. A. Osvik, K. Aoki, S. Contini,
J. Franke, E. Thomé, P. Jermini, M. Thiémard, P. Leyland, P. L. Montgomery, A.
Timofeev, and H. Stockinger. A heterogeneous computing environment to solve the
768-bit RSA challenge. Cluster Computing, pages 1-16, 2010.

The latter is a journal version which describes the heterogeneous computing details.
The chapters in this thesis are based on the following papers (in reversed chronological

order):

• [37] J. W. Bos and T. Kleinjung. ECM at work, 2012. Work in progress.

• [31] J. W. Bos. Low-latency elliptic curve scalar multiplication, 2012. Submitted for
publication.

• [39] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Efficient SIMD
arithmetic modulo a Mersenne number. In IEEE Symposium on Computer Arithmetic
- ARITH-20, pages 213-221, IEEE Computer Society, 2011.

• [35] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles
using sloppy reduction. In International Journal of Applied Cryptography, volume 2,
number 3, pages 212–228, 2012.

• [38] J. W. Bos, T. Kleinjung, and A. K. Lenstra. On the use of the negation map in
the Pollard rho method. In G. Hanrot, F. Morain, and E. Thomé, editors, Algorithmic
Number Theory - ANTS-IX, volume 6197 of Lecture Notes in Computer Science, pages
67-83. Springer, Heidelberg, 2010.



5

• [30] J. W. Bos. High-performance modular multiplication on the Cell processor. In M.
A. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields - WAIFI 2010, volume
6087 of Lecture Notes in Computer Science, pages 7-24. Springer, Heidelberg, 2010.

• [40] J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe. ECC2K-130 on Cell
CPUs. In D. J. Bernstein and T. Lange, editors, Africacrypt 2010, volume 6055 of
Lecture Notes in Computer Science, pages 225-242. Springer, Heidelberg, 2010.

• [36] J. W. Bos, M. E. Kaihara, and P. L. Montgomery. Pollard rho on the PlayStation 3.
In Special-purpose Hardware for Attacking Cryptographic Systems - SHARCS 2009,
pages 35-50, 2009.

This thesis is organized as follows. Chapter 2 recalls most of the preliminaries required
for the subsequent chapters. Chapter 3 deals with fast arithmetic on parallel architectures,
presenting both low-latency and high-throughput algorithms and compares the performance
of modular arithmetic when using generic or special moduli. Chapter 4 comments on the use
of the negation map optimization technique and shows that this optimization, theoretically
resulting in a factor

√
2 speedup when solving the elliptic curve discrete logarithm problem,

is in practice plagued by recurring cycles. Methods to reduce and avoid these events are
presented. Chapter 5 presents the details behind two approaches to solve the elliptic curve
discrete logarithm problem on the Cell broadband engine: the current 112-bit prime field
record and an ongoing attempt which aims to solve a logarithm problem using a specific
family of elliptic curves over binary extension fields: the so-called anomalous binary or Koblitz
curves. Chapter 6 discusses the arithmetic designed for parallel architectures behind our
implementation of the elliptic curve method (ECM) for integer factorization. Using these
methods we have set the current ECM record by factoring Mersenne numbers. Chapter 7
presents an approach to lower the number of required elliptic curve additions and to lower
the storage requirement in ECM when using Edwards curves.



6 INTRODUCTION



Chapter2
Preliminaries

In this chapter some of the techniques and methods are recalled which are used in the remain-
der of this thesis. Some chapters contain their own preliminary section if these techniques,
ideas or theories are used in that chapter only. An overview of most of the work described
here can be found in volume 2 of The Art of Computer Programming by Knuth [122] or,
concerned with the more arithmetic aspects, the book by Brent and Zimmermann [50].

2.1 Radix Representation and Bit Lengths
Throughout this thesis we use different ways to represent integers. Let us define the notation.

• (k-bit integer). For k ∈ Z>0 a k-bit integer is an integer w such that 0 ≤ w < 2k.

• (signed k-bit integer). A signed k-bit integer is an integer w such that −2k−1 ≤ w <
2k−1.

• (radix-r representation). For r ∈ Z>1 a radix-r representation of an integer z with

0 ≤ z < rs is a sequence of s radix-r digits (wj)s−1
j=0 such that z =

s−1∑
j=0

wjr
j and

wj ∈ Z≥0. Note that this representation is unique if 0 ≤ wj < r for 0 ≤ j < s.

• (signed k-bit radix-r representation). If 2k ≥ r, a signed k-bit radix-r representation

of z is a sequence (wj)sj=0 of signed k-bit integers such that z =
s∑
j=0

wjr
j . We denote

signed radix-2k representation for signed k-bit radix-2k representation.

2.2 Parallel Architectures
Most of the algorithms presented in this thesis have been implemented. The target platforms
are parallel architectures, the main focus is on the Cell broadband engine architecture and

7



8 PRELIMINARIES

Figure 2.1: Overview of the Cell Broadband Engine Architecture. Figure taken from [94].

the graphics processing unit platforms. Previously published GPU implementations cover
asymmetric cryptography, such as RSA [104, 150, 193], and ECC [4, 193], and symmetric
cryptography [43, 102, 103, 140, 157, 205]. The GPU has also been considered to enhance the
performance of cryptanalytic computations in the settings of finding hash collisions [25] and
smoothness testing [17, 18]. The GPU has shown to be useful when accelerating software in
routers [97] and offloading the cryptographic workload when using SSL [111]. Besides the Cell
broadband engine implementations discussed in this thesis the Cell has been considered for
fast arithmetic and cryptography [33,43,56,62,63,157] as well as for cryptanalysis [17,191,192].

Below we briefly recall some characteristics of these platforms.

2.2.1 The Cell Broadband Engine

The Cell processor [94, 107], jointly developed by Sony, Toshiba, and IBM, is a powerful
heterogeneous multiprocessor. The Cell has a Power Processing Element (PPE), a dual-
threaded Power architecture-based 64-bit processor with access to a 128-bit AltiVec/VMX
single instruction, multiple data (SIMD) unit. Its main processing power, however, comes
from eight Synergistic Processing Elements (SPEs) [194]. Each SPE consists of a Synergistic
Processing Unit (SPU), 256 KB of private memory called Local Store (LS), and a Memory
Flow Controller (MFC). To avoid the complexity of sending explicit direct memory access
requests to the MFC, all code and data must fit within the LS. An overview of the Cell is
given in Figure 2.1.

Each SPU runs independently from the others at 3.192GHz and is equipped with a large
register file containing 128 registers of 128 bits each. Most SPU instructions work on 128-



9

bit operands denoted as quadwords. The instruction set is partitioned into two sets: one
set consists of (mainly) 4- and 8-way SIMD arithmetic instructions on 32-bit and 16-bit
operands respectively, while the other set consists of instructions operating on the whole
quadword (including the load and store instructions) in a single instruction, single data
(SISD) manner. The SPU is an asymmetric processor; each of these two sets of instructions
is executed in a separate pipeline, denoted by the even and odd pipeline for the SIMD and
SISD instructions, respectively. For instance, the {4, 8}-way SIMD left-rotate instruction is
an even instruction, while the instruction left-rotating the full quadword is dispatched into
the odd pipeline. When dependencies are avoided, a single pair consisting of one odd and
one even instruction can be dispatched every clock cycle.

One of the first applications of the Cell processor was to serve as the heart of Sony’s PS3
game console. Although the Cell contains 8 SPEs, in the PS3 one is disabled and a second is
reserved by Sony. Thus, with the first generation PS3s the programmer has access to six SPEs.
Access to the SPEs has been entirely disabled in the current version of the game console. For
independent applications serving the supercomputing community, the Cell has been placed
in blade servers, with newer variants containing the PowerXCell 8i, a derivative of the Cell
that offers enhanced double-precision floating-point capabilities. The SPEs are particularly
useful as (cryptographic) accelerators. For this purpose, PCIe1 cards are available (either
equipped with a complete Cell processor or a stripped-down version containing 4 SPEs) so
that workstations can benefit from the computational power of the SPEs.

2.2.2 Integer and Bit Arithmetic on the SPU

We interpret each 128-bit SPU register v as a four-tuple of 32-bit values (v1, v2, v3, v4), where
vi is the ith word of v which may be interpreted as signed or unsigned 32-bit integer. Below,
a, b, c, d are 128-bit registers and all operations are for i = 1, 2, 3, 4 simultaneously.

The call d = spu_add(a, b) does 4-way SIMD 32-bit integer addition, calculating di =
(ai + bi) mod 232. Other instructions generate the corresponding carries (c = spu_genc(a, b):
ci = b(ai + bi)/232c), include existing carries in additions (d = spu_addx(a, b, c): di =
(ai + bi + ci) mod 232), or generate the carries of the latter additions (e = spu_gencx(a, b, c):
ei = b(ai + bi + ci)/232c). The corresponding integer subtraction instructions are spu_sub,
spu_genb, spu_subx, and spu_genbx, where the ‘b’ in ‘genb’ indicates borrow: no borrow
occurs if the borrow-bit is set to 1 (one), and a borrow occurs if the borrow-bit is set to 0
(zero). These are all even pipeline instructions that take two cycles.

The call c = spu_mulo(a, b) does 4-way SIMD 16 × 16 → 32-bit unsigned integer multi-
plication, calculating ci = (ai mod 216) · (bi mod 216). There are two signed and one unsigned
4-way SIMD (16× 16) + 32→ 32-bit multiply-and-add instructions. One of the signed ones
calculates ci = (ai · bi + di) mod 232, where ai and bi are interpreted as signed 16-bit integers
(i.e., their 16 most significant bits are ignored), and di and ci are signed 32-bit integers.

The other two multiply-and-add instructions (the other signed one, and the unsigned
one) work instead on the 16 most significant bits of ai and bi, ignoring the 2 × 4 × 16

1Peripheral component interconnect express (PCIe) is a computer expansion card bus standard for attaching
hardware devices in a computer.



10 PRELIMINARIES

least significant bits. The unsigned instruction is used for modular multiplication: the call
c = spu_mhhadd(a, b, d) calculates ci = (bai/216c · bbi/216c+ di) mod 232, where di and ci are
unsigned 32-bit integers. All these multiplications are even pipeline instructions, one of them
can be dispatched per cycle, taking seven cycles.

The call c = spu_and(a, b) calculates the 128-bit value a ∧ b, i.e., the bitwise-and of its
inputs. The word-wise comparison call c = spu_cmpeq(a, b) results in ci = 232 − 1 (i.e., all
one bits across c’s ith word) if ai and bi have the same value and ci = 0 (i.e., all zero bits)
otherwise. The d = spu_sel(a, b, p) instruction acts as a 2-way multiplexer; depending on
the input pattern p the corresponding bit from either a or b is selected as the output bit in d.
All three are even pipeline instructions with a two cycle latency.

The or-across instruction call spu_orx(a) returns the 32-bit value a1 ∨ a2 ∨ a3 ∨ a4, i.e.,
the bitwise inclusive or across the words of a. Using d = spu_shuffle(a, b, c) any 16 entries
of a 32-byte table (a and b) can be looked up simultaneously: the pattern in c shuffles 16 of
the 32 bytes of a and b to the output d, in such a way that the jth byte of c determines the
jth byte of d, as a copy of a byte of a or b or as one of the constants {0x00, 0xFF, 0x80}.
It allows duplicate copies. Both are odd four cycle latency instructions.

The positioning of bits in the top-half-words as in spu_mhhadd requires byte-rearranging
shifts and shuffles. These are odd pipeline instructions that can be dispatched almost for
free if they are interleaved with the even pipeline arithmetic ones. The split call (b, c) =
spu_split(a) re-arranges bytes: bi = bai/216c and ci = ai mod 216 ∈ {0, 1, 2, . . . , 216 − 1},
i.e., bi gets ai’s top-half shifted right over two bytes and ci gets ai’s bottom-half. This can
be implemented in a variety of ways using a combination of two SPU instructions: using two
even pipeline instructions, or two odd ones, or one of each. The opposite effect is achieved
by a = spu_merge(b, c): ai = 216bi + ci, implemented using a single shuffle instruction.
For 0 ≤ k < 32, the shift instruction call b = spu_sl(a, k) left-shifts ai over k bits: bi =
ai2k mod 232 ∈ {0, 1, 2, . . . , 232 − 1}.

2.2.3 Compute Unified Device Architecture

Graphics Processing Units (GPUs) have mainly been game- and video-centric devices. Due to
the increasing computational requirements of graphics-processing applications, GPUs have
become very powerful parallel processors and this, moreover, incited research interest in
computing outside the graphics-community. Until recently, programming GPUs was limited
to graphics libraries such as OpenGL [180] and Direct3D [27], and for many applications,
especially those based on integer-arithmetic, the performance improvements over CPUs was
minimal, sometimes even degrading. The release of NVIDIA’s G80 series and ATI’s HD2000
series GPUs (which implemented the unified shader architecture), along with the companies’
release of higher-level language support with Compute Unified Device Architecture (CUDA),
Close to Metal (CTM) [158] and the more recent Open Computing Language (OpenCL) [93]
facilitate the development of massively-parallel general purpose applications for GPUs [2,
155]. These general purpose GPUs have become a common target for numerically-intensive
applications given their ease of programming (relative to previous generation GPUs), and
ability to outperform CPUs in data-parallel applications, commonly by orders of magnitude.



11

Figure 2.2: An overview of the Fermi streaming multiprocessor with its 32 CUDA processor cores.
Figure taken from [152].

We focus on NVIDIA’s GPU architecture with CUDA, more specifically the third gen-
eration GPU family known under the code name Fermi [154]. After the first generation
G80 architecture, the first GPU to support the C-programming language, and the second
generation GT200 architecture the Fermi architecture was released in 2010. One of the main
features for our setting is the support of 32×32→ 32-bit multiplication instructions, for both
the least- and most-significant 32-bit of the multiplication result. The previous NVIDIA ar-
chitecture families have native 24× 24→ 32-bit multiplication instructions.

We briefly recall some of the basic components of NVIDIA GPUs. More detailed infor-
mation about the specification of CUDA as well as experiences using this parallel computer
architecture can be found in [87,137,152,154,155]. Each GPU contains a number of streaming
multiprocessors (SMs) and each SM consists of multiple scalar processor cores (SP); these
number vary per graphics card. Typically, on the Fermi architecture, there are 32 SPs per



12 PRELIMINARIES

SM and around 16 SMs per GPU. C for CUDA is an extension to the C language that
employs the massively parallel programming model called single-instruction multiple-thread.
The programmer defines kernel functions, which are compiled for and executed on the SPs of
each SM, in parallel: each light-weight thread executes the same code, operating on different
data. A number of threads are grouped into a thread block which is scheduled on a single SM,
the threads of which time-share the SPs. This hierarchy provides for threads within the same
block to communicate using the on-chip shared memory and to synchronize their execution
using barriers (a synchronization method which causes threads to wait until all threads reach
a certain point).

On a lower level, threads inside each thread block are executed in groups of 32 called
warps. On the Fermi architecture each SM has two warp schedulers and two instruction
dispatch units. This means that two instructions, from separate warps, can be scheduled
and dispatched at the same time. By switching between the different warps, trying to fill
the pipeline as much as possible, a high throughput rate can be sustained. When the code
executed on the SP contains a conditional data-dependent branch all possibilities, taken
by the threads inside this warp, are serially executed (threads which do not follow a certain
branch are disabled). After executing these possibilities the threads within this warp continue
with the same code execution. For optimal performance it is recommended to avoid multiple
execution paths within a single warp.

The GPU has a large but relatively slow amount of global memory. Global memory is
shared among all threads running on the GPU (on all SMs). Communication between threads
inside a single thread block can be performed using the faster shared memory. Global memory
accesses can be sped up significantly when ensuring the memory transactions are coalesced.
If a warp requests data from global memory, the request is split into two separate memory
requests, one for each half-warp (16 threads), each of which is issued independently. If the
word size of the memory requested is 4, 8, or 16 bytes, the data requested by all threads lie in
the same segment and are accessed in sequence (the kth thread in the half-warp fetches the
kth word) then the global memory request is coalesced. In practice this means that a 64-byte
memory transaction, a 128-byte memory transaction, or two 128-byte memory transactions
are issued if the size of the words accessed by the threads is 4, 8, or 16, respectively. When
this transfer is not coalesced, 16 separate 32-byte memory transactions are performed. More
advanced rules might apply to decide if a global memory request is coalesced or not depending
on the architecture used, see [155] for the specific details.

2.3 Multiplication

Integer multiplication, n × n → 2n digits, is a well-studied research area. In this thesis we
are mainly concerned with the multiplication of small- and medium-sized integers not larger
than 1 500-bits. For the smaller (up to a few hundred bits) bit-sizes the fastest method in
practice is the schoolbook, or textbook, multiplication which has run-time complexity O

(
n2).

See the left part of Algorithm 1 for a description of the radix-r schoolbook multiplication
method.



13

Algorithm 1 The radix-r schoolbook (left) and interleaved Montgomery [145] (right) mul-
tiplication methods.

Input: A =
n−1∑
i=0

air
i, B =

n−1∑
i=0

bir
i

with 0 ≤ ai, bi < r
Output: C = A ·B =

2n−1∑
i=0

cir
i

with 0 ≤ ci < r
1. C ← A · b0
2. for i = 1 to n− 1 do
3. C ← C + ri(A · bi)
4. return C

Input:


A =

n−1∑
i=0

air
i, B,M, µ such that

0 ≤ ai < r, 0 ≤ A,B < rn, rn−1 ≤M < rn,
2 -M, gcd(r,M) = 1, µ = −M−1 mod r,

Output:
{
C ≡ A ·B · r−n mod M
such that 0 ≤ C < rn

1. C ← 0
2. for i = 0 to n− 1 do
3. C ← C + ai ·B
4. q ← µ · C mod r
5. C ← (C + q ·M)/r
6. if C ≥ rn then
7. C ← C −M
8. return C

Another, asymptotically faster, multiplication method used in this thesis is Karatsuba
multiplication [116] which has run-time complexity O

(
nlog2(3)). This method is based on

the divide-and-conquer paradigm and a recursive description is given in Algorithm 2. We
typically use this method to multiply medium-sized (a few hundred bits and higher) integers.

2.3.1 Montgomery Modular Multiplication

The Montgomery modular multiplication method introduced in [145] consists of transforming
each of the operands into a Montgomery representation and carry out the computation by
replacing the conventional modular multiplications by Montgomery multiplications. This is
suitable to speed up, for example, modular exponentiations which can be decomposed as a
sequence of several modular multiplications. One of the advantages of this method is that the
computational complexity is usually better compared to the classical method by a constant
factor.

Given an n-word odd modulus M , such that rn−1 ≤ M < rn, and an integer X =∑n−1
i=0 xi · 2w·i. The Montgomery radix R is a constant such that gcd(R,M) = 1 and R > M .

For efficiency reasons, R is usually chosen as rn where r = 2w is the radix of the system and
w is the bit length of a word. The Montgomery residue of X is defined as X̃ = X ·R mod M .
The Montgomery product of two integers is defined as M(X̃, Ỹ ) = X̃ · Ỹ · R−1 mod M . If
X̃ = X · R mod M and Ỹ = Y · R mod M are Montgomery residues of X and Y , then
Z̃ = M(X̃, Ỹ ) = X · Y · R mod M is a Montgomery residue of X · Y mod M . Algorithm 1
describes the radix-r interleaved Montgomery algorithm.

The conversion between the ordinary representation of an integer X to the Montgomery
representation X̃ can be performed using the Montgomery algorithm by computing X̃ =
M(X,R2), provided that the constant R2 mod M is pre-computed. The conversion back



14 PRELIMINARIES

Algorithm 2 Karatsuba multiplication

Input:


n ∈ Z, A =

n−1∑
i=0

air
i, B =

n−1∑
i=0

bir
i, with 0 ≤ ai, bi < r

T : some threshold for switching to schoolbook multiplication
Let r̃ = rdn/2e

Output: C = A ·B =
2n−1∑
i=0

cir
i with 0 ≤ ci < r

1. if n < T then
2. return C ← schoolbook(A,B)
3. A← A0 +A1r̃, 0 ≤ A0, A1 < r̃
4. B ← B0 +B1r̃, 0 ≤ B0, B1 < r̃
5. T0 ← Karatsuba(A0, B0)
6. T1 ← Karatsuba(A1, B1)
7. T2 ← Karatsuba(A0 +A1, B0 +B1)− T0 − T1
8. return C ← (T0 + T2 · r̃ + T1 · r̃2)

from the Montgomery representation to the ordinary representation can be done by applying
the Montgomery algorithm to the result and the number 1, i.e. Z = M(Z̃, 1).

In order to avoid the last conditional subtraction (lines 6 and 7 of the Montgomery
algorithm shown in Algorithm 1), R may be chosen such that 4M < R and inputs and
output are represented as elements of Z/2MZ instead of Z/MZ, that is, operations are
carried out in a redundant representation. It is easily shown that throughout the series
of modular multiplications, outputs from multiplications can be reused as inputs and these
values remain bounded [203]. This technique does not only speed-up modular multiplications
but also lowers the success of timing attacks [126] as operations are data independent.

2.4 Elliptic Curves
Let Fp denote a finite field of prime cardinality p > 3. Any a, b ∈ Fp with 4a3+27b2 6= 0 define
an elliptic curve Ea,b over Fp (see for more details e.g. [185]). The group of points Ea,b(Fp)
of Ea,b over Fp is defined as the zero point o along with the set of pairs (x, y) ∈ Fp×Fp that
satisfy the short Weierstrass equation

y2 = x3 + ax+ b (2.1)

with the following additively written group law. For c ∈ Ea,b(Fp) define c + o = o + c = c.
For non-zero c = (x1, y1), d = (x2, y2) ∈ Ea,b(Fp) define c + d = o if x1 = x2 and y1 = −y2.
Otherwise c + d = (x, y) with x = λ2 − x1 − x2 and y = λ(x1 − x)− y1, where

λ =


3x2

1 + a

2y1
if x1 = x2 (and thus c = d)

y1 − y2
x1 − x2

otherwise.



15

Thus, using these affine Weierstrass coordinates to represent group elements, doubling (i.e.,
c = d) is different from regular addition (i.e., c 6= d).

In practice, different defining equations and coordinate systems can be used; cf. [22, 59]
for an overview of the cost of point addition (the group operation) and scalar multiplication
(repeated point addition). The Montgomery form Ea,b [146], with a2 6= 4 and b 6= 0, is

by2 = x3 + ax2 + x and by2z = x3 + ax2z + xz2 (2.2)

in the affine and the homogeneous form.
Currently, the fastest known elliptic curves, in terms of the cost expressed in multiplica-

tions and squarings to compute the group operation, are the family of curves originating from
a normal form for elliptic curves introduced by Edwards in 2007 [74]. These Edwards curves
have been generalized by Bernstein and Lange [20,21] and Bernstein et al. [13] showing their
practical use in cryptology. A twisted Edwards curve is defined as (cf. [13])

ax2 + y2 = 1 + dx2y2 and (ax2 + y2)z2 = z4 + dx2y2 (2.3)

in the affine and the homogeneous form respectively with 0 6= a 6= d 6= 0. An Edwards curve
is a twisted Edwards curve with a = 1 and d ∈ Fp \ {0, 1}. A triplet (x : y : z) on the
homogeneous twisted Edwards curve / Montgomery curve represents, when z 6= 0, the affine
point (x/z, y/z).

Currently the fastest known approach to perform elliptic curve point addition and dupli-
cation is due to Hisil et al. [105]. They propose to use an auxiliary coordinate to enhance the
performance of the addition. A point on equation (2.3) is represented as (x : y : t : z), where
t = xy/z, and denoted as extended twisted Edwards coordinates [105].

Let (X1, Y1, T1, Z1) and (X2, Y2, T2, Z2) be distinct points, with Z1, Z2 6= 0, represented
in extended twisted Edwards coordinates. The addition (X1, Y1, T1, Z1) + (X2, Y2, T2, Z2) =
(X3, Y3, T3, Z3) can be computed as

X3 = (X1Y 2− Y1X2)(T1Z2 + Z1T2),
Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),
T3 = (T1Z2 + Z1T2)(T1Z2 − Z1T2),
Z3 = (Y1Y2 + aX1X2)(X1Y2 − Y1X2).

When a = −1 the cost of an elliptic curve addition is eight multiplications (ignoring the cost of
additions and subtractions). Note that an additional multiplication can be saved when either
Z1 = 1 or Z2 = 1. In the setting of regular (non-extended) twisted Edwards coordinates the
point addition costs ten multiplications, a single squaring and two multiplications by curve
constants.

Computing the double 2(X1, Y1, T1, Z1) = (X3, Y3, T3, Z3), when Z1 6= 0, can be performed
as (cf. [105])

X3 = 2X1Y1(2Z2
1 − Y 2

1 − aX2
1 ),

Y3 = (Y 2
1 + aX2

1 )(Y 2
1 − aX2

1 ),
T3 = 2X1Y1(Y 2

1 − aX2
1 ),

Z3 = (Y 2
1 + aX2

1 )(2Z2
1 − Y 2

1 − aX2
1 )



16 PRELIMINARIES

which is very similar to the doubling formula presented in [13] for twisted Edwards coordi-
nates. When a = −1, the computation of a elliptic curve point doubling is four multiplications
and four squarings. When using regular twisted Edwards coordinates this cost is reduced by
a single multiplication. In [105] a mixing technique is described, which omits the calcula-
tion of the T -coordinate if possible when computing the elliptic curve scalar multiplication.
Switching between extended and regular twisted Edwards coordinates obtains the best of
both worlds: on average (see Section 7.2.4 for the details) it suffices to perform eight multi-
plications per elliptic curve addition and three multiplications and four squarings per elliptic
curve doubling.

2.4.1 The Elliptic Curve Method

Introduced by Hendrik Lenstra Jr. in 1985 [136], the elliptic curve method (ECM) for integer
factorization is analogous to the Pollard p−1 integer factorization method [164] and attempts
to factor a composite integer n = pq (1 < p < q < n). The general idea behind ECM is as
follows (we follow the description from [136]). First, pick a random point P and construct
an elliptic curve E over Z/nZ (cf. [132, Section 2.B]).

Next, compute the elliptic curve scalar multiplication Q = kP ∈ E(Z/nZ). The pos-
itive integer k is selected such that it is divisible by many small prime powers: e.g. k =
lcm(1, 2, . . . , B1) for some bound B1 ∈ Z. If the order #E(Fp) is B1-powersmooth (an in-
teger is defined to be B-powersmooth if none of its prime factors is greater than B) then
#E(Fp) | k. In other words, Q = kP and the neutral element of the curve become the same
modulo p. In this event, a failure occurred in the group operation defined for E(Z/nZ) and
the factor p | gcd(n,Qz) where Qz is the z-coordinate of the point Q when using projective
coordinates. If gcd(n,Qz) is not divisible by q then we have factored n.

Hasse proved (see e.g. [185, Theorem 1.1]) that the order #E(Fp) is in the interval [p+
1− 2√p, p+ 1 + 2√p]. The advantage of ECM is that one can randomize by trying different
curves, thus obtaining different orders. In Pollard’s p− 1 one has only one choice – Z∗p with
order p− 1, and randomization of the order is not possible. It has been shown in [136] that
the (heuristic) run-time of ECM depends mainly on p, the smallest non-trivial prime divisor
of n. The expected run-time of ECM is based on a heuristic assumption, namely how the
order of the elliptic curve and the integers in the range [p + 1 − 2√p, p + 1 + 2√p] behave,
and can be expressed using the L-function [132] (or L-notation) which is defined as

Lx[t, γ] = eγ(lnx)t(ln lnx)1−t
, (2.4)

where t, γ ∈ R and 0 ≤ t ≤ 1. The run-time of ECM can be expressed as

O(Lp
[1

2 , (
√

2 + o(1))
]
M(logn)),

where M(logn) represents the complexity of multiplication modulo n and the o(1) is for
p→∞.

The approach described here is often referred to as “stage 1”. There is a second stage
continuation for ECM which takes as input a bound B2 ∈ Z and succeeds (in factoring n) if



17

Q = kP has prime order ` (for B1 < ` < B2) in E(Fp). This means that #E(Fp) is B1-smooth
except for one prime factor which is below B2. There are several techniques [47,146,147] how
to perform this second stage efficiently.

Note that the ECM is not the asymptotically fastest integer factorization method. The
general number field sieve (GNFS) [133] is the fastest publicly known method to factor
integers. The GNFS is a generalization of previous work performed by Coppersmith, Odlyzko
and Schroeppel [61] and Pollard [162]. The exact details of the GNFS are not relevant for
this thesis. The general idea is to find integer solutions x, y of the congruence of squares
x2 ≡ y2 mod n (where n is not a prime power). For a random such pair the probability is at
least 1

2 that n can be factored as gcd(x− y, n) · gcd(x+ y, n). A whole family of factorization
algorithms is based on this approach [72, 149, 168, 169]. The overall expected (heuristic)
runtime of the GNFS method to factor a composite integer n is

Ln

[
1
3 ,
((64

9

) 1
3

+ o(1)
)]

,

the o(1) is for n→∞. Note that Coppersmith proposed a faster version of NFS which uses
a single linear polynomial and multiple non-linear polynomials (versus a single linear and
a single non-linear polynomial in the original NFS) [60] to factor multiple numbers. This

method requires some precomputation, including this time the constant c =
(

64
9

) 1
3 ≈ 1.923

in GNFS is reduced to c = 2
(

46+13
√

13
108

) 1
3 ≈ 1.902 or, when the precomputation is amortized

over many factorizations to c = 2
(

5+2
√

6
18

) 1
3 ≈ 1.639.

At one end of the integer factorization spectrum ECM is used to factor integers out of
range for NFS consisting of thousands of bits. The current record ECM factor of 73-decimal
digits (241-bit) has been found by an implementation especially targeted at numbers of a
special form using optimized arithmetic (see Chapter 6). This factor has been found using
stage 1 parameter B1 = 3·109 and stage 2 parameter B2 = 1014 and computing approximately
30 000 stage 1 curves and 8 800 stage 2 curves. The practical (cryptographic) impact of these
ECM record factorizations is limited to two variants of the RSA cryptosystem, namely RSA
multiprime [174] and unbalanced RSA [181]. The former gains a speedup by a factor of r2

or r2

4 for the private operation in vanilla RSA or CRT-RSA, respectively, by selecting RSA
moduli (of appropriate size to be out of reach of NFS) consisting of the product of r > 2
primes of about the same size. In unbalanced RSA, the RSA modulus has two factors as
usual, but one is chosen much smaller than the other. In these variants, r and the smallest
factor must be chosen in such a way that ECM has a sufficiently low probability to find the
resulting relatively small prime factor(s).

At the other end of the factorization spectrum ECM is used to rapidly factor many small
(up to one or two hundred bits) integers inside NFS. The relation collection phase, one of
the main phases of NFS, first generates a lot of composites which are divisible by small
primes using sieving techniques and subsequently tries to factor these remaining composite
integers. The process of trying to factor these composites is denoted as the cofactorization



18 PRELIMINARIES

Algorithm 3 The double-and-add algorithm.

Input:


G ∈ Ea,b(Fp)

s ∈ Z>0, 2k−1 ≤ s < 2k, s =
k−1∑
i=0

si2i, with 0 ≤ si < 2

Output: P = sG ∈ Ea,b(Fp)
1. P ← G
2. for i = k − 2 down to 0 do
3. P ← 2P
4. if si = 1 then
5. P ← P +G

phase. To illustrate, the total time spent in the cofactorization procedure was roughly one
third of the sieving time when factoring a 768-bit RSA modulus in [120] (currently the largest
factorization of an integer without special form). Note that this one third includes the time
of pseudo primality tests and different factorization methods: quadratic sieve [169], Pollard
p− 1 [164] and ECM. Before embarking upon an ECM factorization attempt a Pollard p− 1
test is always performed first. The total time spent in ECM is hard to estimate precisely but
is somewhere between 5 and 20 percent of the total sieving time. In this cofactorization phase
only composites up to 140 bits were considered and ECM was used only for composites up
to 109-bits. The parameters for stage 1 (stage 2) in ECM varied depending on the composite
size and ranged from 150 (9 000) to 500 (36 000) where often only a single curve was tried
with a maximum of around eight curves.

This area, using ECM for cofactorization, has seen a flurry of recent activity: see [68,84,95,
138, 160, 186, 208] for implementations of ECM targeted at small integers on reconfigurable
hardware such as field-programmable gate arrays and [17, 18] for GPUs. In [17] the Cell
architecture is covered as well. Kruppa compares a software implementation to hardware
based solutions [128]. Methods to optimize the cofactorization phase are given by Kleinjung
in [119].

2.4.2 Elliptic Curve Scalar Multiplication

The most common approach when computing the elliptic curve scalar multiplication, where
we assume we want to compute sP with P ∈ Ea,b(Fp) and 1 < s ∈ Z, is using addition
chains [177]. A finite sequence of positive integers a0 = 1, a1, . . . , ar = s is called an addition
chain of length r if every element ai can be written as a sum aj + ak of preceding elements.
Let us briefly recall some of the popular techniques based on addition chains when computing
the elliptic curve scalar multiplication.

One of the simplest methods to compute the elliptic curve scalar multiplication is the
double-and-add algorithm (see Algorithm 3). This approach is also known as the square-and-
multiply (referring to multiplicative notation). There is not much one can do to lower the
required number of k = dlog2(s)e − 1 duplications. The number of additions, on the other



19

hand, can be reduced using several techniques. Consider the example s = 9 997, in binary
this number is 9 99710 = 100111000011012. The following addition chain based on this binary
representation

D3 → A→ D → A→ D → A→ D5 → A→ D → A→ D2 → A
(((((23 + 20) · 21 + 20) · 21 + 20) · 25 + 20) · 21 + 20) · 22 + 20 = 9 997

can be used. This is exactly what Algorithm 3 does. This approach requires k = dlog2(9 997)e−
1 = 13 duplications and six additions. One can also use a w-bit window size [45], precom-
puting cP , with 1 ≤ c < 2w. This requires a precomputation cost plus the cost for the
addition chain. When using a w = 2-bit window size the precomputation is a single doubling
to compute 2P and a single addition for 2P + P = 3P . Next one can proceed as follows

(((((2 · 22 + 1) · 22 + 3) · 22 + 0) · 22 + 0) · 22 + 3) · 22 + 1 = 9 997,

the totals cost becomes 13 duplications and seven additions. This cost is higher compared to
the previous approach, which used a w = 1-window, but this can be remedied using sliding
windows [198].

The idea behind sliding windows is to perform as many duplications as possible after an
addition. This ensures that the additions are always performed using odd numbers which
reduces the required number of precomputed points by a factor of two. Heuristically, one
can expect, when using sliding windows, ∑k

i=1 2−i = 1− 2−k zero bits (duplications) after an
addition. In our example, when using a w = 2-bit window, the value 3P can precomputed
with one addition and one duplication. Next, the value of 9 997 can be computed as

(((24 + 3) · 2 + 1) · 26 + 3) · 22 + 1 = 9 997.

The total cost becomes 13 duplications and five additions.
One could use signed windows [148], i.e. addition/subtraction chains, if point subtraction

has roughly the same cost as point addition (as is the case in the setting of elliptic curves).
Applied to the example we can write

((((22 + 1) · 23 − 1) · 25 + 1) · 2 + 1) · 22 + 1 = 9 997

when using a w = 1-bit window size which costs 13 duplications and five additions/subtractions.
When using a w = 2-bit window size this sequence becomes

(((22 + 1) · 23 − 1) · 24 + 1) · 24 − 3 = 9 997

at identical total cost. A more advanced method which requires slightly more precomputation
but lowers the runtime is known as the fractional windowing method [144].

A survey related to addition chains is given in [91]. An overview of the costs, expressed
in arithmetic operations in the finite field, of the elliptic curve scalar multiplication can be
found in [22, 59]. Note that computing good (or optimal) addition chains, possibly within
some constraints (give a “good” answer quickly or do not use too much memory), is a hard
problem.



20 PRELIMINARIES

Algorithm 4 Montgomery ladder

Input:


G ∈ Ea,b(Fp)

n =
k−1∑
i=0

ni2i, n ∈ Z>0, 2k−1 ≤ n < 2k

Output: P = nG ∈ Ea,b(Fp)
1. P ← G,Q← G
2. for i = k − 2 down to 0 do
3. if ni = 1 then
4. (P,Q)← (P +Q, 2Q)
5. else
6. (P,Q)← (2P, P +Q)

The Montgomery Ladder

A different approach to calculate the elliptic curve scalar multiplication is the Montgomery
ladder. This technique was introduced by Montgomery in [146] in the setting of ECM. We give
here the higher level description from [113]. Let L0 = s = ∑t−1

i=0 ki2i, define Lj = ∑t−1
i=j ki2i−j

and Hj = Lj + 1. Then,

Lj = 2Lj+1 + kj = Lj+1 +Hj+1 + kj − 1 = 2Hj+1 + kj − 2.

One can update these two values using

(Lj , Hj) =
{

(2Lj+1, Lj+1 +Hj+1) if kj = 0,
(Lj+1 +Hj+1, 2Hj+1) if kj = 1.

A high-level overview of this approach is given in Algorithm 4. This approach is slower
compared to, for instance, the double-and-add technique (Algorithm 3) since a duplication
and addition are always performed per bit. This disadvantage is actually used as a feature
in environments which are exposed to side-channel attacks and where the algorithms needs
to process the exact same steps independent of the input parameters. It is not difficult to
alter Algorithm 4 such that it becomes branch-free (using the bit ni to select which point to
double). In ECM the elliptic curve scalar multiplication is calculated using the Montgomery
form (see equation (2.2)) which avoids computing on the y-coordinate. This is achieved as
follows: given the x- and z-coordinate of the points P , Q and P −Q one can compute the x-
and z-coordinates of P +Q (and similarly 2P or 2Q). Avoiding computations on one of the
coordinates results in a speedup in practice (see [146] for all the details).

2.5 The Pollard Rho Method

The Pollard rho algorithm was proposed in 1975 as an integer factorization method to find
relative small factors of a given composite input integer [165]. Three years later, Pollard



21

pλ+1
pλ+µ+1

pλ+2

pλ+µ+2

pλ+3pλ+µ+3

pλ+µ−2pλ+µ−1

p0

p1

p2

pλ−1

pλ pλ+µ

Figure 2.3: Representation of the ρ shape of the single-instance Pollard rho method. The points
pi, p

′
j represent points from two different walks.

adopted this method to solve the discrete logarithm problem (DLP) in generic groups [166].
Let G be a cyclic group of prime order n and let g ∈ G be a generator. The DLP is, given g
and h ∈ 〈g〉, to find y = logg h (see Definition 1.2). We restrict ourselves in this description
to the case where n is prime: a typical setting in cryptography. If n is composite one can
reduce the computation of the discrete logarithm in an order n group to its prime order
subgroups [161].

For arbitrary multipliers u, v ∈ Z, ug + vh ∈ 〈g〉. A collision corresponds to random
integer multipliers u, v, ū, v̄ such that ug + vh = ūg + v̄h. Unless v̄ ≡ v mod n, the value
m = u−ū

v̄−v mod n solves the discrete logarithm problem after a collision has been found.
Given an iteration function f : 〈g〉 → 〈g〉, the Pollard rho method calculates a sequence of
points pi+1 = f(pi), i ≥ 0 in order to find a collision. This sequence of points represents
a walk through the set of points 〈g〉. Given pi = uig + vih ∈ 〈g〉 and ui, vi ∈ [0, n − 1], f
updates ui+1 and vi+1 and computes pi+1 as pi+1 = ui+1g + vi+1h. The sequence is started
from a random and known point p0 ∈ 〈g〉 by selecting random values for u0 and v0. This
sequence of points eventually collides (as operations are performed over a finite cyclic group).
Let us denote λ and µ ≥ 1 as the smallest integers such that pλ = pλ+µ holds. The value λ
is called the tail and µ the cycle length, graphically the walk through the set of points forms
a ρ shape: see Figure 2.3. Assuming the iteration function is a random mapping of size n,
i.e. f is equally probable among all functions F : 〈g〉 → 〈g〉, it can be shown [78, 100] that
the asymptotic expected values of λ and µ are λ = µ =

√
πn
8 when n → ∞. Another way



22 PRELIMINARIES

of arriving at this average value is by regarding this walk as picking random objects (group
elements) with replacement. Due to a result known as the birthday paradox this leads to the
expected number of steps (or iterations) of

√
πn
2 [122, Exercise 3.1.12].

Finding a duplicate can be done by Floyd’s cycle finding method [122, Exercise 3.1.6]
requiring only a constant number of group elements: compute (pk, p2k) for k = 1, 2, . . .
(where pk denotes the kth point of the walk) until a collision occurs, i.e., pk = p2k. It can be
seen (cf. [46]) that

k =
{
µ if µ ≡ 0 mod λ and µ > 0
µ+ λ− (µ mod λ) otherwise.

Since three calls to the iteration function f (one to compute pk and two for p2k) are required
to compute the next group elements the total number of calls to f is upper bounded by
3(µ+ λ).

An optimization of Floyd’s cycle finding method is proposed by Brent [46]. A paper by
Sedgewick, Szymanski and Yao [179] provide an algorithm which in the worst-case setting
is asymptotically optimal. A stack based approach is introduced by Nivasch [153]. Details
about optimizations for Pollard’s rho algorithm, when implementing this method in practice
and running multiple instances in parallel, are outlined in Chapter 4.

An alternative method to solve the DLP is Shanks’ baby step giant step method [182] [123,
Exercise 5.25] which builds a hash table containing id

√
neg for i = 0, 1, . . . , d

√
ne and searches

it for h + jg for j = 0, 1, 2, . . . , until a match is found. This works in time and memory
on the order of

√
n. Pollard’s rho method achieves expected runtime O(

√
n) and O(logn)

memory or, if run in parallel, much less memory than Shanks’ method: O((logn)2) memory
suffices [85, Exercise 16.23] when roughly

√
n logn out of n group elements are distinguished

(see Chapter 4).



Chapter3
High-Performance Arithmetic on Parallel
Architectures

This chapter presents performance results for one of the key operations in ECC: modular mul-
tiplication. The performance results are obtained when running on two parallel architectures:
the heterogeneous, multi-core, single instruction, multiple data (SIMD) Cell broadband en-
gine (Cell) architecture and a number of different graphics processing unit (GPU) architecture
families.

Our performance results set new speed records, in terms of throughput, for generic mod-
uli, using interleaved Montgomery multiplication [145], and special modular multiplication
for moduli ranging from 192 to 521 bits on the Cell. This range covers the current stan-
dardized parameters for ECC cryptosystems as specified by National Institute of Standards
(NIST) [199]. Besides these special NIST primes, the prime of special form used in curve25519
as proposed by Bernstein [12] is considered as well. These special primes are used to enhance
the performance of ECC-based schemes in practice by exploiting the special form of the
primes to construct a fast reduction step. Typically, the multiplication and special reduction
are performed sequentially. For the separated multiplication step we consider schoolbook and
Karatsuba multiplication [116] techniques. We use the straightforward methods to implement
the fast reduction for the NIST recommended primes (see [188]). For the special prime in
curve25519 we use a different approach in order to compare with the proposed fast reduction
from [12].

The performance results on the Cell are obtained by using the features of SIMD archi-
tectures. The implementations are specifically optimized for the Cell and take both the
advantages (e.g., the rich instruction set and large register file) and disadvantages (e.g., the
“small” 16× 16→ 32-bit multiplier) of this architecture into account. Furthermore, multiple
streams of computations are interleaved to increase throughput. Multi-stream modular mul-
tiplication computations are useful in both a cryptanalytic and cryptographic setting. For
instance, one could use multi-stream modular multiplication routines, either the generic or
special variant, to speedup batch decryption for ECC-based schemes. Additionally, this work

23



24 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

shows the practical benefit of using the special over generic prime moduli on the Cell.
For the GPU we study a different setting. In order to asses the possibility to use the

GPU as a cryptographic accelerator we present algorithms to compute the elliptic curve
scalar multiplication (ECSM) (see Section 2.4.2), the core building block in ECC, for parallel
computer architectures. An orthogonal perspective, compared to the Cell, is used and we aim
to decrease the latency while trying to keep the throughput loss under control. The different
design goals of the arithmetic between the Cell and the GPU architecture is motivated by
the fact that the GPU has orders of magnitude more cores to its disposal compared to the
Cell. In order to have a acceptable response time (e.g. the latency) one can compute the
ESCM with multiple cores. Previous reports implementing ECC schemes using ECSM on
GPUs [4, 17, 18, 193] use multiple cores to calculate the arithmetic in the finite field. Our
approach differs: the modular arithmetic in the finite field is computed with a single thread
(on a single core) to aim for high-throughput while the latency reduction is achieved by doing
the elliptic curve arithmetic in parallel.

The presented algorithms are based on methods originating in cryptographic side-channel
analysis [126] and are designed for a parallel computer architecture with a 32-bit instruction
set. This makes the third generation of NVIDIA GPUs, the GTX 400/500 series known as
Fermi, an ideal target platform. Despite the fact that our algorithms are not particularly
optimized for the older generation GPUs, we show that this approach outperforms, in terms
of low-latency, the results reported in literature while it at the same time sustains a high
throughput. For the Fermi architecture the ECSM can be computed in 1.9 milliseconds (on
the GTX 580), using an elliptic curve over a 224-bit prime field, with the additional advantage
that the implementation can be made to run in constant time; i.e. resistant against timing
attacks.

This chapter merges the two papers [30,31] and parts of [35].

3.1 Fast Reduction using Special Primes

One way to speed up elliptic curve arithmetic is to enhance the performance of the finite field
arithmetic by using a prime of a special form. The structure of such a prime is exploited by
constructing a fast reduction method, applicable to this prime only. Typically, the multipli-
cation and reduction are performed in two sequential phases. For the multiplication phase we
consider the so-called schoolbook, or textbook, multiplication and the asymptotically faster
Karatsuba multiplication techniques (see Chapter 2 for more details).

3.1.1 NIST Primes

In the FIPS 186-3 standard [199] NIST recommends the use of five prime fields when using
the elliptic curve digital signature algorithm. These generalized Mersenne primes allow fast
reduction based on the work by Solinas [188]. The five recommended primes are



25

Algorithm 5 Fast reduction modulo p224 = 2224 − 296 + 1.
Input: Integer c = (c13, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

224.
Output: Integer d ≡ c mod p224.

Define 224-bit integers:
s1 ← ( c6, c5, c4, c3, c2, c1, c0),
s2 ← ( c10, c9, c8, c7, 0, 0, 0),
s3 ← ( 0, c13, c12, c11, 0, 0, 0),
s4 ← ( c13, c12, c11, c10, c9, c8, c7),
s5 ← ( 0, 0, 0, 0, c13, c12, c11)
return (d = s1 + s2 + s3 − s4 − s5);

p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1,
p256 = 2256 − 2224 + 2192 + 296 − 1, p384 = 2384 − 2128 − 296 + 232 − 1,
p521 = 2521 − 1.

Let us take p224 as an example since it is the prime considered in the GPU architecture setting
in this chapter. The usage of the other primes in the setting of the Cell platform is similar.
The prime p224, together with the provided curve parameters from the FIPS 186-3, allows
one to use 224-bit ECC which provides a 112-bit security level. This is the lowest strength for
asymmetric cryptographic systems allowed by NIST’s “SP 800-57 (1)” [156] standard from
the year 2011 on (cf. [34] for a discussion about the migration to these new standards).

Reduction modulo p224 can be done efficiently: for x ∈ Z with 0 ≤ x < (2224)2 and
x = xL + 2224xH for xL, xH ∈ Z, 0 ≤ xL, xH < 2224, define

R(x) = xL + xH(296 − 1).

It follows that R(x) ≡ x mod p224 and R(x) ≤ 2320− 296. Algorithm 5 shows the application
of R(R(x)) for a machine word (limb) size of 32 bits, based on the work by Solinas [188]. Note
that the resulting value R(R(x)) ≡ x mod p224 with −(2224 + 296) < R(R(x)) < 2225 + 2192.

The NIST curves over prime fields all have prime order. In order to translate this curve
into a suitable Edwards curve over the same prime field (see Chapter 2), in order to use the
faster elliptic curve arithmetic, the curve needs to have a group element of order four [20]
(which is not the case with the prime order NIST curves). To comply with the NIST standard
we choose not to use Edwards but Weierstrass curves.

An extensive study of a software implementation of the NIST-recommended elliptic curves
over prime fields on the x86 architecture is given by Brown et al. [53].

3.1.2 Curve25519

The elliptic curve curve25519 is proposed by Bernstein in [12]. Besides offering high-speed
arithmetic, a list of other advantages can be found in the original article [12]. This curve is



26 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

over Fp255 with p255 = 2255 − 19. An element x ∈ Fp255 can be represented as

x =
9∑
i=0

xi2d25.5ie, with − 225 ≤ xi ≤ 225.

Bernstein proposes to implement the arithmetic using floating point instructions and therefore
representation inside a CPU is achieved by using floating-point registers. The original article
gives performance data obtained on a Pentium M architecture. Note that the faster Edwards
curves can be used in combination with p255 since the curve described in [12] has a point of
order four.

3.2 Applications
Modular multiplication is the main operation when computing the elliptic curve scalar mul-
tiplication. This, in its turn, is the core computation in almost all elliptic curve based cryp-
tographic schemes. Enhancing the practical performance of modular multiplication results
directly in faster elliptic curve based cryptographic protocols.

It might be less obvious to find applications that might benefit from processing multiple
input streams, as we propose in this chapter for the Cell. To increase throughput, the 4-way
SIMD instructions of the SPE are used to implement a modular multiplication routine which
computes 4 streams, or a small multiple of 4 by interleaving these streams, in parallel (i.e. 4
modular multiplications are being processed concurrently). When a sequence of multiplica-
tions has to be computed, for instance in elliptic curve scalar multiplication, the algorithm
performs the same operations in SIMD-mode on all inputs. When the scalar multipliers are
different, a square-and-multiply algorithm needs to perform a different sequence of point ad-
ditions and doublings, since this depends on the binary expansion of the scalar multiplier.
Performing the same computations on multiple streams concurrently, when multiplying with
different scalars, in a SIMD fashion might be suboptimal since all streams which are being
processed in parallel need to perform the same computations. In this section we present
some applications in cryptography and cryptanalysis where SIMD modular multiplication
algorithms can be beneficial; i.e., where the same multiplier is used in multiple independent
instances.

3.2.1 Cryptography

Cryptographic schemes often need to perform exponentiations with a randomly selected ex-
ponent, or scalar multiplications when using the additive group law as in the elliptic curve
setting. If this exponent is used several times, in independent calculations, these operations
can be performed in parallel in a SIMD fashion. For instance, in elliptic curve public-key
schemes the ability to process multiple streams of modular multiplication computations can
be used to speedup batch decryption. Examples of such schemes are the elliptic curve inte-
grated encryption scheme (ECIES), proposed by Bellare and Rogaway [10] and standardized
in [172], and the provably secure encryption curve scheme (PSEC), based on the work by



27

Fujisaki and Okamoto [83] and standardized in [109]. The decryption of a message consists
of multiplying an elliptic curve point, as specified by the ciphertext, by the private key d
in PSEC or by h · d in the case of ECIES, where h ∈ Z is a divisor of the cardinality of
the elliptic curve and is constant for a given private key. When many messages need to be
decrypted, using the same private key, SIMD algorithms as described in this article can be
used to speedup computations.

In other settings, where the bitsize of the modulus is usually larger compared to the ECC
setting, multi-stream modular multiplication computations can be useful as well. ElGamal
encryption schemes [75] require two exponentiations with the same random exponent. Other
related methods perform more exponentiations with the same exponent. The double base
variant of ElGamal by Damgård, often referred to as Damgård ElGamal [67], performs three
exponentiations. The “double” hybrid Damgård ElGamal, as proposed by Kiltz et al. [117],
requires four exponentiations with the same exponent in every encryption.

3.2.2 Cryptanalysis

In cryptanalysis, multi-stream modular multiplication computations, for moduli sizes as con-
sidered in this article (in the 100-500 bit range), can be used to enhance the performance
of the Pollard rho discrete logarithm algorithm [166], a method to solve the elliptic curve
discrete logarithm problem (ECDLP) which is essential to assess the security of ECC (see
Chapter 2 and 4). This approach is used, for instance, in Chapter 5, when solving a 112-bit
ECDLP on the SPE architecture by working concurrently on 400 computations. Here, 70
percent of the total run-time is spent on the computation of modular multiplications.

Another cryptanalytic application is factoring integers. The integer factorization problem
is essential to the security of cryptographic algorithms as RSA. The fastest known method
to factor integers is the number field sieve [133,162]. This method can use the elliptic curve
factorization method (ECM) [136] (see Section 6.2) in a co-factorization phase. Performing
elliptic curve arithmetic on multiple points in parallel allows the use of multi-stream modular
multiplication methods. Related work by Bernstein et al. [18] gives performance details of a
high-performance multi-stream implementation of modular arithmetic in ECM on graphics
cards.

3.3 Representation of Long Integers

3.3.1 Representation of Long Integers on the SPU

To represent integers on the Cell one could directly use the 128-bit registers of the SPU to
represent (part of) a single integer. But this simple-minded approach is not easily compatible
with the SPU’s instruction set.

For applications that allow high degrees of parallelization a 90-degree interpretative turn
of the words is a better fit for the SPU’s instruction set: instead of representing an m-bit
integer using d m128e 128-bit registers, a four-tuple of long integers is laid out across the four-
tuples of words of a sequence of 128-bit registers, thereby allowing the corresponding words of



28 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

x[0] =
128-bit wide register︷ ︸︸ ︷︸ ︷︷ ︸

the 32 (or 16) least significant bits of x2 are located in
this 32-bit word (or in its 16 least significant bits)

...
...

x[j] = 16-bit︸ ︷︷ ︸
high
order

16-bit︸ ︷︷ ︸
low

order...
...

x[n− 1] = ︸ ︷︷ ︸
↑

(x1,

︸ ︷︷ ︸
↑
x2,

︸ ︷︷ ︸
↑
x3,

︸ ︷︷ ︸
↑
x4)

Figure 3.1: A four-tuple (x1, x2, x3, x4) of 32n-bit or 16n-bit integers represented by 128-bit registers
x[0], x[1], . . . , x[n− 1].

the four long integers, i.e., the words that belong to the same 128-bit register, to be processed
simultaneously in SIMD fashion. Figure 3.1 illustrates two ways to map four-tuples of long
integers to a sequence of 128-bit registers: one that uses all 4×32 = 128 bits of each register,
and one where only 4 × 16 = 64 of the 128 bits per register are significant. This approach
allows 4-way SIMD processing of four-tuples of identically sized long integers of any size.

Both methods represent four-tuples of long integers by word slicing a number of 128-
bit registers. The choice of representation (4 × 32 or 4 × 16 bits used per 128-bit register)
depends on the operation to be carried out. Each 128-bit register v is interpreted as a four-
tuple (v1, v2, v3, v4) of 32-bit words. Here these words are interpreted as unsigned 32-bit
integers.

In the first representation method, a sequence of ` 128-bit registers x[0], x[1], . . . , x[`− 1]
is used to represent a four-tuple (x1, x2, x3, x4) of 32`-bit integers in their radix 232 represen-
tation:

xi =
`−1∑
j=0

x[j]i232j

for i = 1, 2, 3, 4. Thus, the ith word x[j]i of the 128-bit register x[j] equals the coefficient
of 232j in the radix 232 representation of the ith 32`-bit integer xi, for j = 0, 1, . . . , ` − 1
and i = 1, 2, 3, 4. This representation matches the SPU’s 4-way SIMD integer additions and
subtractions.

In the second representation method, a sequence ofm 128-bit registers y[0], y[1], . . . , y[m-1]
is used to represent a four-tuple (y1, y2, y3, y4) of 16m-bit integers in their radix 216 represen-
tation:

yi =
m−1∑
j=0

(y[j]i mod 216)216j

for i = 1, 2, 3, 4 and where 0 ≤ y[j]i mod 216 < 216. Thus, the two least significant bytes of



29

the ith word y[j]i of the 128-bit register y[j] contain the coefficient of 216j in the radix 216

representation of the ith 16m-bit integer yi, for j = 0, 1, . . . ,m − 1 and i = 1, 2, 3, 4. When
used with the shift instruction spu_sl, this representation matches the SPU’s 4-way SIMD
unsigned multiply-and-add instruction spu_mhhadd (see Section 2.2.2 for the specification of
these instructions).

Thus we use the 128-bit register width to hard-code 4-way SIMD processing of four-tuples
of long integers. The values for ` (full-word radix 232) and m (bottom-half-word radix 216)
depend on the modulus size.

3.3.2 Representation of Long Integers on the GPU

All recent GPU architectures support 32-bit instructions. Hence, long integers on the GPU
are represented in the usual way by writing an m-bit number x in a radix-232 representation:

x =
dm

32 e∑
i=0

xi232i with 0 ≤ xi < 232.

3.4 Finite Field Arithmetic

In order to speed up the modular calculations we represent the integers x ∈ Fp using a
redundant representation. Instead of fully reducing x to the range [0, p〉, for an m-bit prime
p, we use the slightly larger interval [0, 2m〉. This redundant representation saves a multi-
limb comparison to detect if we need to perform an additional subtraction after a number has
been reduced to [0, 2224〉. Using this representation, reduction can be done more efficiently,
as outlined in this section, while it does not require more 32-bit limbs (or registers) to store
the integers. Various operations need to be adopted in order to handle the boundary cases,
this is outlined in this section.

The (modular) multiplication operations in this chapter are designed to operate on rela-
tively small (≤ 521 bits) integers. On the widely available x86 and x86-64 architectures the
threshold for switching from schoolbook multiplication to methods with a lower asymptotic
run-time complexity (e.g. Karatsuba multiplication) is > 800 bits [92] (but this threshold
depends on the word-size of the architecture). On these architectures the size of the operands
on which the multiplication and addition instructions work is typically the same (either 32
or 64 bits).

On the Cell “only” a 16 × 16 → 32 bits multiplication instruction is available (see Sec-
tion 2.2.1), performing four multiplications in parallel, while the size of the 4-way SIMD
operands to the addition instruction is 32 bits. Unlike the x86 architecture an integer
multiply-and-add instruction is available. This allows the addition of two extra 16-bit values
to a result of a 16-bit multiplication without generating a carry, since if 0 ≤ a, b, c, d < 216,
then a · b+ c+ d < 232. We consider both the schoolbook and Karatsuba multiplication for
the special modular multiplication routines on the Cell architecture and only the schoolbook
approach for the single case, 224-bit multiplication, considered on the GPUs.



30 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

For the GPU-architecture we aim to lower the latency. A common approach to achieve
this is to compute the modular multiplications with multiple threads using a residue number
system (RNS) [88, 142]. This might be one of the few available options to lower the latency
for schemes which perform a sequence of data-dependent modular multiplications, such as in
RSA where the main operation is modular exponentiation, but different approaches can be
tried in the setting of elliptic curve arithmetic. We follow the ideas from [105,113] and choose,
in contrast to for instance [4], to let a single thread compute a single modular multiplication.
The parallelism is exploited at the elliptic curve arithmetic level where multiple instances
of the finite field arithmetic are computed in parallel to implement the elliptic curve group
operation.

3.4.1 Modular Addition and Subtraction

After an addition of a and b, with 0 ≤ a, b < 2224, resulting in a + b = c = cH2224 + cL
with 0 ≤ cL < 2224 and 0 ≤ cH ≤ 1 there are different strategies to compute the modu-
lar reduction of c. One can subtract p224 once (cH = 1) or the result is already in the
proper interval (cH = 0) and subsequently continue using the 224 least significant bits of the
outcome. In order to prevent divergent code on parallel computer architectures the value
cHp224 (either 0 or p224) could be pre-computed and subtracted after the addition of a and b.
Note that an addition subtraction might be required in the unlikely event that cH = 1 and
a+ b− p224 ≥ 2224.

A faster approach is to use the special form of the prime p224. Since,

c = cH2224 + cL ≡ cL + cH(296 − 1) mod p224, (3.1)

this requires the computation of one addition of a and b and one addition with the pre-
computed constant cH(296 − 1), for cH ∈ {0, 1}. Again, in the unlikely event that cH = 1
and cL + 296 − 1 ≥ 2224 an additional subtraction is required. The probability to obtain
a carry after adding the fourth 32-bit limb of 296 − 1 to cL is so small that an early-abort
strategy can be applied; i.e. all concurrent threads within the same warp assume that no
carry is produced and continue executing the subsequent code, in the unlikely event that one
or more of the threads produce a carry this results in divergent code and the other threads
in this warp remain idle until the computation has been completed. This strategy decreases
the number of instructions required to implement the modular addition and makes this latter
approach preferable in practice.

For modular subtraction the same two approaches can be applied. In the first approach
the modulus p224 is added to c = a − b if there is a borrow out: i.e. b > a. An additional
addition of p224 might be required since 0 > p224−2224 < a−b+p224. In the second approach
2p224 + a is computed before subtracting b, to ensure that the result is positive. Next, we
proceed as in the addition scenario with the only difference that cH ∈ {0, 1, 2}.



31

Algorithm 6 Radix-2r schoolbook multiplication algorithm for architectures which have
a multiply-and-add instruction. We use r = 16 and r = 32 for the Cell and GPU
architecture respectively.

Input: Integers a =
n−1∑
i=0

ai2ri, b =
n−1∑
i=0

bi2ri, with 0 ≤ ai, bi < 2r.

Output: Integer c = a · b =
2n−1∑
i=0

ci2ri, with 0 ≤ ci < 2r.

1. di ← 0, i ∈ [0, n− 1]
2. for j = 0 to n− 1 do
3. (e,Dj)← split(a0 · bj + d0)
4. for i = 1 to n− 1 do
5. (e, di−1)← split(ai · bj + e+ di)
6. dn−1 ← e
7. return (c← (dn−1, dn−2, . . . , d0, Dn−1, Dn−2, . . . , D0))

3.4.2 Modular Multiplication

Algorithm 6 depicts schoolbook multiplication designed to run on SIMD architectures and
is optimized for architectures with a native multiply-and-add instruction. After trivially
unrolling the for-loops the algorithm is branch-free. Algorithm 6 splits the operands in r-
bit words and takes advantage of the r-bit multiplier assumed to be available on the target
platform. We use r = 16 and r = 32 for the Cell and GPU architecture respectively but
this can be modified to work with any other word size on different architectures. After the
multiply-and-add, and a possible extra addition of one r-bit word, the 2r-bit result z is
split into the r most and r least significant bits, x and y respectively. This is denoted by
(b z2r c, z mod 2r)← split(z) (see Section 2.2.2).

Multiplication on the SPU

On the SPE, Algorithm 6 operates on four-tuples of inputs simultaneously using the data
representation from Figure 3.1.

On the SPE the splitting can be implemented in different ways, i.e. by using two odd
shuffle instructions, or one even and and one odd shuffle instruction, or two even and
instructions. The appropriate splitting implementation is chosen to balance the number of
odd and even instructions, reducing the total number of required cycles. Note that when
i = 1 the extra addition of di+1 can be omitted. Hence, Algorithm 6 requires n2 × split,
n2×muladd and n(n−2)×add (when multiplying two 16n-bit integers); this can be computed
in 2n(n− 3

4) cycles, optimistically assuming all odd and even pairs can be dispatched simulta-
neously. Furthermore, this approximation ignores the function-call overhead and loading and
storing the in- and output from the local store. Hence, an optimistic approximation for the
computation of a single 16n × 16n → 32n-bit schoolbook multiplication is n

2

(
n− 3

4

)
cycles



32 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

Algorithm 7 Radix-232 Karatsuba multiplication algorithm for architectures which sup-
port vector instructions, n is even.

Input:
{

Integer X = (xn−1, . . . , x0), each xi is a 32-bit word.
Integer Y = (yn−1, . . . , y0), each yi is a 32-bit word.

Output: Integer Z = (z2n−1, . . . , z0) = X · Y , each zi is a 32-bit word.
1. (Bn−1, . . . , B0)← mul((xn−1, . . . , xn/2), (yn−1, yn/2))
2. (Cn−1, . . . , C0)← mul((xn/2−1, . . . , x0), (yn/2−1, . . . , y0))
3. zero← carry1 ← carry2 ← {0}
4. for i = 0 to n/2− 1 do
5. Xi ← add_extended(xn/2+i, xi, carry1)
6. Yi ← add_extended(yn/2+i, yi, carry2)
7. carry1 ← gen_carry_extended(xn/2+i, xi, carry1)
8. carry2 ← gen_carry_extended(yn/2+i, yi, carry2)
9. mask1 ← cmpgt(carry1, 0), mask←cmpgt(carry2, 0)
10. for i = 0 to n/2− 1 do
11. si ← select(zero, Yi,mask1), ti ← select(zero, Xi,mask2)
12. c1 ← select(zero, carry1,mask2)
13. (zn−1, . . . , zn/2, An/2−1, . . . , A0)← mul((Xn/2−1, . . . , X0), (Yn/2−1, . . . , Y0))
14. carry1 ← carry2{0}
15. for i = n/2 to n− 1 do
16. T ← add_extended(zi, si−n/2, carry1)
17. Ai ← add_extended(T, ti−n/2, carry2)
18. carry1 ← gen_carry_extended(zi, si−n/2, carry1)
19. carry2 ← gen_carry_extended(T, ti−n/2, carry2)
20. An ← add_extended(carry1, carry2, c1)
21. borrow1 ← borrow2 ← {1}
22. for i = 0 to n− 1 do
23. T ← sub_extended(Ai, Bi, borrow1)
24. Ei ← sub_extended(T, Ci, borrow2)
25. borrow1 ← gen_borrow_extended(Ai, Bi, borrow1)
26. borrow2 ← gen_borrow_extended(T, Ci, borrow2)
27. En ← sub(An, zero, borrow1), En ← sub(An, zero, borrow2)
28. carry1 ← 0
29. for i = n/2 to n− 1 do
30. Zi ← add_extended(Ci, Ei−n/2, carry1)
31. carry1 ← gen_carry_extended(Ci, Ei−n/2, carry1)
32. for i = n to n+ n/2− 1 do
33. Zi ← add_extended(Bi−n, Ei−n/2, carry1)
34. carry1 ← gen_carry_extended(Bi−n, Ei−n/2, carry1)
35. Zn+n/2 ← add_extended(Bn/2, En, carry1)
36. carry1 ← gen_carry_extended(Bn/2, En, carry1)
37. for i = n+ n/2 + 1 to 2n− 1 do
38. Zi ← add(Bi−n, carry1)
39. carry1 ← gen_carry(Bi−n, carry1)
40. return Z ← (Z2n−1, . . . , Zn/2, Cn/2−1, . . . , C0)



33

on average (when processing 4 streams in parallel).
A branch-free (when unrolled) Karatsuba multiplication algorithm optimized for vector

architectures is given in Algorithm 7. This algorithm works on 32-bit words, which is the
word size of the even 4-way SIMD addition and subtraction instructions on the SPE. Just
as with the schoolbook multiplication this word size can trivially be modified. Algorithm 7
assumes that the bitsize of the input values is a multiple of 64 to split the operands evenly
in two 32-bit multiples. These parts are multiplied using another multiplication routine mul,
which is either a schoolbook or Karatsuba multiplication, which operates on inputs of half
the size.

The 2m-bit multiplication is split into two m × m-bit and one (m + 1) × (m + 1)-bit
multiplications (see Chapter 2, Algorithm 2). In order to avoid the use of a probably more
expensive multiplication by an extra limb (the (m + 1) × (m + 1)-bit multiplication), three
m×m-bit multiplications are used. The correct result, for the (m+1)× (m+1)-bit multipli-
cation, is computed by creating select-masks from the most significant bit of each of the two
operands. These are used to select the appropriate value (one of the inputs) or zero, which
is added to the result of the m ×m-bit multiplication. Note that the initial borrow values,
in line 21, are (counterintuitively) set to one. An extra subtraction of one is performed when
the borrow is zero and no subtraction is performed when the borrow is one on the SPE.

Multiplication on the GPU

Recall that on the GPU we consider the 224-bit prime p224. The 224 × 224 → 448-bit
multiplication is computed using the schoolbook multiplication method. For r = 32 a radix-
232 schoolbook multiplication algorithm is presented in Algorithm 6. This algorithm requires
the computation of n times split(a0 · bj + d0) and n(n − 1) times split(ai · bj + e + di),
where n = 7 for the 224-bit multiplication. On the GTX 400 family of GPUs, where there are
32 × 32 → 32-bit multiplication instructions to get the lower and higher 32-bits and 32-bit
additions with carry in and out, the former can be implemented using four and the later
using six instructions. A direct implementation of the schoolbook algorithm as presented in
Chapter 2 (Algorithm 1) might result in a slightly lower instruction count, using the addition
with carry in- and out, but has the disadvantage that it requires more storage (registers)
compared to Algorithm 6. We benchmarked both approaches on different GPU families. The
more memory efficient method as presented in Algorithm 6 is to be preferred in practice.

3.4.3 Fast Reduction

The special reduction algorithms used with the NIST primes do not fully reduce the input to
the range [0, p〉 but to [0, t·p〉, where p is the prime modulus used and t a small positive integer.
In order to fully reduce multiple integers simultaneously using SIMD/SIMT instructions,
several approaches can be applied. Obviously the reduction algorithm can be applied again.
A most likely faster approach, when t is sufficiently small, is to subtract p repeatedly until the
result is in the desired range [0, p〉. Since the arithmetic is executed on parallel architectures,
the repeated subtraction is calculated by masking the value appropriately before subtracting,



34 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

Table 3.1: The values of the 32-bit unsigned limbs ci of t · p224 =
7∑

i=0
ci232i

t t · p224 = {c7, . . . , c0}
c7 c6 c5 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 0
1 0 232 − 1 232 − 1 232 − 1 232 − 1 0 0 1
2 1 232 − 1 232 − 1 232 − 1 232 − 2 0 0 2
3 2 232 − 1 232 − 1 232 − 1 232 − 3 0 0 3
4 3 232 − 1 232 − 1 232 − 1 232 − 4 0 0 4

which needs to be performed up to t− 1 times since multiple integer values are processed in
parallel. This approach is used to avoid divergent code on the GPU. On SIMD-architectures,
like the Cell, computing these values t can be different for the multiple streams which makes
it hard to use branches.

An additional performance gain is possible at the expense of some storage. Select the
desired multiple of the modulus p which needs to be subtracted from a look-up table, and
perform a single subtraction. This can be achieved efficiently on the Cell, when operating
on multiple integer values in parallel, using the select instruction. Using a redundant
representation in [0, 2m〉, for an m-bit modulus p, the most significant word, containing the
possible carry, has to be inspected only to determine the multiple of p to subtract. Note that
an extra single subtraction might be needed in the unlikely situation that the result after the
subtraction is > 2m. This rare case is implemented by a branch which is hinted to be false to
reduce branch-overhead or avoid divergent code. The partially reduced numbers can be used
as input to the same modular multiplication routines and if reduction to [0, p〉 is required
this can be achieved at the cost of a single conditional multi-limb subtraction.

One can do more for the moduli of special form. For example consider the modulus
p224 = 2224− 296 + 1. The output from the fast reduction routine as outlined in Algorithm 5,
and denoted by Red, is not in the preferred range [0, p224〉 nor in the range for the redundant
representation [0, 2224〉; instead, −(2224 + 296) < Red(a · b) < 2225 + 2192. In order to avoid
working with negative (signed) numbers we modify the algorithm slightly such that it returns
d = s1 + s2 + s3 − s4 − s5 + 2p224 ≡ c = a · b mod p224 where 2224 − 296 < d < 2226 + 2192

(instead of the value s1 + s2 + s3 − s4 − s5 from Algorithm 5).

A refinement, in terms of storage, of the previous approaches to reduce the resulting value
is by generating the desired values efficiently on-the-fly. We distinguish two cases (just as
when doing the modular addition in Section 3.4.1); either subtract multiples of p224 or 296−1.
Selecting the correct multiple of p224 is illustrated in Table 3.1. The 32-bit unsigned limbs
ci of t · p224 = ∑7

i=0 ci232i for 0 ≤ t < 5 can be computed as c0 = t, c1 = c2 = 0, c3 = 0 − t.
The values for c4, c5, c6, c7 can be efficiently constructed using masks depending on t = 0 or
t > 0. When subtracting multiples of 296 − 1 = ∑3

i=0 ci232i for 0 ≤ t < 5, the constants can



35

Algorithm 8 Radix-2r Montgomery Multiplication Algorithm.

Input:


Integers a =

n−1∑
i=0

ai2ri, b =
n−1∑
i=0

bi2ri,M =
n−1∑
i=0

Mi2ri, m̃ = −M−1 mod 2r.

such that M is odd, 0 ≤ a, b < 2rn, 2r(n−1) ≤M < 2rn and 0 ≤ ai, bi,Mi < 2r

Output: Integer c =
n−1∑
i=0

ci2ri ≡ a · b · 2−rn mod M .

1. di ← 0, i ∈ [0, n]
2. for i = 0 to n− 1 do
3. (e0, d0)← split(a0 · bi + d0)
4. for j = 1 to n− 1 do
5. (ej , dj)← split(aj · bi + dj + ej−1)
6. dn ← dn + en−1
7. (∗, q)← split(d0 · m̃)
8. (e0, d0)← split(M0 · q + d0)
9. for j = 1 to n− 1 do
10. (ej , dj−1)← split(Mj · q + dj + ej−1)
11. (dn, dn−1)← split(dn + en−1)
12. if dn > 0 then
13. (dn−1, . . . , d1, d0)← (dn, dn−1, . . . , d1, d0)− (Mn−1, . . . ,M1,M0)
14. return (c = (dn−1, . . . , d1, d0))

be computed as
c0 = 0− t

c1 = c2 =
{

0, if t = 0,
232 − 1, if t > 0.

c3 =
{

0, if t = 0,
t− 1, if t > 0.

The conditional statements can be converted to straight line (non-divergent) code to make
the algorithms more suitable for parallel computer architectures.

3.4.4 Montgomery Multiplication on the SPU

The interleaved Montgomery multiplication, optimized for the use on vector architectures,
is given in Algorithm 8. As presented, it uses 16-bit limbs and on the Cell four-tuples of
inputs are processed concurrently (but Algorithm 8 can trivially be modified to operate on
any radix size). A conditional subtraction step is needed at the end of the algorithm to ensure
that the result is < 216n, for 16n-bit inputs. This conditional subtraction is replaced by a
comparison which creates a select mask, using this mask the value zero or the value of the
modulus is selected and subtracted. This eliminates a branch which is to be avoided when
processing multiple integer values in a SIMD fashion. For efficiency, the integer representation



36 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

is switched to a 232 radix system when doing the final masking and subtraction in practice.
The same notation for the split function is used as in Section 3.4.2. Hence, Algorithm 8

requires 2n(n+ 1)× split, 2n(n+ 1)× muladd (when counting the multiplication in line 8
as a multiply-and-add) and 2n(n − 1) × add since the addition of dj in line 5 when j = 1
can be omitted. For the conditional subtraction we first convert the integer representation to
a 232 radix system using dn2 e shuffle instructions. Next we compare the carry (one cmpgt
instruction) and mask the value which we are going to subtract using dn2 e and instructions.
The subtraction requires dn2 e (extended) subtraction instructions and dn2 e − 1 (extended)
generate borrow instructions.

Counting the number of instructions required in Algorithm 8 gives 4n2 + 3dn2 e even and
dn2 e odd instructions plus 2n(n + 1) times the split function. An optimistic estimate of
the number of cycles using Algorithm 8 on a single SPE is n2 + 9n

8 cycles. This estimate
ignoring overhead and assuming perfect scheduling, for a single computation of Montgomery
multiplication on 16n-bit inputs, when computing four computations in parallel.

3.5 Elliptic Curve Arithmetic on the GPU

In our setting we are interested, given a parallel computer architecture capable of launching
a number of threads Ti, to lower the latency of the longest running thread Tmax = maxi Ti
as opposed to the total time of all resources combined Tsum = ∑

i Ti where Ti is the time
corresponding to thread Ti. Since high-throughput and low-latency are two orthogonal goals
one cannot achieve both at the same time. Our approach is designed at the elliptic curve
arithmetic level for low-latency while not sacrificing the throughput too much. To accomplish
this we choose to aim for a high-throughput (and longer latency) design at the finite field
arithmetic level: a single thread computes a single multiplication as described in Section 3.4.2.
The elliptic curve point addition and duplication are processed simultaneously, significantly
reducing the latency at the expense of potentially lowering the throughput.

Another desirable property of a parallel algorithm is that all threads follow the exact
same procedure since this reduces the amount of divergent code. An active research area
where such algorithms have been studied is in the context of cryptographic side-channel
attacks. Side channel attacks [126] are attacks which use information gained from the physical
implementation of a certain scheme to break its security; e.g. the elapsed time or power
consumption. In order to avoid these types of attacks the algorithms must perform the
same actions independent of the input to avoid leaking information. The approach we use
is based on the Montgomery ladder (see Section 2.4.2) applied to projective Weierstrass
coordinates [51, 77, 110] instead of Montgomery coordinates. Even though the y-coordinate
can be recovered, this is not necessary in most of the elliptic curve based cryptographic
schemes which only use the x-coordinate to compute the final result.

In particular, we adopt the formulas from [77]. Recall from Algorithm 4 in Section 2.4.2
that every iteration processes a single bit of the scalar at the cost of computing an elliptic



37
T
ab

le
3.
2:

In
st
ru
ct
io
n
ov
er
vi
ew

to
co
m
pu

te
(P

+
Q
,2
Q

)=
(P̃
,Q̃

)=
((
P̃

x
,P̃

z
),

(Q̃
x
,Q̃

z
))

us
in
g
se
ve
n
th
re
ad

s.
T
he

bo
ld

en
tr
ie
s
ar
e

pr
e-
co
m
pu

te
d
22
4-
bi
t
in
te
ge
rs
,G

x
is

th
e
x
-c
oo

rd
in
at
e
of

th
e
in
pu

t
po

in
t
to

th
e
M
on

tg
om

er
y
la
dd

er
.

O
pe

ra
tio

n
T
hr
ea
d
1

T
hr
ea
d
2

T
hr
ea
d
3

T
hr
ea
d
4

T
hr
ea
d
5

T
hr
ea
d
6

T
hr
ea
d
7

(1
)

m
ul

t 0
=
P
x
Q
z

t 1
=
Q
x
P
z

t 2
=
P
x
Q
x

t 3
=
P
z
Q
z

t 4
=
Q

2 x
t 5

=
Q

2 z
t 6

=
Q
x
Q
z

(2
)

tr
ip
le

t 7
=

3t
3

t 8
=

3t
5

(3
)

ad
d

t 9
=
t 0

+
t 1

t 1
0

=
t 4

+
t 8

(4
)

su
b

t 2
=
t 2
−
t 7

t 0
=
t 0
−
t 1

t 4
=
t 4
−
t 8

(5
)

m
ul

t 9
=
t 9
t 2

t 3
=
t2 3

P̃
z

=
t2 0

t 1
0

=
t2 10

t 1
1

=
t 6
t 5

t 6
=
t 6
t 4

t 5
=
t2 5

(6
)

m
ul

t 9
=

2t
9

t 3
=
4b
t 3

t 0
=
G
x
P̃
Z

t 1
1

=
8b
t 1

1
t 5

=
4b
t 5

t 6
=

4t
6

(7
)

ad
d

t 9
=
t 9

+
t 3

Q̃
z

=
t 5

+
t 6

(8
)

su
b

P̃
x

=
t 9
−
t 0

Q̃
x

=
t 1

0
−
t 1

1

T
ab

le
3.
3:

Pe
rfo

rm
an

ce
co
m
pa

ris
on

of
22
4-
bi
te

lli
pt
ic

cu
rv
e
sc
al
ar

m
ul
tip

lic
at
io
n
on

di
ffe

re
nt

G
PU

pl
at
fo
rm

s.
A

bo
ld

pl
at
fo
rm

na
m
e

in
di
ca
te
s
th
at

th
is
pl
at
fo
rm

ha
s
co
m
pu

te
ca
pa

bi
lit
y
2.
0
(F
er
m
i)
or

hi
gh

er
(t
he

la
te
st

(t
hi
rd
)
G
PU

-a
rc
hi
te
ct
ur
e
fa
m
ily

).
R
es
ul
ts

w
he

n
ut
ili
zi
ng

th
e
en
tir

e
G
PU

ar
e
ex
pr
es
se
d
in

op
er
at
io
ns

(2
24
-b
it

el
lip

tic
cu

rv
e
sc
al
ar

m
ul
tip

lic
at
io
ns
)
pe

r
se
co
nd

(o
p/

s)
.

R
ef

Pl
at
fo
rm

#
G
PU

s
C
U
D
A

co
re
s

Pr
oc
es
so
r
cl
oc
k

M
od

ul
us

M
in
im

um
M
ax

im
um

pe
r
G
PU

(M
H
z)

Ty
pe

Bi
t-
siz

e
la
te
nc

y
[m

s]
th
ro
ug

hp
ut

[o
p/

s]

[1
8]

(s
ca
le
d)

    88
00

G
T
S

1
96

12
00

ge
ne

ric
28

0
-

30
18

G
T
X

28
0

1
24

0
12

96
ge
ne

ric
28

0
-

11
41

7
G
T
X

29
5

2
24

0
12

42
ge
ne

ric
28

0
-

21
10

3
[1
7]

G
T
X

29
5

2
24

0
12

42
ge
ne

ric
21

0
-

25
95

34

[1
93

]
88

00
G
T
S

1
96

12
00

sp
ec
ia
l

22
4

30
5.
0

14
13

[4
]
{ 88

00
G
T
S

1
96

12
00

sp
ec
ia
l

22
4

30
.3

31
38

G
T
X

28
5

1
24

0
14

76
sp
ec
ia
l

22
4

24
.3

99
90

N
ew

        G
T
X

29
5

2
24

0
12

42
sp
ec
ia
l

22
4

10
.6

79
,1
98

G
T
X

46
5

1
35

2
12

15
sp
ec
ia
l

22
4

2.
6

15
20

23
G
T
X

48
0

1
48

0
14

01
sp
ec
ia
l

22
4

2.
3

23
74

15
G
T
X

58
0

1
51

2
15

44
sp
ec
ia
l

22
4

1.
9

29
0,
53

5



38 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

curve addition and doubling. Computation on the Y -coordinate is omitted as follows [77]

(P +Q, 2Q) = (P̃ , Q̃) = ((P̃x, P̃z), (Q̃x, Q̃z)) =

P̃x = 2(PxQz +QxPz)(PxQx + aPzQz)
+4bP 2

zQ
2
z −Gx(PxQz −QxPz)2

P̃z = (PxQz −QxPz)2

Q̃x = (Q2
x − aQ2

z)2 − 8bQxQ3
z

Q̃z = 4(QxQz(Q2
x + aQ2

z) + bQ4
z).

(3.2)

Note that Gx is the x-coordinate of the input point to the elliptic curve scalar multiplication
algorithm. Using that the NIST standard defines a = −3, and slightly rewriting Eq. (3.2),
results in the set of instructions presented in Table 3.2. Every row of the table is executed
concurrently by the different threads, an empty slot means that the thread either remains idle
or works on fake data. The bold entries in Table 3.2 are pre-computed at the initialization
phase of the algorithm. The b value is one of the parameters which define the elliptic curve
(together with a and p224) and is provided in the standard. The b is invariant for the different
concurrent elliptic curve scalar multiplications. Depending on the thread identifier, the pre-
computed value is copied to the correct shared memory position which is used in operation
number 6.

Using the instruction flow from Table 3.2 seven threads can compute a single elliptic
curve scalar multiplication (ECSM) using the Montgomery ladder algorithm. The time Tmax
is three multiplications, two additions, two subtractions and a single triple operation in Fp224

to compute a single elliptic curve addition and duplication. This is in contrast with Tsum
which consist of 18 multiplications, two triple, four additions, five subtractions and two
multiplications by a power of two in Fp224 . Although Tsum is significantly higher, compared
to the cost to process one bit of the scalar using different coordinate representations and
different ECSM algorithms, the latency Tmax is roughly three multiplications to compute
both an elliptic curve addition and doubling using seven threads. Running seven threads in
parallel is the best, e.g. the highest number of concurrent running threads, we could achieve
and it should be noted that this is suboptimal from different perspectives. First of all, a
GPU platform using the CUDA paradigm typically dispatches threads in blocks whose size
is a multiple of 32. Hence, in each subgroup of eight threads one thread remains inactive:
decreasing the overall throughput. Secondly, 20 multiplications are used in Table 3.2 which
results in one idle thread in the third multiplication (thread 7 in operation 6). On different
parallel platforms, where i threads are processed concurrently, with 2 ≤ i ≤ 7, the approach
outlined in Table 3.2 can be computed using

⌈
20
i

⌉
multiplications.

This approach is not limited to arithmetic modulo p224 but applies to any modulus. Given
the (estimated) performance of a single modular multiplication, either using a special or a
generic modulus, the approach from Table 3.2 can be applied such that the overall latency
to multiply an elliptic curve point with a k-bit scalar is approximately the time to compute
k ·
⌈

20
i

⌉
single thread multiplications.



39

3.6 Performance Results and Discussion

3.6.1 Results on the Cell

We implemented the proposed generic and special modular multiplication algorithms using
the C-programming language for the SPEs on the Cell architecture. Four, or a small multiple
of four, computations are processed in parallel. The performance benchmarks are performed
on a single SPE in the PlayStation 3 game console. We summarize these results, together
with other (single and multi-stream computation) modular multiplication results, obtained
from the literature, in Table 3.4. The metric of our performance results is the number of
cycles for a single modular multiplication computation. Our performance results are obtained
by averaging over long sequences, hundreds of millions, of different modular multiplications
and include the timing benchmark overhead, the function call overhead, loading and storing
the in- and output from the local store and possibly converting the in- and output from the
different integer representations (from radix-232 to radix-216 and vice-versa).

Performance Comparison

Performance results obtained with the Multi-Precision Math (MPM) Library [108], provided
by IBM in the example API for the Cell, are given in Table 3.4 for different bit-sizes. The
MPM library implements a single-stream Montgomery multiplication computation. In order
to obtain a faster implementation for specific bit-lengths (to make a fair comparison) we
unrolled the various loops inside the MPM library. These unrolled versions are significantly
faster compared to the standard MPM implementation; e.g., the unrolled 256-bit Montgomery
multiplication is 1.4 times faster compared to the unmodified MPM implementation. Our
multi-stream implementations have a higher latency compared to the unrolled MPM library
but process multiple streams resulting in fewer cycles per single multiplication. For instance,
in the setting of 256-bit moduli the unrolled MPM requires 877 cycles for a single multi-
plication while our implementation requires 1 188 cycles to compute four multiplications in
parallel. From a throughput point of vies this is a speedup of almost a factor of three per
single multiplication.

In [62] Costigan and Schwabe implement elliptic curve arithmetic aimed at curve25519
on the SPE architecture. The representation used differs slightly from, but is based on,
the one proposed in [12]; an element x ∈ Fp255 is represented as x = ∑19

i=0 xi2d12.75ie. A
multi-stream version working on four streams in parallel is implemented and hand-optimized
in assembly and “perfectly” scheduled with the surrounding code in a larger function imple-
menting elliptic curve arithmetic. This multi-stream implementation is estimated to compute
a single modular multiplication in around 168 cycles [62], this does not include any overhead
for saving and storing the in- and output registers to and from the local store, function call
overhead and overhead due to benchmarking. In comparison, our implementation requires
175 cycles for a single modular multiplication using a different approach for the special reduc-
tion (see Section 3.4.2). This includes loading and storing the in- and output, function call
and benchmarking overhead and additional latencies because not all code can be scheduled



40 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

Table 3.4: Performance results of (multi-stream) Montgomery (generic) multiplication or modu-
lar multiplication modulo the special prime pi. In the special prime setting a separate multiplica-
tion (schoolbook (S) or Karatsuba (K)) and fast reduction phase are computed. The benchmarks
are performed on a single SPE on a Cell in a PS3. The stated number of cycles c are the average
to compute a single modular multiplication when processing s streams in parallel; the latency for
this computation is c×s cycles. The optimistic estimates are from the formulas from Section 3.4.2
and do not include the special reduction cost.

From Bitsize of Method #Streams Performance Estimate
the modulus (#cycles) (#cycles)

Here 192 p192 (K) 8 105
Here 192 p192 (S) 8 126 68
Here 192 Montgomery 8 176 151

Bernstein et al. [17] 195 Montgomery 6 189

Here 224 p224 (K) 8 139
Here 224 p224 (S) 8 143 93
Here 224 Montgomery 4 234 204

Costigan and 255 p255 (S) 4 168
Schwabe [62]

Here 255 p255 (K) 8 175
Here 255 p255 (S) 8 182 122
Here 256 p256 (S) 8 192 122
Here 256 p256 (K) 4 193
Here 256 Montgomery 4 297 265

MPM unrolled [108] 256 Montgomery 1 877
MPM [108] 256 Montgomery 1 1 188

Here 384 p384 (K) 4 389
Here 384 p384 (S) 4 391 279
Here 384 Montgomery 4 665 590

MPM unrolled [108] 384 Montgomery 1 1 610
MPM [108] 384 Montgomery 1 2 092

Here 521 p521 (S) 4 622 500
Here 521 p521 (K) 4 723
Here 512 Montgomery 4 1 393 1 042

MPM unrolled [108] 512 Montgomery 1 2 700
MPM [108] 512 Montgomery 1 3 275



41

perfectly (especially at the beginning and end of the function where stalls occur). Comparing
the performance of the two different approaches for the reduction step is difficult since the
reported performance results of two versions are in different settings; ours is a stand-alone
multiplication function while the implementation from [62] is an inline version working on
registers only. In [62] it is estimated that the time to load and store the in- and output
requires 56 cycles in the setting of a single modular multiplication. When considering this
cost our approach using the redundant representation looks preferable (since 175 < 168+56),
especially since we did not use any fine-tuned assembly code to achieve these results.

Improved multi-stream modular multiplication computations results, compared to [18],
are given by Bernstein et al. [17]. Here, not only results for GPUs are reported but also for
the Cell architecture as used in the PlayStation 3. In this setting Montgomery multiplication
is implemented and optimized for one bit size: a 195-bit generic modulus. A radix-213 system
is used to represent 195-bit integers using 15 limbs, this has the advantage of accumulating
multiple carries before an overflow occurs (on the SPE architecture) compared to a radix-216

system but requires more limbs to represent the integers. When quadratically scaling our
192-bit performance result, in a similar fashion as done in [17], this leads to an estimate of
176 · (195

192)2 = 182 cycles; this is comparable to the 189 required cycles reported in [17].

Discussion

The performance data from Table 3.4 show that the modular multiplication using the special
primes are in almost all cases, with the exception of p256 and p521, roughly 1.7 times faster
compared to the Montgomery multiplication implementations targeting the same bit-lengths.
Our results show that p256 is 1.55 times faster than 256-bit Montgomery multiplication while
p521 is 2.2 times faster compared to 512-bit Montgomery multiplication. This can be partially
explained by the relatively complicated and easy structure of p256 and p521 respectively.

For p192 the version using Karatsuba multiplication is significantly (20 percent) faster
compared to the version using schoolbook multiplication. For p224, p255, p256 and p384 the
performance is similar while for p521 schoolbook multiplication is 16 percent faster. These
differences can be explained due to extra load and store operations from and to the local store.
For the smaller bitsizes almost all operations can be performed, after the initial loading from
the inputs, on registers. For the larger values the available 128 registers are not sufficient
and extra load and store instructions, leading to more instructions and possibly extra stalls,
are required. This also explains why processing four streams instead of eight gives a higher
performance for p384 and p521 (Table 3.4 shows only the fastest setting).

The number of cycles required for the Montgomery multiplication is 12 to 17 percent
higher compared to the estimations for all special primes except p521. This overhead is mainly
caused by extra load and stores and due to the fact that the estimates are too optimistic
(not every cycle a pair of instructions can be dispatched due to instruction dependencies).
For the special prime p521 more than 33 percent of the estimated number of cycles is needed.
After compiling our code to assembly, inspection shows that the significant overhead is due
to the extra loads and stores. Note that loading the two input values, for the four streams in
parallel, in registers (after conversion to radix-216) requires 66 registers which is more than



42 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

Figure 3.2: Latency results when varying the amount of dispatched threads for blocksize equal to
32 (red, top line), 64 (green, bottom line) and 96 (blue, middle line) on the GTX 580 GPU.

half of the available register space.

3.6.2 Results on Various GPUs

Table 3.3 states the performance results, using the approach from Table 3.2, when using
our GPU implementation running on a variety of GPUs from both the older and newer
generations of CUDA architectures. Our benchmark results include transferring the in- and
output and allows to use different multipliers and elliptic curve points in the same batch. To
be compatible with as many settings used in practice as possible, it is not assumed that the
initial elliptic curve point is given in affine coordinates but instead in projective coordinates.
This has a performance disadvantage: the amount of data which needs to be transferred from
the host to the GPU is increased. While primarily designed for the GTX 400 (and newer)
family, the bold entries GTX 465, 480 and 580 in Table 3.3, the performance on the older
GTX 200 series in terms of latency and throughput are remarkably good.

Our fastest result is obtained on the GTX 580 GPU when computing a single 224-bit
elliptic curve scalar multiplication and requires 1.94 milliseconds when dispatching eight
threads. This is an order of magnitude faster, in term of response time, compared to the
previous fastest low-latency implementation [4]. Figure 3.2 shows the latencies when varying



43

the amount of threads, eight threads are scheduled to work on a single ECSM, for different
block-sizes on the GTX 580. There is a clear trade-off: increasing the block-size allows to
hide the various latencies by performing a context switch and calculating on a different group
of threads within the same block. On the other hand, every eight threads require their own
memory and registers for the intermediate values as outlined in Table 3.2. Increasing the
block size too much results in a performance degradation because the required memory for
the entire block does not fit in the shared memory any more. As can be observed from
Figure 3.2 a block-size of 64 results in the optimal practical performance when processing
larger batches of ECSM computations.

To illustrate the computational power of the GPU even further let us consider the through-
put when fixing the latency to 5 milliseconds. As can be seen from Figure 3.2, the GTX 580
can compute 916, 1024, or 960 224-bit elliptic curve scalar multiplications within this time
limit when using a block-size of 32, 64, or 96 threads respectively. The best of these short
runs already achieves a throughput of over 246 000 scalar multiplications per second, when
using a blocksize of 64, which is already 0.85 of the maximum observed throughput obtained
when processing much larger batches.

Performance Comparison

In [18] and the follow-up work [17] fast elliptic curve scalar multiplication is implemented
using Edwards curves in a cryptanalytic setting. The GPU implementations optimize for
high-throughput and implement generic modular arithmetic. The setting considered in [17,18]
requires to perform an ECSM with a 11 797-bit scalar; in order to compare results we scale
their figures by a factor 11 797

224 . Comparing to these implementations is difficult because both
the finite field and elliptic curve arithmetic differ from the approaches considered in this
paper where the faster arithmetic on Edwards curves cannot be used. On the GTX 295
architecture, for which our algorithms are not designed, the throughput reported in [17] is
3.3 higher. The associated latency times are not reported.

The GPU implementations discussed in [4, 193] target the same special modulus as dis-
cussed in this paper. In [193] one thread per multiplication is used (optimizing for high-
throughput) and multiplies the same elliptic curve point in all threads. This reduces the
amount of data which needs to be transferred from the host machine to the GPU. The au-
thors of [4] implement a low-latency algorithm by parallelizing the finite field arithmetic using
RNS (see Section 3.4). Their performance data do not include the transfer time of the input
(output) from the host (GPU) to the GPU (host). Both the GTX 285 and 295 belong to
the same GPU family, the former is clocked 1.2 faster than the latter while the GTX 295
consists of two of these slower GPUs. Compared to [4] our minimum latency is more than
twice lower while the maximum throughput on a single slower GPU of the GTX 295 is almost
quadrupled.



44 HIGH-PERFORMANCE ARITHMETIC ON PARALLEL ARCHITECTURES

3.7 Conclusions
In this chapter we presented techniques to efficiently implement modular multiplication al-
gorithms to SIMD architectures (such as the Cell or GPUs). We considered Montgomery
multiplication and various special reduction routines which are of interest for elliptic curve
cryptography. The modular multiplication implementations, which use these faster reduction
schemes, are at least 1.5 times faster compared to general purpose Montgomery multiplica-
tion for the same bitsize. The performance results of our multi-stream modular multiplication
implementations for the synergistic processing elements of the Cell broadband engine archi-
tecture set new performance records for moduli of bit-length in the range [192, 521] on this
platform. These high-performing modular multiplication, generic or special, implementations
can be used to speed up public-key cryptography; e.g. in batch elliptic curve decryption.

For the GPU platform we presented an algorithm which is particularly well-suited for
parallel computer architectures to compute the scalar multiplication of an elliptic curve point;
lowering the latency compared to the straight forward setting where each thread computes a
separate scalar multiplication. When applied to a 224-bit standardized elliptic curve used in
cryptography and computing with seven threads per elliptic curve scalar multiplication on a
GTX 580 graphics processing unit the minimum time required is 1.9 milliseconds; improving
on previous low-latency results by an order of magnitude. The latency could be reduced even
further when computing both the elliptic curve and the finite field arithmetic concurrently.



Chapter4
Pollard Rho
Using the Negation Map

The difficulty of the elliptic curve discrete logarithm problem (ECDLP) underlies the security
of cryptographic schemes based on elliptic curves over finite fields [124,143]. The best method
known to solve ECDLP for curves without special properties is the parallelized [200] Pollard
rho method [166]. A common optimization is to halve the search space by identifying a point
with its inverse [73, 86, 204]. Because representatives for the equivalence classes can quickly
be computed using the negation map, this equivalence relation may result in a speedup by
a factor of up to

√
2 when solving the ECDLP. For the elliptic curves over binary extension

fields F2t from [125], order t equivalence relations can be used as well, resulting in a speedup
by a factor of up to

√
2t [86, 204].

Usage of the negation map in the context of the Pollard rho method leads to fruitless
cycles, useless cycles trapping the random walks. An analysis of their likelihood of occurrence
appeared in [73]. Various methods have been proposed [86,204] to deal with them, all leading
to costlier random walks and administrative overhead. The literature suggests that the
resulting inefficiencies are negligible, and that a speedup by a factor of

√
2 is attainable [5,

Section 19.5.5].
We analyze fruitless cycles and the previously published methods to avoid their ill effects

and show that current approaches to escape from cycles suffer from recurring cycles. These
may have contributed to the lack of practical usage of the negation map to solve prime field
ECDLPs: it was not used for the solutions [55,99] of the 79-, 89-, 97- and 109-bit prime field
Certicom challenges [54]. Neither was it used by the independent current 112-bit prime field
record [36] (see Chapter 5).

We present and analyze alternative methods to deal with fruitless cycles. All our analyses
are supported by experiments. We found that the negation map indeed leads to a speedup,
but we have not been able to reach more than a factor of 1.29, somewhat short of the

√
2 that

we had hoped for. We also found that the best attainable speedup depends on the platform
one uses: for instance, if the Pollard rho method is parallelized in SIMD fashion, then it

45



46 POLLARD RHO – USING THE NEGATION MAP

is a challenge to achieve any speedup at all. This has consequences for the applicability of
the negation map in large scale prime field ECDLP solution attempts. For such efforts, all
participating processors must use the same random walk definition, so one may desire to
gear the implementation towards processors with the best performance/price ratio, such as
graphics cards.

The negation map (while dealing with cycles) slows down random walks in three ways.
In the first place, on average more elliptic curve group operations are required per step
of each walk. This is unavoidable and attempts should be made to minimize the number
of additional operations. Secondly, dealing with cycles entails administrative overhead and
branching, which cause a non-negligible slowdown when running multiple walks in SIMD-
parallel fashion. Finally, the best way to counter the effect of the higher average number of
group operations per step is making the walks “more random” by allowing a finer grained
decision per step. However, the beneficial effects of this approach are, in most circumstances
on current processors, wiped out by cache inefficiencies. It will be seen that it is best to strike
a balance between the first and third of these slowdowns. The second slowdown somewhat
affects regular PCs, but is a major obstacle to the negation map in SIMD environments.

This chapter is based on the article [38] and the journal version of this work [35].

4.1 r-Adding and r + s-Mixed Walks

Let p be a prime > 3, a, b ∈ Fp and g ∈ Ea,b(Fp) of prime order q be given such that the index
[Ea,b(Fp) : 〈g〉] is small. For h ∈ 〈g〉 the ECDLP is to find an integer m such that mg = h.
For curves without special properties, solving ECDLP is believed to require an effort on the
order of √q.

Pollard’s rho method uses an approximation of a truly random walk in 〈g〉. An index
function ` : 〈g〉 7→ [0, r − 1] is chosen, for some small integer r, such that the `-induced
r-partition 〈g〉 = ∪r−1

i=0Gi, where Gi = {x : x ∈ 〈g〉 , `(x) = i}, results in subsets Gi of
approximately the same cardinality. For random integer multipliers ui, vi, addition constants
fi = uig + vih ∈ 〈g〉 are pre-computed for 0 ≤ i < r, and the starting point of the walk
is selected as a random but known multiple of g. Given a point p of the walk calculate
p + f`(p) ∈ 〈g〉 as the next point. This is called an r-adding walk. It is easy to keep track of
the integer multipliers u, v ∈ {0, 1, . . . , q − 1} such that p = ug + vh.

As shown by the following heuristic analysis from [7, Appendix B], which refines the
arguments from [49], the average number of steps for an r-adding walk is somewhat larger
than

√
πq
2 . Let pi = #Gi

q . A point in the walk is said to be of class i if its predecessor upon
its first occurrence belongs to Gi. If the nth point belongs to Gj (with probability pj) and
the (n + 1)st point produces the first collision, the collision point cannot be of class j (this
happens with probability pj), since then the collision would already have occurred in the
previous step. Therefore, the conditional probability that the first collision occurs at step



47

n+ 1 is heuristically assumed to be

n

q

1−
r−1∑
j=0

p2
j

 .
With q′ = q

1−
∑r−1

j=0 p
2
j

this probability is n
q′ , so that we get via the same arguments referred to

above √
πq′

2 =
√

πq

2(1−∑r−1
j=0 p

2
j )

(4.1)

as a heuristic estimate for the average number of steps until the first collision.
Pollard, in [166], uses r = 3 with addition constants f0 = h and f2 = g, but replaces the

i = 1 case by the doubling 2p as follows

pi+1 = f(pi) =


f0 + pi, if pi ∈ G0
2pi, if pi ∈ G1
f2 + pi, if pi ∈ G2.

Although the successive points are not independent, further undermining the arguments in the
above heuristics, it was shown in [118] that with high probability a collision occurs in O(√q)
steps, if the partition is given by a random oracle. Together with the lowerbound result in
the “generic algorithms” from [184] this implies that a collision occurs, with high probability,
in Θ(√q) steps. Teske, in [196,197] based on the work by Schnorr and Lenstra [176], suggests
using larger r-values such as r = 20. She shows that using random addition constants leads
to fewer iterations and better performance on average, in accordance with the heuristics and
even if none of the choices does an explicit doubling (as Pollard’s i = 1 case).

Inclusion of doublings leads to r+ s-mixed walks: given a function ` : 〈g〉 7→ [0, r+ s− 1]
that induces an r+ s-partition of 〈g〉, the next point equals p+ f`(p) if 0 ≤ `(p) < r, but 2p if
`(p) ≥ r. The original walk by Pollard is a 2+1-mixed walk. The above heuristics apply to this
case too, if we define the doublings as a single class hit with probability pD =

∑r+s−1
i=r

#Gi

q
(which should be ≈ s

r+s). Experiments by Teske show that best performance is achieved
when 1

4 ≤
s
r ≤

1
2 but that mixed walks are not significantly better than r-adding ones unless

r ≤ 3. Our experiments support the heuristics suggesting that the optimal ratio is close to
zero (see also Table 4.1).

Per step the occurrence probability of the event p = fi (and thus potentially an immediate
solution to the discrete logarithm problem) is negligible compared to the probability of a
birthday collision. So, if r-adding as opposed to r + s-mixed walks are used, the possibility
that doublings will occur can safely be ignored, making it efficient to SIMD-parallelize r-
adding walks. This is further commented on below and exploited in Section 5.2.

Some types of elliptic curves allow faster variants of r-adding walks. For instance, for so-
called Koblitz curves [125] over binary extension fields (which are not covered by our definition
in Section 2.4), the Frobenius automorphism of the finite field can be used to define an efficient
function ψ on the group of points of the elliptic curve. For instance, defining the successor
of point p as ψi(p) + p allows its quick computation [86].



48 POLLARD RHO – USING THE NEGATION MAP

di

di+1

d̃j

di+2 d̃j+1

Figure 4.1: Representation of the λ shape of the multi-instance Pollard rho method illustrating when
two (out of the many walks running in parallel) walks find the collision (the same distinguished point)
di+2 = d̃j+1. The points di, d̃j represent distinguished points from the two different walks. Possibly
there are many regular (non-distinguished) points between two subsequent distinguished points.

4.2 Parallelized Random Walks

Parallelization of Pollard’s rho method does not consist of running random walks in parallel
until one of them collides: on M processors the expected speedup would be only a factor
of
√
M , so it would overall require

√
M more processing power than a single processor.

The proper way to parallelize Pollard’s rho method [200], based on methods from [170,171],
achieves an M -fold speedup on M processors, thus requiring the same overall processing
power as a single process in 1

M th of the time. Different processes must be able to efficiently
recognize whether, probably at different points in time, their walks have hit upon the same
group element. To achieve this, each process generates a single random walk, each from its
own random starting point, but all using the same index function ` and the same fi’s. As
soon as a walk hits upon a distinguished point, this point is reported to a central location,
along with the corresponding integer multipliers u and v. If the latter would require too much
central storage, information to regenerate the starting point should be provided such that, if
needed, u and v can be recalculated. The walk may start afresh from a new random starting
point, or it may continue. The idea is that as soon as two walks collide – without noticing
it – they will keep taking the same steps (because they use the same ` and the same fi’s)
and will thus both ultimately reach the same distinguished point. This will be noticed when
the colliding distinguished point is reported to the central location. The discrete logarithm



49

can then be computed from the two, hopefully distinct, pairs of integer multipliers that
correspond to the same distinguished point. The parallel version of the Pollard rho method
is often denoted as the Pollard lambda method since two colliding walks resemble the shape
of the Greek letter λ (see Figure 4.1). Note that the parallel version of Pollard’s rho method
is not to be confused with Pollard’s kangaroo algorithm [166, 167] (a different algorithm by
Pollard to solve the discrete logarithm problem). Both have been called Pollard’s lambda
method.

A point is distinguished if it has an easily recognizable property that occurs with low
enough probability to make it possible to store distinguished points on disk and to efficiently
find collisions, but often enough for every walk to hit a distinguished point, eventually. When
using distinguished points O((log q)2) memory suffices [85, Exercise 16.23] when roughly√
q log q out of q group elements are distinguished. Analysis of the distinguished point prop-

erty is performed in [178] where the results from [200] are reaffirmed when √q � q
2k � q;

i.e. the distinguished point property should be chosen in such a way that at least one distin-
guished point is expected in each cycle (in this case one out of every 2k points is expected to
be a distinguished point).

4.3 Unique Point Representation

When using Pollard’s rho method, group elements must be represented in a unique way to be
able to decide to which partition they belong. When using the parallelized version, uniqueness
is also useful to recognize if a point is distinguished. The fastest point representations that
we are aware of that are applicable are the affine ones, such as the one in Section 2.4. It
requires an inversion in Fp per group operation, i.e., per step of the walk. The resulting high
inversion cost is amortized over many walks running in parallel, as described below.

4.4 Simultaneous Inversion

In the parallelized version of Pollard’s rho method, Montgomery’s simultaneous inversion
method from [146] can be used to share the inversion with any number of synchronous but
independent walks. Let n be some number of independent walks (typically all running on
the same processor), and let zi ∈ F∗p denote the element that needs to be inverted for the
computation of λ in the ith walk (with λ as in Section 2.4). With w0 = 1, first combine
the zi’s by calculating wi = ziwi−1 ∈ F∗p for i = 1, 2, . . . , n, then calculate w̄ = w−1

n , and
finally unravel the results: for i = n, n − 1, . . . , 1 in succession calculate z−1

i = w̄wi−1 and
replace w̄ by ziw̄ = w−1

i−1. Avoiding useless multiplications, the cost nI of n inversions can
thus be replaced by 3(n − 1)M + I. For relevant sizes of p it is safe to assume that I is
much larger than M, i.e., at least I > 5M when using software (in hardware the difference
can be made smaller [114]). For Pollard’s rho method it leads to an amortized cost of about
6A+ 1

nI+5M+S per step per walk. This makes affine Weierstrass coordinates the least costly
point representation for this type of application, if n can be chosen sufficiently large.



50 POLLARD RHO – USING THE NEGATION MAP

Table 4.1: Number of steps required by Pollard’s rho method in random elliptic curve groups of
32-bit prime order q over fields of random 32-bit prime cardinality p, divided by

√
πq/2 or by

√
πq/4

(without or with the negation map). Lowest and highest averages are over 10 measurements. Each
measurement calculates the average number of steps taken until a collision occurs, over 100 000 collision
searches where for each search a prime p and an elliptic curve over Fp are randomly selected until the
order q of the group of points is prime. Overall average is the average of the 10 averages (thus, the
average over one million searches). Expression (4.1) and (4.2) columns are the quotients as expected
based on expressions (4.1) (with pi = 1

r for 0 ≤ i < r) and (4.2) (with pi = 1
r+s for 0 ≤ i < r and

pD = s
r+s ), respectively. Those expressions are for q →∞ and indeed for larger (smaller) q they give

a better (worse) fit.

Without negation map With negation map
Averages Expression Averages Expression

lowest overall highest (4.1) lowest overall highest (4.2)
8-adding 1.080 1.083 1.086 1.069 1.034 1.038 1.041 1.033
16-adding 1.034 1.036 1.039 1.033 1.013 1.016 1.019 1.016
32-adding 1.012 1.015 1.020 1.016 1.007 1.008 1.010 1.008
16 + 4-mixed 1.042 1.044 1.047 1.043 1.035 1.038 1.040 1.031
16 + 8-mixed 1.074 1.077 1.081 1.078 1.074 1.076 1.078 1.069

The disadvantage is, however, that the group operations are non-uniform: i.e. the addition
and doubling are different operations. For SIMD implementation of two or more walks, this
means that a regular addition step in one walk cannot be executed simultaneously with a
doubling step in another walk. For regular r-adding walks this is not a problem because, as
argued above, doubling steps will most likely not occur. Also, excluding r + s-mixed walks
in a SIMD environment is not a big issue since such walks are not advantageous anyhow
(in SIMD, threads could be regrouped to separate regular addition from doubling steps, but
this may lead to considerable overhead). More importantly, it makes it harder to profit
from the negation map, an optimization discussed in Section 4.5, in a SIMD environment, so
elliptic curve parameterizations that allow identical addition and doubling operations remain
relevant. Note that the one from [74] (see [20] and a series of follow-up papers) does not lead
to a speedup if #Ea,b(Fp) is prime, as in our case.

4.5 Using Automorphisms

Following [204], define an equivalence relation ∼ on 〈g〉 by p ∼ −p for p ∈ 〈g〉. Instead of
searching 〈g〉 of size q, search 〈g〉/∼ of size about q

2 , where the equivalence class containing p
and −p is represented by, for instance, the element with y-coordinate of least absolute value.
Thus, using this negation map one would expect to save a factor of

√
2 in the number of

iterations, at the cost of finding the representative after each step. The latter is fast since
−(x, y) = (x,−y) for (x, y) ∈ 〈g〉. Obviously, if −p instead of p is the representative, the
integer multipliers u, v with p = ug + vh must be replaced by −u,−v.

Adapting the earlier r-adding walk heuristics, it follows that for r-adding (or r+s-mixed)



51

walks the speedup by a factor of
√

2 that is generally reported in the literature is slightly too
pessimistic. Let the definitions of pi, pD, and of class i be as in Section 4.2. Assume that the
nth point belongs to Gj and that the (n+ 1)st point produces the first collision while hitting
the representative p, either directly or after negation. If this step is a doubling then the same
heuristics as in Section 4.2 applies. This happens with probability p2

D. Otherwise, we only
exclude the case that as a result of just the addition the two predecessors hit the same point
(p or −p). This happens with probability p2

j

2 . Therefore, the conditional probability that the
first collision occurs at step n+ 1 is heuristically assumed to be

2n
q

1− p2
D −

r−1∑
j=0

p2
j

2

 .
As above we get √

πq

4(1− p2
D −

1
2
∑r−1
j=0 p

2
j )

(4.2)

for the heuristically expected number of steps until the first collision. For the same parameter
values this is more than a factor of

√
2 smaller than Expression (4.1).

Practical application of the negation map is complicated by fruitless cycles, as pointed
out in [86, 204]. This is further discussed in Section 4.7. The group 〈g〉 may admit other
trivially computable maps. For instance, for Koblitz curves the Frobenius automorphism of
a degree-t binary extension field leads to a further

√
t-fold speedup [73, 86, 204]. This does

not apply to the case considered in this article.

Small Scale Experimental Verification

For 32-bit primes q we checked the accuracy of the predictions based on expressions (4.1)
and (4.2) and list the results in Table 4.1. With all averages larger than 1, both r-adding and
r + s-mixed walks on average perform worse than truly random walks. For most walks with
the negation map the averages are lower than their negation-less counterparts, indicating that
the reduction factor in the expected number of steps is indeed larger than

√
2. This does

not imply a speedup by the same factor, because to obtain the figures costly fruitless cycle
detection methods had to be used. It can be seen that r+s-mixed walks are disadvantageous
if s > r

4 .

4.6 Tag-Tracing
Introduced in [57] to speed up r-adding walks, the idea of tag-tracing is that, given the low
probability to hit a distinguished point, for most iterations a partial computation suffices.
Given p with `(p) = i there is no need to fully calculate the next point q = p + fi, unless
it is a distinguished point, as long as there is enough information to compute k = `(q) in
order to calculate q’s successor q + fk. If a table containing the points fik = fi + fk has been



52 POLLARD RHO – USING THE NEGATION MAP

precomputed, it would then suffice to fully compute q’s successor as p + fik. Or, better, by
taking the largest τ that allows storage of the table containing the

τ∑
k=1

(
r + k − 1

k

)
=
(
r + τ

τ

)
− 1

sums over at most τ elements from {fi : 0 ≤ i < r}, the same observation applies to p’s par-
tially calculated first τ − 1 successors, only fully calculating again its τth successor. The first
partially calculated intermediate point that could be a distinguished point is fully calculated.

For discrete logarithms in multiplicative groups of finite fields, the group operation is
modular multiplication. The partial calculation given in [57] suffices to recognize properly
defined distinguished points and partition properties and leads to a tenfold speedup for 1024-
bit prime fields. Generalization to ECDLP was left open.

ECDLP Tag-Tracing

The more complicated group operation in 〈g〉 makes it harder to apply the same idea to
ECDLP. If only the x-coordinate is used for distinguishing and partition properties, calcula-
tion of the y-coordinate can be avoided, reducing the average cost per step by τ−1

τ (2A + M).
Combined with simultaneous inversion, this leads to a speedup by a factor of approximately 6

5
(we refer to this as ECDLP tag-tracing) at best (i.e., for large τ), but this comes at various
disadvantages that, depending on the circumstances, may invalidate the speedup entirely.

Although initialization cost of the table can be ignored, the cost of retrieving its entries will
grow with τ due to memory access latencies. In practice this implies that τ will be of moderate
size, thereby lowering the computational speedup that would ideally be achievable. Slight
improvements can be obtained by not storing rarely accessed entries (taking an infrequently
occurring more costly step instead): for instance, the table entry corresponding to f0 + f1 + f2
will be accessed six times as often as the one for 3f0.

ECDLP tag-tracing as proposed above is incompatible with the negation map, because
the latter needs the y-coordinate that may not be computed while tag-tracing. One may
conclude that usage of tag-tracing in most circumstances leads to a slow-down by a factor
of 5

6
√

2: only if r must be small (caches or very little memory) and occasional doubling is
best avoided (SIMD) is it conceivable that the negation map is ineffective and that ECDLP
tag-tracing (with small τ) gives a small speedup. We could have, but did not attempt to use
ECDLP tag-tracing.

4.7 Fruitless Cycles

Straightforward application of the negation map to Pollard’s rho method with r-adding or
r + s-mixed walks does not work due to fruitless cycles. This section describes the current
state-of-the-art of dealing with those cycles.



53

Length 2 Cycles

If a random walk step goes from p to −p− fi (with probability 1
2 , for some i) and −p− fi ∈ Gi

(with probability 1
r ), then the next point after −p− fi is p again (with probability 1), thereby

cancelling the effect of the previous step. It follows that a fruitless 2-cycle starts from a
random point with probability 1

2r , cf. [73, Proposition 31]. This 2-cycle is denoted as

p
(i,−)−→ −(p + fi)

(i,−)−→ p.

Here “(i, s)” with s ∈ {−,+} indicates that addition constant fi is added to a point p after
which the result is left as is (s = +) or negated (s = −) to find the correct representative
(p+ fi if s = +, or −p− fi if s = −). Any walk with two consecutive steps “(i,−)” is trapped
in an infinite loop. Because this happens with probability 1

2r , all walks can be expected to
end up in fruitless cycles after a moderate number of steps when the negation map is used
with r-adding walks.

Looking Ahead to Reduce 2-cycles

To reduce the occurrence of 2-cycles, Wiener and Zuccherato propose to use a more costly
iteration function that results in a lower probability that two successive points belong to the
same partition [204]. This can be achieved by using the first i of `(p), `(p)+1, . . ., `(p)+r−1
such that i mod r 6= `(∼(p+ fi)), if such an index exists (here and in the sequel indices i in fi
are understood to be taken modulo r). Thus, define the next point as f(p) with f : 〈g〉 → 〈g〉
defined by

f(p) =
{
E(p) if j = `(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ `(p) minimal s.t. `(∼(p + fi)) 6= i mod r.

The function E : 〈g〉 → 〈g〉 may restart the walk at a new random initial point. The latter
is expected to happen once every rr steps and will therefore not affect the efficiency. The
expected cost per step of the walk is increased by a factor of ∑r

i=0
1
ri , which lies between

1 + 1
r and 1 + 1

r−1 .

Dealing with Fruitless Cycles in General

Although the look-ahead technique reduces the frequency of 2-cycles, they may still oc-
cur [204]. This is elaborated upon in Section 4.8. Even so, it is well known that just
addressing 2-cycles does not solve the problem of fruitless cycles, because longer cycles will
occur as well. Reducing their occurrence requires additional overhead on top of what is al-
ready incurred to reduce 2-cycles. Given that fruitless cycles are unavoidable, they must be
effectively dealt with when they occur.

In [86] a general approach is proposed to detect cycles and to escape from them: after α
steps record a length β sequence of successive points and compare the next point to these β
points. If a cycle is detected a cycle representative p is chosen deterministically from which



54 POLLARD RHO – USING THE NEGATION MAP

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 2  4  6  8  10  12  14  16  18

st
ep

s 
/ 

se
co

n
d

log2 (r)

Figure 4.2: Total number of steps per second as a function of r, taken by 200 parallel r-adding walks
sharing the modular inversion and not using the negation map, for Pollard’s rho method applied to a
131-bit prime ECDLP.

the cycle is escaped. One may add f`(p)+c for a fixed c ∈ [2, r− 1] (the choice c = 1 is bad as
it could lead to an immediate cycle recurrence). Instead one may add a distinct precomputed
value f′ that does not depend on the escape-point, or one may add f′′`(p) from a distinct list
of r precomputed values f′′0, f′′1, . . . , f′′r−1.

In the next section we discuss fruitless cycles in greater detail and propose alternative
methods that avoid problems that the method from [86] may run into.

4.8 Improved Fruitless Cycle Handling

The probability to enter a fruitless cycle decreases with increasing r [73]. This does not imply
that it suffices to take r large enough to make the probability sufficiently low. Figure 4.2
depicts the effect of increasing r-values on the performance of an r-adding walk, measured
as number of steps per second. The performance deterioration can be attributed to the
increasing rate of cache misses during retrieval of the addition constants fi. The effect varies
between processors, implementations, and elliptic curves. It is worsened for more contrived
walks, such as those using the negation map where cycle reduction, detection and escape
methods are unavoidable. Unless the expected overall number of steps (of order √q) is too
small to be of interest, r cannot be chosen large enough to both avoid fruitless cycles and
achieve adequate performance. Therefore, in this section we concentrate on other ways to
deal with fruitless cycles. We first discuss short-cycle reduction techniques, next discuss cycle
detection methods and analyze their behavior, and finally propose alternative methods.



55

p
−p−fi

= q
p

−p−fi
= q

(i−1, ..) (i−1, ..) (i−1, ..) (i−1, ..)

`(∼(p+fi−1))
= i−1

`(∼(q+fi−1))
= i−1

p̄ =
∼(p+fi−1)

q̄ =
∼(q+fi−1)

`(∼(p̄+fj))
∈ {i−1, j}

`(∼(q̄+fk))
∈ {i−1, k}

(i,−)

(i,−)

(k, ..)(j, ..)

(i,−)

(i,−)

Figure 4.3: 2-cycles caused by 2-cycle reduction (left) and 4-cycle reduction. The dotted steps are
prevented.

4.8.1 Short Fruitless Cycle Reduction

2-cycles

Unfortunately, the look-ahead technique to reduce 2-cycles presented above introduces new
2-cycles. The dotted lines in the left example in Figure 4.3 are the steps taken by the regular
iteration function, the new cycle is depicted by the solid lines which are the steps taken as
a result of f(p) and f(q). This new cycle occurs with probability 1

2r3 . It is the most likely
2-cycle introduced by the look-ahead technique.

Lemma 4.1. The probability to enter a fruitless 2-cycle when looking ahead to reduce 2-cycles
while using an r-adding walk is

1
2r

(
r−1∑
i=1

1
ri

)2

= (rr−1 − 1)2

2r2r−1(r − 1)2 = 1
2r3 +O

( 1
r4

)
.

Proof. With i as in the definition of f , the probability is r−c that i ≥ `(p) + c for 0 ≤ c < r
(considering the case E(p) as i =∞), hence i = `(p) + c with probability r−1

r
1
rc .

We compute the probability of entering a cycle consisting of points p and q starting at p.
Let j = `(p) and k = `(q), and let the steps from p to q and back be adding fj+c and fk+d,
respectively. This implies that j + c ≡ k + d mod r and that the step from p to q involves
a negation. From the definition of f it follows that `(q) 6≡ j + c mod r, thus d 6= 0 and by
symmetry c 6= 0. Since j is given and k is determined by j, c and d, the probabilities must
be summed over all possible c and d. The probability for a c, d pair is the product of the
following probabilities:

• r−1
r

1
rc for the first step being c;

• 1
2 for the sign;



56 POLLARD RHO – USING THE NEGATION MAP

`(∼(p̃ + fk)) ∈ {i, k} `(∼(q̃ + fn) ∈ {j, n}

p̃ =∼(p + fi) ∼(−p− fj+1 + fj) = q̃

p

(j + 1,−)
−p− fj+1

p + fi+1
(j + 1,−)

−p− fi+1 − fj+1

p̄ =∼(p + fi+1 + fj) ∼(−p− fi+1 − fj+1 + fi) = q̄

`(∼(p̄ + fl)) ∈ {j, l} `(∼ (q̄ + fm)) ∈ {i,m}

(i+ 1,+) (i+ 1,+)

(i, ..)

(k, ..)

(j, ..)

(n, ..)

(j, ..)

(l, ..)

(i, ..)

(m, ..)

Figure 4.4: A 4-cycle when the 4-cycle reduction method is used.

• 1
r−1 for `(∼(p + fj+c)) = k

(we know already that `(∼(p + fj+c)) 6≡ j + c 6≡ k mod r);
• 1
rd for the second step being d (since `(∼(q + fk+d)) 6≡ k + d mod r).

This results in the probability 1
2r

r−1∑
c=1

r−1∑
d=1

1
rc

1
rd

.

We conclude that, even when the look-ahead technique is used, 2-cycles are still too likely
to occur for relevant values of q and r. Some of the new 2-cycles are prevented by other
short-cycle reduction methods, but the remaining ones must be dealt with using detection
and escape methods. This is discussed below.

4-cycles

Unless the addition constants fi have been chosen poorly (e.g. fi = fj + fk), 3-cycles do not
occur as a direct result of the negation map, so that 4-cycles are the next type of short cycles
to be considered. Excluding again that the fi have unlikely properties, a fruitless 4-cycle
without proper sub-cycle is of the form

p
(i,+)−→ p + fi

(j,−)−→ −p− fi − fj
(i,+)−→ −p− fj

(j,−)−→ p.

The cycle may be entered at any of its four points. Hence, a fruitless 4-cycle starts from a
random point with probability r−1

4r3 . This is a lower bound for the probability of occurrence
of 4-cycles when looking ahead to reduce 2-cycles.



57

An extension of the 2-cycle reduction method looks ahead to the first two successors of a
point, thereby reducing the frequency of 2-cycles and 4-cycles, while still being deterministic:

g(p) =


E(p) if j ∈ {`(q), `(∼(q + f`(q)))} or `(q) = `(∼(q + f`(q)))

where q =∼(p + fj), for 0 ≤ j < r,
q =∼(p + fi) with i ≥ `(p) minimal s.t.

i mod r 6= `(q) 6= `(∼(q + f`(q))) 6= i mod r.

Compared to f(p), the probability that E is called increases from (1
r )r to at least (2

r )r because
`(∼ (q + f`(q))) ∈ {j mod r, `(q)} with probability 2

r for each j. This iteration function is
at least r+4

r times slower than the standard one, because with probability 2
r at least two

additional group operations need to be carried out, an effect that is slightly alleviated by a
factor of ( r−1

r ) 1
2 since the image of g is a subset of 〈g〉 of cardinality approximately r−1

r q.
The value ∼(q + f`(q)) can be stored for use in the next iteration. Usage of g reduces the
occurrence of 4-cycles, and also prevents some of the 2-cycles newly introduced by the 2-cycle
reduction method (such as the one depicted on the left in Figure 4.3). But g introduces new
types of 2-cycles and 4-cycles as well, both of which do indeed occur in practice. A newly
introduced 2-cycle is shown in the right example in Figure 4.3. There the points p̄ and q̄ are
6∈ Gi−1 ∪ Gi. This 2-cycle occurs with probability 2(r−2)2

(r−1)r4 , which is therefore a lower bound
for the probability of 2-cycles when using the 4-cycle reduction method. Figure 4.4 depicts
an example of a newly introduced 4-cycle: the points reached via dotted lines belong to a
partition different from their predecessors. The probability that such a 4-cycle starts from a
random point is at least 4(r−2)4(r−1)

r11 .
We have not been able to design or to find in the literature short-cycle reduction methods

that do not introduce other (lower probability) short cycles. We therefore turn our attention
to cycle detection and escape methods.

4.8.2 Cycle Detection and Escape

Recurring Cycles

The cycle detection and escape method from [86] described in Section 4.7, does not prevent
recurrence to the same cycle. When using f`(p)+c to escape (we fixed c = 4 as it worked as well
as any other choice 6= 1), Figure 4.5 depicts how the (wavy) escape from the (solid) 4-cycle
recurs to the 4-cycle via one of the dotted possibilities. The probability of recurrence depends
on the escape method and on which point in the cycle the walk recurs to. With f`(p)+c as
escape, immediate recurrence to the escape point happens with probability 1

2r when no cycle
reduction is used, recurrence happens with probability at least 1

2r2 with 2-cycle reduction, and
with probability at least (r−2)2

r4 with 4-cycle and thus 2-cycle reduction. Similar recurrences
occur, with lower probabilities, when f′ or f′′`(p) are used to escape.

Lemma 4.2. Lower bounds for the probabilities to enter 2-cycles or 4-cycles or to recur to
cycles for three different cycle escape methods are listed in Table 4.2 if no cycle reduction,



58 POLLARD RHO – USING THE NEGATION MAP

−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p + fi

(j,−)

(i,+)

p + fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

Figure 4.5: Escaping from a fruitless 4-cycle, and recurring to it (i 6= j 6= k 6= i).

or 2-cycle reduction (f), or 4-cycle reduction (g) is used, along with a lower bound for the
slowdown factor caused by f or g.

Proof. The proofs for many entries of Table 4.2 were given earlier. We prove the entries in
rows five and six.

Let p be the escape point and let q be the point it escapes to. Using f′ or f′′`(p) one can
recur to the escape point p by entering another cycle at q and escaping from it at q again.
This new cycle could be a 2-cycle. For this to happen the first escape step to q has to involve
a negation (probability 1

2), a 2-cycle has to be entered at q (probabilities in first row, but see
below), the escape point of this 2-cycle has to be q (probability 1

2), and, in the case of f′′i , the
partition that q belongs to has to be the same as the one p belongs to (probability 1

r ). In the
case of 4-cycle reduction the probability to enter a 2-cycle at q is slightly lower since we do
not have the information that `(∼(q + f`(q))) 6= `(q); a calculation analogous to the one done
at the end of Section 4.8.1 produces the values listed in the table.

6-cycles

With proper fi and no sub-cycle, a common 6-cycle is of the form

p
(i,+)−→ p + fi

(j,−)−→ −p− fi − fj
(k,+)−→ −p− fi − fj + fk

(i,+)−→ −p− fj + fk
(j,−)−→ p− fk

(k,+)−→ p

(i 6= j 6= k 6= i) where with appropriate sign changes steps four and five may be swapped.
It may be entered at any of its six points and occurs, when using 4-cycle reduction, with
probability 1

4r3 +O( 1
r4 ). A lower bound to recur to it follows by multiplying this probability

with the recurring probabilities from Table 4.2.



59

Table 4.2: Summary of effect of cycle reduction, detection, and escape methods. With the exception
of the two bold entries, all figures are lower bounds.

Successor of p: p + f`(p) f(p) g(p)
Corresponding cycle reduction method: none 2-cycle 4-cycle

Probability to enter


2-cycle
4-cycle
2ω-cycle for ω ∈ Z>2, see [73]

1
2r

1
2r3

2(r − 2)2

(r − 1)r4

r− 1
4r3

r − 1
4r3

4(r − 2)4(r − 1)
r11

Ω(r−ω) Ω(r−ω) Ω(r−ω)

Probability to recur to a cycle
after escaping it from p to


∼(p + f`(p)+c)
∼(p + f′)
∼(p + f′′`(p))

1
2r

1
2r2

(r − 2)2

r4
1
8r

1
8r3

(r − 2)2

2r5
1

8r2
1

8r4
(r − 2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r

4.8.3 Alternative Approaches

The purpose of using the negation map is to obtain a speedup, hopefully by a factor of
√

2.
From Figure 4.2 it follows that large r-values cannot be used. From Table 4.2 it follows that
for small r-values and relevant q-values fruitless cycles are likely to occur and recur. Medium
r-values look the most promising, but are not compatible with all environments.

Since fruitless cycle occurrence and recurrence cannot be rooted out, alternative methods
are needed if we want to make the negation map useful. In this section several possibilities
are offered.

Heuristic 4.1. A cycle with at least one doubling is most likely not fruitless.

Proof. Let p = ug+vh be a point on the cycle. The subsequent points are obtained by adding
one of the fi or by doubling, and negating if needed, thus are up to sign linear combinations
of the fi and a power-of-two multiple of p. If c ≥ 1 is the number of doublings in the cycle,
we get a relation of the form

p = ±2cp +
r−1∑
i=0

cifi = ±2cp +
r−1∑
i=0

ciuig +
r−1∑
i=0

civih and thus

(
(1∓ 2c)u−

r−1∑
i=0

ciui

)
g +

(
(1∓ 2c)v −

r−1∑
i=0

civi

)
h = 0,

where ci ∈ Z. Since 1 ∓ 2c 6= 0, the expression
(
(1∓ 2c)u−∑r−1

i=0 ciui
)
is most likely not

divisible by the group order. This also holds if {fi : 0 ≤ i < r} is enlarged with f′ or with
{f′′i : 0 ≤ i < r}. This concludes our heuristic argument.



60 POLLARD RHO – USING THE NEGATION MAP

Cycle Reduction by Doubling

The regular structure required for cycles is caused by repeated addition and subtraction using
the same set of constants. This structure would be broken effectively by using an occasional
doubling, i.e., a mixed walk. If such walks are used, the heuristics suggest that cycles occur
only between two doublings. If the doubling frequency is sufficiently high, only short cycles
would have to be dealt with.

As borne out by expressions (4.1) and (4.2) when using the idealized values pi = 1
r+s

for 0 ≤ i < r and pD = s
r+s for r > 0, and as supported by the experiments reported in

Table 4.1, an r + s-mixed walk with s > 1 always displays noticeably less random behavior
than a well-partitioned r′-adding walk for any r′ > r. Nevertheless, using properly tuned
r + s-mixed walks may be a way to address the cycle problem while avoiding impractically
large r-values.

However, r + s-mixed walks have disadvantages caused by the underlying arithmetic.
Given the relative speeds of addition and doubling, an r + s-mixed walk is r+7s/6

r+s times
slower than an r-adding walk. In a SIMD environment where many walks are processed
simultaneously, per step a fraction of about r

r+s of the walks will do an addition, whereas the
others do a doubling. If the addition and doubling code differ, as is the case for the affine
Weierstrass representation, the two types of steps cannot be executed simultaneously. Thus,
in such environments, to avoid a slowdown by a factor of more than 2 one needs to swap walks
to make all parallel step-operations identical (at non-negligible overhead), or one has to settle
for a suboptimal affine point representation that allows identical code. SIMD-application of
the negation map and the possibility of another point representation are subjects for further
study (see Section 4.11).

Doubling Based Cycle Reduction and Escape

Taking into account that doubling should not be used too frequently, usage could be limited to
cycle reduction or escape. This would not solve the SIMD-issue, but the relative inefficiency
and non-randomness would be addressed. If doublings are used to escape from fruitless cycles,
they would not recur, as that would contradict the heuristics. Cycle reduction using doubling
replaces f(p) and g(p) by f̄(p) and ḡ(p), respectively, where

f̄(p) =
{
∼(p + f`(p)) if `(p) 6= `(∼(p + f`(p))),
∼(2p) otherwise,

ḡ(p) =
{

q =∼(p + f`(p)) if `(q) 6= `(p) 6= `(∼(q + f`(q))) 6= `(q),
∼(2p) otherwise.

It follows from the heuristics that these functions avoid recurring fruitless cycles.

Alternative Cycle Detection

Because shorter cycles are more frequent, a potentially interesting modification of the cycle
detection method from [86] (described at the end of Section 4.7) would be to occasionally



61

compare a point to its kth successor, where k is the least common multiple of all even short
cycle lengths that one wants to catch. Detecting, for instance, cycles up to length 12 requires
only 1

120th comparison per step. This can be done in several steps, recording every 12th
point to catch 4- and 6-cycles, recording every 10th of these recorded points to catch 8- and
10-cycles, etc. It can be combined with the regular method with large α and β to catch longer
cycles infrequently.

However, if a cycle has been detected the k points need to be recorded as before, so
an escape point can be chosen deterministically. This argues against using large k. It also
suggests that an improvement can be expected only if cycles occur with low probability, and
therefore that the improvement will be marginal at best (cf. α and β choices in Section 4.9).
For this reason we did not conduct extensive experiments with this method.

4.9 Comparison

We implemented and compared on a traditional non-SIMD platform all previously published
and newly proposed methods to deal with fruitless cycles when using the negation map.
Here we report on our findings. It quickly turned out that the cycle detection methods
from [86] when combined with doubling based cycle reduction and escape, are considerably
more efficient than r + s-mixed walks with their on average slower steps and less random
behavior. Mixed walks are therefore not further discussed. Experiments with the alternative
cycle detection method were quickly abandoned as well.

For each combination of iteration function, escape method, and r-value a search was
conducted to determine the α and β to be used for the cycle detection method from [86].
Using a heuristic argument that for β = 2k with k much smaller than r, cycles of length
≥ β occur with probability on the order of (k−1)!

(2r)k , values for k that make this probability
low enough resulted in good initial values for the search for close to optimal α and β. To
give some examples (this notation is explained in more detail later in the section), for “f ,
e,” (2-cycle reduction and escape by adding f`(p)+4) we used α = 31 and β = 20 for r = 16,
α = 3264 and β = 12 for r = 128, and α = 52 418 and β = 10 for r = 256. For “f̄ , ē” (2-cycle
reduction using doubling and escape by doubling) and the same r-values we used the same
β-values but replaced the α-values by 1 618, 838 848, and 53 687 081, respectively.

Each of the benchmarks presented in Table 4.3 was run on a single core of an AMD Phe-
nom 2.2GHz 4-core processor, with each of the four cores processing a different combination.
A 10-bit distinguishing property was used to get a significant amount of data in a reasonable
amount of time. This somewhat affects the performance, but not the cycle behavior as walks
continue after hitting a distinguished point. The figures in millions as given in the table
are thus an underestimate for the actual per-core yield in units when a more realistic 30-bit
distinguishing property would be used (since 230/210 = 220 ≈ 106).

In order to be able to compare the long term yield figures, the expected number of steps
must be taken into account using expressions 4.1 and 4.2. As a result, the yields are corrected
by a factor of ( r−1

r ) 1
2 for the iteration functions that do not use the negation map, and by

a factor of (2r−1
r ) 1

2 for the others, with an extra factor of ( r
r−1) 1

2 for g and ḡ. After this



62 POLLARD RHO – USING THE NEGATION MAP

Table 4.3: Long term yield when using different cycle reduction and escaping techniques (and an
r-adding walk). After the colon (:) the speed-up when using the negation map is presented. The bold
entries show the settings with the highest speedup. More detailed information is given in the text.

r = 16 r = 32 r = 64 r = 128 r = 256 r = 512
Without negation map

7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94
With negation map
† 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00
just g 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just ḡ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.75: 0.15 4.90: 0.96 5.90: 1.16
just e′′ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.61: 0.12 4.94: 0.97 5.73: 1.12
just ē 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

f , e 0.00: 0.00 0.00: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25
9 .4e8
0 .0e0}0 .08 6 .6e8

0 .0e0}0 .48 1 .0e8
0 .0e0}1 .28 3 .6e7

0 .0e0}1 .37 2 .9e7
0 .0e0}1 .38 2 .5e7

0 .0e0}1 .39

f , e′ 0.00: 0.00 3.24: 0.63 6.04: 1.18 6.41: 1.25 6.29: 1.23 6.21: 1.22
3 .9e8
0 .0e0}0 .86 8 .0e7

0 .0e0}1 .30 4 .6e7
0 .0e0}1 .35 3 .3e7

0 .0e0}1 .38 2 .9e7
0 .0e0}1 .38 2 .6e7

0 .0e0}1 .39

f , e′′ 0.00: 0.00 5.34: 1.04 6.21: 1.21 6.30: 1.23 6.20: 1.21 5.99: 1.17
1 .3e8
0 .0e0}1 .22 6 .0e7

0 .0e0}1 .33 4 .2e7
0 .0e0}1 .36 3 .3e7

0 .0e0}1 .38 2 .9e7
0 .0e0}1 .38 2 .7e7

0 .0e0}1 .39

f , ē 3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25
9 .2e7
9 .9e5}1 .27 6 .8e7

2 .8e5}1 .32 4 .2e7
6 .5e4}1 .36 3 .3e7

1 .5e4}1 .38 2 .9e7
3 .8e3}1 .38 2 .7e7

9 .7e2}1 .39

g, e 0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19
8 .7e8
0 .0e0}0 .19 3 .7e8

0 .0e0}0 .91 6 .6e7
0 .0e0}1 .34 4 .2e7

0 .0e0}1 .37 3 .3e7
0 .0e0}1 .38 1 .3e7

0 .0e0}1 .41

g, e′ 0.00: 0.00 0.01: 0.00 5.32: 1.05 6.26: 1.23 6.25: 1.23 6.11: 1.20
7 .8e8
0 .0e0}0 .32 3 .0e8

0 .0e0}1 .00 6 .0e7
0 .0e0}1 .35 4 .1e7

0 .0e0}1 .37 3 .0e7
0 .0e0}1 .38 5 .5e7

0 .0e0}1 .35

g, e′′ 0.00: 0.00 1.09: 0.21 5.37: 1.13 6.08: 1.20 6.06: 1.19 5.86: 1.15
7 .6e8
0 .0e0}0 .34 1 .2e8

0 .0e0}1 .27 6 .0e7
0 .0e0}1 .35 4 .2e7

0 .0e0}1 .37 3 .5e7
0 .0e0}1 .38 4 .3e7

0 .0e0}1 .37

g, ē 0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18
3 .3e8
1 .6e5}0 .97 1 .7e8

6 .0e4}1 .19 8 .1e7
8 .1e3}1 .32 5 .4e7

1 .0e3}1 .35 4 .0e7
1 .2e2}1 .37 2 .7e7

9 .0e0}1 .39

f̄ , e 0.00: 0.00 0.00: 0.00 2.70: 0.53 5.96: 1.16 6.34: 1.24 6.20: 1.21
8 .7e8
2 .4e6}0 .18 4 .3e8

1 .7e7}0 .80 5 .4e7
1 .5e7}1 .34 1 .1e7

7 .7e6}1 .41 1 .0e7
3 .9e6}1 .41 1 .4e7

1 .9e6}1 .40

f̄ , e′ 0.01: 0.0 4.24: 0.82 6.32: 1.23 6.43: 1.26 6.33: 1.24 6.20: 1.22
2 .6e8
4 .3e7}1 .03 6 .8e7

2 .9e7}1 .31 3 .9e7
1 .5e7}1 .36 3 .2e7

7 .6e6}1 .38 2 .8e7
3 .8e6}1 .38 2 .7e7

1 .9e6}1 .39

f̄ , e′′ 1.34: 0.26 5.80: 1.13 6.23: 1.22 6.21: 1.22 6.15: 1.20 6.00: 1.18
8 .9e7
5 .2e7}1 .27 5 .3e7

2 .9e7}1 .33 3 .9e7
1 .5e7}1 .36 3 .6e7

7 .5e6}1 .37 2 .8e7
3 .8e6}1 .38 2 .6e7

1 .9e6}1 .39

f̄ , ē 5.58: 1.06 6.14: 1.18 6.34: 1.23 6.42: 1.25 6.27: 1.23 6.07: 1.19
6 .1e7
4 .2e7}1 .31 3 .7e7

3 .0e7}1 .36 1 .8e7
1 .5e7}1 .39 1 .1e7

7 .7e6}1 .41 1 .0e7
3 .9e6}1 .41 1 .4e7

1 .9e6}1 .40

ḡ, e 2.56: 0.51 5.80: 1.15 6.02: 1.18 6.09: 1.20 6.19: 1.21 5.74: 1.13
1 .4e8
9 .9e7}1 .23 7 .9e7

5 .6e7}1 .31 5 .1e7
2 .9e7}1 .35 4 .1e7

1 .5e7}1 .37 2 .6e7
7 .6e6}1 .39 7 .7e6

3 .9e6}1 .41

ḡ, e′ 4.74: 0.94 5.88: 1.16 6.14: 1.21 6.28: 1.23 6.05: 1.19 5.80: 1.14
1 .2e8
1 .0e8}1 .25 7 .8e7

5 .6e7}1 .31 5 .3e7
2 .9e7}1 .35 3 .9e7

1 .5e7}1 .37 2 .6e7
7 .6e6}1 .39 7 .7e6

3 .9e6}1 .41

ḡ, e′′ 4.72: 0.94 5.80: 1.15 6.08: 1.20 6.05: 1.19 5.91: 1.16 5.67: 1.11
1 .2e8
1 .0e8}1 .25 7 .7e7

5 .6e7}1 .31 5 .3e7
2 .9e7}1 .35 3 .8e7

1 .5e7}1 .37 1 .8e7
7 .6e6}1 .40 7 .7e6

3 .9e6}1 .41

ḡ, ē 4.83: 0.96 5.87: 1.16 6.09: 1.20 6.16: 1.21 6.09: 1.20 5.70: 1.12
1 .2e8
1 .0e8}1 .25 7 .9e7

5 .6e7}1 .31 5 .2e7
2 .9e7}1 .35 4 .0e7

1 .5e7}1 .37 2 .6e7
7 .6e6}1 .39 7 .7e6

3 .9e6}1 .41



63

correction, the best iteration function without the negation map is the one with r = 64.
Comparing that one with each iteration function that uses the negation map, thus boosting
the latter’s yield ratio by a factor of C = ((2r−1

r )/(63
64)) 1

2 or C = ((2r−1
r−1 )/(63

64)) 1
2 for g and ḡ,

leads to the long term speedup figure. Note that the correction factor C depends on the
iteration function, and is close to and for some r larger than

√
2.

The numbers in Table 4.3 have the following meaning. For the (iteration function, escape
method, r-value) combinations specified, the non-italics entries list the long term yield (mil-
lions of distinguished points, found during the second half hour when running a given setting
for an hour) and the long term speedup over the best r-value (r = 64) without the negation
map, taking into account the correction factor C. Cycle detection and subsequent escape by
adding f`(p)+4, f′, f′′`(p) and by doubling is indicated by “e,” “e′,” “e′′” and by “ē,” respectively.
The iteration functions f (2-cycle reduction), g (4-cycle and 2-cycle reduction), f̄ (2-cycle
reduction using doubling), and ḡ (4-cycle and 2-cycle reduction using doubling) are as in
Sections 4.7, 4.8.1 and 4.8.3. The yields are for 256 parallel walks (sharing the inversion)
for a 131-bit ECDLP with a 131-bit prime order group. The yields during the first half hour
are almost consistently higher, considerably so for poorly performing combinations. They are
not meaningful and are thus not listed.

We measured to what extent our failure to achieve a speedup by a factor of
√

2 can be
blamed on cycle detection and escape and other overheads, and which part is due to the
higher average cost of the iteration function. For most combinations in Table 4.3 we counted
the number S of useful steps performed when doing 109 group operations, while keeping track
of the number D of doublings among them. Here a step is useful if it is not taken as part of a
fruitless cycle, so all D doublings are useful. Without the negation map, S would be 109 and
D = 0; this is the basis for the comparison. With the negation map, A = 109 − S is counted
as the number of additional additions due to cycle reductions or fruitless cycles. The inherent
slowdown of that iteration function is then 1 + A+D/6

S , so that it can achieve a speedup by a
factor of at most CS

S+A+D/6 = C(109−A)
109+D/6 , with C being the correction factor as defined above.

The italics entries in Table 4.3 are A above D, followed by the maximal achievable speedup
factor of C(109−A)

109+D/6 . The rows starting with † apply to the cases: “no reduction, no escape,”
“just f ,” “just f̄ ,” “just e,” and “just e′.”

Non-doubling 2-cycle reduction (f) with doubling-based cycle escape (ē) and r = 128 per-
formed best, with an overall speedup by a factor of 1.29: although fewer distinguished points
are found than for the best case without the negation map (r = 64), there is a considerable
overall gain because fewer distinguished points (by a factor of C, for the relevant C) should
suffice. For r = 16 most iteration functions with the negation map perform poorly.

Based on Table 4.3 and Figure 4.2, we conclude that our failure to better approach the
optimal speedup by a factor of

√
2 is due to an onset of cache effects combined with various

overheads. The italics figures from Table 4.3 make us believe that improvements may be
obtained when using better implementations.



64 POLLARD RHO – USING THE NEGATION MAP

Previous Results

The only publication that we know that presents practical data about Pollard’s rho method
used with the negation map is [76]. Only relatively small ECDLPs were solved (42- and 43-bit
prime fields) and small r-values were avoided. The adverse cycle behavior that we witnessed
can therefore not be expected and we doubt if the results reported are significant for the
sizes that we consider. Only mixed walks were used, and an overall speedup by a factor of
about 1.35 was reported. Cycle escaping was done by jumping to the sum of all points in a
cycle, which cannot be expected to work in general because the sum may depend just on the
addition constants.

4.10 Conclusion
It was shown that the tag-tracing method from [57] can in principle be applied in elliptic
curve context as well, but that scenarios are limited where the proposed method could lead
to a speedup.

With judicious application of doubling, usage of the negation map to solve ECDLPs
over prime fields using Pollard’s rho method can indeed be recommended. In the best of
circumstances that we have been able to create, however, the speedup falls short of the
hoped for

√
2, but is with 1.29 still considerable.

4.11 Follow-Up Work
After the publication of our work in [38] a follow-up work appeared by Bernstein, Lange,
and Schwabe [24]. Here some techniques are presented, in the setting of the 112-bit ECDLP
(see Chapter 5), to eliminate the branches required to compute the negation map in SIMD-
environments. This removes one of the main obstacles to use the negation map in such
parallel environments. Although no direct comparison between a regular (non-negation map)
and a negation map implementation are being made, the authors claim to achieve a speedup
“very close to

√
2” on the Cell broadband engine. In [24] it is estimated that “under 4%

of the cycles per iteration are spent on operations that can be blamed on negation”. Note
that a speedup of

√
2− 0.04 ≈ 1.37 is in correspondence with the theoretical speedup figures

as presented in Table 4.3 taking into account that [24] used an 2048-adding walk on the
cache-less SPE of the Cell.



Chapter5
Solving ECDLPs on the Cell

In this chapter an implementation of Pollard’s rho method to solve prime field ECDLPs on
the Cell processor, the processor that is the heart of the Sony PlayStation 3 (PS3) game
console is described. The underlying modular arithmetic is targeted at single instruction
multiple data (SIMD) platforms and is mostly branch-free. It can take advantage of prime
moduli of a special form using efficient “sloppy reduction.” We used the implementation to
set a new prime field ECDLP record for a 112-bit prime of the proper special form. The
calculation was performed on EPFL’s cluster of about 215 PS3s.

The previous prime field ECDLP record, reported in 2002, involved a 109-bit prime [55].
The following may explain the apparent lack of interest to set new ECDLP records. The
expected cost to solve a particular ECDLP on any combination of platforms can be extrap-
olated from a relatively short calculation, given implementations of Pollard’s rho method.
Cryptographically relevant ECDLPs turn out to be firmly out of reach, despite occasional
improvements of Pollard’s rho method. Given easy estimation of overall cost and infeasi-
bility of cryptographically relevant problems, not much is gained by solving an ECDLP, in
particular of a cryptographically irrelevant size. This is unlike integer factorization where
the only convincing way to show the feasibility and estimate the cost of a record-breaking
calculation is completing it (cf. the orders of magnitude difference between the actual cost
reported in [120] and the estimate in [175]).

We present a parallelized implementation of Pollard’s rho method on a cluster of PS3
game consoles, devices that are relatively inexpensive given their processing power. The
parallelization exists on five distinct levels: each PS3 runs independently of all others, on
each PS3’s Cell processor six cores work independently of each other, and each of these cores
simultaneously runs 50 times two interleaved 4-fold SIMD processes. The top two levels are
merely ‘embarrassingly parallel’, the first at the physical PS3 level, the other provided by the
Cell processor’s multi-core design. The 50 simultaneous copies serve to amortize a high cost
modular inversion, interleaving is done to improve throughput, and 4-way SIMD exploits the
core’s arithmetic instruction set.

The first projects on EPFL’s PS3 cluster concerned cryptographic hash collisions [192]. To

65



66 SOLVING ECDLPS ON THE CELL

ascertain the cluster’s reliability and stability for projects requiring long integer arithmetic,
a rough version of Pollard’s rho method for prime field ECDLP was run for a few weeks.
Because it turned out to work satisfactorily and because no other project was ready to be
deployed, it was left running. As this soon led to the completion of a non-negligible fraction
of the total expected work for the ECDLP at hand, it was decided to further optimize the
code and, some misgivings notwithstanding, to attempt to solve it. Although our choice of
improvements that could be carried through was limited by the early design decisions (as we
did not want to start afresh), the overall expected runtime was reduced by more than 60%
in the course of the calculation. It may be further reduced by adopting a variety of changes
in the initial design [24].

Apart from the prime field ECDLP record we present an efficient 4-way SIMD binary
modular inversion and a fast branch-free sloppy reduction and normalization modulo primes
of the form 232`±m

c , for relatively small `,m, c ∈ Z>0. These methods are designed for
cryptanalytic applications in a SIMD environment. The sloppy reduction may not be suitable
for cryptographic applications, because it can produce an incorrect result. When solving
ECDLPs, however, it suffices if calculations are most of the time correct: as expected based
on our heuristics, sloppy reduction never produced an incorrect result. Many of these methods
can be used on SIMD platforms other than the Cell processor, such as graphics cards.

In the second part of this chapter we describe an approach to solve the Certicom chal-
lenge ECC2K-130 challenge. This challenge states an ECDLP using a Koblitz curve [125],
an elliptic curve defined over a particular type of binary extension field. This work is part of
a larger project which aims to solve this challenge using a variety of platforms [7]. Many op-
timization techniques used to achieve the fast arithmetic do not require independent parallel
computations (batching) and are therefore not only relevant in the context of cryptanalytical
applications but can also be used to accelerate cryptographic schemes in practice.

Section 5.1 contains material from [35,36] while Section 5.4 is based on parts of [40].

5.1 A 112-bit Prime Field ECDLP

The first part of this chapter concentrates on curve “secp112r1” from [173] (also defined in
the Wireless Transport Layer Security Specification [80] as curve number 6 ). Let R = 2128

and p̃ = R− 3, then p = p̃
11·6949 is prime. The elliptic curve Ea,b over Fp defined by a = p− 3

and
b = 2061118396808653202902996166388514

has a group Ea,b(Fp) of prime order q = p+ 1 + 4407293269000505 and is generated by

g = (188281465057972534892223778713752, 3419875491033170827167861896082688).

This curve and generator were created “verifiably at random” [173], implying that solving
ECDLP in 〈g〉 = Ea,b(Fp) should not be unexpectedly easy due to a built-in trapdoor.
Because no corresponding challenge ECDLP was included in [173], we defined one ourselves
in a “verifiably not pre-cooked” manner by taking h = (x, y) ∈ 〈g〉 for an unforgeable value



67

of x. With x = b(π − 3)1034c, this leads to the 112-bit prime ECDLP where

h = ( 1415926535897932384626433832795028,
3846759606494706724286139623885544) ∈ Ea,b(Fp),

is given and an m with mg = h must be found.

5.2 Pollard’s Rho Method on the PS3
To solve the ECDLP from Section 5.1 with Pollard’s rho method, each core of the Cell
processes four walks simultaneously in 4-way SIMD fashion, two of those SIMD-processes are
interleaved, and as many as possible of these interleaved processes are batched, to amortize
the inversion cost in the best possible way (Section 4.2). Although the description below
focuses on the 4-way SIMD parallelization of the Cell processor’s cores, many ideas apply to
wider SIMD environments as well, such as graphics cards.

The 4-way SIMD long integer representation, tailored to the Cell’s instructions is used
(described in Section 2.2.2). The interleaved 4-way SIMD arithmetic modulo the specific p
(Section 5.1) is described in Section 5.2.1. To gain speed, results may be incorrect; it is
argued that it may be expected that bad cases do not occur (though an example is given).
Section 5.2.2 describes a 4-way SIMD implementation of binary modular inversion. Timings
and the solution to the ECDLP are given in Section 5.3.

5.2.1 4-way SIMD Long Integer SPU-Arithmetic

With R = 2128, reduction modulo the multiple p̃ = R−3 of the prime p = p̃
11·6949 (Section 5.1)

can be done using sloppy reduction modulo p̃, which is faster than reduction modulo p but
which may produce an incorrect result, with a probability that is argued to be negligible.
When working in Fp we use a redundant representation modulo p̃. Only when required for
distinguishing and partition properties (Section 4.2) we switch to a unique value modulo p
using a quick Montgomery-like step [145]. All methods in this section allow any number of
SIMD threads. See [9, 11, 12, 65, 188, 189], for instance, for previous work involving primes
of a special form. We are not aware of earlier publication of modular arithmetic similar to
sloppy reduction or an analysis thereof.

Sloppy Reduction Modulo p̃

For z ∈ Z with 0 ≤ z < R2 and z = z0 +Rz1 for z0, z1 ∈ Z, 0 ≤ z0, z1 < R, define

R(z) = z0 + 3z1.

From p̃ = R − 3 it follows that R(z) ≡ z mod p̃ and R(z) ≡ z mod p. With R(z) = y =
y0 + y1R for y0, y1 ∈ Z, 0 ≤ y0, y1 < R, it follows from R(z) = z0 + 3z1 ≤ 4R− 4 that y1 ≤ 3.
If y1 = 3, then y0 + y1R = y0 + 3R ≤ 4R − 4 and thus y0 ≤ R − 4. Using y0 ≤ R − 1 when
y1 ≤ 2, it follows that R(y) = y0 + 3y1 ≤ R+ 5.



68 SOLVING ECDLPS ON THE CELL

Algorithm 9 Sloppy reduction modulo p̃ of a four-tuple of 256-bit integers.

Input:
{

a four-tuple (c1, c2, c3, c4) of 256-bit integers in radix 216

represented by sixteen 128-bit registers c[0], c[1], . . . , c[15].

Output:


a four-tuple (t1, t2, t3, t4) of 128-bit integers ti = S(ci) mod R,
for i = 1, 2, 3, 4, in radix 216 represented by eight 128-bit
registers t[0], t[1], . . . , t[7].

1: Let r be a register with r1 = r2 = r3 = r4 = 3 · 216

2: /* the 16 most significant bits of the words of r all represent 3 */
3: /* Compute the first application of R */
4: for k = 0 to 7 do
5: t[k]← spu_mhhadd(spu_sl(c[k + 8], 16), r, c[k])
6: for k = 0 to 6 do
7: (s, t[k])← spu_split(t[k])
8: t[k + 1]← spu_add(t[k + 1], s)
9: (s, t[7])← spu_split(t[7])

10: /* Compute the second application of R */
11: t[0]← spu_mhhadd(spu_sl(s, 16), r, t[0])
12: (s, t[0])← spu_split(t[0])
13: if spu_orx(s) 6= 0 then
14: t[1]← spu_add(t[1], s)
15: for k = 1 to 6 do
16: (s, t[k])← spu_split(t[k])
17: t[k + 1]← spu_add(t[k + 1], s)
18: /* truncate modulo R by ignoring there may be an i ∈ {1, 2, 3, 4} with t[7]i ≥ 216 */
19: return t[0], t[1], . . . , t[7]

Define S(z) = R(R(z)). Then S(z) < R + 6 and S(z) ≡ z mod p̃ (and thus S(z) ≡
z mod p). If all values in the range of S occur with approximately the same probability,
then S(z) ≥ R with probability close to 6

R+6 , which is small. Thus, the truncated value
S(z) mod R ∈ {0, 1, . . . , R−1} is most likely equivalent to z modulo p̃. For relevant z-values,
i.e, products of two 128-bit integers, it is argued below that S(z) ≥ R with probability only
about 1

R , so low that S may indeed simply be truncated, rather than applying R a third
time (which would always be correct modulo p̃ and p). Sloppy reduction modulo p̃ of z is
therefore defined as S(z) mod R ∈ {0, 1, . . . , R− 1}.

The SPU calculation of 4-way SIMD sloppy reduction modulo p̃ of a four-tuple of 256-bit
integers in radix 216 representation is done by the algorithm depicted in Algorith 9. Without
the if-statement in line 13 (while keeping lines 14-17) it is branch-free (and slower).



69

Incorrectness Probability of Sloppy Reduction Modulo p̃ of Products

Let 0 ≤ x, y < R and let xy = a + bp̃ for integers a, b with 0 ≤ a < p̃ and 0 ≤ b ≤ R + 1.
Define c as the smallest integer such that 0 ≤ cR + a − 3b < R. It then follows from
xy = cR + a − 3b + (b − c)R that R(xy) = cR + a − 3c. If a − 3c ≥ 0, then S(xy) = a < p̃
so that sloppy reduction modulo p̃ produces the correct result. If a− 3c < 0, then R(xy) =
(c − 1)R + R + a − 3c. With cR < R − a + 3b ≤ R + 3(R + 1) so that c ≤ 4 and thus
0 ≤ R + a− 3c < R, it follows that S(xy) = R + a− 3c+ 3c− 3 = R + a− 3. Because also
S(xy) < R+ 6, the cases where S(xy) ≥ R (and sloppy reduction modulo p̃ is incorrect) are
3 ≤ a ≤ 8.

Because S(xy) ∈ {R,R+1, . . . , R+5} for pairs (x, y) for which sloppy reduction modulo p̃
of xy is incorrect, it follows that S(xy) is coprime to p̃, implying that x and y are co-prime
to p̃. But if for such a pair it is the case that gcd(x, p̃) = 1, then gcd(y, p̃) = 1 as well.

Writing a = i + 3k, where i ∈ {0, 1, 2} and k ∈ {1, 2}, it follows from a − 3c < 0 that
c ≥ k+ 1. Since c is minimal such that 0 ≤ cR+ a− 3b < R, it follows that kR+ a− 3b < 0
and thus b > a+kR

3 . With xy = a + bp̃ and a ≥ 3k this implies xy > 3k + (3k+kR)p̃
3 =

3k+ k(R+3)(R−3)
3 = kR2

3 . Thus x, y > kR
3 , since 0 ≤ x, y < R. The number of pairs (x, y) with

x, y > kR
3 and xy > kR2

3 is approximated as
(3− k)R2

3 −
∫ R

kR
3

kR2

3x dx = (3− k)R2

3 − kR2

3 log
(3
k

)
.

For 3k ≤ a < 3(k+1) the probability that xy ≡ a mod p̃ for a pair (x, y) may be approximated
as 3

R ·
φ(p̃)
p̃ (where φ denotes Euler’s totient function). This leads to(

φ(p̃)
p̃

)
·R ·

∑
k=1,2

(
3− k − k log

(3
k

))
as a heuristic approximation for the total number of pairs (x, y) where sloppy reduction
modulo p̃ of the product xy produces an incorrect result. Because φ(p̃)

p̃ ≈ 0.90896, the sum
equals 3 − log

(
27
4

)
≈ 1.09046, and 0.90896 · 1.09046 ≈ 0.99118, we find a heuristic upper

bound of 1
R for the probability that sloppy reduction modulo p̃ of xy is incorrect, assuming

that x and y are drawn at random.

Incorrectness probability for other moduli

Sloppy reduction may be advantageous for other primes of the form 232`±m
c for relatively small

`,m, c ∈ Z>0. For ` = 6, 8, m = 38, c = 2 [12,30], and the functions R′(z0+z1232`) = z0+mz1
andS′(z) = R′(R′(z)), sloppy reduction modulo either of the two primes 232`−1−m

2 is defined
as S′ mod 232`, i.e., truncation of S′ to 32` bits (this works for ` = 1

2 and ` = 1 too). A
heuristic upper bound of 343

232` for the probability that sloppy reduction modulo 232` −m of
xy is incorrect, for random non-negative x, y < 232`, follows as above. It uses

m−1∑
k=1

(
m− k − k log

(
m

k

))
≈ 342.552



70 SOLVING ECDLPS ON THE CELL

Algorithm 10 Radix 216 schoolbook multiplication of two four-tuples of 16m-bit inte-
gers.

Input:
{

two four-tuples (a1, a2, a3, a4), (b1, b2, b3, b4) of 16m-bit integers in radix 216

represented by 2m 128-bit registers a[0], a[1], . . . , a[m− 1], b[0], b[1], . . . , b[m− 1].

Output:
{

a four-tuple (c1, c2, c3, c4) of 32m-bit integers ci = ai · bi, for i = 1, 2, 3, 4,
in radix 216 represented by 2m 128-bit registers c[0], c[1], . . . , c[2m− 1].

1: for k = 0 to m− 1 do
2: c[m+ k]← 0
3: a[k]← spu_sl(a[k], 16)
4: b[k]← spu_sl(b[k], 16)
5: for j = 0 to m− 1 do
6: (e[0], c[j])← spu_split(spu_mhhadd(a[0], b[j], c[m]))
7: for k = 1 to m− 1 do
8: (e[k], c[m+k−1])← spu_split(spu_add(spu_mhhadd(a[k], b[j], c[m+k]), e[k−1]))
9: /* a[k]i · b[j]i + c[m + k]i + e[k − 1]i ≤ (216 − 1)2 + 216 − 1 + 216 − 1 = 232 − 1 for

i = 1, 2, 3, 4 */
10: c[2m− 1]← e[m− 1]
11: return c[0], c[1], . . . , c[2m− 1]

and an argument involving c = 2 that is somewhat more contrived than the φ(p̃)-argument
above: for odd a both x and y must be odd and integration is over the odd x values only, for
even a each odd x leads to a single even y whereas each even x leads to two y values. Thus,
the summation hides the observation that 1

2 ·
1
2 + 1

2

(
1
2 + 1

2 · 2
)

= 1.

Sloppy Multiplication Modulo p̃

Algorithm 10 depicts the algorithm for the SPU calculation of 4-way SIMD schoolbook mul-
tiplication of two four-tuples of 16m-bit integers in radix 216 representation [30]. Note that
Algorithm 10 is essentially the same as Algorithm 6 with r = 16 but using the notation
from this chapter. The only subtlety in Algorithm 10 is that none of the two 4-way SIMD
additions in line 8 (spu_add and as part of spu_mhhadd) generates a carry. Algorithm 9 and
Algorithm 10 are compatible: using Algorithm 10 with m = 8, its four-tuple output can
be simultaneously reduced modulo p̃ using Algorithm 9, and the latter’s four-tuple output
can again be used as one of the four-tuple inputs for Algorithm 10. Sloppy multiplication
modulo p̃ consists of a call to Algorithm 10 with m = 8 followed by a call to Algorithm 9.

All four outputs of Algorithm 9 have a small probability not to be unique modulo p̃ (with
only the residue classes 0, 1, and 2 modulo p̃ allowing two representations), but the outputs
are not unique modulo p. Unique representations modulo p are obtained as indicated below.
As analyzed above, each output has a small probability to be incorrect: for instance, when
2 mod p̃ is represented as 2 + p̃ = R − 1 and squared, the value S((R − 1)2) = R + 1 is
truncated to the incorrect result 1.



71

Algorithm 11 Division by 216 modulo p of a four-tuple of 128-bit integers.

Input:
{

a four-tuple (x1, x2, x3, x4) of 128-bit integers in radix 216

represented by eight 128-bit registers x[0], x[1], . . . , x[7].

Output:


a four-tuple (y1, y2, y3, y4) of 128-bit integers yi ≡ xi2−16 mod p,
for i = 1, 2, 3, 4, in radix 216 represented by eight 128-bit
registers y[0], y[1], . . . , y[7].

1: Let p[0], p[1], . . . , p[6] be 128-bit registers representing p1 = p2 = p3 = p4 = p in radix 216

2: /* Put p’s bits in the 16 most significant locations */
3: for k = 0 to 6 do
4: p[k]← spu_sl(p[k], 16)
5: ν ← spu_sl(spu_mulo(x[0], r), 16) where r is a register with r1 = r2 = r3 = r4 = 47325
6: (y[0], d)← spu_split(spu_mhhadd(p[0], ν, x[0])) /* d is zero */
7: for k = 1 to 6 do
8: (y[k], y[k − 1])← spu_split(spu_add(spu_mhhadd(p[k], ν, y[k − 1]), x[k]))
9: (y[7], y[6])← spu_split(spu_add(x[7], y[6]))

10: return y[0], y[1], . . . , y[7]

Unique Representation Modulo p

Given a four-tuple (x1, x2, x3, x4) of integers modulo p̃ in {0, 1, . . . , R−1}, a unique represen-
tation modulo p is required for each xi at the end of each step of Pollard’s rho method. Least
non-negative remainders modulo p require computation of xi mod p ∈ {0, 1, . . . , p − 1} for
i = 1, 2, 3, 4. A faster way to obtain unique representations modulo p is to simultaneously cal-
culate all xi2−16 mod p ∈ {0, 1, . . . , p−1}. This is not the same as xi mod p ∈ {0, 1, . . . , p−1},
but that is not a problem as long as the distinguishing and partition properties are properly
defined.

The computation of xi2−16 mod p is done using a single Montgomery reduction [145] iter-
ation in radix 216. Because −1

p ≡ 47325 mod 216, the value νi = −xi
p mod 216 = 47325xi mod

216 satisfies xi + νip ≡ 0 mod 216, so that yi = (xi + νip)/216 ≡ xi2−16 mod p. A unique
representation in {0, 1, . . . , p− 1} of yi modulo p is obtained by observing that

yi ≤
R− 1 + (216 − 1)p

216 < 3p,

so one of yi, yi − p, or yi − 2p is in {0, 1, . . . , p− 1}.
A 4-way SIMD algorithm to perform the calculation of (y1, y2, y3, y4) given a four-tuple

(x1, x2, x3, x4) as above is depicted in Algorithm 11 (which in practice should be replaced
by a version that uses radix 232 as opposed to radix 216 for the additions to the xi values).
The unique representation is then obtained by two applications of the 4-way SIMD modular
subtraction algorithm depicted in Algorithm 12 with ` = 4. Algorithm 12 uses masks to
avoid branching, and can simply be changed to have radix 232 inputs or output. If it is used
with bi = mi = p, then the resulting ci equals the input ai if ai < p but ci equals ai − p if
ai ≥ p, for i = 1, 2, 3, 4 simultaneously, as required.



72 SOLVING ECDLPS ON THE CELL

Pipelining

To reduce bottlenecks in the even and the odd pipelines, the implementations of all algorithms
presented here attempt to balance the two pipelines by shifting instructions between the two.
Bottlenecks are also reduced by interleaving two 4-way SIMD processes, thereby considerably
increasing overall throughput and reducing overall latency, sacrificing the (mostly irrelevant)
latency per walk of Pollard’s rho method.

Simultaneous Inversion

With r = 16 as chosen in Section 4.1 it is possible to store the data for 50 sequential in-
terleaved 4-way SIMD walks in the SPU’s Local Store, synchronizing the walks at the point
where the modular inverses are calculated. Per SPU we use the simultaneous inversion from
Section 4.4 in a nested manner, not sharing inversions among multiple SPUs as the compu-
tational advantages would be outweighed by synchronization and communication overhead.

Let zijk ∈ F∗p for 1 ≤ k ≤ 50, 1 ≤ j ≤ 2 and 1 ≤ i ≤ 4 denote the 400 elements for which
the inversions will be shared per SPU. Using 99 (partially interleaved) 4-way SIMD sloppy
multiplications modulo p̃ the four-tuple (ν1, ν2, ν3, ν4) of products νi = ∏50

k=1
∏
j=1,2 zijk mod

p̃ is calculated, for i = 1, 2, 3, 4 simultaneously, while keeping the partial products. The four
inverses ν−1

i mod p are then calculated using simultaneous inversion at the cost of 3 × (4 −
1) = 9 modular multiplications and one modular inversion (described in Section 5.2.2), using
a SIMD tree-based approach for the combination and unraveling. Finally, the individual
inverses z−1

ijk mod p are calculated (in a representation modulo p̃) at the cost of twice 99
4-way SIMD sloppy multiplications modulo p̃, by unraveling in 4-way SIMD fashion.

5.2.2 SIMD Modular Inversion on the SPU

The calculation of the modular inverse of a positive integer b in a residue class of the odd
modulus a = p is outlined by the algorithm depicted in Algorithm 13. It uses the binary
version of the Euclidean algorithm from [115] to compute an almost Montgomery inverse
b−12k mod p for some integer k, because that allows fast implementation on the SPU. The
factor 2k mod p is removed by table look-up of the value 2−k mod p (which equals 21−k mod p

2
if (21−k mod p) ∈ {0, 1, 2, . . . , p− 1} is even and (21−k mod p)+p

2 otherwise) followed by sloppy
multiplication modulo p̃ from Section 5.2.1.

Let d = gcd(a, b). Let y be a solution of by ≡ d mod a. The algorithm has invariants

ku, kv ≥ 0,
u, v > 0,

u(2ku+kvy) ≡ rd mod a,
v(2ku+kvy) ≡ sd mod a,

gcd(u, v) = d, us− vr = a,
2kuu ≤ a,
2kvv ≤ b,
r ≤ 0 < s.

(5.1)



73

Algorithm 12 Modular subtraction of two four-tuples of 32`-bit integers in radix 216

representation.

Input:



a four-tuple (m1,m2,m3,m4) of 32`-bit integer moduli in radix 232

represented by ` 128-bit registers m[0],m[1], . . . ,m[`− 1]
(typically, but not necessarily, the four moduli are the same);
two four-tuples (a1, a2, a3, a4), (b1, b2, b3, b4) of 32`-bit integers in radix 216

with 0 ≤ ai and 0 ≤ bi ≤ mi for i = 1, 2, 3, 4,
represented by 4` 128-bit registers a[0], a[1], . . . , a[2`− 1], b[0], b[1], . . . , b[2`− 1].

Output:


a four-tuple (c1, c2, c3, c4) of 32`-bit integers in radix 216 with
0 ≤ ci ≡ (ai − bi) mod mi for i = 1, 2, 3, 4,
represented by 2` 128-bit registers c[0], c[1], . . . , c[2`− 1]

1: Let β be a register with β1 = β2 = β3 = β4 = 1, for four borrows that are initially empty
2: Let γ be a register with γ1 = γ2 = γ3 = γ4 = 0, for four carries that are initially empty
3: /* Convert a and b input registers to radix 232 */
4: for k = 0 to `− 1 do
5: u[k]← spu_merge(a[2k + 1], a[2k])
6: v[k]← spu_merge(b[2k + 1], b[2k])
7: /* Do the subtraction */
8: for k = 0 to `− 1 do
9: c[k]← spu_subx(u[k], v[k], β)

10: β ← spu_genbx(u[k], v[k], β)
11: /* Set the masks for the negative ci’s, i.e., the zero βi’s */
12: µ← spu_cmpeq(β, 0) /* where 0 consists of 128 zero bits */
13: /* if βi = 0 (implying that ith mask µi is all ones), then add mi to ci */
14: for k = 0 to `− 1 do
15: ν ← spu_and(mi, µ)
16: t[k]← spu_addx(c[k], ν, γ)
17: γ ← spu_gencx(c[k], ν, γ)
18: /* Convert from radix 232 to radix 216 */
19: for k = 0 to `− 1 do
20: (c[2k + 1], c[k])← spu_split(t[k])
21: return c[0], c[1], . . . , c[2`− 1]

The values of u and v are bounded by a and b, respectively. The invariant a = us−vr ≥ s−r
bounds r and s. For ` = 4 both r and s fit in 128 bits. When the loop exits the subscript
ku + kv is bounded as follows:

2ku+kv ≤ (2kuu)(2kvv) ≤ ab.

At that point u = v = gcd(u, v) = d. If v > 1 then b is not coprime to a and the modular



74 SOLVING ECDLPS ON THE CELL

Algorithm 13 Outline of a single modular inverse computation using 4-way SIMD arith-
metic.

Input:
{
a, b, ` where a is odd, a, b > 0, and ` is the radix 232 length of a;
assume availability of a large enough table of 2−k mod a for k = 0, 1, 2, 3, . . . .

Output: “Not relatively prime,” or a residue class b−1 mod a.
1: Let (u, r, v, s) be a four-tuple of 32`-bit integers, represented in radix 232 using ` 128-bit

registers, with initial value (a, 0, b, 1).
2: Let (ku, kv) be a pair of 32-bit integers, represented using a 128-bit register, with initial

value (0, 0)
3: while true do
4: Find tu such that 2tu divides u and tv such that 2tv divides v (see text)
5: (ku, kv)← (ku + tu, kv + tv)
6: (u, r, v, s)← (u/2tu , r · 2tv , v/2tv , s · 2tu)
7: if u > v then
8: (u, r, v, s)← (u− v, r − s, v, s)
9: else if v > u then

10: (u, r, v, s)← (u, r, v − u, s− r)
11: else if v equals 1 then
12: return s · 2−(ku+kv) mod a
13: else
14: return Not relatively prime

inverse computation fails. Otherwise d = 1 and the output z = s · (2−ku−kv ) satisfies

z = zd ≡ s · (2−ku−kv )d
≡ (v2ku+kvy)2−ku−kv ≡ vy = y mod a.

At the start of every iteration at least one of u and v is odd, by (5.1). If tu and tv are picked
as large as possible, then the new u and v will both be odd, so that after the subtraction and
next iteration’s shift u+ v will be reduced by at least a factor of 2.

The trailing zero bit count of a positive integer k is the population count of k ∧ (k − 1).
Examining u and v simultaneously can therefore be done using the SPU’s population count
instruction; however, it acts only on 8-bit data, so the resulting tu and tv may not be maximal.
This increases the number of iterations performed by Algorithm 13 by about 1%: with
maximal tu and tv the number of iterations would be close to 0.706 times the bitlength of a,
as analyzed in [122]. Algorithm 13 needs on average almost 80 iterations for inversion modulo
p.

The four differences u− v, r− s, v− u, and s− r are evaluated simultaneously. The loop
is exited if neither u− v nor v−u needs a borrow. Otherwise, depending on the sign of u− v
a mask is created to build a fast branch-free selector of the parts of (u, r, v, s) that must
be updated. This, and the fact that we know that the inputs are co-prime, avoids the four
branches from Algorithm 13. The implementation does not take advantage of the decreasing



75

sizes of u and v or of the initial small sizes of r and s, but treats them all as 32`-bit integers.
Nevertheless, it is quite efficient because only 4-way SIMD operations are carried out on
the four-tuple (u, r, v, s). For ` = 4 it is about 8.5 times faster than the implementation
from [108].

5.3 Timings and Solution of the Prime Field ECDLP
With parameters as selected above, the clock cycle counts for the various operations are listed
in Table 5.1. It lists both the number of clock cycles used by a single operation for eight walks
in parallel (organized as two interleaved 4-way SIMD processes), but also the artificial number
of clock cycles used per operation and iteration in the third and fifth column, respectively:
artificial because a single sloppy multiplication modulo p̃ for one walk is not completed in 54
clock cycles, but 8× 54 ≈ 430 clock cycles suffice to do eight multiplications, one for each of
eight walks.

Table 5.1 refers only to the cost of regular point addition, as iterations do not perform
doublings: this saves code (and thus space) and makes the main inner-loop of the parallel
walks branch-free at a negligible risk to drop off the curve (as argued in Section 4.2). The
“Miscellaneous” category accounts for the retrieval of the fi’s, data-shuffling, distinguished
point checking, and all other overheads including occasional branching.

At 3.2GHz, an SPU performs about seven million iterations per second. With a 24-bit
distinguishing property (of the unique representation of x2−16 mod p ∈ {0, 1, 2, . . . , p− 1}), a
single PS3 (six SPUs) produced on average five distinguished points every two seconds, i.e.,
at most 160-bytes per second in uncompressed format. The ethernet connecting a server with
the 215 PS3s could easily handle the required bandwidth.

Approximately 8.5×1016 elliptic curve additions were carried out to find that mg = h for

m = 312521636014772477161767351856699.

This number of elliptic curve additions is close to the number
√

πq
2 ≈ 8.36×1016 of iterations

expected based on the birthday paradox. It is also close to the number of iterations expected
based on Eq. (4.1), namely

√
πq

2(1− 1
16 ) ≈ 8.64 × 1016, which takes into account that we used

a 16-adding walks. This effort translates into more than 1018 additions and multiplications
modulo the 112-bit prime number p (or, most of the time, its 128-bit multiple p̃ = 2128 − 3),
and thus to well over 260 operations on 32-bit or 64-bit integers. With our latest software
the calculation would have taken less than four months. Because earlier versions were less
efficient, the actual calculation took from January 13 to July 8, 2009.

Slightly more than five billion distinguished points were collected. All distinguished points
received were correct, indicating that none of the 5 × 1017 sloppy reductions modulo p̃ was
incorrect (each had probability argued to be less than 2−128 ≈ 10−38.53 to be incorrect, see
Section 5.2.1), and that none of the walks dropped off the curve due to an overlooked doubling
(which too would have happened with negligible probability, see Section 4.2) – or that if such
mishaps occurred they magically cancelled each others’ effect (a possibility that can safely
be ruled out).



76 SOLVING ECDLPS ON THE CELL

Table 5.1: Average (Avg) clock cycle count for the operations (op) carried out during an iteration
(it) of Pollard’s rho method on a single SPU that performs 50 sequential processes, each consisting of
two interleaved 4-way SIMD iterations (computing on 8 walks), for a total of 400 simultaneous walks
per SPU.

Operation Avg #cycles Avg #cycles Op Avg #cycles
(sloppy modulus p̃ = 2128 − 3, per 2× 4-SIMD per op per it per it
modulus p = p̃

11·6949) ops (8 walks) (1 walk) (1 walk)
Sloppy multiplication modulo p̃ 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)

Modular subtraction 40 5 6 30(40 even, 24 odd)
Modular inversion n/a 4941 1

400 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68
Throughput (average #cycles per iteration for a single walk) 456
Latency (average #cycles per iteration for 400 simultaneous walks per SPU) 182 · 103

5.4 An Approach to Solve ECC2K-130

In this second part of the chapter an approach is presented to solve an ECDLP where the
elliptic curve is a so-called Koblitz curve [125] over the finite field F2131 . This setting is
different from the rest of this thesis where only elliptic curves over prime fields (E(Fp) with
p > 3 prime) are considered. More specifically, the target curve is defined in the Certicom
challenge [54], a list of curves and parameters provided by Certicom as a challenge to solve,
and is denoted as ECC2K-130.

The Cell implementation discussed here is one of the two approaches to perform the finite
field arithmetic which are described in [40]. Note that [40] zooms in on Section 6 of [7]
and describes the implementation of the parallel Pollard rho algorithm for the Synergistic
Processor Elements of the Cell architecture in more detail. In [40] a bit-sliced [26] approach
and a non-bitsliced (standard) approach are studied in the setting of implementing the parallel
Pollard rho method when solving the ECDLP for ECC2K-130. As expected, since a bitsliced
approach fits a computer more naturally, we found that the bitsliced approach outperforms
the “standard” approach. But the speedup for the bitsliced approach was less than we had
anticipated. The details of this standard (non-bitsliced) approach are given in this section.

Many optimization techniques for the non-bitsliced version do not require independent
parallel computations (batching) and are therefore not only relevant in the context of crypt-
analytical applications but can also be used to accelerate cryptographic schemes in practice.
To the best of our knowledge this is the first work to describe an implementation of high-speed
binary-field arithmetic for the Cell.



77

5.4.1 ECC2K-130 and Choice of Iteration Function

The specific ECDLP addressed in this paper is given in the Certicom challenge list [54] as
challenge ECC2K-130. The elliptic curve is a Koblitz curve E : y2 + xy = x3 + 1 over the
finite field F2131 ; the two given points P and Q have order l, where l is a 129-bit prime. The
challenge is to find an integer k such that Q = [k]P . Here we will only give the definition of
distinguished points and the iteration function used in our implementation. For a detailed
description please refer to [7], for a discussion and comparison to other possible choices also
see [6].

Let us denote by HW(x) the Hamming weight of an integer x. We define a point
Ri ∈ E(F2131) as distinguished if the Hamming weight of the x-coordinate in normal ba-
sis representation HW(x(Ri)) is smaller than or equal to 34. Our iteration function is defined
as

Ri+1 = f(Ri) = σj(Ri) +Ri,

where σ is the Frobenius endomorphism and

j = ((HW(xRi)/2) (mod 8)) + 3.

Using a restricted set of Frobenius powers is not new and was used in the computation of
the smaller ECDLPs over Koblitz by Harley [99]. Restricting j to eight values has some
advantages for hardware implementations and this choice of j makes sure to avoid entering
small fruitless cycles (see for more details [7]).

The restriction of σ to 〈P 〉 corresponds to scalar multiplication with some integer r. For
an input Ri = aiP + biQ the output of f will be Ri+1 = (rjai + ai)P + (rjbi + bi)Q. When a
collision has been detected, it is possible to recompute the two corresponding iterations and
update the coefficients ai and bi following this rule. This gives the coefficients to compute
the discrete logarithm.

5.4.2 Computing the Iteration Function

Computing the iteration function requires one application of σj and one elliptic-curve addi-
tion. Furthermore we need to convert the x-coordinate of the resulting point to normal basis,
if a polynomial-basis representation is used, and check whether it is a distinguished point.

Many applications use so-called inversion-free coordinate systems to represent points on
elliptic curves (see, e.g., [98, Section 3.2]) to speed up the computation of point multipli-
cations. These coordinate systems use a redundant representation for points. Identifying
distinguished points requires a unique representation, which is why we use the affine Weier-
strass representation to represent points on the elliptic curve. Elliptic-curve addition in affine
Weierstrass coordinates on the given elliptic curve requires two multiplications, one squar-
ing, six additions, and a single inversion in F2131 (see, e.g. [19]). Application of σj means
computing the 2j-th powers of the x- and the y-coordinate. In total, one iteration takes two
multiplications, a single squaring, two computations of the form r2m (where r is an integer,
see the previous subsection), with 3 ≤ m ≤ 10, a single inversion, a single conversion to



78 SOLVING ECDLPS ON THE CELL

normal-basis, and a single Hamming-weight computation. In the following we will refer to
computations of the form r2m as m-squaring.

5.4.3 Polynomial or Normal Basis?

Another choice to make for both bitsliced and non-bitsliced implementations is the represen-
tation of elements of F2131 : Polynomial bases are of the form (1, z, z2, z3, . . . , z130), so the
basis elements are increasing powers of some element z ∈ F2131 . Normal bases are of the form
(α, α2, α4, . . . , α2130), so each basis element is the square of the previous one.

Performing arithmetic in normal-basis representation has the advantage that squaring el-
ements is just a rotation of coefficients. Furthermore we do not need any basis transformation
before computing the Hamming weight in normal basis. On the other hand, implementations
of multiplications in normal basis are widely believed to be much less efficient than those of
multiplications in polynomial basis.

In [202], von zur Gathen, Shokrollahi and Shokrollahi proposed an efficient method to
multiply elements in type-II normal basis representation. This approach is used in [7] and op-
timized in [23]. The bitsliced implementation uses this multiplier while the standard approach
uses polynomial arithmetic as outlined in the next section.

5.5 The Non-Bitsliced Implementation
For the non-bitsliced implementation, we decided not to implement arithmetic in a normal-
basis representation. The main reason is that the required permutations, splitting and re-
versing of the bits, as required for the conversions in the Shokrollahi multiplication algorithm
(see for more details [7, 23, 202]) are too expensive to outweigh the gain of having no basis
change and faster m-squarings.

The non-bitsliced implementation uses a polynomial-basis representation of elements in
F2131 ∼= F2[z]/(z131+z13+z2+z+1). Field elements in this basis can be represented using 131
bits. On the SPE architecture this is achieved by using two 128-bit registers, one containing
the three most significant bits. As described in Section 5.4.2 the functionality of addition,
multiplication, squaring and inversion are required to implement the iteration function. Since
the distinguished-point property is defined on points in normal basis, a basis change from
polynomial to normal basis is required as well. In this section the various implementation
decisions for the different (field-arithmetic) operations are explained.

The implementation of addition is trivial and requires two XOR instructions. These are
instructions going to the even pipeline; each of them can be dispatched together with one in-
struction going to the odd pipeline. The computation of the Hamming weight is implemented
using the CNTB instruction, which counts the number of ones per byte for all 16 bytes of a
128-bit vector concurrently, and the SUMB instruction, which sums the four bytes of each of
the four 32-bit parts of the 128-bit input. The computation of the Hamming weight requires
four cycles.

In order to eliminate (or reduce) stalls due to data dependencies we interleave different
iterations. Our experiments show that interleaving a maximum of eight iterations maximizes



79

Algorithm 14 The reduction algorithm for the ECC2K-130 challenge used in the non-
bitsliced version. The algorithm is optimized for architectures with 128-bit registers.
Input: C = A · B = a + b · z128 + c · z256, such that A,B ∈ F2[z]/(z131 + z13 + z2 + z + 1)

and a, b, c are 128-bit strings representing polynomial values.
Output: D = C mod (z131 + z13 + z2 + z + 1).
1: c← (c� 109) + (b� 19)
2: b← b AND (219 − 1)
3: c← c+ (c� 1) + (c� 2) + (c� 13)
4: a← a+ (c� 16)
5: b← b+ (c� 112)
6: x← (b� 3)
7: b← b AND 7
8: a← a+ x+ (x� 1) + (x� 2) + (x� 13)
9: return (D = a+ b · z128)

performance. We process 32 of such batches in parallel, computing on 256 iterations in order
to reduce the cost of the inversion (see Section 4.4). Every iteration all 256 points need to be
inspected if they satisfy the distinguished point property. Hence, all 256 points are converted
to normal basis. We keep track of the lowest Hamming weight of the x-coordinate among
these points. This can be done in a branch-free way eliminating the need for 256 expensive
branches (to test if the Hamming weight is ≤ 34). Then, before performing the simultaneous
inversion, only one branch is used to check if one of the points is distinguished (by looking at
the lowest Hamming weight of the 256 concurrent points). If one or more distinguished points
are found, we have to process all 256 points again to determine and output the distinguished
points. Note that this happens only very infrequently (since the probability that a point is
distinguished is 2−25.27 [7]).

5.5.1 Multiplication

If two polynomials A,B ∈ F2[z]/(z131+z13+z2+z+1) are multiplied in a straightforward way
using 4-bit lookup tables (containing the multiples from 0 up to 24−1), the table entries would
be 134-bit wide. Storing and accumulating these entries would require operations (SHIFT and
XOR) on two 128-bit limbs. To avoid computing on two limbs all the time we describe a method
which splits the 131-bit polynomials A and B in such a way that most intermediate values
fit in a single 128-bit limb. With 0 ≤ A,B < 2131 we denote that the polynomials A and
B can be represented using 131 bits. Let us write A and B as A = Al + Ah · z128 and
B = Bl +Bh · z128 respectively with 0 ≤ Al, Bl < 2128 and 0 ≤ Ah, Bh < 23.

Split A as
A = Al +Ah · z128 = Ãl + Ãh · z121

with 0 ≤ Ãl < 2121 and 0 ≤ Ãh < 210. This allows us to build a 4-bit lookup table from Ãl
whose entries fit in 124 bits (a single 128-bit limb). Furthermore, the product of Ãl and an
8-bit part of B fits in a single 128-bit limb. While accumulating such intermediate results



80 SOLVING ECDLPS ON THE CELL

we only need byte-shift instructions (which can be computed efficiently using the shuffle
instruction on the Cell). In this way we calculate the product Ãl ·B = Ãl · (Bl +Bh · z128).

When calculating Ãh ·B we split B as

B = Bl +Bh · z128 = B̃l + B̃h · z15

with 0 ≤ B̃l < 215 and 0 ≤ B̃h < 2116. Then we calculate Ãh · B̃l and Ãh · B̃h using two 2-bit
lookup tables from B̃l and B̃h. We choose to split 15 bits from B in order to facilitate the
accumulation of partial products in

C = A ·B
= (Ãl + Ãh · z121) ·B
= Ãl · (Bl +Bh · z128) + Ãh · (B̃l + B̃h · z15) · z121

= Ãl ·Bl + Ãl ·Bh · z128 + Ãh · B̃l · z121 + Ãh · B̃h · z136

since 121 + 15 = 136 which is divisible by 8 allowing fast byte-oriented arithmetic.
The reduction can be done efficiently by taking the form of the irreducible polynomial

into account. Given the result C from a multiplication or squaring, C = A ·B = Ch ·z131 +Cl,
the reduction is calculated using the trivial observation that

Ch · z131 + Cl ≡ Cl + (z13 + z2 + z1 + 1)Ch mod (z131 + z13 + z2 + z + 1).

Algorithm 14 shows the reduction algorithm optimized for architectures which can operate
on 128-bit operands. This reduction requires ten XOR, 11 SHIFT and two AND instructions.
On the SPU architecture the actual number of required SHIFT instructions is 15 since the
bit-shifting instructions only support shifting up to seven bits (in 4-way 32-bit SIMD fashion).
Larger bit-shifts are implemented combining both a byte- and a bit-shift instruction. When
interleaving two independent modular multiplication computations, parts of the reduction
and the multiplication of both calculations are interleaved to reduce latencies, save some
instructions and take full advantage of the available two pipelines.

When doing more than one multiplication containing the same operand, we can save
some operations. By doing the simultaneous inversion in a binary-tree style we often have to
compute the products A ·B and A′ ·B. In this case, we can use the 2-bit lookup tables from
B̃l and B̃h. Using these optimizations in the simultaneous inversion a single multiplication
plus reduction takes 149 cycles averaged over the five multiplications required per iteration
(when interleaving two multiplications to increase throughput).

5.5.2 Squaring

The modular squaring is implemented by inserting a zero bit between each two consecutive
bits of the binary representation of the input (to compute the squaring) and next reduce the
result as described in Algorithm 14. The squaring can be efficiently implemented using the
SHUFFLE and SHIFT instructions. Just as with the multiplication two squaring computations
are interleaved to reduce latencies. A single squaring takes 34 cycles.



81

5.5.3 Basis Conversion and m-Squaring

The repeated Frobenius map σj requires at least six and at most 20 squarings to compute
r2m for 3 ≤ m ≤ 10 for both the x- and y-coordinate (see Section 5.4.2), when computed as
a series of single squarings. This can be computed in at most 20× 34 = 680 cycles ignoring
loop overhead using our single squaring implementation.

To reduce this number a time-memory tradeoff technique is used. We precompute the
values

T [k][j][i0 + 2i1 + 4i2 + 8i3] = (i0 · z4j + i1 · z4j+1 + i2 · z4j+2 + i3 · z4j+3)23+k
,

for 0 ≤ k ≤ 7, 0 ≤ j ≤ 32, 0 ≤ i0, i1, i2, i3 ≤ 1. We have T [k][j][i] ∈ F2[z]/(z131 + z13 +
z2 + z + 1). These precomputed values are stored in two tables, for both limbs needed to
represent the number, of 8 × 33 × 16 elements of 128-bit each. This table requires 132 KB
which is more than half of the available space of the local store.

Given a coordinate a of an elliptic-curve point and an integer 0 ≤ m ≤ 7 the computation
of the m-squaring a23+m can be computed as

32∑
j=0

T [m][j][b(a/24j)c mod 24].

This requires 2 × 33 LOAD and 2 × 32 XOR instructions, due to the use of two tables, plus
the calculation of the appropriate address to load from. Our assembly implementation of
the m-squaring function requires 96 cycles, this is 1.06 and 3.54 times faster compared to
performing three (3× 34 cycles) and ten (10× 34 cycles) sequential squarings respectively.

For the basis conversion we used a similar time-memory tradeoff technique. We enlarged
the two tables by adding 1×33×16 elements required to compute the basis conversion. This
allows to use the m-squaring implementation, calling the function with an index to these
extra elements, saving code size. For the computation of the basis conversion we proceed
exactly the same as for the m-squarings, only the initialization of the corresponding table
elements is different.

5.5.4 Modular Inversion

From Fermat’s little theorem it follows that the modular inverse of a ∈ F2131 can be obtained
by computing a2131−2. This can be implemented using 8 multiplications, 6m-squarings (using
m ∈ {2, 4, 8, 16, 32, 65}) and 3 squarings. When processing many iterations in parallel the
inversion cost per iteration is small compared to the other main operations such as multipli-
cation. Considering this, and due to code-size considerations, we calculate the inversion using
the fast routines we already have at our disposal: multiplication, squaring and m-squaring,
for 3 ≤ m ≤ 10. In total the inversion is implemented using 8 multiplications, 14 m-squarings
and 7 squarings. All these operations depend on each other; hence, the interleaved (faster)
implementations cannot be used. Our implementation of the inversion requires 3784 cycles.

We also implemented the binary extended greatest common divisor [190] to compute the
inverse. This latter approach turned out to be roughly 2.1 times slower.



82 SOLVING ECDLPS ON THE CELL

Table 5.2: Cycle counts per input for all operations on one SPE of a 3192 MHz Cell Broadband
Engine. The value B in the last row denotes the batch size for Montgomery inversions.

Non-bitsliced, Bitsliced, Bitsliced,
polynomial basis polynomial basis normal basis

Squaring 34 3.164 2.563
m-squaring 96 m× 3.164 2.563
Conditional m-squaring — m× 3.164 + 4.047 3.539
Multiplication 149 117.914 130.102
Addition 2 3.844
Inversion 3784 1354.102 1063.531
Conversion to normal basis 96 29.281 —
Hamming-weight computation 4 6.594

Pollard’s rho iteration 1148 889.406 788.625 (B = 14)
(B = 256) (B = 12) 745.531 (B = 512)

5.5.5 Results

To the best of our knowledge there were no previous attempts to implement fast binary-
field arithmetic on the Cell. The cycle counts for all field operations are summarized in
Table 5.2 for both approaches. Our experiments showed that on the Cell processor the
bitsliced implementation of highly parallel binary-field arithmetic is more efficient than the
standard (non-bitsliced) implementation. For applications that do not process large batches
of different independent computations the non-bitsliced approach remains of interest.

Using the bitsliced normal-basis implementation—which uses DMA transfers to main
memory to support a batch size of 512 for Montgomery inversions—on all six SPUs of a Sony
Playstation 3 in parallel, we can compute 25.57 million iterations per second. The expected
total number of iterations required to solve the ECDLP given in the ECC2K-130 challenge
is 260.9 (see [7]). This number of iterations can be computed in 2,654 Playstation 3 years.

5.6 Conclusion

In the first part of this chapter we developed SIMD multiplication modulo primes of the
form 232`±m

c for small `,m, c ∈ Z>0 that achieves a speedup of approximately 30% over more
traditional methods. It uses a redundant representation modulo 232` ±m and a truncation-
based reduction method, whose probability to produce an incorrect result has been argued to
be very small. The method is suitable for error-tolerant applications, such as cryptanalytic
ones.

As an application, we have shown the cryptanalytic potential of a commonly available toy
by using a cluster of PlayStation 3 game consoles to solve an elliptic curve discrete logarithm
problem over a 112-bit prime field. The runtimes and their extrapolations provide upper
bounds for the effort required to solve larger instances of the same problem using a larger



83

network of game consoles. Such a network is in principle accessible using programs such as
BOINC [3]. Although surreptitious application of such programs would not be difficult to
arrange for any miscreant who desires to do so, the effort required to solve a “practically
relevant” problem remains staggering.

In the second part of this chapter we have outlined a novel approach to implement fast
(non-bitsliced) binary-field arithmetic. Although it turned out that a bitsliced approach to
implement the arithmetic is faster in practice for this setting. The standard approach (unlike
the bitsliced approach) can be used to speed up arithmetic in single-stream settings such as
cryptography.



84 SOLVING ECDLPS ON THE CELL



Chapter6
Efficient SIMD arithmetic modulo a
Mersenne number

Numbers of a special form often allow faster modular arithmetic operations than generic
moduli. This is exploited in a variety of applications and has led to a substantial body of
literature on the subject of fast special arithmetic. Speeding up calculations using special
moduli was already proposed in the mid-1960s by Merrill [142] in the setting of residue number
systems (RNS) [88]. Other applications range from speeding up fast Fourier transform based
multiplication [64], enhancing the performance of digital signal processing [69, 187, 195], to
faster elliptic curve cryptography (ECC; [124,143]), such as in [12].

Another application area of special moduli is in factorization attempts of so-called Cun-
ningham numbers, numbers of the form bn±1 for b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers.
This long term factorization project, originally reported in the Cunningham tables [66] and
still continuing in [52], has a long and distinguished record of inspiring algorithmic devel-
opments and large-scale computational projects [48, 49, 130, 134, 149, 163]. Factorizations
from [52] with b = 2 are used in formal correctness proofs of floating point division meth-
ods [101]. Several of these developments [133] turned out to be applicable beyond special form
moduli, and are relevant for security assessment of various common public-key cryptosystems.

This chapter concerns efficient arithmetic modulo a Mersenne number, an integer of the
form 2M − 1. These numbers, and a larger family of numbers called generalized Mersenne
numbers [8,58,188], have found many arithmetic applications ranging from number theoretic
transforms [44] to cryptography. In the latter they are used to run calculations concurrently
using RNS [9] or to improve the speed of finite field arithmetic in ECC based schemes [188,
199]. The great internet Mersenne prime search project [89] is based on an implementation
of the Lucas-Lehmer primality test [129, 139] for Mersenne numbers in the many-million-bit
range. Hence, efficient arithmetic modulo a Mersenne number is a widely studied subject,
not just of interest in its own right but with many applications.

Our interest in arithmetic modulo a Mersenne number was triggered by a potential (spe-
cial) number field sieve (NFS) project [133], for which we need a list of composites dividing

85



86 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

2M − 1 for exponents M in the range from 1000 to 1200. The Cunningham tables contain
over 20 composite Mersenne numbers (or composite factors thereof) in the desired range that
have not been fully factored yet. It may be expected that some of these composites are not
suitable candidates for our list because they can be factored faster using the elliptic curve
method (ECM) for integer factorization [136] than by means of special NFS (SNFS). The
only way to find out whether ECM is indeed preferable, is by subjecting each candidate to
an extensive ECM effort (which, though it may be substantial, is small compared to the
effort that would be required by SNFS): only candidates that ECM failed to factor should be
included in the list.

The efficiency of ECM factoring attempts relies on the efficiency of integer arithmetic
modulo the number being factored. Given the need to do extensive ECM pre-testing for
over 20 composite Mersenne numbers, we developed arithmetic operations modulo a Mersenne
number suitable for implementation of ECM on the platform that we intended to use for the
calculations: the Cell processor as found in the Sony PlayStation 3 (PS3) game console.
Because each ECM effort consists of a large number of independent attempts that can be
executed in single instruction multiple data (SIMD) mode and because each core of the
Cell processor can be interpreted as a 4-way SIMD environment, our arithmetic modulo a
Mersenne number is geared towards SIMD implementation.

This chapter is published as [39].

6.1 Arithmetic Modulo 2M − 1 on the SPE

In this section we describe the SPE-arithmetic that we developed for arithmetic modulo
N = 2M − 1, for M in the range from 1000 to 1200 (allowing larger values as well). Notice
that the following description can easily be carried over to numbers of the form 2M + 1.
Assume that M < 13 · 96 − 2 = 1246 (larger M -values can be accommodated by putting
M < u · v − 2 with v · (2u−1)2 < 231). Our approach aims to optimize overall throughput
as opposed to minimize per process latency. Two variants are presented: a first approach
where addition and subtraction are fast at the cost of a radix conversion before and after the
multiplication, and an alternative approach where radix conversions are avoided at the cost
of slower addition and subtraction. This second variant turns out to be faster for our ECM
application. In applications with a different balance between the various operations the first
approach could be preferable, so it is described as well. All our methods are particularly suited
to SPE-implementation, but the approach may have broader applicability. See Section 2.1
for the notation of the integer representation.

6.1.1 Related work

In [62] an SPE implementation is presented using arithmetic modulo the special prime
2255 − 19 introduced in [12]. The SPE-performance of generic versus generalized Mersenne
moduli is compared in [30] (see Chapter 3). SPE-arithmetic for moduli in the 200-bit range
is presented in [17,56]; on PS3s the former is more than twice faster than the latter. Different



87

approaches to implement arithmetic over a binary extension field on SPEs are stated in [40]
(see Section 5.4).

Our usage of a small radix to avoid carries (cf. below) is not new [64], [122, Section
4.6], [17]. In [17] signed radix-213 representation is used along with the SPE’s 16× 16→ 32-
bit multiplication instruction to develop fast multiplication modulo 195-bit moduli. Each
addition done during a single schoolbook multiplication is carry-less, as for polynomial mul-
tiplication, requiring normalization to radix-213 representation only at the end of the big
multiplication.

6.1.2 Representation of 4-tuples of Integers Modulo N

Integers are represented similarly as presented in Section 3.3.1. Each 128-bit SPE register
is interpreted as being partitioned into four 32-bit words. With s 128-bit registers thought
to be stacked on top of each other, where 32s ≥ M , four different integers modulo N can
be represented using four disjoint parallel columns, each consisting of s words: denoting the
ith word of the jth register by wij for i ∈ {1, 2, 3, 4} and j = 0, 1, . . . , s − 1, the sequence
(wij)s−1

j=0 is interpreted as the radix-232 representation of the 32s-bit integer ∑s−1
j=0 wij232i.

More generally, for any t ≤ 32 of one’s choice, the sequence (wij)s−1
j=0 may represent the integer∑s−1

j=0 wij2ti whose value depends on the interpretation of the words wij : as an unnormalized
radix-2t representation if the wij are interpreted as non-negative integers (normalized and
unique if wij < 2t as well), and as a signed k-bit radix-2t representation, for some k ≤ 32, if
the wij are interpreted as signed k-bit integers.

It should be understood that the integer operations described below are carried out in
4-way SIMD fashion on the SPE.

6.1.3 Addition and Subtraction Modulo N

Addition and subtraction in 4-way SIMD fashion on a pair of 4-tuples of integers modulo N
in radix-2t representation, with each 4-tuple represented by a stack of s registers of 128-bits
(where ts ≥ M), is done by applying s additions or subtractions to the matching pairs of
registers (one from each stack), combined with a moderate number of carry propagations.
Since N is Mersenne, the reduction modulo N (when needed) usually affects only two of the
radix-2t digits. More digits are affected with probability 2−1−t−(M mod t), in which case it
causes a slight stall for the other three calculations in the 4-tuple.

For t = 32 the SPE’s built-in carry generation instructions are used. For smaller t-values
more work needs to be done. We describe the calculation of c = a + b mod N and d = a −
b mod N (so-called addition-subtraction of a and b) given the signed radix-213 representations
a = ∑95

j=0 aj213j and b = ∑95
j=0 bj213j (cf. Step 5 in Section 6.1.7). Note that −212 ≤ aj , bj <

212. The following 5 steps are carried out:

1. Let a′j = aj + 212 for 0 ≤ j < 96. Now all 0 ≤ a′j < 213.

2. Set cj = a′j + bj and dj = a′j − bj for 0 ≤ j < 96. We have −212 ≤ cj < 213 + 212 − 1
and −212 + 1 ≤ dj < 213 + 212.



88 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

3. Now we can propagate the carries.

• Initialize the carry τ as 0.

• For j = 0 to 95 in succession do the following

• first replace τ by τ + cj ,

• next replace cj by τ mod 213 (so that 0 ≤ cj < 213),

• and finally replace τ by bτ/213c (which can be negative).

The resulting τ is a carry corresponding to τ · 213·96; modulo N this carry is taken care
of by adding τ · 2α to cβ (for γ = 13 · 96 −M , β = bγ/13c and α = γ − 13β ∈ [0, 12])
followed by a few more carry propagations. If there is still a carry, which occurs rarely,
use a more expensive function.

4. Repeat the previous step with c replaced by d.

5. Set cj = cj − 212 and dj = dj − 212 for 0 ≤ j < 96 (subtracting the value in step 1).

Steps 1, 2, and 5 allow arbitrary parallelization. Table 6.1 lists SPE clock cycle counts for the
addition operations modulo 21193 − 1: it can be seen that for signed radix-213 representation
they are about twice as slow as for radix-232 representation.

6.1.4 Multiplication Modulo N using Radix Conversions

Given a pair of 4-tuples of M -bit integers, the four pairwise products result in a 4-tuple of
2M -bit integers. The four reductions modulo N can in principle be done by means of a few of
the above 4-tuple additions and subtractions modulo N . Here we present our first approach
that uses two different radix representations, thereby making it possible to take advantage of
the fast radix-232 addition and subtraction modulo N . In Section 6.1.6 another approach is
described that is based on signed radix-213 representation.

The multiplication modulo N of two M -bit integers a and b given by their radix-232

representations, each using 39 words of 32 bits, proceeds in three steps. The steps are:

1. conversion of inputs a and b to signed radix-213 representation;

2. carry-less calculation of the 2M -bit product a·b in signed 32-bit radix-213 representation;

3. reduction modulo N and conversion to radix-232 representation of the 2M -bit product
a · b, resulting in c = a · b mod N ∈ {0, 1, . . . , N − 1}.

The following sections describe the steps in more detail.



89

Conversion of Inputs to Signed Radix-213 Representation

Given the radix-232 representation of the precomputed constant C0 = 212 ·
∑95
j=0 213j , first

calculate the radix-232 representation of a + C0, in the usual way requiring carries. Next,
using masks and shifts, extract the radix-213 representation (ã)95

j=0 of a + C0, and finally
subtract C0 again by calculating aj = ãj − 212, for j = 0, 1, . . . , 95 (because a96 = 0 for our
choice of M , it is dropped).

This approach (first adding 212 ·
∑95
j=0 213j and finally subtracting this value from the

individual digits aj) is used because it allows the last two steps to run in parallel. Furthermore
it can be run twice as fast (while requiring fewer registers) if two 13-bit chunks are packed into
a single 32-bit word. Applying the same method to b, we find signed radix-213 representations
of the inputs, below regarded as polynomials

Pa(X) =
95∑
j=0

ajX
j , Pb(X) =

95∑
j=0

bjX
j ∈ Z[X]

with Pa(213) = a and Pb(213) = b.

Carry-less Calculation of the 2M-bit Product in Signed 32-bit Radix-213 Repre-
sentation

The product polynomial P (X) = Pa(X)Pb(X) = ∑190
j=0 pjX

j corresponds to the carry-less
product calculation of a and b as represented by (aj)95

j=0 and (bj)95
j=0, respectively. Its coef-

ficients satisfy |pj | ≤ 96 · (212)2 < 231, which allows computation modulo 232, resulting in a
signed 32-bit radix-213 representation (pj)190

j=0 of the product a · b = P (213). If M < 13 · w
with w < 96, the degree of P (X) will be at most 2w − 2 < 190, which leads to savings here
and in the description below.

The polynomial P (X) is calculated using three levels of Karatsuba multiplication [116]
(but see Section 6.1.6 for the possibility to use more levels), resulting in 27 pairs of polyno-
mials (P (k)

a (X), P (k)
b (X)) of degree ≤ 11, for k = 1, 2, . . . , 27 (in the more general case where

M < u · v− 2 we would use 16−u levels). This leads to 27 independent polynomial multipli-
cations Q(k)(X) = P

(k)
a (X)P (k)

b (X), done using carry-less schoolbook multiplications. The
polynomial P (X) is then obtained by carry-less additions and subtractions of the appropri-
ate Q(k)(X)’s.

Reduction Modulo N and Conversion to Radix-232 Representation of the 2M-bit
Product

Given a signed 32-bit radix-213 representation (pj)190
j=0 of the 2M -bit product a ·b, regarded as

the polynomial P (X) = ∑190
j=0 pjX

j with P (213) = a · b, the radix-232 representation (ci)38
i=0

of the M -bit number c ≡ P (213) mod N is calculated. We use the following precomputed
constants:



90 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

• C1 ≡ −231 ·
190∑
j=0

213j mod N, 0 ≤ C1 < N . This constant allows, in a similar fashion

as when doing modular addition and subtraction, to work with positive coefficients in
step 1 below resulting in parallelization possibilities.

• Integers kj , lj and mj such that

13j = mjM + 32lj + kj
with 0 ≤ 32lj + kj < M and 0 ≤ kj < 32,

for 0 ≤ j < 191. Note that mj ∈ {0, 1, 2} because M > 827 (and M < 1246). These
constants are used to split the positive coefficients accordingly (see step 2 below).

Given these values, the following four steps are carried out, the correctness of which easily
follows by inspection:

1. For 0 ≤ j < 191, compute p̃j = pj + 231 (this allows arbitrary parallelization), so that
0 ≤ p̃j < 232. As a result190∑

j=0
p̃j · 213j

+ C1 ≡ P (213) mod N.

2. For 0 ≤ j < 191, left shift p̃j over kj bits and right shift p̃j over 32− kj bits, to obtain
dj , ej such that

p̃j · 213j ≡ dj · 232lj + ej · 232(lj+1) mod N

(this again allows arbitrary parallelization).

3. Let v0 = 0. For 0 ≤ i < 39, let

ui =
∑

j s.t. lj=i
dj +

∑
j s.t. lj+1=i

ej , (6.1)

(where the indices j can be precomputed) and compute

c̃i = (vi + ui) mod 232 ∈ {0, 1, . . . , 232 − 1},
vi+1 = b(vi + ui)/232c

(this allows partial parallelization). Finally, compute c̃39 = v39 +
∑

j s.t. lj=38
ej .

Using Eq. (6.1), reduction modulo N is effected by disregarding mj (since 2mjM ≡ 1
(mod 2M − 1)) and grouping together identical dj-values and identical ej-values. As a
result, (c̃i)39

i=0 is the radix-232 representation of a number c̃ with c̃+ C1 ≡ c mod N .

4. Calculate c ≡ c̃+C1 mod N . Although the numbers are slightly bigger (c̃ is one 32-bit
limb too large), this calculation is in principle the same as regular addition modulo N .



91

6.1.5 Optimizations

Swapping Even for Odd Instructions

Modular arithmetic mostly relies on the SPE’s arithmetic instructions, which are even pipeline
instructions. Following the approach from [43, 157] one may replace an even instruction by
one or more odd ones with the same effect. Although this may increase the latency for the
functionality of each replaced even instruction and the number of instructions, balancing the
counts of even and odd instructions often increases the throughput. This method was used
throughout our implementation. Examples are sketched below.

Modular Squaring

When squaring polynomials of degree at most 11, half of the mixed products, i.e., 122−12
2 = 66

multiplications, can be saved by doubling their resulting 21 sums. Of these sums, the eleven
for coefficients of odd degree can be doubled for free during the conversion to radix-232, by
using for odd j precomputed integers k̃j , l̃j , and m̃j such that

13j + 1 = m̃jM + 32l̃j + k̃j
with 0 ≤ 32l̃j + k̃j < M and 0 ≤ k̃j < 32,

instead of kj , lj , and mj , as defined earlier. The ten remaining sums need to be doubled
before they are added to the corresponding squared input coefficient. Let V = {v0, v1, v2, v3}
be a 128-bit vector and vi 32-bit words. Doubling the values in V can using a single 4-way
32-bit shift instruction: W = V � 1 = {v0 � 1, v1 � 1, v2 � 1, v3 � 1}. However, a
doubling can also be performed by four odd pipeline instructions.

• Shifting the full 128-bit quadword one bit to the left and store the result in V ′. Now the
most significant bit of the V ′i , for i ∈ 1, 2, 3, has been shifted into the least significant
byte of V ′i−1.

• To correct this use the shuffle instruction to extract the least significant byte from each
quadword Vi and store these in W (setting the remainder of the bytes to zero).

• Shift the full 128-bit quadword W one position to the left (now the least significant
bytes are correct).

• Use the shuffle instruction to get the correct bytes from W and V ′ to construct the
desired output.

Note that computing two doublings only six instructions are required since the second and
third step can shuffle and shift the eight least significant bytes from both quadwords. The
ten remaining doublings could thus be squeezed in the odd pipeline, including all load and
storage overheads (all 21 doublings would not have fit in the odd pipeline). As a result, all
doublings required for squaring can be computed at no extra cost by calculating this using
odd instructions.



92 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

Conversion to Radix-232

The computation of dj and ej requires shifts by kj and 32− kj , respectively, for 0 ≤ j < 191,
for a total of 382 even pipeline shift instructions. If kj ≡ 0 mod 8, each shift can be replaced
by a single odd pipeline byte reordering instruction (or by no instruction if kj = 0). Shift
counts bigger than eight can be replaced by three odd pipeline instructions.

M-Dependent Optimization

For 0 ≤ j < 191 and most M we have
∑

j s.t. lj+1=i
ej < 232, since ej is obtained by a right

shift over 32− kj > 0 bits and the shift amounts usually differ. Thus, for such M the second
summation in Eq. (6.1) does not generate carries.

We have written a program that generates SPE code for each value of M , with the
applicable C0, C1, kj , lj , mj , k̃j , l̃j , and m̃j hard-coded and including all optimizations
mentioned so far. The resulting code thus depends on the value of M used, with slightly
varying performance between differentM -values. Representative instruction and cycle counts
for 4-way SIMD multiplication and squaring modulo 21193 − 1 on a single SPE are given in
Table 6.1. Because 78

144 ·3 905 ≈ 2 115, the 2 130 cycles required for the calculation of the Q(k)’s
while squaring is very close to what one would expect based on the 3 905 cycles required for
multiplication.

6.1.6 Further Speedups

Initial estimates indicated that the speed advantage of the radix-232 additions would outweigh
the disadvantage of the conversion (in Section 6.1.4) to signed radix-213 representations re-
quired for the carry-less product calculation. Only after the code based on the methods
described above had been used for about nine months (obtaining the results as reported in
Section 6.2) and two further improvements had been developed, this issue was revisited. The
two improvements, described in this section, apply to the first approach as well. The alterna-
tive version of the method from Section 6.1.4 that normalizes (and reduces) the signed 32-bit
radix-213 product to its signed radix-213 representation (as opposed to converting and reduc-
ing the product to radix-232 representation, as in Section 6.1.4) is presented in Section 6.1.7.

Using C1 ≡ 0 mod N in Section 6.1.4

Let γ = 13·191+18−M , β = bγ/13c and α = γ−13β. To get non-negative p̃j ’s in the first step
of Section 6.1.4, it suffices to put p̃0 = p0+231, p̃j = pj+231−218 for 1 ≤ j < 191, and next to
replace p̃β by p̃β−2α to make sure that the sum of all values added to∑190

j=0 pj213j telescopes
to zero modulo N . Here we use that pj ≥ −96(212)(212 − 1) > −231 + 219 > −231 + 218 and
that −231 + 219 > −231 + 218 + 2α (or −231 + 219 > −231 + 2α if β = 0). In this way C1 in
Section 6.1.4 is replaced by a value that is zero modulo N . This saves an addition (by C1)
in the final calculation of c in the fourth step of Section 6.1.4.



93

T
ab

le
6.
1:

SP
E
cy
cl
ec

ou
nt
sf
or

4-
wa

y
SI
M
D

op
er
at
io
ns

m
od

ul
o

211
93
−

1.
T
he

fir
st

tw
o
ro
w
so

fd
at
a
re
fe
rt

o
ad

di
tio

n
an

d
su
bt
ra
ct
io
n

re
la
te
d
fig

ur
es
,s
ep

ar
at
ed

on
th
el
ef
th

an
d
sid

ea
nd

co
m
bi
ne

d
on

th
er

ig
ht

ha
nd

sid
e.

T
he

re
m
ai
ni
ng

ro
w
so

fd
at
a
re
fe
rt

o
m
ul
tip

lic
at
io
n

(o
n
th
e
le
ft

ha
nd

sid
e)

an
d
sq
ua

rin
g
(o
n
th
e
rig

ht
ha

nd
sid

e)
re
la
te
d
fig

ur
es
.
T
he

m
ea
su
re
d
nu

m
be

r
of

cy
cl
es

is
in
di
ca
te
d
by

m
.

in
st
ru
ct
io
ns

cy
cl
es

m
in
st
ru
ct
io
ns

cy
cl
es

m
ev
en

od
d

ev
en

od
d

a
+
b
or
a
−
b

a
+
b
an

d
a
−
b

12
0

11
7

14
4

18
0

ra
di
x-

232
22

2
18

0
23

5
26

8
30

1
29

6
33

2
36

3
sig

ne
d
ra
di
x-

213
55

3
39

4
57

1
64

5
a
·b

or
ig
in
al
,
ra
di
x

232
in
pu

ts
an

d
ou

tp
ut

(S
ec
ti
on

6.
1.
4)

a
2

70
8

72
2

75
2

P
a
(X

),
P
b
(X

),
an

d
P

(k
)

a
(X

),
P

(k
)

b
(X

)
fo
r

1
≤
k
≤

27
P
a
(X

)
an

d
P

(k
)

a
(X

)
fo
r

1
≤
k
≤

27
35

4
36

1
37

6

38
89

11
37

39
05

Q
(k

) (
X

)
fo
r

1
≤
k
≤

27
21

07
20

55
21

30
11

38
10

78
11

63
P

(X
)
an

d
(d
j
,e
j
)
fo
r

0
≤
j
<

19
1

11
39

10
86

11
71

90
6

90
7

93
6

c̃ i
fo
r

0
≤
i
<

39
an

d
c

90
0

90
5

93
1

66
41

38
44

67
56

69
71

to
ta
l

45
00

44
07

46
08

48
14

a
·b

si
gn

ed
ra
di
x-

213
in
pu

ts
an

d
ou

tp
ut

(S
ec
ti
on

s
6.
1.
6,

6.
1.
7)

a
2

36
22

15
10

36
37

P
(k

)
a

(X
),
P

(k
)

b
(X

),
an

d
Q

(k
) (
X

)
fo
r

1
≤
k
≤

27
22

20
19

21
22

43
12

92
11

72
13

08
P

(X
),
st
ep

s
1,

2
an

d
pa

rt
of

st
ep

s
3,

4
of

Se
ct
io
n
6.
1.
7

12
99

12
64

13
40

54
4

50
8

56
8

St
ep

s
5,

6
an

d
re
m
ai
nd

er
of

st
ep

s
3,

4
of

Se
ct
io
n
6.
1.
7

54
4

50
8

56
8

54
58

31
90

55
13

56
66

to
ta
l

40
63

36
93

41
51

43
06



94 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

Karatsuba Multiplication with Multiply-and-Add

A more substantial improvement is obtained by noting that for 26 out of the 27 k-values
in Section 6.1.4 the coefficients of the polynomials P (k)

a (X) and P
(k)
b (X) are signed 15-bit

integers. Therefore, for these k another level of Karatsuba multiplication can be used for the
calculation of Q(k)(X), while taking advantage of the SPE’s multiply-and-add instructions.
Some details are described below.

Let e, e′, f, f ′ be four polynomials of degree at most n−1. To multiply the two polynomials
e + e′Xn and f + f ′Xn of degree at most 2n − 1, calculate g = e − e′ and h = f ′ − f using
n subtractions each (note the asymmetry). Defining ef = U + U ′Xn, e′f ′ = V + V ′Xn and
gh = W +W ′Xn, we have to calculate

(e+ e′Xn)(f + f ′Xn) = U + (U ′ +W + U + V )Xn + (V +W ′ + U ′ + V ′)X2n + V ′X3n.

This is done by calculating (using multiply-and-add when relevant) U and U ′ in n2 operations,
next U ′ + V and V ′ using another n2 operations, U ′ + V +U (n additions) and U ′ + V + V ′

(n− 1 additions), and finally U ′ + V + U +W and U ′ + V + V ′ +W ′ using n2 operations.
In this way this final level of Karatsuba multiplication requires 3n2 + 4n− 1 operations.

In our case this can be reduced to 3n2 + 3n − 1 since the computation of g and h are twice
as fast using 8-way SIMD 16-bit subtractions. With n = 6 this becomes 125 operations for
the calculation of each of the 26 Q(k)(X)’s to which this applies; the 27th one can be done
in 144 operations, for a total of 3 394 even instructions to calculate all Q(k)(X)’s. For n = 3
we get 3n2 + 3n − 1 = 35 < 62, but the remaining parts of the 12-to-6-Karatsuba step take
more than 20 operations, so more than 3× 35 + 20 = 125 operations per Q(k)(X).

Improving the method from section 6.1.4 using Sections 6.1.6 and 6.1.6 would lead to a
speedup of slightly less than 10% for modular multiplication and a much smaller speedup for
modular squaring. We have not used this improvement as it led to only a small speedup of
the ECM application. Instead we combined these improvements with the method presented
in Section 6.1.7 below as it was expected (and turned out) to lead to a more substantial
speedup for the ECM application.

6.1.7 Multiplication Modulo N using Signed Radix-213

Multiplication modulo N with inputs and output in signed radix-213 representation (and
thus relatively slow addition operations) is obtained from the description in Section 6.1.4 by
omitting the conversion, keeping the polynomial multiplication in place (possibly improved
with the Karatsuba multiplication), and by replacing the reduction by the reduction and
normalization step described below.

Reduction Modulo N and Normalization to Signed Radix-213 Representation of
the 2M-bit Product

Given a signed 32-bit radix-213 representation (pj)190
j=0 of the 2M -bit product a · b, regarded

as the polynomial P (X) = ∑190
j=0 pjX

j with P (213) = a ·b, the signed radix-213 representation
(cj)95

j=0 of the M -bit number c ≡ P (213) mod N is calculated.



95

1. Compute (p̃j)190
j=0 as described in Section 6.1.6.

2. For 0 ≤ j < 96 replace p̃j by p̃j + 212. (All additions in steps 1 and 2 are combined at
a total cost of 191 even addition instructions for steps 1 and 2.)

3. For 96 ≤ j < 191 let p′j and p′′j be words such that p̃j = p′j +p′′j 216 and 0 ≤ p′j , p′′j < 216,
and replace p′j by p′j2

k′j and p′′j by p′′j 2
k′′j using odd instructions, where

13j = m′jM + 13l′j + k′j and

13j + 16 = m′′jM + 13l′′j + k′′j

with 0 ≤ 13l′j + k′j , 13l′′j + k′′j < M and 0 ≤ k′j , k′′j < 13.

4. For 96 ≤ j < 191 replace p̃l′j by p̃l′j + p′j and p̃l′′j by p̃l′′j + p′′j using a total of 190
even instructions. (No overflow occurs because p′j , p′′j ≤ 228 and pj < (j + 1)224 for
0 ≤ j < 96.)

5. Perform Step 3 of the addition-subtraction method in Section 6.1.3 with c (consisting
of halfwords) replaced by p̃ (consisting of words). The carry τ can become as big as
219 − 1.

6. For 0 ≤ j < 96 calculate the halfword cj = p̃j − 212.

Steps 1, 2, 3, 4, and 6 allow arbitrary parallelization. Step 3 and 4 perform the modular
reduction and normalization. The resulting SPE clock cycle counts are listed in Table 6.1.

6.1.8 Comparison with other SPE Implementations

Because an SPE runs at 3.192GHz and six are available per PS3, it follows from Table 6.1
that a single PS3 can perform 13.5 (17.8) million multiplications (squarings) modulo 21193−1
per second. This compares to 182 million and 138 million multiplications modulo 192-bit and
224-bit special moduli, respectively, as reported for a single PS3 in [30] (see Chapter 3), i.e.,
less than an 11-fold slowdown for 5-fold bigger special moduli.

For generic moduli the same carry-less Karatsuba-based multiplication applies. The basic
approach to the more cumbersome reduction would reduce our performance by a factor of
at most three, but we expect we can do much better. Compared to the roughly 102 million
modular multiplications for generic moduli in the 200-bit range, as reported for a single PS3
in [17], we would get at worst a 20-fold slowdown for 6-fold bigger generic moduli.

6.2 Application to ECM

Recall from Section 2.4.1 that each ECM trial consists of two stages, stage one with bound B1,
which is compute intensive but requires little memory, followed by a memory-hungry stage two
with bound B2. Depending on the number of trials and the two bounds, the probability can



96 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

be estimated that a factor up to a specific size, if present, will be found. To have probability
at least e−1

e ≈ 0.632 to find a factor of up to 65 decimal digits (when present), 24 000 ECM
trials with B1 = 3 · 109 and B2 ≈ 1014 (the default B2 of GMP-ECM) suffice [209]. For
the same bounds and success probability, 110 000 trials suffice to find a 70-digit factor (when
present). Before our work the largest prime factor ever found using ECM had 68 decimal
digits [206].

Using the GMP-ECM package [207, 209], with B1 and B2 as above, on a single core
of a 2.2GHz Athlon 2427, stage one for an ECM trial for 2M − 1 with M around 1 200
takes on the order of six hours, stage two takes about one hour requiring many GBytes of
RAM (for generic composites of comparable size each stage takes about twice as long; more
precise timings are presented in Table 6.4 in Section 6.2.2 below). For each composite of the
form 2M − 1 with 1 000 ≤M ≤ 1 200 this implies up to 20 core years for an ECM attempt to
find a 65-digit factor, and up to 90 core years for a 70-digit one. This should be compared to
an SNFS effort ranging from on the order or 70 (M ≈ 1 000) to several thousand (M ≈ 1 200)
core years. Thus, the larger M , the harder we should first try with ECM, commensurate
with the expected SNFS effort and the probability that a candidate has a small factor.

Stage one can easily be run in parallel in SIMD fashion for any number of trials. During
a large scale ECM effort, overall throughput of trials is, within reason, a more important
performance measure than latency per trial: for instance, being able to process four trials
simultaneously in one day is better than processing (on the same platform) one trial every
eight hours.

Rationale to use Cell processors for ECM on 2M − 1.

Factoring numbers of the form 2M − 1 is a “popular” activity [52] and hunting for relatively
small factors is not hard given several freely available ECM packages. Nevertheless, given
the efforts involved, we considered it likely that several of the unfactored composites 2M − 1
with 1000 ≤M ≤ 1200 have a factor that can be found more economically by ECM than by
SNFS. Given our research interest in the ones that cannot (relatively) easily be factored by
ECM, we decided on an ECM effort down our list of at least 20 candidates, aiming to find
all factors of up to, roughly, 65 digits. Since it was meant to be a simple production run,
we chose to use the off-the-shelf GMP-ECM package, because it is free, easy to use, has an
excellent track-record, and can take advantage of the special form of the number 2M − 1.
Other packages may be faster, but we were not familiar with them [16]. Notice, that if some
small factors of 2M −1 are known it is still faster to use the arithmetic modulo this Mersenne
number than modulo the smaller composite.

The overall computation for these 20 candidates requires at least 20 × 20 = 400 core
years and can in principle be done on regular server-clusters. But that would be a waste of
resources, because about 6

7th of the time is spent in stage one, which requires little memory
thereby underutilizing the available RAM.

We also have access to a cluster of 215 PS3s, and thus to 215 Cell processors comprising
a total of 1290 SPEs with little memory per SPE. It could therefore be more economical for
us to use those SPEs to do all stage one calculations, and to do the relatively small stage



97

Table 6.2: SPE effort for 4-way SIMD stage one ECM trials for N = 21193 − 1, B1 = 3 · 109 (where
“cpc” = “cycles per call”).

operation number of calls radix-232 signed radix-213

mod N cpc hours cpc hours
a · b 26 193 284 192 6971 15.89 5666 12.92
a2 13 358 576 558 4814 5.60 4306 5.00
a+ b
a− b

}
18 990 126 989 268 0.44

 645 1.12
a+ b 523 868 924 180 0.01
a− b 523 868 924 180 0.01

total 21.95 19.05

two effort whenever servers with adequate RAM would otherwise be idle. To test this we
ported stage one of GMP-ECM to the SPE, trying a variety of home-grown SPE-specific
arithmetic packages (which were already known to outperform [108]). In the course of these
early experiments we stumbled upon a 63-digit prime factor (of 21187− 1). This showed that
conducting a thorough ECM search indeed makes sense, and stimulated development of the
much faster SPE-arithmetic modulo 2M − 1 described in Section 6.1.

It was not our goal to improve the ECM package that we put on top of our enhanced arith-
metic. It is likely that improvements reported over GMP-ECM that are based on different
elliptic curve arithmetic or representations, such as, for instance, described and implemented
in [15,16], apply to our overall performance figures as well. See for a more detailed discussion
Chapter 7.

ECM on the Cell Processor to Support (S)NFS

Although ECM factorizations have little cryptographic significance, this does not imply that
ECM performance is cryptographically irrelevant as well. In [18], for instance, it is observed
that high performance ECM implementations on relatively inexpensive devices (given their
computational power, such as on graphics cards (GPUs)), may be helpful for future (S)NFS
projects. A particularly memory-hungry step of (S)NFS, sieving, generates large quantities
of fairly small (100- to 200-bit) composites that must be factored. That task requires little
memory and is therefore best outsourced to cheap devices, so sieving is not interrupted and
all resources are used in a cost-conscious fashion.

6.2.1 ECM on the Cell Applied to 2M − 1

Table 6.2 lists the numbers of modular arithmetic operations carried out by stage one of a
single ECM trial with bound B1 = 3 ·109 when using GMP-ECM. When run on an SPE, four
stage one trials are run simultaneously. With the operations from Section 6.1, their cycle
counts (cf. Table 6.1), and the SPE’s 3.192GHz clock speed, this leads to an estimated time
of less than 22 hours on a single SPE to complete four stage one ECM trials with bound



98 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

B1 = 3 · 109 using our first approach from Section 6.1.4, and a more than 10% speedup
when using the approach from Section 6.1.7 along with the improvements from Section 6.1.6.
The measured wall-clock times are slightly larger than the estimates. For applications where
additions play a more important role, the method from Section 6.1.4 may outperform the
method from Section 6.1.7 (where both methods are enhanced using Section 6.1.6).

With six SPEs per Cell processor and 215 Cell processors in the PS3-cluster, 4×6×215 =
5160 stage one ECM trials can be processed in less than 20 hours. With 24 000 trials, stage
one for a 65-digit search takes less than four days; stage one for the 110 000 trials for a
70-digit search takes two and a half weeks. Using our multi-core adaptation of stage two of
GMP-ECM, the corresponding stage two calculations (with B2 = 103 971 375 307 818) take
the same time when using 4 cores per node on a 56-node cluster (with two hexcore processors
per node): each trial takes 15 minutes on 4 cores, using at most 16 GBytes of RAM. Thus,
the efforts of the two clusters involved in our calculations are well matched.

After nine months of sustained calculations for several M -values (using the slower ap-
proach from Section 6.1.4), seven new factors were found, in the following order: a 63-digit
factor for M = 1187, the 73-digit factor

1 808 422 353 177 349 564 546 512 035 512 530 001
279 481 259 854 248 860 454 348 989 451 026 887

for M = 1181, another 73-digit factor,

1 042 816 042 941 845 750 042 952 206 680 089 794
415 014 668 329 850 393 031 910 483 526 456 487,

for M = 1163, a 66-digit factor for M = 1073, a 63-digit factor for M = 1051, a 68-digit
factor for M = 1139, and a 70-digit factor for M = 1237. The 241-bit, 73-digit prime factor
of 21181 − 1 is the current ECM record, beating the previous record by 5 digits. The factor
was found after somewhat more than 25 000 stage one trials at approximately the 8800th
corresponding stage two trial, implying that we were quite lucky finding it (GMP-ECM [209]
reports that finding a 73-decimal digit factor (if present) requires the computation of 259 058
curves given our B1 and B2 parameters). It was found for σ = 4 000 027 779 (cf. [209]) with
elliptic curve group order factoring into primes at most B1 with the exception of one prime
between B1 and B2:

24 · 32 · 13 · 23 · 61 · 379 · 13 477 · 272 603·
12 331 747 · 19 481 797 · 125 550 349 · 789 142 847·

1 923 401 731 · 10 801 302 048 203.

Less, but still considerable, luck was involved in finding the second 73-digit factor (a bit
smaller at 240 bits): it was found after about 50 000 ECM trials for σ = 3 000 085 158 and
group order

22 · 32 · 5 · 23 · 1 429 · 28 229 · 139 133 · 249 677·
389 749 · 15 487 861 · 47 501 591 · 111 707 179·

431 421 191 · 13 007 798 103 359.



99

Table 6.3: Factors found of 2M − 1 using ECM on the Cell with the arithmetic described in Sec-
tion 6.1.4 of this chapter, and with B1 = 3 · 109 and B2 ≈ 1014.

M
targeted completed number of trials resultcomposite stage one stage two

1051 c310 23 136 9 186 p63 · c248
1073 c281 24 504 1 460 p66 · p215
1139 c313 49 080 35 490 p68 · p246
1163 c318 50 152 47 768 p73 · p246
1181 c291 25 393 8 808 p73 · p218
1187 c266 15 089 9 860 p63 · p204
1237 c373 71 556 70 809 p70 · c303

So far our example number 21193−1, with known factor 121687, stubbornly resisted all ECM
efforts to be factored after running 142 162 ECM trials on it. For the numbers 2M − 1 that
we fail to factor using ECM, such as (so far) M = 1193, our efforts will result in a reasonable
degree of confidence that they will not have a prime factor of 65 digits or less. Only for
M = 1051 and M = 1237 did we find composite cofactors: for M = 1051 the attempt was
continued and the 63-factor was indeed re-found where it could be predicted (once it had
been found), but the c248 cofactor remained unfactored.

Table 6.3 lists all results obtained using the slower approach from Section 6.1.4, with ck
and pk denoting a k-digit composite and prime, respectively. For exponentsM ∈ [1000, 1140]
(M ∈ [1141, 1200]) not stated in Table 6.3 roughly 50 000 (100 000) ECM trials have been
completed with bounds as above without finding a factor. Although we hope, during our
continuing efforts using the faster approach from Sections 6.1.6 and 6.1.7, not to miss factors
up to the 65-digit range, with ECM one can never be sure. Should we wish to find out, using
SNFS is probably the best option.

Using the improved arithmetic we have so far found one factorization: for M = 961 we
found that c254 = p61 · p193 after 1190 curves with B1 = 109 and B2 = 25 427 965 563 016.
The improved arithmetic is also being used for numbers of the form 2M +1 and several factors
have already been found.

6.2.2 Comparison Between Cell and Regular Processors

A single PS3 processes 24 stage one ECM trials for 21193 − 1 in 19.2 hours. To put this
number into perspective, we did the same computation using GMP-ECM 6.3 powered by
GMP 5.0.1 [82] (both the latest versions at the time of writing) using all cores on a variety
of processors, with optimal multiplication parameters obtained using the tune-up script, and
taking advantage of the special Mersenne-arithmetic available in GMP-ECM. Table 6.4 lists
the results. On a per-core basis, and accounting for the ratio in clock-speeds, our special
4-way SPE Mersenne arithmetic turns out to about 4

3 times more effective than the regular
Mersenne arithmetic from GMP-ECM 6.3 when run on Intel processors, despite the fact that



100 EFFICIENT SIMD ARITHMETIC MODULO A MERSENNE NUMBER

Table 6.4: Time to complete 24 stage one ECM trials for 21193 − 1 with B1 = 3 · 109.

processor GHz cores hours
Mersenne generic

Intel Core i7 920 2.67 4 46.28 83.52
Intel Core2 Quad Q9550 2.83 4 47.26 85.93
AMD Opteron 1381 2.50 4 33.78 58.46
AMD Opteron 6168 1.90 12 15.32 25.44
PlayStation 3 3.19 6 19.20

the SPE does not have 64-bit or 32-bit integer multiplications. The lack of such multipliers
is clearly to the SPE’s disadvantage when comparing it to the AMD processor with its much
faster (than Intel) integer multiplication. The more recent generations of processors, like the
12-core AMD Opteron, are catching up with the performance of the PS3.

6.3 Conclusion
For integersM in the range from 1000 to 1200 we presented our Cell processor implementation
of multiplication of M -bit integers, processing 24 such multiplications in parallel on a single
PlayStation 3 game console, and used it to obtain efficient multiplication modulo 2M − 1.
The ideas underlying our implementation apply to many arithmetic contexts of cryptologic
relevance. We focused on application to elliptic curve factoring, which led to the three largest
ECM factors found so far1.

1In January 2012 S. Wagstaff found a 72-decimal digit factor of 3713 −1 using ECM, moving our 70-decimal
digit factor of 21237 − 1 to the fourth place.



Chapter7
ECM at Work

Today, more than 25 years after its invention by Hendrik Lenstra Jr., the elliptic curve
method [136] (ECM) remains the asymptotically fastest integer factorization method for
finding relatively small prime factors of large integers. Although it is not the fastest general
purpose integer factorization method, when factoring a composite integer n = pq with p ≈
q ≈

√
n the number field sieve [133, 163] (NFS) is asymptotically faster, it has recently

received a renewed research interest due to the discovery of an interesting normal form for
elliptic curves introduced by Edwards [74].

In this chapter we optimize ECM by exploiting the fact that the same scalar is often used
when computing the elliptic curve scalar multiplication (ECSM) in practice. This allows one
to prepare particularly good addition chains for these fixed scalars. Our approach is inspired
by the ideas used in the ECM implementation by Dixon and Lenstra [71] from 1992. In [71]
the total cost to compute the ECSM, in terms of point duplications and point additions,
is lowered by testing if the ECSM of small product of primes is cheaper (requires less point
additions) than processing the primes one at a time (or all at once using a single large batch).

Inspired by this technique we generalize this idea; many billions of integers, which are
constructed such that they can be computed using addition chains with a high duplica-
tion/addition ratio, are tested for smoothness and factored. Combining some of these integers
using a greedy approach results in more efficient ECSM algorithms when the scalar is fixed
(in terms of memory consumption and run-time performance).

Arithmetic using Edwards curves is faster than using Montgomery curves [146] (see Sec-
tion 2.4), the approach used in most ECM implementations. In order to obtain this efficient
arithmetic, when using Edwards curves, addition chains using large windowing methods are
used (cf. [22] for a summary of these techniques). The memory (storage) requirement grows
roughly linearly with the input parameters of ECM while it is an independent low constant
value (14 residues modulo n) when using Montgomery curves.

We study two variants of our approach. A version which can compute the ECSM without
requiring any additional memory, besides the in- and output point, and a more efficient ver-
sion which requires a small amount of memory. These two versions are applied in two settings

101



102 ECM AT WORK

Table 7.1: A summary of the cost of elliptic curve addition and duplication when using Montgomery
or Edwards curves with different coordinate systems. The cost is expressed in modular multiplications
(M), squarings (S) and multiplication by a curve constant (d). The notation z1 = 1 indicates that
the z-coordinate of one of the input points is equal to one (an affine point).

Projective coordinate system Addition Duplication
Montgomery 4M + 2S 2M + 2S + 1d
Twisted Edwards 10M + 1S + 2d 3M + 4S + 1d

a = −1 10M + 1S + 1d 3M + 4S
a = −1, z1 = 1 9M + 1S + 1d 3M + 3S

Extended Twisted Edwards 9M + 1d 4M + 4S + 4d
a = −1 8M 4M + 4S

a = −1, z1 = 1 7M 4M + 3S

of ECM: for large input parameters (when using ECM to find factors of large integers) and for
small input parameters (which is of cryptanalytic interest). This makes our approach particu-
larly interesting for environments where the memory (per thread) is constrained; e.g. graphics
processing units.

7.1 ECM in Practice

Traditionally, ECM is implemented using Montgomery coordinates (see Section 2.4.1) and
uses the various techniques described in [207]. The most-widely used ECM implementation
is GMP-ECM [209] and this implementation, or modifications to it, is responsible for setting
all recent ECM record factorizations. After the invention of Edwards curves (see Section 2.4)
Bernstein, Birkner, Lange, and Peters explored the possibility to use these curves in the ECM
setting [15]. A follow-up paper [14] discusses the usage of the “a = −1” twisted Edwards
curves. The main reason to use Edwards curves is performance. The cost to implement
elliptic curve addition and duplication when using projective Montgomery or (extended)
twisted Edwards is summarized in Table 7.1. There are two implementations of ECM using
Edwards curves available called GMP-EECM and EECM-MPFQ (see the web-page [16]).
Both are designed to run on relatively small integers used in a cofactorization phase of the
number field sieve (see Section 2.4.1).

Since different approaches are used to compute the elliptic curve scalar multiplication
when using either Montgomery or Edwards curves the numbers in Table 7.1 do not show the
total cost to compute the ECSM. Table 7.2 compares the required total number of modular
multiplications and squarings required in GMP-ECM and EECM-MPFQ for different typi-
cal B1 values used in ECM. These numbers show that using Edwards curves result in fewer
multiplications and squarings. However, the required storage for GMP-ECM (Montgomery
curves) is independent of B1 while it grows almost linearly with the size of B1 and is signif-
icantly higher, due to the use of width-w windowing methods, for EECM-MPFQ (Edwards
curves, see [15, Table 4.1]).



103

Table 7.2: Performance comparison between GMP-ECM and EECM-MPFQ in terms of multiplica-
tions (M) and squarings (S) in the finite field. The number of residues modulo n (R) which needs to
be kept in memory is shown for GMP-ECM and EECM-MPFQ in the a = −1 setting.

B1 GMP-ECM [209]
#S #M #S+#M #R

256 1 066 2 025 3 091 14
512 2 200 4 210 6 410 14

1024 4 422 8 494 12 916 14
12 288 53 356 103 662 157 018 14
49 152 214 130 417 372 631 502 14

262 144 1 147 928 2 242 384 3 390 312 14
1 048 576 4 607 170 9 010 980 13 618 150 14

B1
EECM-MPFQ [15]

(a = 1) (a = −1)
#S #M #S+#M #M #S+#M #R

256 1 436 1 707 3 143 1 638 3 074 38
512 2 952 3 303 6 255 3 183 6 135 62

1 024 5 892 6 363 12 255 6 144 12 036 134
12 288 70 780 69 870 140 650 68 006 138 786 1 046
49 152 283 272 269 991 553 263 263 599 546 871 2 122

262 144 1 512 100 1 395 435 2 907 535 1 366 396 2 878 496 9 286
1 048 576 6 050 208 5 462 496 11 512 704 5 359 737 11 409 945 32 786

7.2 Elliptic Curve Constant Scalar Multiplication

Most of the addition/subtraction chain based approaches to compute the ECSM used in
practice use the w-bit windowing technique, for some (optimal) width w to reduce the number
of required elliptic curve additions. As discussed in Section 2.4.2, the total number of elliptic
curve additions may be reduced significantly by using this approach but one also needs to
store more points: 2w−1 when using sliding windows. In environments where the available
memory per thread is low, these methods cannot be used or one is forced to settle for a
suboptimal window size. A prime example of such a platform are graphics processing units
(GPUs); e.g. one of the latest GPU architectures [154] (Fermi) shares 64KB fast shared
memory per 32 processors and each processor typically time-shares multiple threads.

We investigate different approaches to lower the number of additions and the storage
required to compute the scalar product. Our approach is inspired by the results reported by
Dixon and Lenstra [71] in 1992. Suppose we have a scalar k = ∏`−1

i=0 pi, where {p0, p1, . . . , p`−1}
is a list of primes less than B1. Typically, the ECSM is implemented processing one such pi
at a time [207]. In [71] it is suggested to process the pi in batches; i.e. multiply a batch of pi’s
at a time such that the weight of the product w(∏i pi), the number of ones in the binary re-
presentation of ∏i pi, is (much) lower than the sum of the individual weights∑iw(pi). If this
is the case then the number of required additions is reduced when using the straight forward



104 ECM AT WORK

double-and-add approach. Moreover, the storage requirement is small since the usage of large
windows is avoided. The search for such low-weight products is performed by partitioning,
using a greedy search, the set of prime powers in subsets of cardinality of at most three (the
cardinality three was chosen only from a practical point of view). This lowered the weight
by approximately a factor three [71]. As an example the following triple is given

1028107 · 1030639 · 1097101 = 1162496086223388673
w(1028107) = 10, w(1030639) = 16, w(1097101) = 11,

w(1162496086223388673) = 8,

where the multiplication of primes of weights 10, 16, and 11 results in a integer of weight
eight. The resulting composite integer can be computed using an addition chain requiring
only seven additions and 60 duplications using the naive double-and-add algorithm.

In this section we explore different methods to find numbers which can be constructed
using even better (higher) duplication/addition ratios. These methods do not aim to con-
struct sequences by combining the different pi (as in [71]) but use an opposite approach by
factoring many integers which can be constructed using a relatively low number of additions
and subsequently combining these integers such that all pi’s are used.

7.2.1 Addition/Subtraction Chains With Restrictions

In order to generate integers which can be computed using an addition/subtraction chain
with a high duplication/addition ratio we need to construct and denote addition chains of
a certain length m. In this section we define and explain the notation used to denote the
addition/subtraction chains.

Let us first define the set of symbols O, used to denote our chains, consisting of the
symbols D,A, S used for duplication, addition and subtraction respectively:

O = {Di | i ∈ Z} ∪ {Ai,j | i, j ∈ Z, i > j} ∪ {Si,j | i, j ∈ Z, i > j},

where the subscripts indicate on which element we compute (this is made more precise later).
The set of all m-tuples, ordered lists of m elements, of symbols in O with the restriction that
no elements can be used which have not yet been generated is

Om = {(om−1, . . . , o0) ∈ Om | ok ∈ {Di | i ≤ k} ∪ {Ai,j | i ≤ k} ∪ {Si,j | i ≤ k}, 0 ≤ k < m}.

In order to construct an addition/subtraction chain from such anm-tuple of symbols we define
a function σm : O × Zm+1 → Zm+2 such that (o, (tm, . . . , t0 = 1)) 7→ (tm+1, tm, . . . , t0 = 1)
where

tm+1 =


2ti if o = Di,
ti + tj if o = Ai,j ,
ti − tj if o = Si,j .

Given an m-tuple of symbols (om−1, . . . , o0) ∈ Om the (m+ 1)-tuple of integers associated to
this addition/subtraction chain is

σm−1(om−1, σm−2(om−2, . . . , σ0(o0, 1) . . .)),



105

the resulting integer produced by this chain is tm. As an example consider the 7-tuple of
symbols (S6,0, D5, D4, A3,0, D2, D1, D0) ∈ O7 which corresponds to the 8-tuple of integers in
the addition/subtraction chain (35, 36, 18, 9, 8, 4, 2, 1) computed as

σ7(S6,0, σ6(D5, σ5(D4, σ4(A3,0, σ3(D2, σ2(D1, σ1(D0, 1))))))).

The function σ is the correspondence between a tuple of symbols and the actual addi-
tion/subtraction chain. The example shows how to compute the resulting integer 35 using
one subtraction, one addition and five duplications.

A duplication can always be assumed to apply to the previously generated element in
σi (instead of duplicating any previous element), since one can reorder the symbols in the
tuple such that duplication always occurs on the last element without changing the resulting
integer tm+1. In some cases this results in a shorter sequence when one duplicates the same
element multiple times: e.g. the sequence (A3,0, D0, D0, D0) ∈ O4 which corresponds to the
5-tuple (3, 2, 2, 2, 1) can also be computed using (A1,0, D0) ∈ O2 corresponding to the 3-tuple
(3, 2, 1). Hence, we change the definition of O to

O = {D} ∪ {Ai,j | i, j ∈ Z, i > j} ∪ {Si,j | i, j ∈ Z, i > j},

and the value of tm+1 in σm to

tm+1 =


2tm if o = D,
ti + tj if o = Ai,j ,
ti − tj if o = Si,j ,

to incorporate this change. Although the set of tuples Om consists of the most generic type
of addition/subtraction chains, a significant amount of tuples corresponds to chains which
perform useless (unnecessary) computations. An example is computing the addition (and
subtraction) of two previous values without using this result. To address this we define a
more restricted set of tuples Pm ⊂ Om as

Pm = {(om−1, . . . , o0) ∈ Om | ok ∈ {D} ∪ {Ai,j | i = k} ∪ {Si,j | i = k}, 0 ≤ k < m}.

These additional restrictions ensure that, just as for the duplication, we only add or subtract
to the last integer in the sequence to obtain the next one. Such chains are known as Brauer
chains or star addition chains [96, Section C6].

In this setting we write Aj and Sj for Ai,j and Si,j , respectively, and k > 0 subsequent in-
stances ofD are denoted asDk. The previous example can now be written as S0D

2A0D
3 ∈ P7

by abusing the notation: omitting the brackets and comma’s. In practice we would generate
sequences of symbols such that a number of elliptic curve additions A and duplications D
are fixed and look at sequences of symbols of length m = A+D which use A times Aj or Sj
and D times D. Different tuples might compute the same integer result. Using our example,
the number 35 can be obtained with D = 5 and A = 2 in different ways

35 = (23 + 1) · 22 − 1 S0D
2A0D

3 ∈ P7
= (24 + 1) · 2 + 1 A0DA0D

4 ∈ P7.



106 ECM AT WORK

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  5  10  15  20  25  30  35  40  45  50
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

N
um

be
r 

of
 a

dd
iti

on
/s

ub
tr

ac
tio

n 
ch

ai
ns

(lo
ga

rit
hm

ic
 s

ca
le

)

N
um

be
r 

of
 u

ni
qu

e 
in

te
ge

rs

Number of duplications

Figure 7.1: The two top lines on the left denote the number of generated addition/subtraction chains
computing odd resulting integers with Pm (upper (red) line) and Qm (lower (green) line) when fixing
A=3 and varying the number of duplications from one to fifty. The lower two lines show the number
of unique integers corresponding to these chains where the upper line corresponds to Pm.

7.2.2 Generating Addition/Subtraction Chains

We have defined some notation (the set of symbols O), sets of m-tuples with different re-
strictions and how to connect these m-tuples to addition/subtraction chains with the help of
σm. In this subsection we discuss how to efficiently generate the resulting integers tm+1 in
two settings: a low-storage and no-storage approach.

The Low-Storage Setting

Let A be the number of elliptic curve additions and D the number of elliptic curve dupli-
cations (with D ≥ A). The generation of all the tuples in Pm, with m = A + D, results in
many resulting integers tm+1 which are identical. Removing these duplicate values can be
achieved by first generating and storing all the resulting integers and subsequently sorting
and uniqueing this large dataset. To avoid storing all the resulting integers for a given pair
(A,D), which requires a significant amount of storage as we will see later in this chapter,



107

0

100000

200000

300000

400000

500000

600000

700000

0 50 100 150 200 250

N
um

be
r
of

3
·1

06 -
sm

oo
th

in
te
ge
rs

Number of Duplications

Figure 7.2: The number of unique 3 · 106-smooth integers produced by the low-storage addi-
tion/subtraction chains (Q) when A = 4 and 20 ≤ D ≤ 221.

and to avoid sorting this huge data set we define a more restricted set of rules Qm as follows

Qm = {(om−1, . . . , o0) ∈ Pm | ok ∈ {D} ∪ {Ai, Si | ok−1 = D ∧ (i = 0 ∨ oi−1 ∈ {A`, S`})},
o0 = D, om−1 ∈ {Ai, Si}, 0 < k < m− 1}.

We have Qm ⊂ Pm ⊂ Om. The restrictions used in the definition of Qm ensure the resulting
integer is odd and only addition (or subtraction) of an odd number to the current (even)
number is allowed. This approach significantly reduces the amount of chains which produce
the same resulting integer at the cost of slightly reducing the number of unique integers
produced.

To illustrate, Figure 7.1 shows the number of tuples generated by Pm and Qm when using
A = 3 additions and 3 ≤ D ≤ 50 duplications resulting in odd integers. For D = 50 the total
number of tuples generated by P53 is more than 140 times higher compared to Q53 while the
number of unique odd resulting integers is only 1.09 times higher.

All chains resulting from Qm start with a duplication and end in either an addition or
subtraction. Unless it is the last operation, an addition or subtraction is always followed by a
duplication. Hence, there are

(D−1
A−1

)
ways to place the remainingA−1 additions/subtractions

and D − 1 duplications in the m − 2 positions. Since every addition can be substituted by
a subtraction the number of possibilities is multiplied by a factor 2A. By definition of Qm,
only an odd number (a result of an addition or subtraction) can be added or subtracted to
an even number (a result of a duplication): this increases the number of possible tuples by a



108 ECM AT WORK

factor of A!. Hence, the total number of resulting integers produced by Qm, using A elliptic
curve additions and D elliptic curve duplications, is(

D− 1
A− 1

)
·A! · 2A = 2A ·A ·

A−1∏
i=1

(D−A + i).

The list of (m+ 1) integers ui corresponding to the m-tuple of symbols from Qm can be
efficiently generated recursively using

ui+1 =
{

2ui
ui ± uj for j < i and ui ≡ 0 mod 2 6≡ uj

with u0 = 1 and ensuring that the final operation is not a duplication (to make the resulting
integer odd). Hence, the next integer in the sequence can always be obtained by duplication
or adding a previous odd number uj to the current even integer ui. The number of times
a different uj is used for addition/subtraction determines the required amount of storage
needed. In practice we generate all sequences using a fixed number of duplications and
additions making sure that the resulting storage requirement is never too large. Figure 7.2
illustrates the number of unique 3 · 106-smooth integers produced when fixing A = 4 and
varying 20 ≤ D ≤ 221.

The No-Storage Setting

The second setting we consider is constructing chains which do not require any additional
stored points, besides the in- and output (and possibly some auxiliary variables required to
calculate the elliptic curve group operation). This means we are looking for resulting integers
which can be computed using addition/subtraction chains which only use duplications and
add or subtract the input point. Using our notation we can define the set of tuples Rm ⊂ Qm
as

Rm = {(om−1, . . . , o0) ∈ Qm | ok ∈ {A0, S0, D}, 0 ≤ k < m}.

All no-storage chains which can be constructed using A elliptic curve additions and D elliptic
curve duplications are of the form

2D +
∑
ni

±2ni , with 0 = n1 < n2 < . . . < ni < . . . < nA < D. (7.1)

We have 2D since the chain starts with a duplication and n1 = 0 since we end with an
addition or subtraction. In the other cases the first element 20 = 1 is added or subtracted
and subsequently duplicated the appropriate number of times. Using the same argument as in
the low-storage setting the number of resulting integers generated by Rm using A additions
and D duplications is

(D−1
A−1

)
· 2A. Hence, the no-storage setting produces a factor of A! fewer

resulting integers compared to the low-storage setting.



109

7.2.3 Combining Addition/Subtraction Chains

Recall that, given a bound B1, we want to multiply an elliptic curve point with the integer
k = ∏`−1

i=0 pi = lcm(1, . . . , B1) where the product ranges over ` (not necessarily distinct)
primes. Given the techniques from the previous section we can generate a list of integers
S = {s0, . . . , si, . . . , sm−1} which can be constructed using a known number of additions
and duplications. Let add(s) denote the number of required elliptic curve additions (or
subtractions) and dup(s) the number of elliptic curve duplications in the addition/subtraction
chain to construct s. To find the set S′ ⊂ S of these integers such that k = ∏

si∈S′ si we do
the following

1. Let Ŝ = {si | si ∈ S and si is B1-smooth}. For all sj ∈ Ŝ store (sj , (ŝj,0, . . . , ŝj,tj−1))
such that sj = ∏tj−1

v=0 ŝj,v and ŝj,v prime.

2. Among the smooth integers search for m′ integers sj ∈ Ŝ such that the prime divisors
ŝj,v of these m′ integers exactly match all prime divisors of k (or match a significant
amount of prime divisors of k). Let S′ = {s0, . . . , su, . . . , sm′−1} such that

m′−1∏
u=0

su =
m′−1∏
u=0

tu−1∏
v=0

ŝu,v = k =
`−1∏
i=0

pi = lcm(1, . . . , B1).

One of the main search criteria is that
m′−1∑
u=0

add(su) is low.

The meaning of “low” is still undefined. Ideally we aim to lower the cost, in terms of elliptic
curve additions, of the different addition chains to construct the su compared to the cost of
the addition chain to construct k using more advanced (e.g. signed sliding window) techniques
(denoted by a not well-defined add’). Hence, we hope to find su’s such that

m′−1∑
u=0

add(su) =
m′−1∑
u=0

add
(
tu−1∏
v=0

ŝu,v

)
< add’

m′−1∏
u=0

tu−1∏
v=0

ŝu,v

 = add’(k).

Testing a large list of numbers for B1-smoothness and, if this is the case, outputting the
prime factorization, can be done using the optimized test for divisibility by small primes as
introduced in [81, Section 4]. The main idea is to first build the product k = ∏`−1

i=0 pi =
lcm(1, . . . , B1) using a binary tree. For a fixed B1 this has to be done only once. Next, the
B1-smooth si are detected by removing all prime factors using a remainder tree (see for the
exact algorithm [81]).

Finding the optimal set S′, which results in the minimum number of elliptic curve ad-
ditions in the addition chains, is in general a difficult problem. We choose to use a greedy
approach which results in satisfactory results. Select an integer sj = ∏tj−1

v=0 ŝj,v such that all
the prime divisors ŝj,v are still needed (i.e. sj | k) and the addition/subtraction chain for sj
is good: the ratio dup(sj)/add(sj) is high. Once such an sj has been found the list of primes
we are searching for is updated (replace k with k/sj) and this greedy approach is repeated.



110 ECM AT WORK

A refinement to this approach is to also take the size of the prime factors ŝj,v into account.
A strategy could be to first collect B1-smooth integers with only large prime divisors; since
the majority of the prime powers dividing k are large. The idea is to attach a score to a B1-
smooth integer given its prime factorization with respect to the currently unmatched prime
factors in k. Given the current ` unmatched primes in k = ∏`−1

i=0 pi the ratio of j-bit primes
is defined as

aj(p0, . . . , p`−1) := #{i | dlog2(pi)e = j, 0 ≤ i < `− 1}
`

,

where 1 ≤ j ≤ dlog2(B1)e. Next the score of si given k is defined as

score

si =
u−1∏
j=0

ŝi,j , k =
`−1∏
i=0

pi

 =
dlog2(B1)e∑

h=1

ah(ŝi,0, . . . , ŝi,u−1)
ah(p0, . . . , p`−1)

for the non-zero ah(p0, . . . , p`−1). The higher the score the more small prime divisors are
likely to be present. In general, for a given ratio, we select the integers which have a low
score.

To illustrate, consider B1 = 1024. Initially, the different ai are

a2 = 0.032 a3 = 0.037 a4 = 0.021
a5 = 0.053 a6 = 0.037 a7 = 0.069
a8 = 0.122 a9 = 0.229 a10 = 0.399

(with ∑10
i=2 ai = 1). Almost 40 percent of all the primes fall in the largest (10-bit) category.

An example of a low score-integer is

11529215054666795009 = 743 · 719 · 677 · 461 · 457 · 449 · 337

where the size of the smallest prime is 9-bit, the score is 3.57 and this integer can be computed
using 63 duplications and five additions as

A0D
11A0D

12A0D
10A0D

28A0D
2 ∈ R68.

On the other hand, an example of a high-score integer, consisting of mainly small primes, is

1048575 = 41 · 31 · 11 · 52 · 3,

its score is significant higher (29.62) and it can be computed with 20 duplications and a single
subtraction as S0D

20 ∈ R21.

This approach is outlined in Algorithm 15. Note that the values of ai need to be recalcu-
lated after prime factors have been removed from the list corresponding to k. In Algorithm 15
this is done after the while-loop in lines 11-14 when the new scores are computed. In practice
one could modify the running condition of this while-loop from (si | k and i < j) to (si | k
and i < j/c) for some 0 < c ∈ Z to ensure more frequent updating of the ai.



111

Algorithm 15 Given a bound B1 and a set of B1-smooth integers {s0, . . . , s`−1}, which
can be computed with an addition/subtraction chain using add(si) and dup(si) elliptic curve
additions and duplications respectively, together with the prime factorization of these inte-
gers (si = ∏

j ŝi,j) the algorithm attempts to output triples (sj , add(sj),dup(sj)) such that
lcm(1, . . . , B1)/∏j sj is small. This algorithm considers scores ≤ sthres only and combines

integers si for which
dup(si)
add(si)

≥ r where r starts at rh and is decreased until rl.

Input:


Bound B1 ∈ Z,
Set of integers {s0, . . . , s`−1} with si = ∏

j ŝi,j for ŝi,j prime and 0 ≤ i < `,

Upper- and lower bound on the duplication/addition ratio: rh and rl
A threshold value for the score: sthres

Output: Output triples (pi, add(pi), dup(pi)) such that
∏
i

pi = lcm(1, . . . , B1)

1. k ← lcm(1, . . . , B1)
2. for r = rh to rl do
3. found ← true
4. while found=true do
5. found ← false, j ← 0
6. for 0 ≤ i < ` do
7. if si | k and dup(si)

add(si)
≥ r and score(si, k) ≤ sthres then

8. scorej ← (score(si, k), si), j++
9. sort scorei for 0 ≤ i < j with respect to score(si) and the si’s accordingly
10. i = 0
11. while si | k and i < j do
12. output (si, add(si),dup(si))
13. /* Remove the prime divisor of si = ∏

j ŝi,j from k */
14. k ← k

si
, found ← true, i++

15. output (k, add(k),dup(k))

A Randomized Variant

In the current state, Algorithm 15 returns a single solution given a set of input parameters.
To increase the amount of different results, and hereby hopefully improving these results, we
randomize the selection process of the integer with the best score in line 12 of Algorithm 15.
With probability x ∈ R (0 < x < 1) select the current si or, with probability 1− x, skip this
si and repeat this procedure for the next integer si+1. If i+ 1 ≥ j, i.e. we have reached the
end of the list, one could either end the while-loop or select the best score which was skipped.



112 ECM AT WORK

Table 7.3: The top table shows the number of integers generated which addition/subtraction chain
using A and D elliptic curve additions and duplications respectively. All these integers were tested
for 2.9 · 109-smoothness and, if smooth, the prime divisors are stored. The bold ranges indicate that
231 random integers per single A, D combination were tested for smoothness instead of the full range.
The bottom table shows the number of unique B1-smooth integers in the no-storage and low-storage
setting for different values of B1.

No-storage setting Low-storage setting
A D #smoothness tests A D #smoothness tests
1 5− 200 3.920 · 102 1 5− 250 4.920 · 102

2 10− 200 7.946 · 104 2 10− 250 2.487 · 105

3 15− 200 1.050 · 107 3 15− 250 1.235 · 108

4 20− 200 1.035 · 109 4 20− 250 6.101 · 1010

5 25− 200 8.114 · 1010 5 25− 153 2.511 · 1012

5 154 − 220 1.439 · 1011

6 30− 124 2.858 · 1011 6 60 − 176 2.513 · 1011

7 35− 55 2.529 · 1010

Total 3.932 · 1011 Total 2.967 · 1012

B1 No-Storage Low-Storage
256 2.412 · 105 9.012 · 106

512 1.442 · 106 3.013 · 107

1 024 5.466 · 106 7.271 · 107

12 288 1.149 · 108 5.711 · 108

49 152 3.152 · 108 1.250 · 109

262 144 7.757 · 108 2.889 · 109

1 048 576 1.380 · 109 5.121 · 109

3 000 000 1.991 · 109 7.271 · 109

2 900 000 000 1.054 · 1010 3.930 · 1010

Combining the Remaining Primes

After Algorithm 15 finishes it returns (in line 15) k: the product of remaining unmatched
prime factors. The associated cost for this addition chain is calculated assuming a double-
and-add algorithm (see Chapter 2) is used. To lower the number of additions required, if the
number of primes in this list is not too high, we use similar techniques as described in [71]. We
use a brute-force program which calculates the cost of the addition chains when multiplying
n of these prime divisors (of k) for 1 ≤ n ≤ 5. These costs are sorted and using a greedy
approach the best ones (lowest addition cost) are selected.

7.2.4 Additional Multiplications

The fastest arithmetic for Edwards curves is due to Hisil et al. [105] (see Section 2.4). They
propose to use extended twisted Edwards coordinates, which are twisted Edwards coordinates



113

plus an auxiliary coordinate. This allows faster addition but slower duplication. Using a mix-
ing technique, by switching between extended twisted Edwards and regular twisted Edwards,
the overall cost for scalar multiplication is reduced [105]. This is realized by performing the
duplications using the cheaper regular twisted Edwards coordinates when a duplication is
followed by a duplication. When an addition is required after a duplication one can use the
duplication formula in the extended twisted Edwards coordinates (which does not need the
auxiliary coordinate as input) at the cost of an extra multiplication to compute the auxiliary
coordinate of the result. Next, the fast addition is performed in extended twisted Edwards
coordinates; one multiplication (to compute the auxiliary coordinate of the output) can be
saved, cancelling the extra multiplication used when doubling, since a duplication is always
performed after an addition in ECSM-algorithms. This approach assumes that both inputs of
the elliptic curve addition are in extended twisted Edwards coordinates. This is the case for
simple double-and-add algorithms and (signed) windowing algorithms where the computation
of the auxiliary coordinates of the lookup table are a minor overhead.

In both our settings, the low- and no-storage, this does not hold. Converting a point
from twisted Edwards coordinates to extended twisted Edwards coordinates requires a single
multiplication. The computation of the large elliptic curve scalar product is done by pro-
cessing batches of prime products (the si) at a time. All the additions or subtractions in
the addition/subtraction chain to compute si require that the points are in extended twisted
Edwards coordinates. When needed, the odd intermediate results are stored in extended
twisted Edwards coordinates at a cost of a single additional multiplication. The cost of
computing a low-storage addition/subtraction chain (om−1, . . . , o0) ∈ Qm is increased by x
multiplications, where x = #{i | oi ∈ {Aj , Sj}, 0 ≤ i < m}; i.e. the unique number of
indices used in the additions and subtractions. This increases the cost of no-storage chains
by #{addition chains used} − 2 multiplications (since x = 1 for almost all si): we can save
one multiplication due to the powers of 2 (which are EC-addition free) and the other multi-
plication is saved if we assume that the input point is already in extended twisted Edwards
coordinates. In the low-storage setting this number of additional multiplications might be
higher.

7.3 Results

When fixing the number of additions and duplication one can generate all the possible result-
ing integers which can be constructed using an addition/subtraction chain as described in
the previous section. Table 7.3 summarizes the ranges we have covered showing that we have
tested more than 1012 integers for 2.9 · 109-smoothness. The bold ranges in the low-storage
setting indicate that 231 random integers resulting from an addition/subtraction chain per
single A, D combination have been tested for 2.9 ·109-smoothness (instead of the full range).
We separated our data-set in two: one part for the no-storage setting and both parts to be
used in the low-storage setting. Table 7.3 also summarizes the number of integers which
passed the B1-smoothness test for varying B1-parameters. Let us provide some information
to give an idea about the effort required to test these numbers for smoothness. The smooth-



114 ECM AT WORK

Table 7.4: Example of the best addition chain found for B1 = 256 in the no-storage setting.

#D #A product addition chain
11 1 89 · 23 S0D

11

14 2 197 · 83 S0D
5S0D

9

15 2 193 · 191 S0D
12A0D

3

15 2 199 · 19 · 13 A0D
14A0D

1

18 1 109 · 37 · 13 · 5 A0D
18

19 2 157 · 53 · 7 · 3 · 3 S0D
6S0D

13

21 3 223 · 137 · 103 A0D
10A0D

10A0D
1

23 3 179 · 149 · 61 · 5 S0D
13A0D

5S0D
5

28 1 127 · 113 · 43 · 29 · 5 · 3 S0D
28

30 3 181 · 173 · 167 · 11 · 7 · 3 A0D
11A0D

16A0D
3

33 5 211 · 73 · 67 · 59 · 47 · 3 S0D
6A0D

2A0D
11S0D

3S0D
11

36 4 241 · 131 · 101 · 79 · 31 · 11 A0D
2A0D

16A0D
16A0D

2

41 4 233 · 229 · 163 · 139 · 107 · 17 S0D
9S0D

4S0D
11S0D

17

49 5 251 · 239 · 227 · 151 · 97 · 71 · 41 S0D
3S0D

29A0D
4A0D

8A0D
5

8 0 28 D8

361 38 Total

ness testing implementation requires (when using B1 = 2.9 · 109) at most 4.6GB of memory
which is shared among the 8 cores of a Intel Xeon E5430 (2.66GHz) which compute on the
product tree in parallel. The smoothness computations ran on 5 such nodes (40 cores) in
parallel for more than half a year and one of these nodes was occasionally used for the com-
bining experiments (using the approach as outlined in Algorithm 15). The run-time of the
greedy approach to combine the chains varies from seconds (for the low B1 values) to almost
a day for the large B1 values for multiple runs. For these large B1 values most of the time
is consumed by reading the factorization data from disk, once this has been put in memory
multiple runs (using the probabilistic version) can be performed quickly.

Table 7.4 shows an example for B1 = 256 in the no-storage setting. All the prime powers
pe ≤ 256 with p prime, e ∈ Z such that pe+1 > 256 are used. The total cost, in terms of
modular multiplications and squarings, for these 15 addition chains is 361× (3M+4S)+38×
8M + 13M = 1 444S + 1 400M where the 13 additional multiplications are due to adding or
subtracting the input point in all except the first and last chain in Table 7.4. Only additions
or subtractions with the input point are performed: no storage besides the in- and output is
required.

Table 7.5 shows the results obtained using Algorithm 15 on our dataset (see Table 7.3).
The memory required is expressed in the number of residues (R), integers modulo n, which
need to be kept in memory. In the setting of EECM-MPFQ [15] we assume that only the input
point needs to be kept in memory while we assume that two points (the input point and the
current active point) are required in the no- and low-storage setting. The implementation
of the elliptic curve group operation is assumed to require at most two auxiliary variable



115

Table 7.5: The number of modular multiplications (M) and squarings (S) required to calculate the
elliptic curve additions (A) and duplications (D) for various B1 when factoring an integer n with
ECM. The memory required is expressed as the number of residues (R), integers modulo n, which are
kept in memory.

Cost \ B1 256 512 1024 12 288 49 152 262 144
EECM-MPFQ [15]

#M 1 608 3 138 6 116 67 693 260 372 1 351 268
#S 1 436 2 952 5 892 70 780 283 272 1 512 100

#M + #S 3 044 6 090 12 008 138 473 543 644 2 863 368
A 69 120 215 1 864 6 392 29 039
D 359 738 1 473 17 695 70 818 378 025

#R 30 48 102 786 1 593 6 966
No Storage Setting

#M 1 400 2 842 5 596 65 873 262 343 1 389 078
#S 1 444 2 964 5 912 70 768 283 168 1 511 428

#M + #S 2 844 5 806 11 508 136 641 545 511 2 900 506
A 38 75 141 1 564 6 113 31 280
D 361 741 1 478 17 692 70 792 377 857

#R 10 10 10 10 10 10
Low Storage Setting

#M 1 383 2 776 5 481 64 634 255 852 1 354 052
#S 1 448 2 964 5 908 70 740 283 056 1 510 796

#M + #S 2 831 5 740 11 389 135 374 538 908 2 864 848
A 35 65 124 1 366 5 127 25 956
D 362 741 1 477 17 685 70 764 377 699

#R 22 22 22 26 26 26

(residues). Hence, the no-storage setting requires memory for 2× 4 + 2 = 10 residues modulo
n.

Note that the performance results for EECM-MPFQ presented in Table 7.5 differ from the
ones in Table 7.2. The numbers in Table 7.2 are the real performance numbers obtained when
running the EECM-MPFQ software. The improved numbers in Table 7.5 are a lowerbound
when a different approach, involving inversions, is used (see also [22, Section 4]). The idea is
to normalize the precomputed points to their affine representation. This has two advantages:
it reduces the memory cost since three out of the four coordinates have to be stored (when
using extended twisted Edwards coordinates) and faster elliptic curve arithmetic can be used
(see Table 7.1). This normalization costs inversions, which are expensive, but this cost is not
incorporated in the results from Table 7.5. In more detail, one can proceed as follows. For
the precomputation cost we assume that the input is doubled and this result is normalized
(at the cost of an inversion). Next, the other precomputations (the odd multiples) can be
computed using the faster elliptic curve addition formula (since one of the inputs has its



116 ECM AT WORK

z-coordinate equal to one). These points are normalized as well using Montgomery’s simul-
taneous inversion [146] (see Section 4.4); the inversions are traded for three multiplications
and normalizing the x-, y- and t-coordinate cost another three multiplications (and the cost
for the single inversion is again not considered). Hence, the total cost to compute the ECSM,
given v precomputed points, A elliptic curve additions and D elliptic curve duplications, is
roughly ((7 + 6)v + 7A + 3D) multiplications and 4D squarings. This approach will most
likely be faster (when considering the cost for the inversions) for the large B1 values. For the
small B1 (< 1 204) the cost of the inversion might outweight the advantages. Nevertheless,
we use these optimistic figures (in terms of storage and performance) to compare against.

The low-storage setting requires at most additional storage for four points (see Table 7.5).
Which is more than the no-storage setting but significantly less compared to the approach
described in [15]. For small B1-values the number of multiplications and squarings is signif-
icant less compared to the windowing methods. For instance, when B1 = 256 the number
of multiplications and squarings using addition chains is 0.93 (0.93) times the effort required
when using windowing based methods while reducing the memory by a factor 1.4 (3.0) when
using the low-storage (no-storage) approach. The smaller B1 values (256, 512 and 1024) are
typical parameters used in the cofactorization step of the NFS. The larger B1 values are used
for finding factors of large composite integers (where B1 = 12 288 corresponds to searching
for 20 decimal digit factors and B1 = 3 000 000 to 40 decimal digit factors).

The performance difference deteriorates when the B1-value increases. When B1 = 49 152
(B1 = 262 144) the performance of the no-storage setting is worse by a factor 1.003 (1.013)
compared to the windowing based methods used in [15]. But since the no-storage setting uses
only 0.006 (0.001) times the amount of storage this approach is to be preferred in settings
where there is not much memory or when the access to this memory is slow. When comparing
the no-storage setting to GMP-ECM, which uses Montgomery curves, less memory is required
while 0.864 (0.856) times the amount of modular multiplications and squarings used in GMP-
ECM need to be computed when using B1 = 49 152 (B1 = 262 144).

7.4 Conclusion
Using the relatively new Edwards curves combined with the fast arithmetic when using the
extended twisted Edwards coordinates is faster than using Montgomery curves in the setting
of ECM. This speed-up comes at a price, as the memory requirement grows roughly linearly
with the size of B1 when using Edwards curves. We have presented techniques, inspired by
the approach from Dixon and Lenstra, which use the fact that the same B1-parameter is often
used in practice, allowing one to perform some precomputations. We tested over 1012 integers,
which resulted from additions/subtractions chains with a low addition/duplication ratio, for
smoothness. Using a greedy approach these integers were combined for different popular
choices of B1. Our results show that for small B1 values, we are both faster and require
less memory compared to the current state-of-the-art. For large B1 values the performance
results are similar while we only require a fraction of the memory used by the algorithms in
the current Edwards ECM implementations. This makes our approach extremely suitable for
memory-constrained parallel architectures like GPUs.



CURRICULUM VITAE
 

PERSONAL INFORMATION

Name: Joppe Willem Bos
E-mail: joppe.bos@epfl.ch

Date of Birth: 4 November 1982
Nationality: Dutch

EDUCATION
 

o École Polytechnique Fédérale de Lausanne (Swiss Federal Institute 
of Technology), Lausanne, Switzerland
2007 – February 2012
PhD Student at the Laboratory for Cryptologic Algorithms (LACAL) 
under supervision of Prof. A. K. Lenstra.
Thesis title: On the Cryptanalysis of Public-Key Cryptography 

o Microsoft Research, Redmond, USA
August 2011 – October 2011
12-week internship under supervision of Dr. P. L. Montgomery 
working on factoring large integers on graphics processing units

o University of Amsterdam, Amsterdam, Netherlands
Field of Study: Master Grid Computing (2004 – 2006)
Master research project title: The Number Field Sieve – The 
Sieving Stage: A Different Approach
Bachelor Computer Science (2002 – 2004)
 

RELEVANT EMPLOYMENT HISTORY
 

o Company: ClusterVision BV
Location: Amsterdam, Netherlands
Function: Software Engineer; Implementation (in C++) of a high 

performance cluster management daemon
Time: August 2006 – January 2007
 

SKILLS
 

o Languages Skills  
Dutch: Native language English: Excellent

o Software Skills  
Programming languages skills include: C, C++, Java, Perl and 
assembly (on misc. platforms including x86, x86-64, Cell and GPU). 
Familiar with a wide variety of software libraries including:
CUDA, GMP, OpenCL, OpenMPI and OpenSSL.
Experience using different OSes, including *nix and Windows. 

 

o Projects  
2010: Involved in finding the record factor of 73 decimal digits 
using the elliptic curve method for integer factorization.
2010: Involved in the factorization of RSA-768: the current 
integer factorization record.
2009: Involved in solving a 112-bit prime elliptic curve discrete 
logarithm problem: the current record.

 

INTERESTS
 

My research interests include cryptanalysis, fast (parallel) arithmetic 
and efficient implementations of cryptologic algorithms on parallel 
architectures with a focus on elliptic curve cryptography and integer 
factorization algorithms. 

117



118 CURRICULUM VITAE



Bibliography

[1] D. Aggarwal and U. M. Maurer. Breaking RSA generically is equivalent to factoring.
In A. Joux, editor, Eurocrypt 2009, volume 5479 of Lecture Notes in Computer Science,
pages 36–53. Springer, Heidelberg, 2009.

[2] AMD. ATI CTM Reference Guide. Technical Reference Manual, 2006.
[3] D. P. Anderson. BOINC: a system for public-resource computing and storage. In GRID

’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10. IEEE Computer Society, 2004.

[4] S. Antao, J.-C. Bajard, and L. Sousa. Elliptic curve point multiplication on GPUs.
In Application-specific Systems Architectures and Processors (ASAP), 2010 21st IEEE
International Conference on, pages 192–199, 2010.

[5] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC,
2006.

[6] D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, G. van
Damme, G. de Meulenaer, J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange,
N. Mentens, C. Paar, F. Regazzoni, P. Schwabe, and L. Uhsadel. The Certicom chal-
lenges ECC2-X. Special-purpose Hardware for Attacking Cryptographic Systems –
SHARCS 2009, 2009. http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf.

[7] D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H.-C. Chen, C.-M.
Cheng, G. van Damme, G. de Meulenaer, L. J. D. Perez, J. Fan, T. Güneysu, F. Gurkay-
nak, T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen, C. Paar, F. Regazzoni,
P. Schwabe, L. Uhsadel, A. V. Herrewege, and B.-Y. Yang. Breaking ECC2K-130. Cryp-
tology ePrint Archive, Report 2009/541, 2009. http://eprint.iacr.org/2009/541.

[8] J.-C. Bajard, L. Imbert, and T. Plantard. Modular number systems: Beyond the
Mersenne family. In H. Handschuh and M. A. Hasan, editors, Selected Areas in Cryp-
tography, volume 3357 of Lecture Notes in Computer Science, pages 159–169. Springer,
Heidelberg, 2004.

[9] J.-C. Bajard, N. Meloni, and T. Plantard. Efficient RNS bases for cryptography. In
IMACS’05 : World Congress: Scientific Computation Applied Mathematics and Simu-
lation, 2005. http://hal-lirmm.ccsd.cnrs.fr/lirmm-00106470/PDF/D547.PDF.

119



120 BIBLIOGRAPHY

[10] M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated
encryption schemes. In Y. Han, T. Okamoto, and S. Qing, editors, Information and
Communication Security – ICICS 1997, volume 1334 of Lecture Notes in Computer
Science, pages 1–16. Springer, Heidelberg, 1997.

[11] A. Bender and G. Castagnoli. On the implementation of elliptic curve cryptosystems.
In G. Brassard, editor, Crypto 1989, volume 435 of Lecture Notes in Computer Science,
pages 186–192. Springer, Heidelberg, 1990.

[12] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958
of Lecture Notes in Computer Science, pages 207–228. Springer, Heidelberg, 2006.

[13] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards curves.
In S. Vaudenay, editor, Africacrypt, volume 5023 of Lecture Notes in Computer Science,
pages 389–405. Springer, Heidelberg, 2008.

[14] D. J. Bernstein, P. Birkner, and T. Lange. Starfish on strike. In M. Abdalla and P. S.
L. M. Barreto, editors, Latincrypt, volume 6212 of Lecture Notes in Computer Science,
pages 61–80. Springer, Heidelberg, 2010.

[15] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves.
Cryptology ePrint Archive, Report 2008/016, 2008. http://eprint.iacr.org/.

[16] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. EECM: ECM using Edwards
curves. http://eecm.cr.yp.to/, 2010.

[17] D. J. Bernstein, H.-C. Chen, M.-S. Chen, C.-M. Cheng, C.-H. Hsiao, T. Lange, Z.-C.
Lin, and B.-Y. Yang. The billion-mulmod-per-second PC. In Special-purpose Hardware
for Attacking Cryptographic Systems – SHARCS 2009, pages 131–144, 2009.

[18] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM on graphics
cards. In A. Joux, editor, Eurocrypt 2009, volume 5479 of Lecture Notes in Computer
Science, pages 483–501. Springer, Heidelberg, 2009.

[19] D. J. Bernstein and T. Lange. Explicit-formulas database. http://www.
hyperelliptic.org/EFD/ (accessed 2010-01-05).

[20] D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, Asiacrypt, volume 4833 of Lecture Notes in Computer Science,
pages 29–50. Springer, Heidelberg, 2007.

[21] D. J. Bernstein and T. Lange. Inverted Edwards coordinates. In S. Boztas and H. feng
Lu, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume
4851 of Lecture Notes in Computer Science, pages 20–27. Springer, Heidelberg, 2007.

[22] D. J. Bernstein and T. Lange. Analysis and optimization of elliptic-curve single-scalar
multiplication. In G. L. Mullen, D. Panario, and I. E. Shparlinski, editors, Finite
Fields and Applications, volume 461 of Contemporary Mathematics Series, pages 1–19.
American Mathematical Society, 2008.

[23] D. J. Bernstein and T. Lange. Type-II optimal polynomial bases. In M. A. Hasan
and T. Helleseth, editors, Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of
Lecture Notes in Computer Science, pages 41–61. Springer, Heidelberg, 2010.

[24] D. J. Bernstein, T. Lange, and P. Schwabe. On the correct use of the negation map in the



BIBLIOGRAPHY 121

Pollard rho method. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors,
Public Key Cryptography – PKC 2011, volume 6571 of Lecture Notes in Computer
Science, pages 128–146. Springer, Heidelberg, 2011.

[25] M. Bevand. MD5 Chosen-Prefix Collisions on GPUs. Black Hat, 2009. Whitepaper.
[26] E. Biham. A fast new DES implementation in software. In E. Biham, editor, Fast

Software Encryption – FSE 1997, volume 1267 of Lecture Notes in Computer Science,
pages 260–272. Springer, Heidelberg, 1997.

[27] D. Blythe. The Direct3D 10 system. ACM Transactions on Graphics, 25(3):724–734,
2006.

[28] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society, 46(2):203–213, 1999.

[29] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In
K. Nyberg, editor, Eurocrypt 1998, volume 1403 of Lecture Notes in Computer Science,
pages 59–71. Springer, Heidelberg, 1998.

[30] J. W. Bos. High-performance modular multiplication on the Cell processor. In M. A.
Hasan and T. Helleseth, editors, Arithmetic of Finite Fields – WAIFI 2010, volume
6087 of Lecture Notes in Computer Science, pages 7–24. Springer, Heidelberg, 2010.

[31] J. W. Bos. Low-latency elliptic curve scalar multiplication, 2012. Submitted for publi-
cation.

[32] J. W. Bos, N. Casati, and D. A. Osvik. Multi-stream hashing on the PlayStation 3. In
Applied Parallel Computing – PARA 2008, volume 6126 of Lecture Notes in Computer
Science. Springer, Heidelberg, 2008. To appear.

[33] J. W. Bos and M. E. Kaihara. Montgomery multiplication on the Cell. In
R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, editors, Parallel
Processing and Applied Mathematics – PPAM 2009, volume 6067 of Lecture Notes in
Computer Science, pages 477–485. Springer, Heidelberg, 2010.

[34] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. On the
security of 1024-bit RSA and 160-bit elliptic curve cryptography. Cryptology ePrint
Archive, Report 2009/389, 2009. http://eprint.iacr.org/.

[35] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy
reduction. International Journal of Applied Cryptography, 2(3):212–228, 2012.

[36] J. W. Bos, M. E. Kaihara, and P. L. Montgomery. Pollard rho on the PlayStation 3. In
Special-purpose Hardware for Attacking Cryptographic Systems – SHARCS 2009, pages
35–50, 2009. http://www.hyperelliptic.org/tanja/SHARCS/record2.pdf.

[37] J. W. Bos and T. Kleinjung. ECM at work, 2012. Work in progress.
[38] J. W. Bos, T. Kleinjung, and A. K. Lenstra. On the use of the negation map in the

Pollard rho method. In G. Hanrot, F. Morain, and E. Thomé, editors, Algorithmic
Number Theory – ANTS-IX, volume 6197 of Lecture Notes in Computer Science, pages
67–83. Springer, Heidelberg, 2010.

[39] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Efficient SIMD arith-
metic modulo a Mersenne number. In IEEE Symposium on Computer Arithmetic –



122 BIBLIOGRAPHY

ARITH-20, pages 213–221. IEEE Computer Society, 2011.
[40] J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe. ECC2K-130 on Cell CPUs.

In D. J. Bernstein and T. Lange, editors, Africacrypt 2010, volume 6055 of Lecture
Notes in Computer Science, pages 225–242. Springer, Heidelberg, 2010.

[41] J. W. Bos, O. Özen, and J.-P. Hubaux. Analysis and optimization of cryptographically
generated addresses. In P. Samarati, M. Yung, F. Martinelli, and C. A. Ardagna,
editors, Information Security Conference – ISC 2009, volume 5735 of Lecture Notes in
Computer Science, pages 17–32. Springer, Heidelberg, 2009.

[42] J. W. Bos, O. Özen, and M. Stam. Efficient hashing using the AES instruction set.
In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded Systems
– CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 507–522.
Springer, Heidelberg, 2011.

[43] J. W. Bos and D. Stefan. Performance analysis of the SHA-3 candidates on exotic
multi-core architectures. In S. Mangard and F.-X. Standaert, editors, Cryptographic
Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in Com-
puter Science, pages 279–293. Springer, Heidelberg, 2010.

[44] S. Boussakta and A. Holt. New transform using the Mersenne numbers. Vision, Image
and Signal Processing, IEE Proceedings -, 142(6):381–388, December 1995.

[45] A. Brauer. On addition chains. Bulletin of the American Mathematical Society, 45:736–
739, 1939.

[46] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical Math-
ematics, 20:176–184, 1980.

[47] R. P. Brent. Some integer factorization algorithms using elliptic curves. Australian
Computer Science Communications, 8:149–163, 1986.

[48] R. P. Brent. Factorization of the tenth Fermat number. Mathematics of Computation,
68(225):429–451, 1999.

[49] R. P. Brent and J. M. Pollard. Factorization of the eighth Fermat number. Mathematics
of Computation, 36(154):627–630, 1981.

[50] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University
Press, 2010.

[51] E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In D. Nac-
cache and P. Paillier, editors, Public Key Cryptography – PKC 2002, volume 2274 of
Lecture Notes in Computer Science, pages 335–345. Springer, Heidelberg, 2002.

[52] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff,
Jr. Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, vol-
ume 22 of Contemporary Mathematics. American Mathematical Society, First edi-
tion, 1983, Second edition, 1988, Third edition, 2002. Electronic book available at:
http://homes.cerias.purdue.edu/~ssw/cun/index.html, 1983.

[53] M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementation of the
NIST elliptic curves over prime fields. In D. Naccache, editor, CT-RSA, volume 2020
of Lecture Notes in Computer Science, pages 250–265. Springer, Heidelberg, 2001.

[54] Certicom. Certicom ECC Challenge. http://www.certicom.com/images/pdfs/cert_



BIBLIOGRAPHY 123

ecc_challenge.pdf, 1997.
[55] Certicom. Press release: Certicom announces elliptic curve cryptosystem (ECC) chal-

lenge winner. http://www.certicom.com/index.php/2002-press-releases/38-
2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-
encryption-key-problem-issued-in-1997, 2002.

[56] H.-C. Chen, C.-M. Cheng, S.-H. Hung, and Z.-C. Lin. Integer number crunching on the
Cell processor. International Conference on Parallel Processing, pages 508–515, 2010.

[57] J. H. Cheon, J. Hong, and M. Kim. Speeding up the Pollard rho method on prime
fields. In J. Pieprzyk, editor, Asiacrypt 2008, volume 5350 of Lecture Notes in Computer
Science, pages 471–488. Springer, Heidelberg, 2008.

[58] J. Chung and M. A. Hasan. More generalized Mersenne numbers. In M. Matsui and
R. J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture Notes
in Computer Science, pages 335–347. Springer, Heidelberg, 2003.

[59] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed
coordinates. In K. Ohta and D. Pei, editors, Asiacrypt 1998, volume 1514 of Lecture
Notes in Computer Science, pages 51–65. Springer, Heidelberg, 1998.

[60] D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, 1993.

[61] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p).
Algorithmica, 1(1):1–15, 1986.

[62] N. Costigan and P. Schwabe. Fast elliptic-curve cryptography on the Cell Broadband
Engine. In B. Preneel, editor, Africacrypt 2009, volume 5580 of Lecture Notes in
Computer Science, pages 368–385. Springer, Heidelberg, 2009.

[63] N. Costigan and M. Scott. Accelerating SSL using the vector processors in IBM’s
Cell Broadband Engine for Sony’s Playstation 3. Cryptology ePrint Archive, Report
2007/061, 2007. http://eprint.iacr.org/2007/061.

[64] R. Crandall and B. Fagin. Discrete weighted transforms and large-integer arithmetic.
Mathematics of Computation, 62(205):305–324, 1994.

[65] R. E. Crandall. Method and apparatus for public key exchange in a cryptographic
system, October 1992. U.S. patent number 5,159,632.

[66] A. J. C. Cunningham and H. J. Woodall. Factorizations of yn ± 1, y =
2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Frances Hodgson, London, 1925.

[67] I. Damgård. Towards practical public key systems secure against chosen ciphertext at-
tacks. In J. Feigenbaum, editor, Crypto 1991, volume 576 of Lecture Notes in Computer
Science, pages 445–456. Springer, Heidelberg, 1991.

[68] G. de Meulenaer, F. Gosset, G. M. de Dormale, and J.-J. Quisquater. Integer factor-
ization based on elliptic curve method: Towards better exploitation of reconfigurable
hardware. In Field-Programmable Custom Computing Machines – FCCM 2007, pages
197–206. IEEE Computer Society, 2007.

[69] V. Dimitrov, T. Cooklev, and B. Donevsky. Generalized Fermat-Mersenne number
theoretic transform. Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, 41(2):133–139, February 1994.



124 BIBLIOGRAPHY

[70] B. Dixon and A. K. Lenstra. Fast massively parallel modular arithmetic. In Proceedings
of the 1993 DAGS/PC Symposium, pages 99–110, 1993.

[71] B. Dixon and A. K. Lenstra. Massively parallel elliptic curve factoring. In R. A.
Rueppel, editor, Eurocrypt 1992, volume 658 of Lecture Notes in Computer Science,
pages 183–193. Springer, Heidelberg, 1993.

[72] J. D. Dixon. Asymptotically fast factorization of integers. Mathematics of Computation,
36(153):255–260, 1981.

[73] I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation
on curves with automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing, editors,
Asiacrypt 1999, volume 1716 of Lecture Notes in Computer Science, pages 103–121.
Springer, Heidelberg, 1999.

[74] H. M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society, 44:393–422, July 2007.

[75] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. Blakley and D. Chaum, editors, Crypto 1984, volume 196 of Lecture
Notes in Computer Science, pages 10–18. Springer, Heidelberg, 1985.

[76] A. E. Escott, J. C. Sager, A. P. L. Selkirk, and D. Tsapakidis. Attacking elliptic curve
cryptosystems using the parallel Pollard rho method. CryptoBytes Technical Newsletter,
4(2):15–19, 1999. ftp.rsasecurity.com/pub/cryptobytes/crypto4n2.pdf.

[77] W. Fischer, C. Giraud, E. W. Knudsen, and J.-P. Seifert. Parallel scalar multiplication
on general elliptic curves over Fp hedged against non-differential side-channel attacks.
Cryptology ePrint Archive, Report 2002/007, 2002. http://eprint.iacr.org/.

[78] P. Flajolet and A. M. Odlyzko. Random mapping statistics. In J.-J. Quisquater and
J. Vandewalle, editors, Eurocrypt 1989, volume 434 of Lecture Notes in Computer Sci-
ence, pages 329–354. Springer, Heidelberg, 1990.

[79] T. H. Flowers. The design of colossus. IEEE Annals of the History of Computing,
5:239–252, 1983.

[80] W. A. P. Forum. Wireless transport layer security specification. See
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf, 2001.

[81] J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very
large numbers with fastECPP. In D. A. Buell, editor, Algorithmic Number Theory –
ANTS-VI, volume 3076 of Lecture Notes in Computer Science, pages 194–207. Springer,
Heidelberg, 2004.

[82] Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic Library,
2011. Available at http://www.gmplib.org/.

[83] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryp-
tion schemes. In M. J. Wiener, editor, Crypto 1999, volume 1666 of Lecture Notes in
Computer Science, pages 537–554. Springer, Heidelberg, 1999.

[84] K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin, and R. Bachi-
manchi. Implementing the elliptic curve method of factoring in reconfigurable hardware.
In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Embedded Systems



BIBLIOGRAPHY 125

– CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 119–133.
Springer, Heidelberg, 2006.

[85] S. Galbraith. Mathematics of public key cryptography (version 0.6). http://www.isg.
rhul.ac.uk/~sdg/crypto-book/crypto-book.html, 2010.

[86] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Improving the parallelized
Pollard lambda search on anomalous binary curves. Mathematics of Computation,
69(232):1699–1705, 2000.

[87] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, and V. Volkov. Parallel computing experiences with CUDA. IEEE Micro,
28(4):13–27, 2008.

[88] H. L. Garner. The residue number system. IRE Transactions on Electronic Computers,
8:140–147, 1959.

[89] GIMPS Home Page. The great internet Mersenne prime search. http://www.
mersenne.org, 2010.

[90] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice
reduction problems. In B. S. Kaliski Jr., editor, Crypto 1997, volume 1294 of Lecture
Notes in Computer Science, pages 112–131. Springer, Heidelberg, 1997.

[91] D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129–146, April 1998.

[92] T. Granlund. GMP small operands optimization. In Software Performance Enhance-
ment for Encryption and Decryption – SPEED 2007, 2007.

[93] K. Group. OpenCL - The open standard for parallel programming of heterogeneous
systems. http://www.khronos.org/opencl/.

[94] M. Gschwind. The Cell broadband engine: Exploiting multiple levels of parallelism in a
chip multiprocessor. International Journal of Parallel Programming, 35:233–262, 2007.

[95] T. Güneysu, T. Kasper, M. Novotny, C. Paar, and A. Rupp. Cryptanalysis with CO-
PACOBANA. IEEE Transactions on Computers, 57:1498–1513, 2008.

[96] R. Guy. Unsolved problems in number theory, volume 1. Springer Verlag, 3rd edition,
2004.

[97] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a GPU-accelerated software
router. In Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM, pages
195–206. ACM, 2010.

[98] D. Hankerson, A. Menezes, and S. A. Vanstone. Guide to Elliptic Curve Cryptography.
Springer, Heidelberg, New York, 2004.

[99] R. Harley. Elliptic curve discrete logarithms project. http://pauillac.inria.fr/
~harley/.

[100] B. Harris. Probability distributions related to random mappings. The Annals of Math-
ematical Statistics, 31:1045–1062, 1960.

[101] J. Harrison. Isolating critical cases for reciprocals using integer factorization. In IEEE
Symposium on Computer Arithmetic – (Arith-16), pages 148–157. IEEE Computer
Society, 2003.

[102] O. Harrison and J. Waldron. AES encryption implementation and analysis on commod-



126 BIBLIOGRAPHY

ity graphics processing units. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in Com-
puter Science, pages 209–226. Springer, Heidelberg, 2007.

[103] O. Harrison and J. Waldron. Practical symmetric key cryptography on modern graphics
hardware. In Proceedings of the 17th conference on Security symposium, pages 195–209.
USENIX Association, 2008.

[104] O. Harrison and J. Waldron. Efficient acceleration of asymmetric cryptography on
graphics hardware. In B. Preneel, editor, Africacrypt 2009, volume 5580 of Lecture
Notes in Computer Science, pages 350–367. Springer, Heidelberg, 2009.

[105] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves revisited.
In J. Pieprzyk, editor, Asiacrypt 2008, volume 5350 of Lecture Notes in Computer
Science, pages 326–343. Springer, Heidelberg, 2008.

[106] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryptosys-
tem. In J. Buhler, editor, Algorithmic Number Theory – ANTS-III, volume 1423 of
Lecture Notes in Computer Science, pages 267–288. Springer, Heidelberg, 1998.

[107] H. P. Hofstee. Power efficient processor architecture and the Cell processor. In High-
Performance Computer Architecture – HPCA 2005, pages 258–262. IEEE, 2005.

[108] IBM. Multi-precision math library. Example Library API Reference. Available at http:
//public.dhe.ibm.com/software/dw/cell/SDK_Example_Library_API_v3.1.pdf.

[109] ISO/IEC 18033-2. Information technology – Security techniques – Encryption algo-
rithms – Part 2: Asymmetric ciphers, 2006.

[110] T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against side
channel attacks. In D. Naccache and P. Paillier, editors, Public Key Cryptography –
PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages 371–374. Springer,
Heidelberg, 2002.

[111] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader: cheap SSL acceleration
with commodity processors. In USENIX conference on Networked systems design and
implementation – NSDI’11, pages 1–14. USENIX Association, 2011.

[112] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) 1: RSA Cryp-
tography Specifications Version 2.1. RFC 3447, RSA Laboratories, 2003.

[113] M. Joye and S.-M. Yen. The Montgomery powering ladder. In B. S. Kaliski Jr.,
Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 1–11. Springer,
Heidelberg, 2003.

[114] M. E. Kaihara and N. Takagi. A hardware algorithm for modular multiplica-
tion/division. IEEE Transactions on Computers, 54(1):12–21, 2005.

[115] B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transactions on
Computers, 44(8):1064–1065, 1995.

[116] A. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic
computers. Number 145 in Proceedings of the USSR Academy of Science, pages 293–
294, 1962.

[117] E. Kiltz, K. Pietrzak, M. Stam, and M. Yung. A new randomness extraction paradigm



BIBLIOGRAPHY 127

for hybrid encryption. In A. Joux, editor, Eurocrypt 2009, volume 5479 of Lecture Notes
in Computer Science, pages 590–609. Springer, Heidelberg, 2009.

[118] J. H. Kim, R. Montenegro, Y. Peres, and P. Tetali. A birthday paradox for Markov
chains, with an optimal bound for collision in the Pollard rho algorithm for discrete
logarithm. The Annals of Applied Probability, 20(2):495–521, 2010.

[119] T. Kleinjung. Cofactorisation strategies for the number field sieve and an estimate
for the sieving step for factoring 1024-bit integers. In Special-purpose Hardware for
Attacking Cryptographic Systems – SHARCS 2006, 2006.

[120] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zim-
mermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor, Crypto 2010,
volume 6223 of Lecture Notes in Computer Science, pages 333–350. Springer, Heidel-
berg, 2010.

[121] T. Kleinjung, J. W. Bos, A. K. Lenstra, D. A. Osvik, K. Aoki, S. Contini, J. Franke,
E. Thomé, P. Jermini, M. Thiémard, P. Leyland, P. L. Montgomery, A. Timofeev,
and H. Stockinger. A heterogeneous computing environment to solve the 768-bit RSA
challenge. Cluster Computing, pages 1–16, 2010.

[122] D. E. Knuth. Seminumerical Algorithms. The Art of Computer Programming. Addison-
Wesley, Reading, Massachusetts, USA, 3rd edition, 1997.

[123] D. E. Knuth. Sorting and Searching. The Art of Computer Programming. Addison-
Wesley, Reading, Massachusetts, USA, 2nd edition, 1998.

[124] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

[125] N. Koblitz. CM-curves with good cryptographic properties. In J. Feigenbaum, edi-
tor, Crypto 1991, volume 576 of Lecture Notes in Computer Science, pages 279–287.
Springer, Heidelberg, 1992.

[126] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In N. Koblitz, editor, Crypto 1996, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, Heidelberg, 1996.

[127] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Crypto 1999, volume 1666 of Lecture Notes in Computer Science, pages 388–
397. Springer, Heidelberg, 1999.

[128] A. Kruppa. A software implementation of ECM for NFS. Research Report RR-7041,
INRIA, 2009. http://hal.inria.fr/inria-00419094/PDF/RR-7041.pdf.

[129] D. H. Lehmer. An extended theory of Lucas’ functions. Annals of Mathematics,
31(3):419–448, 1930.

[130] D. N. Lehmer. Hunting big game in the theory of numbers. Scripta Mathematica,
March 1933.

[131] A. K. Lenstra. Unbelievable security: Matching AES security using public key systems.
In C. Boyd, editor, Asiacrypt 2001, volume 2248 of Lecture Notes in Computer Science,
pages 67–86. Springer, Heidelberg, 2001.

[132] A. K. Lenstra and H. W. Lenstra, Jr. Algorithms in number theory. In J. van Leeuwen,



128 BIBLIOGRAPHY

editor, Handbook of Theoretical Computer Science (Volume A: Algorithms and Com-
plexity), pages 673–715. Elsevier and MIT Press, 1990.

[133] A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve,
volume 1554 of Lecture Notes in Mathematics. Springer-Verslag, 1993.

[134] A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The factorization
of the ninth Fermat number. Mathematics of Computation, 61(203):319–349, 1993.

[135] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryp-
tology, 14(4):255–293, 2001.

[136] H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

[137] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA tesla: A unified
graphics and computing architecture. Micro, IEEE, 28(2):39–55, 2008.

[138] D. Loebenberger and J. Putzka. Optimization strategies for hardware-based cofactor-
ization. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected Areas
in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 170–181.
Springer, Heidelberg, 2009.

[139] E. Lucas. Théorie des fonctions numériques simplement périodiques. American Journal
of Mathematics, 1(2):184–196, 1878.

[140] S. Manavski. CUDA compatible GPU as an efficient hardware accelerator for AES
cryptography. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE
International Conference on, pages 65–68, 2007.

[141] R. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep Space
Network Progress Report, 44:114–116, 1978.

[142] R. D. Merrill. Improving digital computer performance using residue number theory.
Electronic Computers, IEEE Transactions on, EC-13(2):93–101, April 1964.

[143] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Crypto
1985, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer,
Heidelberg, 1986.

[144] B. Möller. Improved techniques for fast exponentiation. In P. J. Lee and C. H. Lim, ed-
itors, Information Security and Cryptology, volume 2587 of Lecture Notes in Computer
Science, pages 298–312. Springer, Heidelberg, 2002.

[145] P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, April 1985.

[146] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, 1987.

[147] P. L. Montgomery. An FFT extension of the elliptic curve method of factorization. PhD
thesis, University of California, 1992.

[148] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Informatique Thèorique et Applications/Theoretical Infor-
matics and Applications, 24:531–544, 1990.

[149] M. A. Morrison and J. Brillhart. A method of factoring and the factorization of F7.
Mathematics of Computation, 29(129):183–205, 1975.



BIBLIOGRAPHY 129

[150] A. Moss, D. Page, and N. P. Smart. Toward acceleration of RSA using 3D graphics
hardware. In S. D. Galbraith, editor, Proceedings of the 11th IMA international con-
ference on Cryptography and coding, Cryptography and Coding 2007, pages 364–383.
Springer-Verlag, 2007.

[151] National Security Agency. Fact sheet NSA Suite B Cryptography. http://www.nsa.
gov/ia/programs/suiteb_cryptography/index.shtml, 2009.

[152] J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro, 30(2):56–69, 2010.
[153] G. Nivasch. Cycle detection using a stack. Information Processing Letters, 90(3):135–

140, 2004.
[154] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Fermi, 2009.
[155] NVIDIA. NVIDIA CUDA Programming Guide 3.2, 2010.
[156] N. I. of Standards and Technology. Special publication 800-57: Recommendation for

key management part 1: General (revised). http://csrc.nist.gov/publications/
nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf.

[157] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright. Fast software AES encryption. In
S. Hong and T. Iwata, editors, Fast Software Encryption – FSE 2010, volume 6147 of
Lecture Notes in Computer Science, pages 75–93. Springer, Heidelberg, 2010.

[158] J. Owens. GPU architecture overview. In Special Interest Group on Computer Graphics
and Interactive Techniques – SIGGRAPH 2007, page 2. ACM, 2007.

[159] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, San Francisco, California, fourth edition,
2009.

[160] J. Pelzl, M. Šimka, T. Kleinjung, M. Drutarovský, V. Fischer, and C. Paar. Area-time
efficient hardware architecture for factoring integers with the elliptic curve method.
Information Security, IEE Proceedings on, 152(1):67–78, 2005.

[161] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Transactions on Information Theory,
24:106–110, 1978.

[162] J. M. Pollard. Factoring with cubic integers. pages 4–10 in [133].
[163] J. M. Pollard. The lattice sieve. pages 43–49 in [133].
[164] J. M. Pollard. Theorems on factorization and primality testing. Proceedings of the

Cambridge Philosophical Society, 76:521–528, 1974.
[165] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathematics,

15(3):331–334, 1975.
[166] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of

Computation, 32(143):918–924, 1978.
[167] J. M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology,

13:437–447, 2000.
[168] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In H. W.

Lenstra, Jr. and R. Tijdeman, editors, Computational Methods in Number Theory,
pages 89–139, Amsterdam, 1982. Mathematisch Centrum.

[169] C. Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and



130 BIBLIOGRAPHY

I. Ingemarsson, editors, Eurocrypt 1984, volume 209 of Lecture Notes in Computer
Science, pages 169–182. Springer, Heidelberg, 1985.

[170] J.-J. Quisquater and J.-P. Delescaille. How easy is collision search? application to DES
(extended summary). In J.-J. Quisquater and J. Vandewalle, editors, Eurocrypt 1989,
volume 434 of Lecture Notes in Computer Science, pages 429–434. Springer, Heidelberg,
1990.

[171] J.-J. Quisquater and J.-P. Delescaille. How easy is collision search. new results and
applications to DES. In G. Brassard, editor, Crypto 1989, volume 435 of Lecture Notes
in Computer Science, pages 408–413. Springer, Heidelberg, 1990.

[172] C. Research. Standards for efficient cryptography 1: Elliptic curve cryptography. Stan-
dard SEC1, Certicom, 2000.

[173] C. Research. Standards for efficient cryptography 2: Recommended elliptic curve do-
main parameters. Standard SEC2, Certicom, 2000.

[174] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[175] RSA the security division of EMC. The RSA challenge numbers. Formerly on
http://www.rsa.com/rsalabs/node.asp?id=2093, now on http://en.wikipedia.
org/wiki/RSA_numbers.

[176] C. P. Schnorr and H. W. Lenstra, Jr. A Monte Carlo factoring algorithm with linear
storage. Mathematics of Computation, 43(167):289–311, 1984.

[177] A. Scholz. Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereingung, 47:41–
42, 1937.

[178] E. Schulte-Geers. Collision search in a random mapping: some asymptotic re-
sults. Talk at ECC 2000, The Fourth Workshop on Elliptic Curve Cryptography,
Essen, Germany, 2000, Slides available from http://www.cacr.math.uwaterloo.ca/
conferences/2000/ecc2000/slides.html, 2000.

[179] R. Sedgewick, T. G. Szymanski, and A. C. Yao. The complexity of finding cycles in
periodic functions. SIAM Journal on Computing, 11(2):376–390, 1982.

[180] M. Segal and K. Akeley. The OpenGL graphics system: A specification (version 2.0).
Silicon Graphics, Mountain View, CA, 2004.

[181] A. Shamir. RSA for paranoids. CryptoBytes Technical Newsletter. ftp://ftp.
rsasecurity.com/pub/cryptobytes/crypto1n3.pdf.

[182] D. Shanks. Class number, a theory of factorization, and genera. In D. J. Lewis, editor,
Symposia in Pure Mathematics, volume 20, pages 415–440. American Mathematical
Society, 1971.

[183] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[184] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, Eurocrypt 1997, volume 1233 of Lecture Notes in Computer Science, pages 256–
266. Springer, Heidelberg, 1997.

[185] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Gradute Texts in
Mathematics. Springer-Verlag, 1986.



BIBLIOGRAPHY 131

[186] M. Šimka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke, M. Drutarovský,
and V. Fischer. Hardware factorization based on elliptic curve method. In Field-
Programmable Custom Computing Machines – FCCM 2005, pages 107–116. IEEE Com-
puter Society, 2005.

[187] A. Skavantzos and P. Rao. New multipliers modulo 2n − 1. IEEE Transactions on
Computers, 41:957–961, 1992.

[188] J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99–39, Centre
for Applied Cryptographic Research, University of Waterloo, 1999.

[189] J. A. Solinas. Cryptographic identification and digital signature method using efficient
elliptic curve, May 2005. U.S. patent number 6,898,284.

[190] J. Stein. Computational problems associated with Racah algebra. Journal of Compu-
tational Physics, 1(3):397–405, 1967.

[191] M. Stevens, A. K. Lenstra, and B. de Weger. Predicting the winner of the 2008 US pres-
idential elections using a Sony PlayStation 3. http://www.win.tue.nl/hashclash/
Nostradamus/.

[192] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik, and
B. de Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue CA
certificate. In S. Halevi, editor, Crypto 2009, volume 5677 of Lecture Notes in Computer
Science, pages 55–69. Springer, Heidelberg, 2009.

[193] R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asymmetric crypto-
graphy. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and Embedded
Systems – CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 79–99.
Springer, Heidelberg, 2008.

[194] O. Takahashi, R. Cook, S. Cottier, S. H. Dhong, B. Flachs, K. Hirairi, A. Kawasumi,
H. Murakami, H. Noro, H. Oh, S. Onish, J. Pille, and J. Silberman. The circuit design
of the synergistic processor element of a Cell processor. In International conference on
Computer-aided design – ICCAD 2005, pages 111–117. IEEE Computer Society, 2005.

[195] F. Taylor. Large moduli multipliers for signal processing. Circuits and Systems, IEEE
Transactions on, 28(7):731–736, July 1981.

[196] E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In
J. Buhler, editor, Algorithmic Number Theory – ANTS-III, volume 1423 of Lecture
Notes in Computer Science, pages 541–554. Springer, Heidelberg, 1998.

[197] E. Teske. On random walks for Pollard’s rho method. Mathematics of Computation,
70(234):809–825, 2001.

[198] E. G. Thurber. On addition chains l(mn) ≤ l(n)− b and lower bounds for c(r). Duke
Mathematical Journal, 40:907–913, 1973.

[199] U.S. Department of Commerce/National Institute of Standards and Technology. Digital
Signature Standard (DSS). FIPS-186-3, 2009. http://csrc.nist.gov/publications/
fips/fips186-3/fips_186-3.pdf.

[200] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1–28, 1999.

[201] H. C. van Tilborg. Encyclopedia of Cryptography and Security. Springer-Verlag, 2005.



132 ECM AT WORK

[202] J. von zur Gathen, A. Shokrollahi, and J. Shokrollahi. Efficient multiplication using
type 2 optimal normal bases. In C. Carlet and B. Sunar, editors, Arithmetic of Finite
Fields – WAIFI 2007, volume 4547 of Lecture Notes in Computer Science, pages 55–68.
Springer, Heidelberg, 2007.

[203] C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronics
Letters, 35(21):1831–1832, 1999.

[204] M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In
S. Tavares and H. Meijer, editors, Selected Areas in Cryptography – (SAC) 1998, volume
1556 of Lecture Notes in Computer Science, pages 190–200. Springer New York, 1999.

[205] J. Yang and J. Goodman. Symmetric key cryptography on modern graphics hardware.
In K. Kurosawa, editor, Asiacrypt, volume 4833 of Lecture Notes in Computer Science,
pages 249–264. Springer, Heidelberg, 2007.

[206] yoyo@home and M. Thompson. Found GMP-ECM top50 factor. http://www.loria.
fr/~zimmerma/records/p68, 2009.

[207] P. Zimmermann and B. Dodson. 20 years of ECM. In F. Hess, S. Pauli, and M. E.
Pohst, editors, Algorithmic Number Theory – ANTS-VII, volume 4076 of Lecture Notes
in Computer Science, pages 525–542. Springer, Heidelberg, 2006.

[208] R. Zimmermann, T. Güneysu, and C. Paar. High-performance integer factoring with
reconfigurable devices. In Field Programmable Logic and Applications – FPL 2010,
pages 83–88. IEEE, 2010.

[209] P. Zimmermann et al. GMP-ECM (elliptic curve method for integer factorization).
https://gforge.inria.fr/projects/ecm/, 2010.


