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We can’t solve problems by using the same kind of thinking we used when we created them.

— Albert Einstein

The data you have for the present crisis was collected to relate to the previous one.

— Edgar Horwood

L’essentiel est sans cesse menacé par l’insignifiant.

— René Char



Knowledge speaks, but wisdom listens.

— Jimi Hendrix
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Abstract
Following the pioneering work “Tokyo Half Project” promoted by the Alliance for Global Sus-

tainability (AGS), a geographical information system has been developed to model the energy

requirements of urban areas.

The purpose of this platform is to model with sufficient details the energy services require-

ments of a given geographical area in order to allow the evaluation of the integration of

advanced integrated energy conversion systems.

This tool is used to study the emergence of more sustainable cities that realize energy efficiency

improvement measures, integrate energy efficient conversion technologies and promote the

use of endogenous renewable energy. It is based on techniques at the crossroads of three

domains : geographical information systems, urban energy modelling and process integration

and process design techniques.

The model is illustrated with case studies for the energetic planning of urban district in Switzer-

land.

Keywords: Urban systems, Geographic information system, Urban energy planning, Pinch

analysis, Integrated energy systems, Sustainability, Polygeneration
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Résumé
Suite au projet novateur « Tokyo Half Project » porté par l’Alliance pour un développement

global durable (AGS), un système d’information géographique a été développé pour modéliser

les besoins énergétiques des zones urbaines.

L’objectif de cette plateforme est de décrire avec suffisamment de détails les services énergé-

tiques requis dans une zone géographique donnée, afin d’y évaluer le potentiel d’intégration

de systèmes avancés de conversion d’énergie.

Cet outil contribue à l’étude de l’émergence de cités plus durables par la mise en œuvre de

mesures d’amélioration de l’efficacité énergétique, par l’intégration de systèmes de conversion

d’énergie performants et par la promotion de l’utilisation de sources d’énergie renouvelables

locales. Il est basé sur des techniques issues de trois domaines : les systèmes d’informations

géographiques, la modélisation énergétique des zones urbaines et les techniques de dimen-

sionnement et d’intégration des procédés industriels.

L’application du modèle est démontrée sur des études de cas de planification énergétique

d’agglomérations urbaines en Suisse.

Mots-clés : Système urbain, Système d’information géographique, Planification énergétique

urbaine, Analyse de pincement, Système énergétique intégré, Développement durable, Poly-

generation
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1 Towards Design of Integrated Urban
Energy Systems

1.1 Introduction

Supplying energy services in urban areas corresponds to more than 45% of the energy con-

sumption of a country like Switzerland [Kirchner et al., 2010].

Increasing the energy efficiency in urban area is the result of the integration of five actions :

• improve the building performances

• develop distribution systems,

• integrate endogenous and renewable resources,

• increase the efficiency and the integration of energy conversion systems,

• transform the occupants behaviour.

In comparison with conventional heating solutions by individual boilers (see Figure 1.1), the

design of more efficient urban energy systems requires a more detailed analysis of the energy

services to be supplied, of the available resources and of the equipment integration.

100 kWOil, Gas, Wood

117 kW
Boiler

Figure 1.1: Conventional heating system.

This is particularly true when considering heat pumping or combined heat and power solu-

tions, as shown in Figure (1.2), whose efficiencies are temperature dependent, and whose

profitability strongly depends on the appropriate size of equipment and on the management
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strategies. This is even more the case when considering refurbishment actions and the inte-

gration of solar heat and electricity.

Underground, 
Air, Water

Natural Gas
NGCC

Heat
pump30 kW

16.7 kW

40 kW

Electricity 10 kW

40 kW

Figure 1.2: Advanced energy conversion system.

In addition, the accessibility to endogenous renewable resources (see Figure 1.3), like geother-

mal heat, surface water or biomass, that enter in conjunction with the scale effects of the

technologies, requires the evaluation of district heating/cooling solutions.

Resources

Integrated technologies
Energy distribution

Conversion unit

Multi-resources Multi-services

Renewables

Figure 1.3: Multi-service and multi resource energy conversion in urban systems

There is therefore a need for a tool that offers a holistic energy vision of a given urban area, not

only from the building perspective, but also at the district scale, considering the synergies and

competitions between resources and services, via the proper integration of energy conversion

technologies with district heating/cooling distribution systems.

The present work presents a methodology and tools, developed for the evaluation of integrated

energy conversion systems in urban areas, using techniques at the crossroads of three domains

(see Figure 1.4):

• geographical information systems (Chapter § 2, p. 31), which entails a structuring phase

of the information and the design of a database management system, enabling the use

of analytical and reporting tools for the generation of maps and graphs.

• urban energy systems modeling (Chapter § 3, p. 69), which aims to develop and apply

model using a bottom-up approach to simulate with a sufficient level of detail the energy,

cost and emissions at any given level of disaggregation.

• process integration and process design techniques (Chapter § 5, p. 109), which provide a

holistic vision of the system by computing, for a set of interconnected models, the global
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balance of plant resulting from the determination of the optimal size of equipment with

the corresponding allocation of thermal, mechanical and material resources.

Bottom-up/
Top-down approach

Urban Energy System 
Modelling

Aggregation/
Des-aggregation

Database design
and management

Statistical analysis

Data mining

Targeting and Pinch analysis

Process Integration

Physical models/
Regression models

Geographical
Information System

Energy Conversion 
thermodynamic,
technologies 
and cost

Thermo-economic, 
environomic,
Exergy and LCA 
analysis

Optimisation and MILP
programming

Reporting

Uncertainities
evaluation

Figure 1.4: Engineering domains for the evaluation of integrated energy conversion systems in
urban areas.

The combination of this technical know-how allows to present maps of energy, cost and

emission indicators resulting from the evaluation of energy scenarios integrating the energy

demand, resource, conversion technologies and urban infrastructure.

This provides therefore a means for the engineers to bring elements in the participatory

planning processes allowing a very large number of stakeholders with different interests

and agendas (e.g. developers, owners, tenants, local authorities, environmentalists, energy

providers, engineers, architects, officials, people’s representatives) to gather and discuss the

issues of several territorial energy scenarios.

1.2 Genesis and research plan

The elaboration of a methodology (§ 1.7) based on a geographical information system started

from the elaboration of a strategic thermal-energy master plan for the Canton of Geneva on

horizon 2030 [Darbellay et al., 2007].

The objective of this study was to establish a method to evaluate the demand of a given geo-

graphic area to assess the need for infrastructure, particularly network development, and the

performances of advanced energy conversion systems, making the best use of local resources.

An energy model has then been developed based on the available information of the Geneva

Territory Information System1.

1SITG: Système d’Information du Territoire Genevois, http://etat.geneve.ch/sitg/
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The present and future energy requirements as well as the resources availability have been

reported on maps, drawn at the scale of urban districts (see for example Figure 1.11, p. 16). By

extrapolation of the energy demand, the tool developed served as a starting point for pinch

analysis that helps to determine, in geographical terms, the opportunities for the integration

of energy conversion technologies, including heating distribution networks.

As the energy management of cities must take into account the coexistence of old and new

housing stock, the integration of new and existing heating and cooling equipments to district

network has been further studied. A multi-period energy integration procedure has been

applied to evaluate the simultaneous distribution of heating and cooling services to the urban

area surrounding the international organizations in Geneva2 [Calame-Darbellay et al., 2009a;

Girardin et al., 2010a]. For this purpose, not only the time scale decomposition has been

refined, but also the spatial one, going down to the individual building levels. The energy

model was also improved to consider scenarios for the refurbishment of the existing buildings.

Starting from the definition of a minimum set of necessary information, the method has been

applied to West-Switzerland cities laying the foundation of a geo-referenced database [Gi-

rardin et al., 2010c] designed for the management of energy systems in urban areas. As the

communication and synthesis of the results became an increasingly important task in the

decision-making process, the geo-referenced layers, resulting from time-efficient and robust

processing of the information from disparate sources, have been made available through a

collaborative platform over the Internet. The graphical representation of economic, enviro-

nomic and exergetic trends between competing energy integration scenarios were moreover

refined [Girardin and Maréchal, 2010].

Finally, in the context of a limited time project where there is obviously no point to collect

all the required measurements, statistical techniques and Monte Carlo simulation have been

investigated to ensure instead that, despite the lack of information, the results are nevertheless

generated with sufficient accuracy.

1.3 Motivation

Nowadays, the execution and implementation of territorial sustainable energy action plans

are mostly led by local Communities engaged on a voluntary basis. Following population’s

demands and urban ecology motivation, an increasing number of communities are indeed

adopting energy policies and sustainable energy action plans in order to promote renewable

sources and rational responsible use of energy.

2European project Tetraener, www.tertaener.com
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1.3.1 The “2000 Watt society”

Concerning the sustainable development, the concept of a “2000 Watt society” [Jochem et al.,

2004], proposed in 1998 by the board of Swiss Federal Institutes of Technology [Maréchal et al.,

2005], assumes by the middle of the 21st century a yearly per capita primary energy demand

of 2000 W yr
cap·yr , corresponding to 65 G J

cap·yr , which represents the mean per capita primary

energy use in the world, one third of the energy intensity in Europe and 1.78 times the energy

intensity in Switzerland (2009).

At the national level, the most efficient actions in the domain of energy and building technology

has been identified [Pfeiffer et al., 2005] as the adoption of Minergie-P standard for all building

by 2050, in conjunction with the use of heat pumps, wood-fired boiler and solar domestic hot

water system to achieve a 3-fold reduction in total gross energy use.

In summary the major recommended actions are:

• the development of holistic system design methodologies,

• the convergence towards low energy buildings through refurbishment actions,

• the improvement of the energy efficiency of large equipment, industrial plants, ther-

mal power generation plant , as well as in material use through recycling, re-use and

substitution,

• the implementation of investment policy for innovations in information technologies,

power electronics and other technological equipments,

• the realization of the significant energy-saving potential in road transport, especially

passenger vehicles,

• the resolution of methodological, behavioral, economical and technological bottlenecks.

The “2000W society” is currently evolving from a research concept into a long-term political

agenda.

1.3.2 Greenhouse gas Emissions targets

One possible strategy of increasing the use of renewable sources of energy is to set manda-

tory targets for the reduction of emissions in the short term. For exemple, the “Facteur

4” [Boissieu, 2006] refers, in France, to the target set by law3, and confirmed by the “Grenelle

de l’environnement II4” to reduce by four, by 2050, the levels of greenhouse gas emission of

3Loi n◦ 2005-781 du 13 juillet 2005 de programme fixant les orientations de la politique énergétique
4Environnement : engagement national pour l’environnement (Grenelle II), Loi n 2010-788 du 12 juillet 2010

portant engagement national pour l’environnement publiée au Journal Officiel du 13 juillet 2010
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1990.

In 2009, the European Commission adopted a commitment5 to reduce by 2020 the greenhouse

gas emissions at least 30% below 1990. In 2009, a legally binding CO2 emission reduction

target, of at least 26% by 2020 and 80% by 2050, compared to 1990 levels, was set by the United

Kingdom [Crown, 2009].

However, one drawback of this straightforward approach is that if it is not accompanied by

commitments to specific action plans, it may be discredited as overly idealistic.

1.3.3 The European Energy Award

Another similar city network, the European Energy Award6, counts, by the end of 2009, 590

EU communities engaged in a certified energy quality management system.

This certification may be seen as a preliminary step for the definition of action plans prepared

under the “Covenant of Mayors”.

1.3.4 The Covenant of Mayors “3×20” target

The objective of the “3×20” agreement aims to surpass the emission reduction policy, by

targeting by 2020:

• a reduction of greenhouse gas emissions of at least 20% below 1990 levels,

• a coverage level of 20% of the energy consumption by renewable resources

• and the improvement of energy efficiency leading to 20% reduction in primary energy

use

The Covenant of Mayors is an European movement involving local and regional authorities,

voluntarily committing to the “3×20” target.

Today 2778 signatories (14-07-2011) joined the Covenant of Mayors action plan [SEAP, 2010].

The rate of involvement of 460 new members every six months since 2008 (see Figure 1.5),

reflect the will of local decision-makers to progress toward sustainable development.

1.3.5 Holistic vision of Urban Energy Systems

Despite these efforts to promote best practices and increase the understanding of energy

efficiencies through ambitious objective, it is thought that, at present time, the develop-

5Decision No 406/2009/EC of the European Parliament and of the Council of 23 April 2009 on the effort of
Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission
reduction commitments up to 2020, Official Journal L 140 , 05/06/2009 P. 0136 - 0148

6European Energy Award® (“Cité de l’énérgie”),The European Certification and Quality Management systems
for towns and cities, http://www.european-energy-award.org/

7http://www.eumayors.eu/about/signatories_en.html
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Figure 1.5: Covenant of Mayors adhesions for the period 2008-2011, source: from Covenant of
Mayor web site7.

ment of decision-making tools and planning methodologies for the efficient integration of

energy systems in urban area, have fallen behind today’s challenges and political commit-

ments [Oreszczyn and Lowe, 2010]. This is explained not only by the complexity of the energy

planning task, being multi-scale in its geo-spatial components, multi-period in its time break-

down and moreover stochastic, but also by its inherent multidisciplinary nature.

Among the challenges that today may catch decisions makers unprepared, we may note :

• the difficulty to have a full picture of the actual state of the real requirements of the

urban energy system,

• the responsibility, to the community, for the adoption of long-term decision, shaping

the future of the next thirty to sixty years,

• an inherited situation where it is likely that 90% of the building stock is existing (see

Figure 1.9, p. 13),

• the growing public interest and expectation for new energy alternatives,

• the problematic fact that a global vision of the energy chain extends beyond borders,

both regional and national,

• the need of a strong line of argument to find issues of common interest with the stake-

holders,

• the identification of synergies between sustainable energy development and industrial

development.
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1.4 Previous Holistic Methodologies and Tools

In order to face the challenge of the development of sustainable urban societies, holistic

methodologies [Barreiro et al., 2009; Pullen, 2009; Yamaguchi and Shimoda, 2010], tools (SUN-

tool [Robinson et al., 2007], CITYSIM [Robinson et al., 2009], SynCity [Keirstead et al., 2009]

and platform DOME [Kraines and Wallace, 2003]) for the design and urban energy systems

have recently emerged. Some of theses tools are distinguished by using Process Integration

techniques to evaluate the integration of advanced energy conversion systems (ENERGIS [Gi-

rardin et al., 2010b]) and find the best mix of technologies (DESDOP [Weber, 2008; Weber and

Shah, 2011]).

Unlike other bottom-up approaches working at a disaggregated level [Kavgic et al., 2010], these

models rely on a multilayer energy model [Fu et al., 2009] for the description of resources,

building stock, technologies and infrastructure.

Motivated by the need to optimize energy systems, genetic algorithms have been used to

design district heating systems [Curti, 1998] and further developed for multi-objective op-

timization of a number of industrial problems [Leyland, 2002; Molyneaux, 2002], including

the integration of advanced energy systems for more sustainable urban areas [Bürer, 2003].

More generally, it has been demonstrated that the combined use of an evolutionary genetic

algorithm and process integration techniques [Maréchal, 1995], results in successful methods

both for the preliminary design of industrial energy systems [Bolliger, 2010] and the thermo-

economic optimization of industrial sites [Périn-Levasseur, 2009] and processes [Gassner,

2010].

As noted by [Manfren et al., 2011], whatever method and tool is preferred, the key points for

the realization of integrated urban design tools are advanced multidisciplinary modeling, in-

teroperability of computational models and collaborative research for the optimal integration

of energy systems.

1.5 Objectives

The proposed methodology and tools aim at helping local and national communities to

make decisions for the integration of more efficient and renewable energy systems, that

meet thermo-economic and environomic targets, using the best local resources. Accordingly,

the implementation of a geo-referenced platform, which makes best use of local available

information, seeks to:

• give a representative picture of the actual thermodynamic state and performance of

urban systems,

• compute indicators in order to track the evolution of the energy and environomic

performances in a sustainable way,

8
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• quantify and locate on maps the potential of energy efficiency improvement in order to

implement action in the targeted areas,

• quantify and locate on maps the potential of local energy resources in order to define

actions to promote the use of renewable energies,

• support the coordinated planning of the energy infrastructure (district heat, gas, elec-

tricity and water networks),

• identify the opportunities of industrial integration, like waste water treatment plant,

industrial processes and data centers heat recovery,

• promote the systematic consideration of the energetic aspects in strategic urban plan-

ning and urban development projects,

• promote the set up and use of geo-referenced urban energy inventory.

1.6 Challenges and Opportunities for a Holistic Approach to Urban

Energy Systems

This section presents the challenges faced by the urban planner regarding the composition

of the Swiss final urban energy mix, mainly non-renewable, and the evolution of the built

environment. The opportunities for the development of a bottom-up holistic methodology

is then examined from a geographical, legal, and informational point of view. This should

provides convincing evidence that moving over to the use of renewable energy sources is likely

to require significant technological evolution, both in terms of energy conversion systems and

energy planning and management tools.

1.6.1 Challenge of the Swiss final energy mix

Energy mix and intensity Figure (1.6) presents the Swiss Energy Flow Diagram [SFOE,

2009b] expressed in term of the “2000 W” society indicator8 using Equation (1.1) [Jochem et al.,

2004] which correspond to the average power used annually per person of the country.

E f ,yr =
E f ,yr [P J ] ·1015

np,yr
· 1

8766[h/yr ] ·3600[s/yr ]
[

W yr

cap · yr
] (1.1)

In 2009, the Swiss final consumption reached a level of 3565 W yr
cap·yr (877.6 P J

yr ) which is 1.78

times greater than the “2000W society” target. The estimation of the share of renewable energy

in the consumption depends on the mix of the electricity power sources. In Switzerland, the

actual electricity production mix is based on 54.8% hydroelectric, 38.1% nuclear, 4.9% fossil

fuel from conventional thermal power plants, and 2.2% from other renewable (industrial

8Considering 7’801’278 capita in 2009 [FSO, 2010b]
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Figure 1.6: Swiss Energy flow diagram 2009 in terms of the 2000W society (Source: from [SFOE,
2009b]).

waste 1.52%, wind power 0.06%, Biomass, 0.29%, Solar 1.13% and 0.19% Biogas from WWTP

plant) [SFOE, 2009a].

Urban energy systems As noticed by Pérez-Lombard et al. [2008], the building sector could

legitimately aspire to form a sector beside transport, industry, services, agriculture and oth-

ers. Indeed, the consumption for space heating, hot water production, cooking activities,

household electrical appliances and other heat and electrical process requirements account

for 47.6% of the final energy balance, as shown in pie chart (1.7). This share is even higher in

Winter (60.5%) assuming 3000 heating hours per year.

However, as only buildings used for habitation are recorded in the statistics, it is not possible

yet to gather information about the share of energy resource of the entire building stock.

Consequently, the Swiss final consumption for the Household and Service sector are analyzed

instead and referred to as “Urban energy sector”.

The value for the “Urban energy sector” are computed based on the study [Kirchner et al.,

2010]) for the Household sector. For the Service sector aggregated values for heating, hot water

production and process heat from [Kirchner et al., 2010]) have been dispatched between the

energy sources in the same proportion known for the Household sector. The results by energy

10
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Figure 1.7: Overall Swiss final consumption by specific use, 2009 (Source: from [Kirchner et al.,
2010].

sources are presented in Table (1.1) and Figure (1.8). From this point of view, the “Urban

energy system” represents 45.3% of the total final energy consumption.

Table 1.1: Final consumption by energy sources in Switzerland, 2009, (Source: from [FSO,
2010a] and [Kirchner et al., 2010]).

Energy sources
Total Urban systema

W yr
cap·yr % W yr

cap·yr % Urban % Total

Wood & biofuels 145 4.1 104 6.5 72.0
Coal 26 0.7 0.5 0.1 7.2
Industrial waste 43 1.2 0 0.0 0.0
Heating Oil 773 21.7 646 40.6 83.7
Transportation Fuel 1190 33.4 0 0.0 0.0
Gas 432 12.1 237 14.9 54.8
Electricity 841 23.6 524 32.9 62.3
District Heating 65 1.8 39 2.4 59.3
Other renewable 50 1.4 41 2.6 81.9

Total 3565 (877.6 P J
yr ) 100.0 1593 (392.2 P J

yr ) 100.0 44.7

aSwiss final energy demand for Household and Service.

Share of renewable It is observed that 70% of the Urban energy mix is non renewable, with

a share of 57% fossil fuel and 13% of nuclear fuel, while the share of non-renewable in the

total final consumption is even higher (78%), as shown in Table (1.2). The final renewable

energy (Wood & biofuels, other renewable and electricity from renewable) represent 28% of

the Urban mix while it reaches 19% of the total supply mix.
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Figure 1.8: Final consumption by energy sources in Switzerland, 2009 for the Household and
Service sector.

Table 1.2: Non-renewable final consumption in Switzerland, 2009.

Energy source Total Urban system

Fossil Fuela 69.1 57.2
Nuclear Fuelb 9.0 12.5

District Heating & Industrial waste 3.0 2.4
Renewablec 18.9 27.9
Non-renewabled 78.0 69.7

aCoal, Petroleum product, Fuel, Gas, Swiss electricity production from thermal power plant.
bSwiss electricity production from nuclear power plant.
cWood & biofuels, other renewable and electricity from renewable.
dCoal, Petroleum product, Fuel, Gas, Swiss electricity production from thermal and nuclear power plant.

1.6.2 Geographical opportunities

As shown in Figure (1.9), the estimated actual Swiss household floor area of 42’439 ha

(see § 2.7.1, p. 45 for detailed calculation) is expected to grow at a rate of about 1.46%/yr

(43’058 ha/yr ) resulting in an expected increase of 30.7% (55’467 ha) by 2030 over the actual

value.

At the same time, the population continues to concentrate in urban areas, as shown in

map 1.10, where the gray area represents the region where the density of population is actually

greater than 500 cap
km2 . The green area represents the regions where the mean resident popula-

tion is decreasing since 2000. In the white areas, the population is quite stable while the red

zones represents regions where the annual growth rate is positive.
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Figure 1.9: Household floor area growth in Switzerland since 1919 (Source: based on [FSO,
2011a], Table (A.1, p.160).

Figure 1.10: Population density growth in Swiss urban areas. Source: from [FSO, 2010b;
Swisstopo, 2009]

1.6.3 State of legal binding and political will

In Switzerland, urban energy planning is not backed by national energy policies [LEne, 2011],

whose objectives are rather to keep a competitive energy market, promote rational use of en-

ergy and ensure a safe and reliable energy supply chain. It therefore lies within the competence

of the local states to decide on the establishment of a territorial energy master plan [Cherix
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et al., 2009].

For example in Switzerland since 2009, the Cantons have developed and gradually legislated a

model of energy requirements (MoPEC9) so that the thermal energy used by new constructions

is reduced by half compared to the current building stock consumption.

Concerning the existing building stock, the Cantonal Building Energy Certificate (CECB10)

was set up to enable the comparison of the energy consumption of buildings and offers opti-

mization measures.

Moreover, some leading states such as the Canton of Geneva, have already adopted more

advanced, legally binding, frameworks. This mandates the renovation of energy wasteful

buildings and the elaboration of a territorial energy concept which links the authorization of

new fossil fuel supplied heating systems with the exigence of high exergy performances [Favrat

et al., 2008; LEN, 2010, Art. 21].

The next coming challenge for the authorities will certainly be to set up a coherent strategy to

unify and integrate the disparate energy labels and certifications, such as the ones described

in section (§1.3, p. 4).

1.6.4 Source and availability of useful Information

Building and Population registers If local state authorities do have their own territorial

information system, the National Statistical Office11 is mandated by the Swiss constitution

to collect general statistical information. Moreover, The Federal Statistics Act [431.01, 1992]

enables researchers to use official statistics microdata for their own research projects, provided

that dissemination of statistical results cannot be related to specific persons (art.18 and 19).

Thanks to the paradigm shift adopted in 2006 from a top-down to a bottom-up organizational

approach driven by the principle of harmonization of local and national registries [Council,

2009], the local communities are forced, by laws such as the Federal Statistics Act [431.01,

1992] and the Federal building register prescription [Council, 2009], to collect, update and

report back housing informations (§ 2.5.1, p. 35) to the National Register of Buildings and

Dwellings [RegBL, 2010]. The same approach is pending for the harmonization of local and

National Personal Registers, which could therefore be used to refine the estimation of the

energy demand and to compute “per capita” energy indicators.

Since 2011, the Federal Statistical Office has also begun to assign a unique identification

number to active firms on the territory, which suggests the upcoming opportunity to use

the Business and Enterprise Register to locate industries, and to form an extensive building

information system.

Cantons and the communities have access to these national registries to perform tasks at-

tributed by law (land-use planning, urban plans developed at the lower levels, Area plans,

security of electricity supply, wastewater and water treatment, waste or cleaning) or for re-

9Modèle de prescriptions énergétiques des cantons, Conférence des service cantonaux de l’énergie, http:
//www.endk.ch

10Certificat énergétique cantonal des bâtiments, http://www.cecb.ch/
11Bundesamt für Statistik (Office fédéral de la statistique), www.statistique.admin.ch
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search, planning and statistical purposes.

Geo-reference information Another support for territorial energy mapping is provided by

the Federal Geo-Information Center swisstopo12. In accordance with the prescription on

the national mensuration [510.626, 2008] and the federal law on geoinformation [510.62, 5

October], it maintains 2D topographical maps and is entering, since 2008, into a new digital

age with a 3D large-scale landscape model [O’Sullivana et al., 2008], including buildings and

their roofs.

Meteorological information The Federal Office of Meteorology and Climatology13 [Me-

teoSwiss, 2010] share, for educational purposes, monthly, daily and hourly measurements

such as outdoor temperature, solar irradiation and wind from sixty-five automatic measure-

ment stations across the national territory.

Energy consumption measurements The analysis of urban energy intensity from measure-

ment of real energy consumption is however more problematic. Aside from the district of

Geneva where, by means of popular vote14, a law [REN, 2010, Art. 7] forces owners to commu-

nicate their annual energy consumption to the authority, the ability to harness information for

R&D purpose dependent upon the willingness and administrative capacity of public/private

owners, divided in 870 industrial services in Switzerland. Moreover, at present time, even the

analysis behind energy performance certificates, often delivered by private consultants, are

not automatically disclosed to public authorities and can therefore not be used for modeling.

1.6.5 Synthesis

Regarding the actual share of energy resources consumption, it is clear that the shift toward

a sustainable society requires strategies across the range of urban scale [Pullen, 2009]. For

example, according to Pfeiffer et al. [2005], the immediate application of the Minergie-P stan-

dard in conjunction with a balanced selection of efficient technologies could allow to achieve,

by 2050, a reduction of the fossil primary energy use by a factor of 1.9–2.7. However as stated

by Lowe [2007], it is possible that senior figures of local government are unaware of the scale

and implications of these kind of ambitions.

The present work therefore proposes to move beyond the presentation of graphs and tables,

by adopting a bottom-up approach in order to locate on maps the actual and future share and

12swisstopo, the Federal Geo-Information centre, www.swisstopo.admin.ch/
13http://www.meteosuisse.admin.ch
14Approved 7 mars 2010
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use of energy resources, the possible synergies between energy demand and resource and the

potential development of energy technologies and infrastructures.

1.7 Methodology overview

The goal of the method is to study the integration of energy conversion systems that realize

the best matching between available resources and the energy services to be supplied in a

geographic area (see Figure 1.11). The approach aims at guiding stakeholders in the definition

of the energy dimension of urban planning by applying process integration techniques and

energy conversion technology databases in a Geographical Information System. An overview

of the method is given here before being discussed in more details in the next chapters.

Figure 1.11: Optimal conversion of endogenous renewable resources into Energy services
(Source: LENI, 2008)

1.7.1 Characterizing the demand

Considering the description of the building stock in a given area, the buildings are classified

by type and range considering the years of construction or renovation.

A GIS database contains the area (Ac,z,yr ) of existing and planned constructions of every

category (c), in each zone (z). For each category, the annual consumption for heating, hot

water production, cooling and electricity is determined from a statistical analysis of measured

buildings (§ 2.7.3, p. 47). Based on these data, the building requirement model evaluates the

heating and cooling loads as a function of the outdoor temperature following the signature

approach [Adderley et al., 1988; Favre et al., 1983; Hammarsten, 1987; Zmeureanu, 1992] and

provides the supply and return temperatures of the hydronic system as a function of the heat

to be delivered (Figure 1.12).
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Figure 1.12: Example of heating distribution curves sized at 75/60 C for Tx,0=-6 C.

1.7.2 Characterizing the resources

The inventory of the available energy resources is also stored in the GIS data base. This gives

information on the availability of endogenous resources (lake and surface water, underground

water, geothermal heat) or waste heat available (waste water treatment plants or industries).

Information on solar irradiation is combined with the available roof surface and their orien-

tation to estimate the solar potential in the area. The available biomass production and the

possible wind energy available is also considered.

1.7.3 Generation of centralized/decentralized options

In addition, considering the heat and power density in the different geographical areas, the

cost of heat supply and distribution are estimated (see equation 4.12, p. 94). This allows

one to compare centralized and decentralized polygeneration options, like the integration of

combined heat and power options and/or heat pumping systems.

Considering that some of the resources have a limited availability (e.g. waste water), an aggre-

gation method has been developed with the objective of identifying the geographical area that

are suitable for district network development.

Combining requirements and resources will then allow to compute annual energy consump-

tion and annual coefficients of performance of heat pumping systems. This calculation will

take into account the temperature of the amount of heat to be delivered and the temperature

of the heat source.
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1.7.4 Evaluation of integrated energy systems

When applying process integration techniques (§ 5, p. 109), one can assess the integration of

energy conversion technologies in a systematic manner, by computing the relevant energy

efficiency indicators like exergy performance, energy and CO2 emissions savings that will

characterize the most promising energy concepts in the different zones.

1.8 Engineering elements of the method

This section gives an overview of the engineering elements required for the application of

the proposed method, starting from the characterization of the demand, continuing with the

generation, evaluation and analysis of integrated alternatives, and ending with the communi-

cation of graphs and maps of indicators.

1.8.1 Urban Energy System modeling

Top-down/Bottom up approach

Before thinking of solutions to convert resources into useful energy from a quality and in-

tensity perspective, the method raises the question of means and pathways to improve the

knowledge of the demand within the boundaries of territorial communities. This can be

achieved following two broad classes of strategies : top-down and bottom-up approaches.

The proposed approach focuses first on the understanding of the temperature and useful

energy requirements of urban areas. Starting with the final energy consumption of the en-

ergy conversion technologies, measured by consumption-meters or obtained from energy

bills. This permits not only to assess, by bottom-up spatial aggregation, the final and primary

demand of incremental geographic area, but also to generate, evaluate and analyze future

alternatives for the energy conversion chain (Figure 1.13).

The same logic shall also apply to the identification of stakeholders, starting with local institu-

tions and information holders, involving gradually more actors to widen the scope of actions

and set more ambitious targets.

An important point is that the useful demand of the building stock is formulated not only in

terms of energy, but also of temperature levels, expressed as a function of the power demand.

This is particularly relevant for the modeling of existing, new and renovated buildings when

considering the switch from boilers to heat pumps, from boilers to condensing boilers, from

high to low temperature district network and more generally for the optimal design of district

heating systems as described in Weber et al. [2006a].
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Figure 1.13: Top-down and bottom-up approaches of Urban Energy Systems.

Building energy modeling approach

The modeling of buildings performances may follow schematically three approaches.

The first one, mainly applied for building’s design, relies on the proper definition of many

thermo-physical parameters and geometrical dimensions and allows the prediction of the

hourly behavior of the building.

The second approach uses an identification method, in order to identify the parameters of a

simplified model, based on indicators like energy bills and consumption, real time measure-

ments or even value of best practices. This kind of models fails to simulate the dynamics of

the system for time periods shorter than a day. These methods often use statistical regression

to perform the parameter identification.

The third approach combines the two previous ones, attempting to use experimental data in

order to identify the parameters of a detailed theoretical model. These methods often use Neu-

ral Network techniques or Genetic Algorithms in order to perform the identification procedure.

Modeling strategy The proposed methodology adopts first a top-down approach starting

from consumptions measurements and energy technology efficiencies in order to evaluate

the requirements of the building stock. This allow to apply in a second phase a bottom-up

spatial aggregation of archetypes and samples of building (see Figure 1.14). The parameters

of the energy regression models are identified for each archetype based on measurements of

monitored buildings.

At the scale of single buildings, the necessary information comes either from monitoring sen-
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Figure 1.14: Building’s energy modeling strategy (inspired by Swan and Ugursal [2009]).

sors in existing buildings or from physical simulation software for the new ones, considering

that Process Integration solvers requires as input the useful electrical and thermal power with

its temperature levels, the cost and availability of utilities which have to be given with the

operating time of each typical period and for sizing conditions as well.

Archetype engineering method The categorization of typified surfaces permits to break

away from spatial scale constraints and household architectures. Bringing the structure to

this degree of abstraction permits the extension of the spatial analysis naturally to wider

geographical area by aggregation of the surfaces and their usage. The attributes required to

model the requirements, to compute the indicators and to perform the energy integration are

attached to each surface independently of its geometrical attributes.

This classification task is performed by clustering neighboring energy requirements as a

function of the period of construction/renovation, the type and the geographical location

of the buildings. The initial granularity of the clusters is of course determined by the level

of disaggregation of the available information (building or parcel) as well as by the available

official classification.

Scale-independent aggregation

By definition. aggregation or aggregate functions combine several numerical input values into

a single result. Common statistical aggregates are the count, sum, average, Max and Min, but

more specifically, so far as urban energy systems are concerned, indicators such as the one

listed in Table (1.5)

As shown in Figure (1.15), indicators for urban systems should apply irrespective of the

magnitude of the spatial scale.

The scaling problem is addressed by the definition of an attribute-value pair model {(c, Ac )|c ∈
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Figure 1.15: Log-log plot of the magnitude of the spatial scale to deal with in urban studies.

C }, listing for each category (c) the corresponding floor area (Ac ). The aggregation of a

geometrical element (Gz ) belonging to a geographical zone (GZ ), is achieved by summing the

enclosed areas, as shown in Equation (1.2).

Ac,GZ = ∑
{z∈Z |Gz⊂GZ }

Ac,Gz (1.2)

The definition of specific values (ic ) per unit of typified area (Ac ) allows to compute a global

value (IZ ) for the geographical zone (Z ) by summing the contribution of each category (Equa-

tion 1.3).

IZ = ∑
c∈C

ic · Ac,GZ (1.3)

Uncertainties Assessment

The Monte Carlo method emerged following the development of electronic computer between

1945-47 at Los Alamos Scientific Laboratory [Metropolis, 1987] and has been directly applied

to the Manhattan Project.

This simulation method [ISO, 2004] allows to propagate the uncertainties on the input param-

eters to generate statistical distribution for the output results. The output error can then be

delimited by confidence interval.
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The procedure uses either statistical distribution or random number in intervals, such as

efficiencies or floor area to model the uncertain input parameters. Simulations are then

performed on each generated random sample (X1, . . . , Xk )i , i = 1; . . . , sr repeatedly, resulting

in an output sample (Y1, . . . ,Yk )i , i = 1; . . . , sr and a distribution (K ) such as Y ∼K , as shown

in Figure (1.16). This method comes at a cost as simulation has to be repeated many times (sr )

instead of a single one, resulting in a simulation time increased for example from roughly 0.8

second to 2.5 hours for 10’000 simulations15 performed on the city of Nyon counting 2’100

buildings.

0 50 100 150

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

0 50 100 150

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

90 95 100 105 110

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0
0

90 95 100 105 110

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0
0

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
0

5
0

0
1
0

0
0

1
5

0
0

2
0

0
0

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
0

5
0

0
1
0

0
0

1
5

0
0

2
0

0
0

Number of floors,
Technologies-ressources combination

Energy consumption

Technology efficiencies, cost, emissions
Floor area

1 2 3 4 5

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0
3
5

0
0

0

1 2 3 4 5

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0
3
5

0
0

0

Energy requirements,
Indicators,
Models parameters

Figure 1.16: Monte-Carlo simulation techniques for the evaluation of uncertainty by propaga-
tion of statistical distributions.

1.8.2 Geographical Information System

Database management systems

When attacking a problem, analysts often prefer not to collect data, but to use existing data.

They are however often forced to collect data because existing data are not usually available in

forms that are usable [Dueker, 1968] or, as said by GIS pioneer Edgar Horwood (1919-1985),

“the data you have for the present crisis was collected to relate to the previous one”.

If the initial application of statistical values allows to compensate for the lack of data, the

15Performed on a microprocessor Intel®Core™2 Duo Processor E6600 (4M Cache, 2.40 GHz, 1066 MHz FSB)
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systematic use of average values, without distinction between geographic location, may fail to

accurately describe the real situation of the demand.

It is then necessary to enrich the decision support system with information collected on-site,

in order to prove or challenge conventional thinking and statistical hypothesis [Isaacs et al.,

2006]. Moreover, progressive introduction of measurements adds value to the database and

improves the reliability of the computed indicators.

Model Calibration
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Estimations

Measurements

GIS building database

Geo-referenced
resources
database

Geo-decisions

Urban area 
definition

Aggregation

Building model
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Figure 1.17: Flow of information supporting the decision-making process.

Geo-localization of energy resources and infrastructures

Mapping the material and energy resources facilitates the ability to detect limitations and

opportunities for the conversion, recovery and upgrade of energy. This is particularly true

when considering environmental heat sources and sinks like ground, groundwater, rainwater,

ambient air, river and lake, as well as wasted heat from waste water treatment plant (WWTP),

waste water and other industrial processes, where the periodic heating and cooling loads and

temperature levels have a determining influence on the performance of the system [Kalz et al.,

2011].

Furthermore, the setting up of an urban resource inventory permits matching the local de-

mand with the available resources using process integration techniques applied with or

without heat exchange restrictions [Becker et al., 2010] between geographical zones.

Figure (1.18) present an example of a map of energy resource and infrastructure for the district

of Nyon [Darbellay et al., 2007; Girardin et al., 2010c].

A list of common resources and infrastructures is proposed in Table (1.3) and (1.4) with prime

justification to seek the information.

23



Chapter 1. Towards Design of Integrated Urban Energy Systems

Figure 1.18: Available infrastructure inventory

Table 1.3: Main source of motivation for the geolocation of energy resources.

Energy sources Motivations

Resources available in buildings input of energy models

Air temperature, solar irradiation
input of energy models
of heat pumps and solar technologies

Lake and rivers area distribution of heat through networks

Undergrounds and underground aquifers
distribution of geothermal heat
heat pumping and storage
generation of electricity

Water collectors and WWTP plant heat recovery
Wood and biomass development of local, renewable energy
Industrial waste heat recovery heat recovering/upgrading
Protected zones (drilling exclusion zone, exclusion of infeasible solutions
heritage protected area, etc...) estimation of the underlying penalty
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Table 1.4: Main motivation for the geolocation of energy-related infrastructures.

Infrastructures Motivations

Energy conversion technologies
input parameters of energy model
strategic planning of centralized/decentralized energy systems

Geometry/orientation input parameters of energy model
of buildings and roofs smallest scale of the spatial disaggregation

Roads and railways, bridges
opportunity/limitation for heat distribution network
fix some natural boundaries between urban zones

Heat distribution networks
information on energy consumption (monitored system)
identify opportunity of extension

Industries identify synergies and heat recovery opportunities
Power plant integration of advanced energy system

1.8.3 Process Integration techniques

Integrated Energy Systems design using Process Integration techniques

Integrated Energy Systems (IES) combine local and centralized energy conversion and distri-

bution technologies that transform material and thermal resources into useful energy services

such as electricity, cooling, heating, ventilation, air conditioning and energy storage. Applied

to district energy systems, Process Integration techniques aim to fulfill the requirements of the

population with high energy/exergy efficiencies by enhancing inter-process heat exchange

between the centralized/decentralized conversion technologies and power plants, the energy

from the environment, the wasted heat from industrial processes and the building’s heat gains

and losses.

The energy integration procedure is performed by the Process Integration (PI) solver that find

the optimal sizes and thermodynamic states of any kind of sub-systems (s) of a global process

(S). In this approach, based on the pinch theory, the complexity of the highly non linear and

multi-variable model is reduced by splitting the problem into its linear components, instead of

optimizing all at once, as shown in Figure (1.19). Starting from the initial operating condition

(1), every sub-system is simulated separately (2) before their thermal and mechanical streams

({Q̇0,Ti n ,Tout ,C }), minimal temperature difference ∆Tmi n and bounds (
[
Q̇mi n ,Q̇max

]
), are

sent to a Mixed Integer Linear Problem (MILP) solver (3), which determines the multiplica-

tion factors ( fw ) and technology selection integers (yw ), such as the cost function (1.4) is

minimized under constraint (1.7-1.10), where (Ė el , Ė el
i n , Ė el

out ) is the electricity respectively

required by the process, imported and exported.

Minimize
fw ,Yw ,Rw ,Ė el

i n ,Ė el
out

∫ t

t0

( nw∑
w=1

Cw · fw +C el
w,i n · Ė el

w,i n +C el
out · Ė el

out

)
d t (1.4)
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Figure 1.19: Solving procedure for the optimal integration of energy systems.

Subject to (1.5)

Technology selection Q̇mi n,k ·Yk ≤ fk ·Q̇0,k ≤ Q̇max,k ·Yk , Yk ∈ 0,1 (1.6)

Heat cascade balance
nw∑

w=1
fw qw,r +

nr∑
i=1

Qi ,r +Rr+1 −Rr = 0, ∀r = 1, . . . ,nr

(1.7)

Electricity consumption
nw∑

w=1
fw Ė0,w + Ė el

i n − Ė el (1.8)

Electricity production
nw∑

w=1
fw Ė0,w + Ė el

i n − Ė el
out − Ė el (1.9)

Feasability Ė el
i n ≥ 0, Ė el ≥ 0, R1 = 0, Rnr +1 = 0, Rr ≥ 0 (1.10)

Moreover, this MILP problem activates the pinch point of the hot and cold streams of the heat

cascade (Rw ), resulting in an estimation of the total heat exchanger area.

In the context of urban system studies, the fixed streams are made of the urban area’s building
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demand and existing district networks, while the utilities streams, which are linked to the

equipment with varying size, are composed by the energy conversion systems, part of indus-

trial processes, new distribution networks and heat from the environment.

Once the sizing coefficients have been optimized (4), the thermodynamic state of the inte-

grated process is obtained again by simulation (2) of the updated sub-systems size (Q̇w =
fw ·Q̇0,w ). Based on the state of the integrated process, indicators of performance, emissions

and required energy, investments and operating costs are computed (5) and finally analyzed

(7) and communicated (8) .

Moreover, the variation of parameters allows to simulate predefined scenarios, or to generate

promising configuration by letting a multi-objective evolutionary algorithm explore the space

of the decision variables (6).

Geographic targeting indicators

The selection of quantitative indicators should be closely linked to the formulation of targets

and objectives at the early stage of projects. The indicators should be designed to quantify

the gap between the actual state and the targeted evolution of the urban system, such as

the “3×20” target set by the Covenant of Mayors, or the one of the “per capita” 2000W soci-

ety [Maréchal et al., 2005]. Specific indicators may be expressed per capita, per square meter

of floor area or per hectare of land area. In order to deliver per capita indicators on maps,

the relationship between inhabitant registry and geographic area, or even buildings, must

be available. This work is currently work carried by local communities in Switzerland. An

example is given by the district of Nyon [Nyon-Energie], whose development indicators have

been included in the non-exhaustive list given in Table (1.5).
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Table 1.5: Overview of some urban energy indicators.

Fields of practice Indicators Unitsa

Energy consumption

Electriciy consumption kW h/(uni t · yr )
Heat-energy expense index (Equation 2.8, p. 58) kW h/(uni t · yr )
Number of Minegie-P buildings (Table 2.9, p. 49) −
Number of Minergie buildings −

Energy efficiency

Fraction of monitored buildings %
Energy savings on monitored buildings %
Gap between real and targeted energy savings %
Energy efficiency of water distribution system kW h/mw

3

Energy efficiency of waste water treatment plants kW h/mw
3

Renewable Energy

Electricity generated from renewable resource %
Renewable energy for space heating and hot water %
Amout of photovoltaic electricity K W h/(uni t · yr )
Area of solar thermal panel m2/uni t
Electricity from cogeneration power plant kW h/uni t

Local Energy
Electricity generated from local resources kW h/uni t
Renewable energy generated locally kW h/yr
Renewable thermal energy generated locally kW h/yr

Resources and water
Water consumption l/(uni t ·d ay)
Volume of water at WWTP plant l/(uni t ·d y)

CO2 emissions CO2 emission index (Equation 2.10, p. 59) tCO2 /(uni t · yr )

Cost
Annual energy bill expenses (Equation 2.11, p. 61) C HF /(uni t · yr )
Annual subsidy for renewable energy C HF /(uni t · yr )
Annual investment in the energy sector C HF /(uni t · yr )

aDepending on the specific definition, “uni t” stands either for the number of inhabitant, the inhabited area
[m2] or the land area [ha]
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1.9 Conclusion

In 2009 in Switzerland,the combined household and service sectors were responsible for

47.6% of the annual national energy demand. Their share reaches 59.6% in winter, due to the

predominance (34.4%) of building heating. The composition of energy mix providing these

energy services is mainly non-renewable (70%). This share is even higher if calculations are

based on the Swiss electrical consumption mix instead of the Swiss production mix.

In the face of diminishing non-renewable energy sources, a change in the energy supply mix

appears inevitable and justifies the intention to move towards the design of more integrated

urban energy systems. This decision implies examining scenarios for technological evolution

of the built environment.

Informed decision making demands the integration of knowledge derived from disparate do-

mains and this in turn requires agreement on an acceptable methodology for this integration.

An holistic methodology is therefore proposed grouping urban modeling strategies and Process

Integration techniques in a Geographical Information Systems (GIS) for the evaluation of

integrated energy conversion systems in urban areas.
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2 Specification and Methods of a GIS
for Urban Energy Integration

2.1 Introduction

Despite the fact that the building and infrastructure stock is the largest physical, economic,

social and cultural capital of most societies [Kohler and Yang, July 2007], the lack of struc-

tured data has hampered the development of long-term scenarios [Lomas, March 2009].

Tremendous work is indeed still involved to gather together necessary energy, building and

infrastructure information required to perform regional energy assessment and strategic

planning [Darbellay et al., 2007; Girardin et al., 2010c,d] going beyond the scale of individual

dwelling or residential area.

This is explained by the fact that data, mainly coming from legal registers and energy bill

monitoring, are often dispersed, for historical reason, among distinct administrative office

and service providers. In the past,the information has moreover not necessarily been collected

on purpose, making it awkward to use.

In fact, not only the worldwide scarcity of available comprehensive building energy informa-

tion [Pérez-Lombard et al., 2008], but also the lack of collaborative platforms with established

standards and methods, are impeding the emergence of a holistic regional approach.

Integration is therefore needed to integrate, in territorial information systems, strategy and

tools in order to manage the long-term evolution of the building stock of urban areas [Kohler

and Yang, July 2007], which is one the key aspects of sustainable development of our countries.

2.2 State of the art

Following the emergence of digital mapping, the development of Geographic Information Sys-

tems (GIS) in the 1960s is driven by a profound sense that decision-makers, researchers, and

planners require more accessible information to support government effort in effectively plan-

ning, programming, and allocating resources to agencies performing functional tasks [Dueker,

1968]. Motivated by protection and environmental risk management, pioneer [Tomlinson and

Boyle, 1981] efforts to handle natural resources inventory data lead to the implementation of a

31



Chapter 2. GIS for Urban Energy Integration

multilayer land-use planning map of Canada’s inhabited and productive land.

The production of large scale street representation and thematic maps based on digital bound-

ary files and census variables from the U.S. Bureau of the Census required laborious devel-

opment of geocoded urban planning information systems in the seventies, which become

a mature technology in the 1980s with software suppliers beginning to distribute GIS pack-

ages [Morehouse, 1985].

Not linked with analytical capabilities of urban models, GIS has long been used to store and

analyze land-use, land-ownership and building register information [Wegener, 1994], while

at the other end of the scale the house building industry developed, in the late 1980s and

early 1990s, Computed Aided Design (CAD) [Whyte et al., 1999] and in the 2000s, Building

Information Modeling (BIM) [Taylor and Bernstein, 2009] tools that integrate geographic

location and design parameters to enable the interoperability with software for HVAC system

simulation, energy analysis, flow analysis, cost estimation and LCA analysis [Crosbie et al.,

2011]. For example, a collaborative platform based on a distributed modeling environment

(DOME) interconnecting data and models, has been proposed [Kraines et al., 2005] for the

simulation of building designs in urban region.

The last ten years have also seen the use of energy and environmental prediction models on

top of GIS platforms [Jones et al., 2001; Thuvander, 2002; Tornberg, 2005], making it possible

to estimate hourly and seasonal energy consumption profiles [Heiple, 2008] and evaluate the

integration of advanced energy conversion systems [Girardin et al., 2010b] at spatial scales

down to the individual parcel. Methodology including application at the scale of individual

buildings for Geographically-resolved airshed [Medrano et al., 2008] and spatial depiction of

life cycle energy analysis [Pullen, 2009] have also been reported.

Theses methodologies use a bottom-up approach to aggregate statistical data defined on

city-specific buildings archetype [Cheng and Steemers, 2011; Firth et al., 2010], classified at

least by year of construction, and geo-referenced in an official land registry. However, the role

played by these models in helping decision makers may be limited if the uncertainties that

arise in the modeling process are not quantified [Booth et al., 2011].

2.3 Objectives

The establishment of a geo-referenced urban energy inventory constitutes the first step of the

strategic planning. This task aims to achieve:

• the establishment of a minimal set of necessary information (§2.5.3) with hierarchical

priorities (§2.5.3),

• the identification of the sources and owners of local information (§2.5.1),
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• the centralization of existing but diffuse information structured within the data storage

(§2.4),

• the production of added value out of the information gathering effort, making it available

for every new study to come,

• the spatial aggregation and disaggregation of the indicators,

• the management of data import and transfer procedures (§2.9),

• the presentation of the actual balance of resource, energy, emission and cost including

the corresponding indicators, composite curves and statistics, (§2.8, p. 55),

• the electronic access to geo-referenced energy data layer (§2.9.2).

The database will therefore not only be used to assess the present state of the urban system

in the preliminary phase, but also support the evaluation of competing scenarios and the

optimal integration of centralized and decentralised energy conversion technologies.

2.4 Overview of the Urban Energy GIS System

The proposed geo-referenced database emerged from the identification of the necessary set

of data required to apply pinch analysis and process integration techniques in urban areas.

Practical and methodological considerations are brought into line by the use of adequate

models and solving procedures, but also by relying on standard and good practice rules instead

of values that cannot be collected in a reasonable amount of time.

The elements of the urban energy database, seen in Figure (2.1), are structured in five blocks :

• the building energy inventory which geo-references building archetype, identifier, floor

area, heating and cooling technologies, energy resources and consumption.

• the local resource inventory which locates environmental and industrial heat source

and sink and lists their thermodynamic characteristics.

• the meteorological database, which contains local hourly measurements of outdoor

temperature, solar irradiation and eventually wind speed. These data are available

online [MeteoSwiss, 2010], but can also be generated with the help of dedicated software

such as [Meteonorm].

• the default value for each building prototype, each energy source and conversion tech-

nology. The classification of buildings into various archetypes and the corresponding

default values are determined locally by statistical analysis of the building stock. This

approach results in a model incorporating both measured and unmeasured values.
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• the meta-data repository which contains the data elements of the attributes of the

database. Meta-data is commonly defined as being information about data. It offer

description of the content, quality, condition, authorship, and any other aspects of data.

The data elements of attributes contain the following meta-data fields: the physical

units, the status (default, measured, precessed value), the type (character, numeric

with precision, matrix, dates) and eventually the description of the uncertainty and the

person responsible for issuing the value.

Added to this is a repository with general information (project name, date, author, meteoro-

logical zone, typical simulation periods) relevant to each project.

Data dictionary
● Projet description
● Files name 
● Aggregated urban area

Meta-data repository
● Attribute name,description,
type,units,status,owner,...

Default values
● Buildings
● Technologies
● Emissions
● Costs

Weather
● Temperatures
● Insolation
● Wind speed

Local
Ressources
Register

Local
Ressources
Inventory

Units 
● input data
● results

   
Building 
Energy
Inventory

Figure 2.1: Elements of the urban energy GIS.
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2.5 Building Energy Information System

The building energy inventory extends the official Cadastral map. If the Cadastral map is not

accessible, an electronic topographic map with a resolution of typically 1:25000, may be used

instead [Swisstopo, 2009]. Useful maps may also be downloaded from collaborative web sites

offering free editable maps of the world [Ramm and Topf, 2010].

Setting up the Building Energy Information System requires identification and integration

from various external sources of information. Merging and cleaning operations are then

performed to obtain the desired data structure.

In order to optimize information collection and processing, different priorities are defined for

the attributes of the Building Energy Inventory. The minimal set of necessary information has

particularly been identified.

The hierarchical structure of the building energy inventory fields is discussed in section (§2.5.3,

p. 36).

2.5.1 Integration of existing data layers

The building energy inventory is created from the integration of the information of the Na-

tional Register of Buildings and Dwellings [RegBL, 2010], whose attributes are listed in Table

(2.1) with their status. At national scale, residential buildings are systematically reported in

the register and updated, by law, at least annually. On the contrary, the census enumeration of

buildings not used for habitation is not mandatory and depends upon goodwill of the local

authority processing the data.

Table 2.1: Attribute of the Swiss building register [RegBL, 2010].

Attribute
Description

Residential Building partially
name building used for habitation
EGID Federal Identifier essential essential
GBAUP Period of construction mandatory mandatory
GHEIZ Space heating system mandatory mandatory
GENHZ Space heating energy source mandatory mandatory
GWWV HW system mandatory mandatory
GENWW HW energy source mandatory mandatory
GKAT Building’s category mandatory mandatory
GASTW Number of floors mandatory mandatory
GKLAS Building’s type mandatory optional
GAREA Building’s ground area optional optional
GRENP Refurbishemnt period optional optional
STRNAMK1 Street identifier optional optional
DEINR Entrance identifier optional optional
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2.5.2 Data cleaning and merging

In GIS applications, there is often a need to combine diverse data sets into an integrated

data set which includes all of the data points. One of the biggest challenges at the present

time is the migration of geo-referenced layers with data attached to street addresses, to a

layer referenced by building, more adapted to urban planning tasks. This requires merging

polygons from Cadastral maps, with points from building registers, by spatial location, and

then cleaning multiple points inside polygonal buildings, or badly geo-referenced points lying

outside buildings, as shown in Figure (2.2).

Cadastral map

Points outside buildings

Well geo-referenced points

Multiple points inside buildings

Figure 2.2: GIS View of the badly geo-referenced points to be cleaned and integrated in
the [RCB, 2010] (Source: [Girardin et al., 2010c]).

The data cleaning procedure is applied systematically to each studied area and has to undergo

a strict validation procedure by local authorities. Following this bottom-up approach, the

national register is gradually updated and cleaned, which explains the parallel existence of

local registers with most up-to-date information. For example, after data cleaning (2010), the

information for the district of Nyon [Girardin et al., 2010c] is well geo-referenced for 95% of

the buildings, corresponding to the covering of 99% of the estimated floor area (Table 2.2).

2.5.3 Hierarchical structure of the Building Energy Inventory

The establishment of hierarchical priorities on the information allows the improvement of

the project efficiency by bringing in line the amount of required data with the level of detail

expected by the analysis. This pragmatic approach emerged from a compromise between the

complexity of models and the reasonable quantity of information that can initially be treated

at the scale of urban zones.

For example, in the absence of energy consumption measurements, the use of statistical value

nevertheless permits territorial exergy analysis, using a model of the heating and cooling
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Table 2.2: Result of data merging between the [RCB, 2010] and the Cadastral map of the
city of Nyon, 2010.

Source Number of building Ground area Floor area
% [−] % [m2] % [m2]

Land registry 100.00% 2179 100.00% 545794 100.00% 1611001
RCB2, well geo-referenced 83.48% 1819 68.95% 376336 66.13% 1065302
RCB, point outside buildings 5.00% 109 0.94% 5127 0.90% 14509
RCB, multiple point inside buildings 11.52% 251 30.11% 164331 32.97% 531190
Building energy inventory 95.00% 2070 99.06% 540667 99.10% 1596492

2 Cantonal register of buildings and dwellings of the state of Vaud [RCB, 2010].

requirements (see Chapter 3). This holds provided that one has collected the minimal set of

initial information, listed in Table (2.3, p. 38), which does not yet contain quantitative energy

fields.

The list of prioritized sets of attributes, namely the minimal, heating, cooling, geometrical and

dynamic one, are listed in Tables (2.3-2.8, pp. 38-41). The priorities, ranked on the basis of the

extent of time and cost to collect the information, also reflect the increase in accuracy of the

estimates while the database is enriched.

Minimal set of attributes

The minimal set of required attributes, presented in Table (2.3), allows the estimation of the

exergy requirements of a given area, based solely on standards or statistical values.

The definition of a unique identifier (U I D) for each building is an absolute requirement

for the design of an energy inventory, as geographic, technology, demographic and energy

consumption information have to be merged together from different sources and formats.

The proposed database adopts the Federal Identifier “EGID” of the National Register of Build-

ings and Dwellings [RegBL, 2010] as the unique identifier. This choice is consistent with

the procedure of harmonization of the register of the inhabitants actually in process at the

national level [LHR, 23 juin 2006], but this implies also its adoption by energy suppliers and

industrial services, who historically uses multiple address identifiers for billing purposes.

The specification of buildings’ categories with the corresponding heated/cooled floor areas

is also central to the database. It permits the application of specific energy requirements

per floor meter, as well as the computation of specific indicators afterward. Knowing the

energy technology/resource combination, one may then apply typical efficiencies to compute

consumption, emission and cost based on the requirements established previously.

While fairly well known by owners and tenants, the floor area is not found in official registers,

contrary to ground area and number of floors (which can also be identified visually using tools

such as Google Street View [Anguelov et al., 2010]). These additional fields, presented in Table
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Table 2.3: Initial fields of the energy register.

Field of practice Attribute Units Description

Identifiers
uid Unique identifier
name Address or name of the zone

Georeference
x X-coordinates
y Y-coordinates
proj Map projection

Archetype
aff Building’s type
date Construction/refurbishment year
category Building’s category

Heating
hs_A m2 Heated floor space
hs_res Energy resource
hs_tech Energy conversion technology

Hot water production
hw_res Energy resource
hw_tech Technology

Cooling
cs_A m2 Cooled floor space
cs_res Energy resource
cs_tech Energy conversion technology

Refrigeration
refr_res Energy resource
refr_tech Energy conversion technology

(2.4), permit rough estimates of the inhabited floor area.

Table 2.4: Additional fields for floor area and floor occupancy.

Field of practice Attribute Units Description

Building characteristics
floor_n Number of floor
gnd_area m2 Ground area
h m Height

Hot water demand
n_p Number of individuals

definition of indicators

Heating consumption attributes

The accuracy of the results obtained from the minimal set of data depends on the quality

of statistics that should be obtained from a large sample of categorized buildings and have

acceptable standard deviation. If it makes sense to start with the proposed initial set of data for

studies at the scale of cities, canton, state or country, large variations of energy consumption

may be observed at the scale of neighbourhoods. It is thus, as listed in Table (2.5), a priority to

gather real consumption, temperature levels of heat exchanges and measurement periods, to

ensure accurate results.

Even if the measured consumption of final energy is available, the share between heating, hot
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water (HW) and cooling is in general not known apart from standard values. As a practical

expedient, the needs of HW are guessed from typical requirements of hot water per capita or

similarly from values expressed per square meter of floor area (Table 2.3, p. 38). A heating/HW

ratio which is adrift from the Swiss standard (Table 2.9, p. 49), indicates an anomaly.

Table 2.5: Final consumption attributes of the database.

Field of practice Attribute Units Description

Resource consumption

res_qf K J/yr Final consumption by resource
el_ec K J/yr Final electricity consumption
res_link − Identifier of the consumption meter
res_pmea − Periods of measurements

Heating Energy signature

hs_k1 kW /(m2 ·C ) Global heat losses coefficient
hs_Txo C Nominal outdoor temperature
hs_Tc C Threshold temperature
hs_Tro C Nominal supply temperature
hs_Tso C Nominal return temperature
Tinto C Indoor temperature

Hot water production
hw_Tro C Nominal supply temperature
hw_Tso C Nominal return temperature

An issue to tackle when treating measured consumption is the division of the information

split by location of consumption meter, often referenced by street addresses for each resource

(district network,gas,oil,electricity and water). To avoid overestimating the consumption levels

of some buildings, an attribute points back, for each resource (r es), to the unique identifier

of the element containing the measurements (Dr es
{b1,...,bn }). Such links are visible in the map of

Figure (2.3).

A value for the demand (Dr es
bi

) of building (bi ) is then attributed proportionally to the inhabited

areas (Abi ) using Equation (2.1).

Dr es
bi

= Dr es
{b1,...,bn} ·

Abi

n∑
i=1

Abi

(2.1)

Cooling system attributes

In the past thirty years, little attention has been paid to consumption for space cooling and

refrigeration systems, except for big consumers, such as shopping centers or data centers.

However, the effect of climate change and higher demands for comfort, is actually leading to a

significant increase in sales of individual air conditioning systems, and have boosted interest
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Figure 2.3: Visualisation of the link between buildings for the electricity consumption in a
urban zone (Source: [Girardin et al., 2010d]).

in assessing present and future cooling requirements. Nevertheless, cooling consumption or

profile recorded by monitoring systems are yet not easily available, and the estimations of the

cooling and refrigeration system parameters in Table (2.6), result from detailed survey and

analysis [Mermoud et al., 2008a].

Table 2.6: Cooling system attributes of the database.

Field of practice Attribute name Units Description

Cooling

cs_k1 kW /(m2 ·C ) Global heat losses coefficient
cs_Txo C Nominal outdoor temperature
hs_Tc C Threshold temperature
cs_Tro C Nominalg supply temperature
cs_Tso C Nominal return temperature

Refrigeration
rs_Tro C Nominal supply temperature
rs_Tso C Nominal return temperature

Geometric attributes

The study of the solar energy potential and the refurbishment opportunities requires more-

over at least the knowledge of the building’s roof geometry, volume and window to wall ratio

(Table 2.7). Roofs that cannot be covered with solar panels, due to requirements to maintain

the cultural heritage features of the buildings, should be marked in the database as well.
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Table 2.7: Supplementary fields of the energy database.

Field of practice Attribute Units Description

Building refurbishment
geom_sbox 3D sugar-box of the buildings
glazingRa Window/wall ratio of surface
volume m3 Building’s volume

Building refurbishment
geom_3D 3D geometry of buildings and roofs
roof_avail Availability of the roof for solar panel

Hourly Profile

Hourly profiles, such as the one listed in Table (2.8), are used to perform dynamic simulations

to ensure the feasibility of optimal designed energy conversion systems including storage

tanks. However, typical profiles for hot water, electricity and refrigeration demand (DP ) are

also used to estimate daily operating time (ḊP = DP
∆TP

) defining the mean power over a given

period, as well as the maximum to mean power ratio defining the nominal power of the

equipments.

Table 2.8: Dynamic fields of the energy database.

Field of practice Attribute Units

Dynamic simulation

hs_dotQ_d kW Daily space heating power profile
cs_dotQ_d kW Daily floor cooling power profile
hw_dotq_day kW Daily hot water demand profile
rs_dotq_day kW Daily refrigeration demand profile
el_dote_day kW Daily electricity demand profile

2.6 Energy resources inventory

2.6.1 Chemical Fuels inventory

Chemical fuels are simply described by their higher heating value and exergy values [Borel

and Favrat, 2010] in each urban zones where they are available.

2.6.2 Heat source from the surrounding environment

The attribute-value pair model of the resource (r ) contains, for each geographical zone (z) and

each typical period (P ) of the year (yr ), the available mass flow (ṁr ), specific heat capacity

(cpr ) and bounds of the allowed temperature variation (T max
r,z,P ) and (T mi n

r,z,P ). The annual thermal
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potential of the resource is then given by relation ( 2.2).

Qr,z,yr =
∑
P

[
ṁr,z cpr ·

(
T max

r,z −T mi n
r,z

)
∆T

]
P

(2.2)

The reference temperature (T r e f
z,P ) is set, for each period, to the lowest logarithmic temperature

difference of the heat source from the environment (Equation 2.3).

T r e f
z,P = min

r∈R


T max

r,z,P −T mi n
r,z,P

ln(T max
r,z,P /T mi n

r,z,P )
if T max

r,z,P > T mi n
r,z,P

T mi n
r,z,P if T max

r,z,P = T mi n
r,z,P

[K ] (2.3)

This permits to compute the Carnot factor (1− T r e f
z,P

T ) used in exergy calculation

2.6.3 Solar energy Potential

Carneiro et al. [2009] presented a method to calculate the irradiation per roof based on high

quality LIDAR1 data. A presented in Figure (2.4) The method cut each building’s roof into

different sub roof slices according to their monthly irradiation The method takes obstacles

such as trees, chimney or shadows of different houses into account

Figure 2.4: Solar map of the irradiation per roof section (Source: [Carneiro, Morello, and
Desthieux, 2009])

Solar potential inventory

As each building has a roof which can be divided into different sub-roof sections Ar oo f based

on their different specific irradiation, different selection strategies can be performed. On an

1LIght Detection And Ranging
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urban scale two feasible strategies exist. Either, the roofs sub-cells are strictly given in the best

order independent of their location, or the buildings are classified and used one after another.

Both methods results in the definition of a ranked curve of solar irradiation (Equation 2.4)

expressed as a function of the period (P ) and roof area contained in the urban zone.

G sol ar,tot
P = f (P, Ar oo f ) (2.4)

This constitute the initial point for the integration of the solar potential of the roofs of urban

areas, as proposed by [Rager, Girardin, and Maréchal, 2010].
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2.7 Evaluation of the Annual Energy Demand in Urban areas

This section presents the algorithm developed to compute the estimations of floor areas and

annual demand for district hot water production (DHW), electricity and space heating/cooling

in urban areas.

General algorithm During the computation phase of the energy requirements, the solver

access non-homogeneous and geographically distributed information and measurements. A

strategy has thus been adopted, based on successive visits to the Binary Decision Diagram

(BDD [Akers, 1978]), to estimate floor areas (§2.7.1) and compute the requirements for hot

water production (§2.7.3), space heating and cooling (§2.7.5).

The conceptual algorithm is presented in Figure (2.5). Before computation, each empty-

valued attribute is replaced, if possible, by existing default value and the corresponding status

is updated. Then, starting from an initial vector of status, the algorithm visits the decision

diagram, computes new values of attributes, updates the state of the vector of status and

continues until no more status changes is observed. At this point, the status of the desired

value are either marked as computed or found unpredictable. in which case the user is asked

to resolve the gap in information where it has been localized.

<attr,val,status>

value empty & 
 default exist

default value 
 status changesyes

Initial status

no

Status changes

visit tree

yes

results found
no

Continue
yes

report errors

no

Stop

Figure 2.5: Flow chart of the algorithm.

Overcoming uncertainties As the quantity of information increases, it make sense to com-

pute statistical indicators from the measurements in order to refine the default value of the

database. By assessing the statistical distribution of measured and computed values, it is

possible to evaluate inherent uncertainties and to overcome the lack of necessary data using

typified mean default value instead. Statistical distributions of data can be represented by

Box-Whisker-Plot McGill et al. [1978], shown in figure 2.6, where half of the data lies in the box
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and outliers are placed outside the limit (interquartile range, IQR) located as far away from

the median as 1.5 times the width of the box .

µ-2.698σ

µ-0.6475σ

µ+0.6475σ

µ+2.698σ

µ-5σ

µ-4σ

µ-3σ

µ-2σ

µ-σ

µ

µ+σ

µ+2σ

µ+3σ

µ+4σ

µ+5σ

Upper quartile: 25% of data 

greater than this value

Statistical mean (square)

Maximum (exluding outliers)

Lower quartile: 25% of data 

less than this value

Outlier: more than 1.5 times

of upper quartile

Outlier: more than 1.5 times

of upper quartile

Minimum (exluding outlier)

Median: middle of datatset (line50%

24.65%

24.65%

N(µ,σ)

Figure 2.6: Meaning of the boxplot representation and interpretation in relation to the normal
distribution.

2.7.1 Estimation of the Floor Area

Single building strategy

When not directly available at the desired scale, typified floor space is computed by aggregation

of floor area stored with a highest granularity. At the smallest scale, when the floor area of

a building (Ab) is unknown, it is automatically estimated from the geometric coordinates

(xb , yb) defining the ground area (Ab,g nd ), provided that either the berber of floors (nb, f l r ) or

the total height (hb) and floor’s height (hb, f l r ) is known, as detailed in the binary decision

diagram of Figure (2.7).

FALSE

TRUE
TRUE

FALSE

TRUE

FALSE

TRUE TRUE

FALSE

FALSE No solution

nb,f lr =
bhb/hb,f lrc + 1

Ahs,hw
b

nb,f lr

Ab,gnd =
A(xb, yb)

No solution

hb,f lr

Ahs+hw
b =

Ab,gnd · nhs
b,flr

hbAb,gnd

Continue

Figure 2.7: Decision diagram to compute the floor area.

Overcoming uncertainties

When the typified floor area is unknown, bounded interval [Ami n , Amax ] are defined based on

ground areas and the number of floors determined approximately either by the analysis of 3D

numeric models and/or using panoramic views [Anguelov et al., 2010] and/or using known

value of similar buildings of the neighborhood.

The distribution of typified floor area (Ac ) is estimated using a frequency table containing, for
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each interval
[

Ami n,c , Amax,c
]
, the number of buildings (nc ) belonging to category (c).

Application at national level For Swiss dwellings in 2009, the frequency Table (A.1, p. 160)

from the Swiss Federal Statistical Office [FSO, 2011a] allows the computation of the distribution

of Swiss household floor area. The mean value2 (for 2009), reported in Figure (2.8), is estimated

at 38’125 [ha] or 48.8 m2/cap, while the Swiss Federal Statistical Office gives a slightly different

value of 44 m2/cap (for 2000)3) which rather corresponds to the lower boundary of the

distribution.

Figure (2.9) reports the history of the growth of floor area by type households in Switzerland

since 1920, with a linear extrapolation up to 2030. Table (A.2, p.A.2) gives the corresponding

detailed mean values.
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Figure 2.8: Estimation of the household floor area in Switzerland for 2009.

2.7.2 Estimation of the Energy conversion mix

Single building By definition, energy conversion efficiencies make the link between final

and useful energy (ηyr = Eu,yr

E f ,yr
). If the combination of energy source/technology is known,

annual energy conversion efficiencies from the Swiss norms SIA 380/1 [2009] are applied.

When this is not the case, a value is set based on statistical values from the surrounding

buildings with the same usage.

2Considering 7’801’278 capita in 2009 [FSO, 2010b]
3OFS, Construction et logement - Les principaux chiffres, http://www.bfs.admin.ch/bfs/portal/fr/index/

themen/09/01/key.html
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Figure 2.9: Household area growth per affectation in Switzerland

Overcoming uncertainties In order to simulate the share of heating and DHW technologies

in proportion of the floor area, a sample is generated based on a frequency table, such as the

one presented in Tables (A.4-A.7, pp. 161-166) for Switzerland. The corresponding discrete

probability distribution pk = n(ωk )/
∑
ω∈Ω

n(ω) is defined by the unique combination (ωk ) of

energy source/technology.

Application at national level The results for Switzerland are presented in Figure (2.10.1) and

Table (A.4.1) for space heating technologies, and in Figure (2.10.1) and Table (A.4.2) for DHW

technologies.

Fuel oil(54.1%) and gas(16%) boiler together provide building heating services for 70% of

the national floor area, while heat pumps supply heat to 8% of the surface. For hot water

production, oil(39.8%) and electrical boiler(35.8%) dominate, while about 2% of the floor area

has access to a district heating network.

2.7.3 Domestic Hot Water Annual Requirements

Single building strategy

Annual useful heat for domestic hot water production (HW ) is, as far as possible, computed

hot water mass flow (Ṁ hw
b ) using Equation (2.5) . Unfortunately this value is rarely recorded.
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2.10.1: Space heating technologies
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2.10.2: Domestic hot water technologies

Figure 2.10: Boxplot of the share of heating and dhw technologies ([%]) in proportion to the
inhabited area of Switzerland, 2009.

Even if the flow rate of domestic water (Ṁ w
b ) is known, it is useless when the share ( f Ṁ hw

b )

between the two is unknown. Therefore, the algorithm instead uses the specific mass flow

consumption per capita (ṁhw,per s
b ), typically around 50-70 [ l

cap·d y ], or the specific D HW

requirements (q̇hw
b ). This strategy, summarized in the binary decision diagram of Figure (2.11),

holds if either the number of urban dwellers (ncap
b ) or the floor area (Ahs,hw

b ) is known.

Qhw
b,yr = M hw

b,yr · cp w ·
(
T hw

s,b −T hw
r,b

)
[kW ]

with cp w = 4.18
k J

kg ·K

(2.5)
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2.7. Evaluation of the Annual Energy Demand in Urban areas
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Figure 2.11: Decision diagram for the domestic hot water energy requirements.

When only the floor area (Ahs,hw
b ) is available, typical values from the norms of the Swiss

society of Architect and Engineers [SIA 380/1, 2009] of Table (2.9) are adopted and the space

heating to hot water production ratio ( qhw

qhw+hs ) is used as a benchmark indicator to detect

inconsistency problems.

Table 2.9: Room heating and hot-water systems useful energy requirements according to the
Swiss standards norm SIA 380/1 [2009].

Type
SIA 2009 Minergie

Minergie-P Minergie-P
<2000 >2000

qhw
u qhs

u eel
u

qhw
u

qhw+hs
u

qhs
u

qhw
u

qhw+hs
u

qhs
u

qhw
u

qhw+hs
u

qhs
u

qhw
u

qhw+hs
u

M J
m2·yr

% M J
m2·yr

% M J
m2·yr

% M J
m2·yr

%

Collective house 75 120 100 38.5 108.0 41.0 96.0 43.9 72.0 51.0
Individual houses 50 130 80 27.8 117.0 29.9 104.0 32.5 78.0 39.1
Administration 25 150 80 14.3 135.0 15.6 120.0 17.2 90.0 21.7
Schools 25 140 40 15.2 126.0 16.6 112.0 18.2 84.0 22.9
Shopping areas 25 115 120 17.9 103.5 19.5 92.0 21.4 69.0 26.6
Catering 200 170 120 54.1 153.0 56.7 136.0 59.5 102.0 66.2
Gathering places 50 170 60 22.7 153.0 24.6 136.0 26.9 102.0 32.9
Hospitals 100 160 100 38.5 144.0 41.0 128.0 43.9 96.0 51.0
Industry 25 130 60 16.1 117.0 17.6 104.0 19.4 78.0 24.3
Depots 5 130 20 3.7 117.0 4.1 104.0 4.6 78.0 6.0
Sports facilities 300 145 20 67.4 130.5 69.7 116.0 72.1 87.0 77.5

2.7.4 Annual Electricity Demand

Without access to real measurements or energy bills, the annual electricity demand is es-

timated using standard value annual electricity demand per floor area (eel
u ) given in Table

(2.9).
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2.7.5 Annual space Heating/Cooling Demand

Single building strategy

As only the total final heat consumption is likely to be measured, standard values for DHW

needs (Qhw
u,yr ) are often used to estimate the space heating requirements with the help of

Equation (2.6) using mean annual efficiencies, given in Table (2.10), for heating (ηhs
yr ) and hot

water (ηhw
yr ) systems efficiencies.

Q̇hs
u,yr = ηhs

yr · (Qhs+hw
f −

Qhw
u,yr

ηhw
yr

) (2.6)

Figure 2.12: Decision diagram for the space heating energy requirements.

Table 2.10: Probability distribution applied for the simulation of the space heating requirement
(value from [SIA 380/1, 2009]).

Attribute Categories Distribution units

ηhs
yr All

U [0.725,0.925] −
ηhw

yr U [0.436,0.636]

qhw
u,yr Individual homes N (50,15)

M J
m2·yr

qhw
u,yr Building with several households N (75,22.5)

qhw
u,yr Other buildings U (10,90)

qhs+hw
f ,yr Table (A.8, p. A.8) N (µ,σ)
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The cooling requirements are computed symmetrically to the heating one, with domestic hot

water replaced by refrigeration requirements. Moreover, if the cooled area (Acs
b ) is unknown,

the heated floor area (Ahs
b ) is taken instead.

Overcoming uncertainties

Starting from fuel consumption measurements, the statistical distribution of final heating and

DHW consumption are first evaluated. The missing mean value and standard deviation are

then interpolated and extrapolated for each category of building. Statistical values for space

heating requirements are then computed using Monte-Carlo techniques on Equation (2.6)

using the distribution of Table (2.10).

The resulting mean and standard deviation are presented in Tables (A.10, p. 174).

Application at Urban scale (Geneva Canton) Thanks to the Office of Energy of Geneva

(ScanE4), more than 56’200 gas and oil yearly consumptions have been collected in the Geneva

area between 1990 and 2006 on 5’453 monitored buildings with known floor area. The number

of measurements is summarized by categories in Table (A.3, p. 161).

At the scale of Geneva Canton, buildings have been classified into 8 different types (Residential,

Administrative, Commercial, Industrial, Education, Healthcare, Tourism and Others) with ten

ranges for the years of construction or renovation, leading to a set of 80 building categories.

At the National level, the typification of the RegBL [2010]5 is taken with periods steps of ten

years and a division in four types of buildings: individual homes, building with several house-

holds, building partially used for habitation (store, workshops, farms, etc.) and housing with

other end-use (factories, schools, hotel, hospital, old people’s home, administrative and other

buildings including living rooms).

Final Heating and DHW Consumption The final heat-energy consumption per floor area

(Ahs) is obtained from the annual fuel consumption (MF,yr ) by Equation (2.7) using a higher

heating value of H HVoi l = 37.6[M J/l ] for fuel oil and H HVng = 40.3[M J/m3] for natural gas.

qhs+hw
f ,yr = H HVF ·MF,yr

Ahs
(2.7)

The annual heat-energy final consumptions per floor area (qhs+hw
f ) is reported in Figure

(2.13) as a function of the construction/renovation periods. One observes that the housing

stock reached a peak of consumption around the 1970s. The distribution of final heat-energy

consumption as a function of building type, is given in Figure (2.14).

The corresponding value underlined in Table (A.8, p.172), represents the typified mean and

4République et canton de Genève, Service Cantonal de l’énergie, http://www.ge.ch/scane/
5The National Register of Buildings and Dwellings (Registre fédéral des bâtiments et des logements)
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standard deviations for a reference meteorological year (Yr e f ) in Geneva between 1990 and

2006.

S
pe

ci
fic

 h
ea

t c
on

su
m

pt
io

n 
[M

J/
(m

².
ye

ar
)]

150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

00
00

−1
89

9

19
00

−1
92

0

19
21

−1
94

6

19
47

−1
96

0

19
61

−1
97

0

19
71

−1
97

5

19
76

−1
98

0

19
81

−1
98

5

19
86

−1
99

0

19
91

−1
99

5

19
96

−2
00

0

20
01

−2
00

5

Figure 2.13: Annual specific consumption per period of construction/renovation in Geneva
(outliers are excluded from the picture).
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Figure 2.14: Annual heat-energy final consumption per building type.

Final Energy Interpolation and extrapolation The histograms of the final heat-energy con-

sumption, which includes building heating and domestic hot water production, are reported

for each Swiss National category from the RegBL [2010] in Figures (A.1-A.4, pp. 168-171).

As there is a lack of measurements for some categories, the unknown mean and standard

deviation of the sample are first interpolated and then extrapolated up to 2030, based on the

52



2.7. Evaluation of the Annual Energy Demand in Urban areas

sample of each category. The resulting consumption for a typical year in Geneva, composed of

2659 (18/12◦C ) heating degree-days, are reported in Table (A.8, p. 172) and plotted with filled

dots in Figure (2.15).
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2.15.1: Individual homes (ResidIndividual)
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2.15.2: Building with several households (ResidCollec-
tive)
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2.15.3: Building partially used for habitation (Mix)
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2.15.4: Housing with other end-use (MixOther)

Figure 2.15: Measured and estimated specific heat consumption for the Geneva area between
1990 and 2006).

Useful space heating requirements The specific space heating requirements are estimated

using Equation (2.6, p. 50) on which Monte Carlo experiments are performed with technology

efficiencies and DHW requirements uniformly distributed around the recognized value [SIA

380/1, 2009] listed in Table (2.10).

Figure (2.16) shows the resulting space heating requirements computed with random samples

having n = 100′000 elements for each category. Table (A.10,p. 174) lists the corresponding

mean and standard deviations obtained in this way. The horizontal colour strip represents the

Min. and Max. value of the Swiss SIA and Minergie standards across all the type of buildings.
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2.16.1: Individual homes
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2.16.2: Building with several households
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2.16.3: Building partially used for habitation
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2.16.4: Housing with other end-use

Figure 2.16: Specific Heating requirement for the official categorization of Switzerland’s house-
holds.
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2.8 Straightforward strategic applications

Before speaking about a deeper characterization of the energy requirements in urban areas,

the use of annual energy consumption in specific meteorological and geographical location is

demonstrated with energy, cost and emission indicators reported on flow diagrams and maps.

Moreover, coupling the energy needs with a classification algorithm allows the definition of

pathways meeting global targets at minimal efforts and costs.

For the following example, attention must be paid to the fact that the results do not incorporate

real consumption data but only assume typical statistical consumption.

The method is demonstrated on a case study applied on the Nyon area. The main assumptions

concerning the floor area (Ahs), the annual heating (qhs
u,yr ), DWH (qhw

u,yr ) and electricity (eel
u,yr )

useful requirements are presented in Table (2.11).

Table 2.11: Assumption for the energy intensities of the building stock for a typical year in
Nyon.

Category Date Ahs qhs
u,yr qhw

u,yr eel
u,yr

- - m2 M J
m2·yr

M J
m2·yr

M J
m2·yr

Residential < 1920 12881 340 71 100
Residential 1920-1970 1254174 378 71 100
Residential 1970-1980 23678 392 71 100
Residential 1980-2005 80028 286 71 100
Residential 2005-2020 11800 157 71 100
Administrative 2005-2020 6545 129 25 80
Commercial 1980-2005 17173 176 50 120
Industrial 1970-1980 1661 370 25 60
Hospital < 1920 537 302 95 100
Other < 1920 10255 276 66 100
Other 1920-1970 51127 352 66 100
Other 1970-1980 7704 369 66 100
Other 1980-2005 129537 264 66 100
Other 2005-2020 3901 144 66 100

The corresponding energy, emissions and operating costs results are presented in Table (2.12).

The numer of building (nb) in the database equal 2179 and the total floor area (Ahs] is estimated

at 161.1 [ha].

2.8.1 Final energy flow diagram

The final energy consumption is obtained, for each energy technology/resource visible in

Figure (2.17), from the useful energy (Qu,c = qu,c · Ac ) and the technology efficiency (ηtech)

for each energy service. Moreover, a solar utilization factor ( f sol ar = Q sol ar /Qu,c ) allows
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Table 2.12: Energy, emissions and operating costs for heating, cooling and domestic electrical
appliances (Simulation, Nyon).

Sector Ahs nb Qhs
u Qhw

u Q̇hs+hw
u Qel

u CO2 Cost
- m2 − MW h

yr kW MW h
yr t/yr MC H

yr

Chantemerle 94056 90 9069 1838 4032 2613 2597 984
Piscine 19750 46 1794 377 788 549 655 171
Rive 6208 22 622 122 277 172 227 57
Plantaz 41428 96 4276 817 1906 1151 1594 369
Le Viez 11036 20 1086 214 479 307 365 97
La Biolatte 1195 5 121 24 54 33 46 10
L’Asse 36944 35 2717 683 1179 1026 788 306
La Vuarpillière 39783 21 3477 758 1530 1105 1191 337
Changins 51848 33 5380 1019 2391 1440 1932 461
En Oie 118719 140 12219 2348 5459 3298 4611 1050
Le Reposoir 99746 186 10332 1973 4616 2771 3859 893
Prélaz 44036 79 4422 869 1976 1223 1276 468
Cossy 88324 92 9273 1743 4129 2453 3534 782
Marans 117856 159 12216 2300 5440 3274 4678 1025
Bois - Bougy 8397 13 821 155 346 233 33 68
Colovray - Métairie 31143 26 3117 606 1371 865 1093 283
Clémenty 25004 90 2406 490 1075 695 846 228
Vieux - Bourg 391343 624 38349 7529 17117 10930 14314 3386
Martinet et Morâche 34868 28 3664 690 1636 969 1415 305
Rive bis 5230 13 537 102 238 145 174 62
Sadex 4029 13 413 79 184 112 119 42
La Banderolle 35571 81 3221 688 1430 988 1189 296
Champ-Colin 195364 64 19426 3802 8635 5408 7427 1660
Les Tines-Ouest 81100 71 8202 1605 3672 2253 3155 694
Les Tines-Est 28022 132 2832 553 1267 778 1037 254

Total 1611001 2179 159992 31384 71227 44791 58156 14290

consideration of the use of thermal solar panels on the roofs of urban areas.

The resulting balance between final and useful energy and energy losses is represented in the

energy flow diagram6 of figure (2.18) by type of energy source.

2.8.2 Energy, Emissions and Cost mapping

The maps are generated based on statistical annual values and assumptions on purchase cost,

CO2 emissions and primary energy factor ( f r es
pr i m = Ḋp

Ḋr es
f

) reported in Table 2.13).

6Implementation James SPELLING, KTH-EGI-EKV,02.11.2009
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©2009 Google, Image ©2010 IGN-France

Figure 2.17: 3D visualisation of the GIS buildings resource/technology layer. The buildings are
colored by their heating energy source. (Source: [RegBL, 2010; Swisstopo, 2009].

]
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Figure 2.18: Annual final energy balance by energy source.

Useful Heat-energy indicator

The useful heat-energy expense indicator (q̇hs+hw
u,b ) represents the sum of the useful heat-

energy (Qhs+hw
u,b ) per square meter consumed in the building (b) for heating and domestic hot

water production during a typical year. This indicator ( 2.8) is computed for each building (b)

by dividing the useful heat-energy demand of a typical year by the floor area (Ab).

57



Chapter 2. GIS for Urban Energy Integration

Table 2.13: Default operating cost, CO2 emission and primary energy factor of energy source
for room heating and hot water systems

Energy source
Operating Cost (CO) Emission CO2 Primary energy factor [Crown, 2011]

[ct sC HF /K W h] [g /M J ] [−]

Natural gas 9 67 [SIA 380/1, 2009] 1.02
Heating oil 7 82 [SIA 380/1, 2009] 1.06
Wood logs 6 2.2 [Crown, 2011] 1.05
Wood pellets 6 7.7 [Crown, 2011] 1.2
Wood chips 6 2.5 [Crown, 2011] 1.07
House coal 85 83.6 [Crown, 2011] 1.02
Electricity 18 45 [SIA 380/1, 2009] 2.94 [SIA 2032, 2010]

qhs+hw
u,b =

Qhs+hw
u,b

Ab
[M J/(m2.an)] (2.8)

Figure (2.20) present the useful heat-energy expense indicator of each building represented

by bars proportional to the floor area. The area under the curve thus represents the annual

useful heat-energy required in the urban zone.

qhs+hw
u,z =

∑
b∈z

Qhs+hw
u,b∑

b∈Z
Ab

[M J/(m2 · yr )] (2.9a)

qhs+hw
f ,z =

∑
b∈z

Qhs+hw
f ,b∑

b∈Z
Ab

[M J/(m2 · yr )] (2.9b)

The mean indicator ( 2.9a) of 427 M J/(m2 · yr ), representing the annual expense of 191

GW h/yr for the zone, is drawn with a black dotted line in figure 2.20. In order to minimize

the impact on privacy, the indicators are averaged by zone, instead of being represented for

each buildings, as shown on the map (2.20).

Emission indicator

In the same way as for the energy expense indicator ( 2.9b), a specific CO2 emission indicator

(2.10), is linked to the annual consumption of fuel and electricity for space heating and hot

water production.
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Legend
Zone: Heat energy index [MJ/(m².year)]

334 - 357
356 - 377
377 - 399
398 - 420
419 - 439

Figure 2.19: Annual final heat-energy demand by zone.

Figure 2.20: Ranked annual useful heat-energy demand.

mCO2,z =

∑
b∈Z

r es∈R

Qhs+hw,r es
f ,b ·mr es

CO2
+E el

f ,b ·mel mi x
CO2

∑
b∈Z

Ab
[tCO2 /(m2 · yr )] (2.10)
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The estimated indicator, computed from the assumption of Table (2.13) for the zone shown in

Figure (2.21), is visible in the Figure (2.22).

The mean specific emission indicator of the zone is 36 kgCO2 /(m2 ·yr ), representing an annual

total of 58 t/an.

Legend
Zone: CO2 specific emission [kgCO2/(m².year)]

3 - 30
30 - 34
34 - 37
37 - 39
39- 41

Figure 2.21: Annual CO2 emission by zone.

Figure 2.22: Ranked annual CO2 emission
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Cost expense indicator

The operating costs indicator ( 2.11) of the fuel and electricity consumption is computed based

on the assumption of Table (2.13).

CO,z =

∑
b∈Z

r es∈R

Qhs+hw,r es
f ,b ·C r es

O +E el
f ,b ·C el

O

∑
b∈Z

Ab
[C HF /(m2 · yr )] (2.11)

This indicator represents the willingness of the inhabitant of the zone to pay for the energy

services. For example, this amount is estimated at 9.22 C HF /(m2 · yr ), representing an annual

bill of 14.76 Mi oC HF /yr for the zone shown in the map (2.23).

Legend
Zone: Heating/DHW annual opertating cost [MCHF/year]

9.5 - 116
116 - 303
303 - 768
768 - 2671
2671 - 8513

Figure 2.23: Annual heating and hot water production operating cost by zone.

2.8.3 Identification of the most significant consumers

In order to achieve actions with greater effectiveness, the “80/20” principle, stating that roughly

80% of the effects come from 20% of the causes, is challenged in order to identify groups and

numbers of buildings to address as a priority issue. The buildings or zones are ordered by
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increasing heat consumption, and the cumulated sum is compared with the total heat energy

consumption. This results in a ranked curve, such as the one shown in Figure (2.24).
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Figure 2.24: Identification of the most significant consumers.

For this particular case, we observe that 34 buildings consume 20% of the heat-energy dis-

tributed in the area and that 33% of them consume 80% of the actual heat-energy. These

buildings or urban area, identified on the maps, significantly impact the system and are

consequently the ones to monitor first.

2.8.4 Potential for building’s envelope improvement

Similarly, the curve of Figure (2.25) shows the heating energy savings if all buildings are re-

furbished to Minergie-P standard of Table (2.9, p. 49). The preferred choice of candidates for

envelope improvement action is given here by order of increasing economy. For the particular

case study [Girardin et al., 2010c], one observes in Figure (2.25) that 140 refurbished buildings

will generate 20% energy savings, and that large scale envelope improvement will reduce the

actual consumption by a factor of two.

The detection of zones with the greatest impact involved by buildings envelope improvement

is achieved by comparing the simulation at the horizon 2030 with the situation where all

buildings build before 2005 are supposed to be refurbished.

For example, applied in the Geneva Canton, the map of Figure (2.26) permits the identification

of zones with the greatest potential for savings (∆Qhs+hw
2030,z ) between the two scenarios.
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Figure 2.25: Evolutionary curve of the potential of building’s improvement actions.
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Savings [MWh/year] by zones,
if all buildings are refurbished
in 2030.
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4048 - 12151
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0 - 1604

Figure 2.26: Savings by zones at the horizon 2030 if all buildings build before 2005 are refur-
bished (Geneva Canton, Source: [Girardin et al., 2010b]).
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2.9 Implementation of the Geographical Information System

GIS database systems aim at storing, displaying, editing, sharing, and analyzing geographic

information for territorial decision making. The implementation of an online database led to

effective dissemination at minimal cost of the urban energy inventory, including maps of the

computed indicators.

Nowadays, relational database systems can be spatially extended with modules for the descrip-

tion of geographic objects (Point,Curve,Surface) [Herring, 2010], the definition of their Spatial

Reference System, and the implementation of methods on geometric object (reprojection,

polygon overlay, buffering, measure of distances/areas, data reduction and smoothing, short-

est path algorithm,etc.). Compatibility between GIS systems are driven by publicly available

interface standards such as the Open Geospatial Consortium [OGC, 2011].

2.9.1 Practical implementation

The Urban Energy database is based on the open source database PostgreSQL [PostgreSQL,

2010] extended with the PostGIS [PostGIS, 2011] spatial database extension.

The information is first imported manually in the PostgreSQL database from various formats,

such as text CSV format and geospatial vector data (ESRI-Shapefile [ESRI, 2011]).

Cleaning and merging operations are performed and the results are exported in Shapefile or

stored in the database for further use.

The core algorithm is implemented in the MATLAB language [MathWorks, Inc., 2010], while

statistical analysis are performed using the R Language [R, 2011]. The code make use of the

MATLAB Mapping Toolbox [MathWorks, Inc., 2011b] and Database Toolbox [MathWorks, Inc.,

2011a].

Optimization and process integration are performed using the FORTRAN program EASY [Maréchal,

1995], OSMOSE [Palazzi et al., 2010] and the Linear programming language GLPK [Makhorin,

2011].

The results are stored in a MATLAB structure, exported in Shapefile layers and stored in the

PostgreSQL database for online access.

2.9.2 GIS Remote Access

The client software accesses the information stored on a server in order to modify, download,

print or simply view geo-referenced layers. On the server side, the database is protected by a

password and the connection is restricted to computers identified by their Internet Protocol

address (IP).
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The open source client QGIS [QGIS, 2009] is used to demonstrate the access to layers of the

geo-referenced urban energy inventory but the uses of other clients (ArcGIS, Manifold, Grass

GIS, uDig,etc) would give a similar picture. As shown in Figure (2.27), the user can generate its

own custom layer and symbology from pre- and post-processing remote attributes, combining

them and saving the layout locally for further use.

Figure 2.27: Client access to an Energy inventory for the Commune of Nyon [Girardin et al.,
2010c].
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2.10 Conclusion

The study presented in this Chapter demonstrates that the built environment in Switzerland is

growing at an annual rate of 1.46% and will be 30% greater in 2030 than it is today. This increase

is concentrated in urban areas, often in proximity to rivers or lakes (Geneva, Lausanne, Bern,

Zürich, Basel, Four-Canton Lake area).

This situation motivates interest in characterizing the present state of the energy needs of

urban zones and assessing its evolution. This requires not only the treatment of information

from disparate sources and formats, but also ensuring that this information is archived and

kept as a valuable resource for future use.

The specification of a Building Information System has therefore been proposed which in-

tegrates the building requirements together with layers of energy resources. Applied as a

Geographical information System, the platform becomes the cornerstone for the evaluation

of energy integrated systems in urban areas.

To overcome uncertainties resulting from a lack of data, statistical methods have been applied

to the platform to constitute a set of localized default values that can be used to calibrate a

more advanced model such as the Energy Signature presented in Chapter 3.

Strategic applications have been demonstrated for the establishment of priorities, geo-localized

at the desired level of granularity, where the results indicate high potential for annual savings

in terms of energy, monetary cost and emissions.

A platform has moreover been implemented to demonstrate the practical potential of the

methodology and tools.

Finally, by identifying, consolidating, organizing and presenting relevant data from disparate

sources, this platform enables decision makers to take the measure of the needs, the possibili-

ties and the constraints of a given area.
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3 Characterization of Heating and
Cooling requirements in Urban areas

3.1 Introduction

The vision of integrated energy systems in urban area requires the implementation of models

of the building’s energy demand, which can be linked to a process integration solver in order to

evaluate the integration of building stock, energy conversion technologies, energy distribution

infrastructure and energy resources, in order to assess the performance of new design and

retrofit solutions for urban systems.

Depending on meteorological areas, the proposed model shall estimate, for large urban areas,

the mean heat power-temperature profile and operating time for typical periods, as well as

for extreme conditions defining the size of the installed energy conversion technologies. It

shall moreover consider the effect of refurbishment actions and give the estimation of annual

energy, costs and emissions satisfying the needs of urban regions.

For existing buildings, the models are defined by a minimal set of parameters identified either

from consumption measurements, energy bills or statistical values, whereas for new buildings

they are ideally taken from value obtained from building permits, recognized construction

standards, or obtained from the simulation of thermodynamic models.

3.2 State of the art

Building’s energy modelling has been a subject of research since the 1910’s, resulting in a

plethora of Building Energy Software Tools among them four hundred are referenced by the

U.S. Department of Energy [DOE, 2011].

State of the art physics based building energy simulation programs [Crawley et al., 2008],

like ESP-r [Clarke et al., 2007], EnergyPlus [Crawley et al., 2001], BREDEM [Anderson et al.,

1985] are currently applied to predict the energy performance either in the design phase of

individual buildings, or to propose energy improvement action for existing buildings. However,

they require extensive physical and geometrical parameters. This affects modeling and solving
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time depending on the levels of detail of the building information models [Leite et al., 2011].

This leads to the adoption of disaggregated approaches using predefined typical values when

used at urban scale [D. and Dunster, 1997; Hamilton et al., 2010; Johnston et al., 2005]. While in

wide use, most of these tools still suffer a lack of transparency of both data sources [Hand et al.,

2008] and model structures [Kavgic et al., 2010] and rarely offer access to the core calculation

code.

On the other hand, linear regression techniques have been applied since the early fifties for

research on energy consumptions in buildings [Hammarsten, 1987]. The use of these models,

based either on data from energy audits, energy bills or from measurement campaigns, shows

that the energy consumption may be predicted within 90% confidence interval only with the

outdoor temperature as explanatory variable [Dong et al., 2005; Jiménez and Heras, 2005;

Zmeureanu et al., 1999].

In the 1980’s, refurbishment and maintenance strategies of existing buildings received a regain

of interest [Kohler, 2002] and statistical methods based on the Energy Signature (ES), like

PRISM [Fels, 1986], have been proposed to predict the energy performance of building [Ghi-

aus, 2006; Rabl and Rialhe, 1992], giving an estimate of the total heat loss coefficient [Sjögren

et al., 2009; Sjögren et al., 2007] and of the cost of energy-saving actions [Adderley et al., 1988].

Recently, the (ES) models have been extended to handle simultaneously both heating and

cooling aspects [Bauer and Scartezzini, 1998] as well as to address a wider range of regression

parameters contributing to the variation of energy consumptions [Caldera et al., 2008; Catalina

et al., 2008; Chua and Chou, 2011]. The development of polynomial meta-models, using De-

sign of Experiments for the design of low energy buildings, has also been reported [Chlela

et al., 2009].

Although multiple regression models have been applied to domestic building stock to esti-

mate energy performance and operating costs [Summerfield et al., 2010], their potential to

model nominal loads, capital cost and temperature requirements [Girardin et al., 2010b] is

still underexploited. Moreover, application at the level of neighborhoods and cities are still

relatively rare.

3.3 Steady State modeling of the Building stock thermal requirements

The biggest problem for the energy analysis of large urban areas is the scarcity of energy

consumption measurements. Actually, one may expect at best to have access to annual

consumptions, even if for public buildings or those connected to district heating networks,

monthly reports may be available. On the other hand, the great number of parameters needed

to perform building’s physical simulation would require disproportionate investment of time

when applied to wide urban areas, while a high level of detail is not necessary for the targeting
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and preliminary design phase at least.

The present work is inspired by audits methods and tools like the Energy Signature (ES),

commonly used since the eighties to check the design performance against real data. The

proposal therefore is to identify the parameters of the simplest quasi-steady state energy-

balance models and to simulate the performance of buildings for monthly or yearly periods.

However, nothing prevents the use of advanced regression models or correlations [Catalina

et al., 2008] when more measurements are available, nor to perform physical simulation,

especially for new buildings, starting from overall construction plans.

3.3.1 The Energy Signature model

The general form of the thermal balance of buildings can be split in terms of Equation (3.1),

where k1 is the slope of the energy signature comprising conduction and air renewal loss of the

building, C is the thermal capacitance that affect the response time of the internal temperature

and Q̇0 stands for the other power loss or gain, such as heat from persons, electrical facilities

heat gain, solar heat gain, heat gain from other zones, short time-constants effects (internal

air, furniture and radiator system), energy losses to the ground and energy used for heating

the cold water entering the house.

Q̇ = Q̇0 +k1 · (Ti −Tx )+C ·dTi /d t (3.1)

For a time-period decomposition greater than a day with small differences between initial and

final conditions, the quasi-static Equations (3.2-3.3) of the useful hot (Q̇hs+hw ), respectively

cold (Q̇cs+r w ) power requirements, neglect the building’s thermal mass dynamic. Moreover it

considers only heat losses through exposed surfaces above ground level and infiltration losses

and/or heat required to warm outdoor air used for ventilation.

The heating (Q̇hs) and cooling requirements (Q̇cs), where (•)+ represents the positive part

of the expression, depends on the meteorological conditions and are therefore modeled

separately from the domestic hot water (Q̇hw ) and refrigeration demand (Q̇r s), defined inde-

pendently. Terms and units of these quasi-static thermal balances are given in Table (3.1).

Q̇hs+hw =
−

nhs
bc∑
i

Ui Ai + na

3600
·V hs

b · (ρacp a)

 · (Tx −Ti )− (Q̇s +Q̇p +Q̇e )

+

︸ ︷︷ ︸
Q̇hs

+Q̇hw (3.2)
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Table 3.1: Description of the terms of steady state thermal balance of buildings

symbol description units

Q̇hs Useful space heating power kW
Q̇cs Useful space cooling power kW
Q̇hw

b Useful hot water production power kW
Q̇r s

b Useful controlled refrigerating at constant temperature kW

Ui Heat transfer coefficient of the buildings component kW /(m2.C )
Ai Area of the buildings component i m2

nhs
bc ,ncs

bc Number of buildings component −
na Air change rates 1/hour
ρacp a Heat capacity of the air k J/(m3.C )
V hs

b ,V cs
b Heated/cooled volume m3

Tx Outdoor temperature C
Ti Uniform internal temperature C
hal t Building altitude m
Q̇s Solar heat gain kW
Q̇p Heat gain from people kW
Q̇e Heat gain from electrical appliances kW
hal t Altitude above see level m

Q̇cs+r s =
([ncs

bc∑
i

Ui Ai + na

3600
·V cs

b · (ρacp a)

]
· (Tx −Ti )+ (Q̇s +Q̇p +Q̇e )

)+
︸ ︷︷ ︸

Q̇cs

+Q̇r s (3.3)

The specific global heat loss coefficient of a building (k1), including heat losses by transmission

(
∑nhs

bc

i Ui Ai ) and air renewal ( na
3600 ·V hs

b · (ρacp a)), is given in Equation (3.4)1. For multifamily

buildings, it has been observed by Sjögren et al. [2009] that for the periods of the year when

the solar irradiation yields a minor contribution to heating, the estimated values of k1 based

on monthly data are fairly insensitive (±5%) to whether internal gain and indoor temperature

are taken as constant or not, to whether solar gains are included or not and to whether

measurements for one or multiple years are used.

k1 =
−

[∑nhs
bc

i Ui Ai + na
3600 ·V hs

b · (ρacp a)

]
A f l

[kW /(m2 ·C )]

with ρacp a = 1220−0.14 ·hal t [k J/(m3 ·C )]

(3.4)

1(ρa cp a ) correlation from [SIA 380/1, 2009]
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Considering constant air change rates and averaged internal gains from people and appliances

(Q̇i = Q̇p +Q̇e ), the general formulation (3.2) can be expressed per square meter of floor area

(A f l ) by Equation (3.5), where is [kW /m2] is a measure of the solar irradiation and s is the

solar gain factor such as (q̇s = s · is).

q̇hs =
(
khs

1 · (Tx −Ti )− s · is − q̇i

)+
[kW /m2] (3.5)

According to Hammarsten [1987], this three-parameter static model may be used if more

than ten observations are available for time periods greater than 24 hours. Otherwise, the

most effective model is a linear model of the outdoor temperature(3.6), considering the terms

k2 =−k1 ·Ti + q̇s + q̇p + q̇e as constant.

q̇ s(Tx ) =


k s

1 ·Tx +k s
2 if Tx < T hs

tr and s := hs

if Tx > T cs
tr and s := cs

0 otherwise

(3.6)

The heating threshold T hs
tr =−k2/k1 (respectively cooling threshold T cs

tr ) temperatures are the

ones above (respectively under) which heating (respectively cooling) services are not required

any more.

3.3.2 Identification of the Energy Signature parameters

When the heating/cooling loads are not available from measurements, they are computed for a

given threshold temperature in such a way that the specific annual useful energy requirements

qu,yr are conserved (Equation 3.7).

qu,yr =
∫
yr

q̇(t )d t [k J/m2] (3.7)

When threshold temperatures (Ttr ) and/or annual energy requirement are not known, the

values are obtained from the typical building database (see Table (B.1, p.176 and B.4, p.179).

The heating and cooling signatures, computed by Equations (3.8), are presented in Figure (3.1)

for each of the 80 building categories. The value of the corresponding signature parameters

are presented in Table (B.2, p. 177).
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khs
1 =

qhs
u,yr∫

yr :Tx<T hs
tr

Tx (t )d t − ∫
yr :Tx<T hs

tr

T hs
tr d t

[
kW

m2 ·C ] (3.8a)

kcs
1 =

qcs
u,yr∫

yr :Tx>T cs
tr

Tx (t )d t − ∫
yr :Tx>T cs

tr

T cs
tr d t

[
kW

m2 ·C ] (3.8b)

k2 =−k1 ·Ttr [
kW

m2 ] (3.8c)
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Figure 3.1: Heating Signature for every categories of buildings defined in the Geneva area (see
also Table (B.2, p. 177).

When many heat-energy consumption measurements are available, the equation system (3.9)

is solved to find both the parameters of the Energy Signature model (k1, k2) and the mean hot

water production load, provided that the measurements are taken at different periods of the

years (summer and winter), such that the system does not become singular.



∫
t∈P1:Tx<T hs

tr

Tx (t )d t
∫

t∈P1:Tx<T hs
tr

d t

∫
t∈P1

d t∫
t

d t

...
...

...∫
t∈Pm :Tx<T hs

tr

Tx (t )d t
∫

t∈Pm :Tx<T hs
tr

d t

∫
t∈Pm

d t∫
t

d t


·

 k1,b

k2,b

qhw

=


ηhs+hw

P1
·qhs+hw

f ,P1

...

ηhs+hw
P1

·qhs+hw
f ,Pm

 (3.9)

Figure (3.2) shows the results of the regression (Equation 3.9) for a building located in the

city of Neuchâtel [Girardin et al., 2010d], and connected to a district network with monthly

74



3.4. Domestic Hydronic System Modeling

measurements.
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Figure 3.2: Regression of the signature model (Equation 3.9) applied with 12 monthly heat-
energy measurements from a building in Neuchâtel (Source: [Girardin et al., 2010d]).

3.4 Domestic Hydronic System Modeling

The supply (T hs
s ) and return (T hs

r ) temperatures of the domestic hydronic system are derived

from a heat exchange model for buildings (Figure 3.3) described by the set of Equations (3.10),

where U [ W
m2·K ] is the overall heat transfer and A [m] the heat exchange area. The model

assumes a given indoor comfort temperature (Ti ,0) and two nominal supply (T hs
s,0) and return

(T hs
r,0 ) temperatures depending on the building category.

Ts Tr

TiTi,0

ṁcpw

Tx

ṁcpa
Q̇x dx

bδ

Figure 3.3: Heat exchanger model of the domestic hydronic system.

Q̇ =U A · (Ts −Ti ,0)− (Tr −Ti )

ln
(

Ts−Ti ,0

Tr −Ti

) (3.10a)

Q̇ = ṁcpw · (Ts −Tr ) (3.10b)
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The determination of the heat transfer fluid flow rate (ṁcpw ) depends on the adopted control

strategy that may be further optimized (§3.4.3, p. 78). In the case of a constant mass flow

strategy, the value of (ṁcpw ) is defined by the design condition of Equation (3.11).

ṁ0cpw = Q̇0

T hs
s,0 −T hs

r,0

(3.11)

By doing so, it is possible to model the temperature of the building heat delivery system

as a function of the heat to be delivered (Equation 3.12b-3.12a), therefore representing the

temperature benefit when the building envelope is refurbished.

Tr = Ti +
Q̇ · ( 1

ṁcpw
− 1

ṁcpa
)

1−exp
[
U A · ( 1

ṁcpw
− 1

ṁcpa

] (3.12a)

Ts = Tr + Q̇

ṁcpw

(3.12b)

3.4.1 Free convection distribution systems

When the convector surfaces are in contact with the ambient air of the rooms, natural convec-

tion occurs. In this situation, the flow of air (ṁcpa = 0) is negligible and the indoor temperature

is stable (Ti = Ti ,0). This permits to simplify Equation (3.12b) into Equation (3.13).

Tr = Ti +
Q̇ · 1

ṁcpw

1−exp
[
U A · 1

ṁcpw

] (3.13)

The overall heat transfer coefficient (U ) of the heat exchanger is obtained from connection in

series of conductive and convective terms of Equation 3.14. wall thickness and conductivity of

the material (W/mK)

1

U
= 1

hw
+ δ

λ
+ 1

hai r
(3.14)

The conductive term (δ [ W
m·K ]) of the wall (thickness δ [m]) and the convective term (hw ) on

the water side, being between 100 to 15000 W /(m2.K ), may be neglected.

On the air side, the convection heat transfer coefficient (hai r ) is between 10 to 100 W /(m2.K ).
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It may be obtained from the relation of Equation (3.15a) and with the help of an empirical

correlations for the Nusselt number (Nu) for external free convection flows [Incropera et al.,

2006], reported in Equation (3.15b).

NuL = haL

k
(3.15a)

NuL(x) =C ·RaL(x)n (3.15b)

with RaL = gβ (Tm −Ti )L3

αν
and Tm = Ts +Tr

2
(3.15c)

Typical values for the Rayleigh exponent are n = 1/4 for laminar flows and n = 1/3 for turbulent

flows [Incropera et al., 2006, p. 551].

It follows from the development of Equations (3.14-3.15) that U
U0

=
(

Tm
Tm,0

)n
and Q

Q0
=

(
Tm

Tm,0

)n+1
.

The variation of the global heat exchange coefficient may then be expressed as a function of

the nominal exchange coefficient and the distribution temperatures according to the Equation

(3.16).

U A = (U A)0 ·
(

Tm

Tm,0

)n

(3.16)

Standard emission coefficients(n) according to the swiss norm [SIA 384/2, 1984] are reported

in Table (3.2) for typical hydronic systems.

Table 3.2: Emission coefficient (source [SIA 384/2, 1984]).

distribution system emission coefficient [−]

radiators element and panel Radiators 0.33
heating coils or finned tubes 0.25
miscellaneous convector, 0.25 to 0.4
water underfloor Heating 0.24
ceiling heat 0.22

3.4.2 Heating/cooling curves

The substitution in Equation (3.12a) of the supply temperature of Equation (3.12b) and of

the global heat exchange coefficient of Equation (3.16), leads to the implicit Equation (3.17),

solved to find the return temperatures (Tr (Q̇,ṁcpw )) of the hydronic distribution systems. The

supply temperature curves (Ts(Q̇,ṁcpw )) are then obtained from Equation (3.12b).

f (Tr ,ṁcpw ) = 0 (3.17)
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Example of heating curves, for typical hydronic distribution systems of Table (3.2), are plotted

in Figure (3.4) considering a constant flow rate strategy (ṁcpw = ṁ0cpw ).

For h = 0, the heat distribution temperature follows the straight line of Equation (3.12a) with

constant relation (U A) = (U A)0.

Figure 3.4: Example of heating curves for a building with Energy Signature slope (khs
1 = 1 W

m2·C )

and heating threshold temperature (T hs
tr = 18◦C ).

3.4.3 Hydronic system mass flow

Various control strategies may be adopted to model the mass flow of the hydronic distribution

system, such as constant mass flow (see Figure 3.4) or mass flow proportional to the required

power. If the constant mass flow assumption (§3.4.1) allows to model large scale urban area

with sufficient details, it is worthwhile to consider optimal mass flow strategies in order to

evaluate retrofit actions and/or integration of new energy conversion systems.

In this situation, the mass flow is optimized by maximizing the performance of the whole

integrated heating/cooling system, thus introducing to Equations (3.10a-3.10b) a new one of

the form of Equation (3.18) expressing the link between the control of the hydronic distribution

system and the operating conditions of the energy conversion technologies.

ṁcpw (Q̇) = max
ṁcpw

f
(
ṁcpw ,Ts ,Tr

)
(3.18)

3.5 Period dependent requirements using Q-T composites

The knowledge of the load curve of Figure (3.5) allows to size boilers supplying heat at tem-

peratures levels far above 800-1000 ◦C . On the contrary, the performances of energy systems

delivering heat at temperatures close to the heating 30-70◦C and/or hot water production

55-70◦C requirements, are much more sensitive to heat exchange restrictions and to the de-
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pendence of the distribution temperatures to the operating conditions.

It is therefore necessary to use a representation that expresses the inter-dependence between

heat-power and temperature.
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Figure 3.5: Exemple of Load-duration curve (Source: Energy concept for the Nyon Area [Gi-
rardin et al., 2010c]).

3.6 Composite Curves in Urban areas

The composite curves represent graphically the sum of the streams defined by a heat flow

and two corresponding temperature levels. For every selected building, this summation

is performed for floor heating and hot water production streams, as shown in Figure (3.6).

Furthermore, for cooled buildings or those having refrigeration equipment, the cooling and

refrigeration streams are integrated similarly.

T [C]

Q̇[kW ]

T hw
s

T hw
r

T hs
s

T hs
r

ṁhwcpw ṁhscpw

(

ṁhw + ṁhs

)

cpw

hot water flux + heating flux hot requirements

(Q̇k, Tk), k = 1, . . . , n

=composite curve

=⊕

Figure 3.6: Construction of the heating composite curve.
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The composite curve represents the heat cascade defining the constraint of the Mixed Integer

Linear Problem (MILP) solved during the Process Integration phase.

The time scale is first decomposed into a limited number of representative periods (P ). The

definition of the periods depends on the design problem to be solved. In the case of urban

planning, the variation of temperatures may be compensated by the uncertainties of the data

and a multi-period analysis is made with many individual steady state periods, as shown in

Figure (3.7). When a more detailed model is needed, for example for the design of district

network, the integration of solar heat or when storage tanks have to be designed, a higher

number of periods like typical days representation [Weber et al., 2006b] should be applied. The

building model being defined as a function of the outdoor and room temperature, any time

discretization may be applied as long as the building model remains valid, e.g. the building

structure inertia is not relevant. Considering the building dependent threshold temperatures,

a typical mean temperature T
hs
ext ,P,c is associated with each building/category. This is done for

each period using equation (3.19), and similarly for the cold requirement.
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Figure 3.7: Outdoor temperature in Geneva (2005) and definition of the periods.

T hs
x,P,c = mi n


∫

t∈P :Tx<T hs
tr,c

Tx (t )d t

∫
t∈P :Tx<T hs

tr,c

d t
,T hs

tr,c

 (3.19)

Using the heating signature, the hot/cold mean power (Q̇
j

P,z ) is computed for each period (P )

by Equations (3.20-3.21) (see Table B.3, p. 178). The sum over the different types of building

defines the required power of a given area. The equivalent operating time (DP ) of the period
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3.6. Composite Curves in Urban areas

for the area is defined as the energy/power ratio (3.22).

Q̇hs+hw
P,z =

nc∑
c=1

(k1
hs
c ·T hs

x,P,c +k2
hs
c + q̇hw

c ) · Ac,z (3.20)

Q̇cs+r s
P,z =

nc∑
c=1

(k1
cs
c ·T cs

x,P,c +k2
cs
c + q̇r s

c ) · Ac,z (3.21)

DP = QP

Q̇P

, (3.22)

Considering the list of buildings in a given area and applying process integration techniques

[Maréchal and Kalitventzeff, 1998], it is possible to compute the heat-temperature composite

curves ((Q̇k ,Tk )P ,k = 1, ...,nk +1)z , that defines in each zone the net hot/cold services to be

delivered in a typical period. The heat cascade integrates the hot water production, the heating

and the cooling requirements of all the buildings in the area. Such representation allows to

quantify the possible heat recovery between hot and cold streams. The heat enthalpy curves

also allows to compute the overall exergy required in a given period [Maréchal and Favrat,

2005].

Figure 3.8 shows such composite curves for the district of Geneva. The dotted curves corre-

spond to the targeted heat demand at the horizon of 2030, based on a given refurbishment

and urban development scenario. It includes the increase of the built area and the increase of

the building efficiency and its corresponding decrease of the temperature at which the heat

will need to be supplied. For the new buildings, we considered the application of the most

recent standards. It is shown that the overall heat load is going to change less than 7% in the

area, but its temperature levels are expected to decrease.

Knowing the composite curves, the process integration techniques may be used to estimate

the optimal integration of the energy conversion technologies. This is particularly useful when

the integration of combined heat and power, heat pumping or polygeneration systems are

considered. Together with the resources database, the calculation of the composite curves

of an area in each period will correspond to the structuring phase of the optimal design of

district heating systems as proposed by Weber et al. [2006a].

3.6.1 Mathematical implementation

Mathematically, the curve represents the heat cascade of the system and is obtained by

Equation (3.23) applied for each temperature Tk encountered in the list of hot and cold
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Figure 3.8: Composite curves of the Geneva area: Actual states and 2030 predictions.
(Source [Girardin et al., 2010b])

streams of the system.

Q̇k =
# hot flux∑

i=1
Q̇i /

∣∣Ts,i −Tr,i
∣∣ · (max(T ∗

k,i ,T ∗
s,i )−max(T ∗

k,i ,T ∗
r,i )

)
−

# cold flux∑
j=1

Q̇ j /
∣∣Ts, j −Tr, j

∣∣ · (max(T ∗
k, j ,T ∗

r, j )−max(T ∗
k, j ,T ∗

s, j )
)

with T ∗
i = Ti −∆(Tmi n)i /2 for hot flux

and T ∗
j = T j +∆(Tmi n)i /2 for cold flux

(3.23)

The contribution of the hot and cold building’s requirements to the minimum temperature

difference in the heat exchangers (∆(Tmi n)i /2) is fixed to 5 ◦C .

3.7 Synthesis

The simplest thermal requirement model expresses heating and cooling loads and tempera-

tures of the domestic heat distribution system, as a function of the outdoor temperature.

This thermal model may be defined with a minimal set of seven (heating and hot water pro-

duction only) to thirteen parameters for each building :
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• the annual energy requirements (qhs
Y ,qcs

Y ),

• the threshold heating and cooling temperatures (T hs
tr ,T cs

tr ),

• the indoor comfort temperature (Ti ),

• the nominal temperatures of the domestic heating system(T hs
suppl y,0,T hs

r etur n,0),

• the nominal temperatures of the domestic hot water system (T hw
suppl y,0,T hw

r etur n,0),

• the nominal temperatures of the domestic cooling system (T cs
suppl y,0,T cs

r etur n,0),

• the nominal temperatures of refrigeration system (T r s
suppl y,0,T r s

r etur n,0).

When these values are unknown, they are estimated based on norms [SIA 380/1, 2009] or good

practice rules.

For new buildings designed as passive buildings, the outdoor temperature has a weaker

influence compared to solar gain and occupant behavior. In this situation, a solar heat gain

factor must therefore be identified in order to properly estimate the nominal loads.
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3.8 Straightforward strategic applications

The characterization in a GIS system of the demand of urban zones in terms of power and

temperature level, and not only in terms of annual energy intensity, opens the door to straight-

forward strategic applications. It makes for example possible to determine geographically

the zone of influence of heat source and sink based on the knowledge of the nominal power

requirements of urban sectors.

This allows moreover to define rigorously the thermodynamic performance of urban energy

systems, leading to the identification, on maps, of the priority areas for allocating subsidies

and investing in infrastructure and equipments.

3.8.1 Heating/cooling density Power map

The map of Figure (3.9) shows the values of heating and domestic hot power requirements

(Q̇hs+hw
0,z ) computed, for each zone z of the Canton of Geneva, by Equation (3.24) for an

outdoor temperature of (Tout ,0 =−6◦C ), which corresponds to the nominal temperature for

heating devices.

Q̇hs+hw
−6,z = ∑

c∈C
(q̇hs

−6,c + q̇hw
c ) · Ahs

c,z ,∀z ∈ Z (3.24)

Heating & 
Hot water production, 
Power [MW] at -6°C

5.36 - 11.11 [MW]

2.87 - 5.35

1.08 - 2.86

0.00 - 1.07

Figure 3.9: Heat and hot water power requirements by zones for an outdoor temperature of
−6◦C (Source [Girardin et al., 2010b]).

Figure (3.10) shows the values of cooling and refrigeration requirements (Q̇cs
0,z ) computed,

for each zone z of the Canton of Geneva, by Equation (3.24) for an outdoor temperature of

(Tout ,0 = 21◦C ).

Theses maps allow to identify high energy density areas and attractive energy market place.

84



3.8. Straightforward strategic applications

2.16 - 6.34 [MW]

1.13 - 2.15

0.65 - 1.12

0.38 - 0.64

0.23 - 0.37

0.12 - 0.22

0.05 - 0.11

0.00 - 0.04

Cooling Power [MW] at 21 °C

Figure 3.10: Cooling and refrigeration power requirements by zones for an outdoor tempera-
ture of 21◦C (Source [Girardin et al., 2010b]).

Moreover it constitute the basis for the determination of influence zones of Urban Heat

sources (Waste Water Treatment plant, lake, river, Water collector, Industries, ...) using spatial

aggregation procedures (§4.2.5, p. 95).

3.8.2 Evaluation of the Exergy performance of Urban Areas

The exergy balance (Equation 3.25) of a system corresponds to the expression of the ideal con-

version, into mechanical work, of the three forms of energy found in the exergy balance [Borel

and Favrat, 2010]: work-exergy (Ė ), heat-exergy (Ėq ) and enthalpy-transformation exergy (Ėy ),

the latter being considered as fuel exergy in urban systems.

L̇ = Ė + Ėy + Ėq ≥ 0 (3.25)

In order to achieve the theoretical thermodynamic conversion of heat-exergy (Equation 3.26)

and fuel exergy value (Equation 3.27) into mechanical work, a reference temperature (Tr e f ,z,p )

is defined as the lowest temperature of the environment for each period (p) and location(z).

Ėq =
∫
ΘδQ̇ =

∫
(1− Tr e f

T
)δQ̇ (3.26)
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Ėy = ṀF∆k0 = ṀF ·E X V f (3.27)

Exergy efficiency

The performance of the conversion of energy resources into useful energy services can rigor-

ously be expressed, in terms of both quantity and quality, by an exergy indicator [Favrat et al.,

2008]. The exergy efficiency, always lower than 100%, is defined by the ratio (3.28) of the useful

exergy service arising from the inhabitant needs to the exergy delivered in the form of energy

sources consumed on the spot.

ηx = E xu

E x f
(3.28)

Useful Exergy in Urban Areas

The useful exergy of Equation (3.29) expresses, in each zone (z), the sum over all categories

of buildings (c) and periods (p) of the useful heating (Q̇hs
p,c ), DHW (Q̇hw

p,c ) and electrical (Ė el
p,c )

exergy required, given the corresponding reference temperature of the environment (Tr e f ,p )

and the comfort temperature inside the building (Ti ).

The reference temperature of the environment (Tr e f ,p ) is set by default to the periodic mean

outdoor temperature and the indoor temperatures (Ti ) are fixed according to the Swiss

norm [SIA 380/1, 2009].

E xu,z =
∑
c∈C
p∈P

Q̇hs
p,c ·

(
1− Tr e f ,p

Ti

)
·∆t hs

p,c +Q̇hw
p,c ·

(
1− Tr e f ,p

T hw
l n

)
·∆t hw

p,c + Ė el
p,c ·∆t el

p,c (3.29)

with T hw
ln = T hw

s −T hw
r

ln
(

T hw
s

T hw
r

) [K ] (3.30)

Final Exergy in Urban Areas

The annual final exergy of Equation (3.31) expresses, in each zone (z), the sum over all cate-

gories of buildings (c) and periods (p) of the amount of combusted Fuel (M F
c,yr kg ) , global

solar radiation (G sol ar
i ,yr ) and electrical (Ė el

p,c ) exergy supplied. The exergy value of (E X V g az =
49563.1 k J/kg ) for natural gas and (E X V wood = 20939 k J/kg ) for the wood [Gassner and

Maréchal, 2009] are applied by default. These final exergy values do not take account of the
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supply chain, but consider only the import consumed on the spot.

E x f ,z =
∑
c∈C
p∈P

(
∑

Fuel s
M F

c,yr ·E X V F )+G sol ar
i ,yr ·Θs +E el ,i n

yr (3.31)

The solar exergy [Candau, 2003] is obtained through equation 3.32 with a temperature of solar

radiation of Ts = 5800 K .

Θs = 1+1/3 ·
(

Tr e f

Ts

)4

−4/3 · Tr e f

Ts
(3.32)
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3.9 Conclusion

For the design of advanced energy conversion systems, building stock must be characterized

in terms of its heat-power and temperature requirements. A multi-period steady-state model

aggregating the energy demand of urban zones has therefore been proposed.

This 1D model is inspired by state of the art use of Energy Signature for energy audit of build-

ings. It is calibrated on real measurements whenever possible. When these are unavailable,

the statistical database of typified buildings developed in Chapter 2 provides the necessary

values for extrapolation. This makes it possible to extend the application from individual

building to urban scale. The advantage of this approach is that it is based on a minimal set of

required physical parameters. While it is applicable to the vast majority of existing building

stock, totaling 90% of the built environment, the new high performance buildings require the

use of higher resolution models incorporating solar gain and inhabitant behavior, which in

turn requires more measurement data. The implementation of large scale systems such as

the one proposed in Chapter 2 shall contribute to more accurate modeling of the new urban

environment.

The specificity of the modeling approach is that it links heat-power requirements with a model

of the heating and cooling domestic hydronic distribution system, thus representing the tem-

perature requirements as a function of the heat-power requirements. This enables modeling

of the effect of refurbishment actions not only in terms of energy savings but also in terms of

temperature lowering.

Furthermore, it defines the hot and cold streams comprising the composite curve of the

requirements, aggregated independently of the spatial scale of the study characterizing the

heat requirements of urban areas in different periods and scenarios.
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4 Integration of centralized and decen-
tralized urban energy systems

The part of the thesis describing the Design of Advanced energy conversion sys-

tem was presented at the ECOS Conference, held in Kraków (Poland) in June

2008 [Girardin et al., 2008] and published in the journal Energy [Girardin et al.,

2010b].

4.1 Introduction

The establishment of a strategic energy development planning to meet the thermal energy

requirements of urban area requires the analysis of synergies between conversion and distri-

bution technologies, linking energy resources and requirements for energy services.

The performance of advanced energy conversion systems using the best local resources are

assessed starting from the definition of the energy services required in a geographic area.

The integration of cogeneration technologies of different sizes and the use of heat pump

technology is evaluated using a pinch analysis approach. Emphasis is also placed on the use

of high and low temperatures district network.

The aim is to highlight the potential savings associated with the use of alternative technologies

instead of conventional boilers. Combined heat and power cogeneration plant offer a possible

alternative to distribute thermal energy for heating while supplying electricity including for

heat pumps or air conditioning units. Compensation measures for the additional CO2 emis-

sions from electricity generation are also analysed.

The developed model forms the basis of a strategy for the identification of the best way

to integrate energy conversion technologies in urban areas. Moreover, the tool follows a

prospective approach by analysing also the future situation based on an extrapolation of the

energy demand.
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Chapter 4. Integration of centralized and decentralized urban energy systems

4.2 District heat distribution system

Considering the access to local resources like lake water or waste water, it is necessary to com-

pare centralized and decentralized solutions. For centralized solutions, one has to evaluate

the integration of the district network (dn) and therefore estimate the cost of the system. This

requires the evaluation of the temperature levels at which the heat will be distributed as well

as its return temperature.

4.2.1 Network flow rate

Given the composite curve characterizing the thermal demand for typical periods and scenar-

ios of urban areas, the integration of a district network begin with the definition of a supply

temperature (T dn
s ), a minimum temperature difference (∆T dn

mi n) in the heat exchanger and a

minimum allowed return temperature (T dn
r,mi n). When the supply temperature is given, the

heat loads Q̇nk+1 −Q̇k are given by the composite curve data, and the return temperature is

computed by Equation (4.2) in order to minimize the flow in the system (4.1).

ṁdn = max
k=1,...,nk

[
Q̇nk+1 −Q̇k

cp · (T dn
s −T ∗)

]
with T ∗ = max

(
T dn

r,mi n ,Tk +∆T dn
mi n

) (4.1)

4.2.2 Network return temperature

Given the supply temperature (T dn
s ) and having computed the flow rate activating the demand

pinch point, the corresponding return temperature (T dn
r ) is obtained for each period by

Equation (4.2).

T dn
r = T dn

s − Q̇(T dn
s )

ṁdn · cp
(4.2)

4.2.3 Heat exchangers area

The heat exchanger area, given by Equation (4.3), is obtained by summing, for each vertical

enthalpy interval (∆Q̇k = Q̇k+1 −Q̇k ), the heat-exchange matches between the network and

the requirements composite curve.

Adn,hx =
n∗

k∑
i=1

Ak =
n∗

k∑
i=1

Q̇k

Uk · (∆Tln)k
(4.3)
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4.2. District heat distribution system

For the special case of district network water/water heat exchange, the global heat exchange

coefficient (Uk ) is taken constant with Uk = 560 W /(m ·K ).

Knowing the heat exchanger area required to distribute heat in buildings (b), it is possible to

assign an exchange area to each building proportionally to their marginal contribution at the

nominal load (Q̇b,0) to the total demand (Equation 4.5).

Adn,hx
b = Q̇b,0∑

b
Q̇b,0

· Adn,hx (4.4)

The investment cost of heat exchangers installed in buildings are then estimated by Equation

(4.5) Bolliger et al. [2005].

C dn,hx
I =∑

b

M&S

1069.9
·7038 · Adn,hx

b

0.7948
(4.5)

4.2.4 Preliminary Investments Estimation

Network length The length of the network (Ldn) is computed by correlation (4.6), consider-

ing the land area (Sz ), the number of buildings (nb) and a topological factor (K ). The value

K = 0.23 has been identified from an existing network in Geneva.

Sz √

√

√

√

√

Sz
nb

Figure 4.1: Geometric network length correlation in urban zones.

Ldn ' 2(nb −1)K

√
Sz

nb
(4.6)

Heat losses An approximation of the heat loss Q̇dn
loss = f dn

loss ·Q̇dn is obtained considering a

heat loss factor ( f dn
loss,0) of 10% for a given reference supply temperature (T dn

s,0 ) of 100◦C and a

mean ground temperature (Tg nd ). The heat loss factor ( f dn
loss) is considered proportionnal to
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the supply and ground temperature difference, as defined in Equation (4.7).

f dn
l oss = floss,0 ·

T dn
s −Tg nd

T dn
s,0 −Tg nd

(4.7)

Heat load This allow to compute the corrected district heat load (4.8) and its corresponding

supply temperature (4.9).

Q̇
∗dn = Q̇dn +Q̇dn

l oss (4.8)

T
∗dn
s = T

∗dn
r + Q̇

∗dn

ṁdn · cp
(4.9)

Pipe diameter The pipe diameter (d dn) is computed by (4.10) assuming a nominal velocity

(vs) of 3 m/s.

d dn =
√

4 ·ṁdn

π · vs ·ρ
(4.10)

Investments The investment cost correlation (4.11) includes material costs, proportional to

the pipe diameters and fixed costs of civil engineering works. The values of the corresponding

coefficient c1 = 7047 C HF /m2 and c2 = 752.8 C HF /m have been calibrated on data from

Table (4.1).

IC
dn =

(
c1 ·d dn + c2

)
·Ldn [CHF] (4.11)

Table 4.1: Typical cost of network pipes, for diameters between 25mm and 300mm.

Parameters values

pipe diameter [mm] 25 32 40 50 65 80 100 125 150 200 250 300
pipe cost [C HF /m] 950 950 1000 1200 1250 1350 1470 1600 1750 2000 2500 3000

The specific cost of the heat distribution (I cdn), shown in Figure (4.2), is computed by Equation

(4.12), typically considering 60 years lifetime for the annualisation factor of the district network

investment (τdn).

Ic
dn =

(
c1 ·d dn + c2

) ·Ldn 1

τdn

Qdn
yr

[CHF/kWh] (4.12)
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Figure 4.2: Cost of DHN by zones for a distribution temperature of 90◦ and the heat require-
ment expected for 2030 (Source: Girardin et al. [2010b]).

4.2.5 Resource-limited geographical aggregation

District heating is typically interesting when it allows one to access to endogenous resources,

or when it allows to profit from scale effects of the investment and the efficiency of the tech-

nologies. In both cases, the available capacity (Q̇max ) of the resource or of the technology

requires the calculation of the area covered by a given technology or a given resource.

A MILP aggregation mechanism has therefore been developed in order to evaluate the best

zone to be covered by a district heating system that has access to a given resource.

The integer variables of the problem are the existence Nz1,z2 = 1 or not Nz1,z2 = 0 of a network

between neighboring zones (z1, z2) and the existence Xz = 1 or not Xz = 0 of a network in a

zone.

The application of such algorithm is illustrated by targeting the area covered by the heat

Q̇max ≥
nz∑

z=1
(Xz ·Q̇dn

0,z ) available from waste water treatment plants (WWTP) (figure 4.3). The

area is increased from a given resource location Xst ar t by the selection of neighboring zones

that minimize the DHN’s specific costs
nz∑

z=1
(Xz · cdn

z ).
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Cost indices [cts/kWh] Newtwork supply temperature: 90°C
0.82 [cts/kWh]

5.41 [cts/kWh]

4.96 [cts/kWh]

Figure 4.3: Areas covered at minimal cost by the heat available from WWTP plants (Source [Gi-
rardin et al., 2010b]).

4.2.6 Network design using MILP formulation

In order to estimate more precisely the length of the network, a Mixed Integer Linear pro-

gramming (MILP) is proposed. Starting from a set of nodes n and roads ((i , j )), the algorithm

determines the existence(Yi , j = 1) or not (Yi , j = 0) of a connection between two nodes. Each

node belonging to the network can be part (Xi = 1) or not (Xi = 0) to the network.

The algorithm minimizes the cost function of Equation (4.13) where (Li , j ) is the length between

two nodes, (c1) and (c2) are the proportional and fixed cost of the pipes, (IC
dn
n ) is the fixed cost

of a node (n) and (d̃i , j ) is a linear approximation of the pipe’s diameter between two nodes.

The constraints of the problem ensure that the energy and mass balance holds (Equations C.2,

p. 181) and define a tree structure (Equations C.1, p. 181) such as the one visible in Figure (4.4).

ĨC
dn = ∑

(i , j )∈P

(
c1 · d̃i , j ·2Li , j + c2 ·Li , j

)+ ∑
n∈N

IC dn
n ·Xn [CHF] (4.13)

Being a non linear function of the heat load (Qi , j ), the diameter is linearized as shown in

Equation (4.14) and Figure (4.5).

Si , j =
Q̇i , j

cp · (Ts,0 −Tr,0
) ·ρ · v0

(4.14)

d̃i , j = d1 ·Si , j +d2 (4.15)

The networks computed for each zone of the application of Chapter (§2.8, p. 55) are visible in
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Figure 4.4: Structure of the network (Sector “Marans”, see Table (4.2, p.99)).

Figure 4.5: Linear approximation of the pipe diameter to solve the MILP problem.

Figure (4.6) and the corresponding results are presented in Table (4.2).
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Figure 4.6: Overall view of the network design.
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Table 4.2: Value for the network of the case study of Chapter (§2.8, p.55)

Sector nb Length Investment
- s m MC HF

La Biolatte 5 0.8 464 401
Bois - Bougy 13 0.0 666 628
Rive bis 13 0.0 552 516
Sadex 13 0.0 732 659
Le Viez 20 0.0 2296 2186
La Vuarpillière 21 0.1 1317 1454
Rive 22 0.1 1554 1455
Colovray - Métairie 26 0.1 2854 2813
Martinet et Morâche 28 0.1 1504 1634
Changins 33 0.1 3620 4007
L’Asse 35 0.1 2595 2511
Piscine 46 0.1 2662 2605
Champ-Colin 64 0.1 4541 5753
Les Tines-Ouest 71 0.2 5036 5855
Prélaz 79 0.2 2986 3142
La Banderolle 81 0.2 3514 3509
Chantemerle 90 0.2 5875 6458
Clémenty 90 0.2 3138 3015
Cossy 92 0.2 3980 4444
Plantaz 96 0.2 3433 3419
Les Tines-Est 132 0.4 3577 3375
En Oie 140 0.4 5216 5921
Marans 159 0.5 6832 7594
Le Reposoir 186 0.6 7440 7851
Vieux - Bourg 624 6.1 16575 19065
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4.3 Empiric Model for the energy conversion technologies

A short-cut model has been developed to model energy conversion systems at the appropriate

level of complexity required for the preliminary design and retrofit of urban energy systems.

The useful models for the following studies, are conventional boiler, heat pumps, cogeneration

engine, photovoltaic and thermal solar collector.

4.3.1 Conventional Boiler

The thermal load of a boiler burning different fuels (F ), characterised by their Higher Heating

Value (H HV ) and flow rate (ṁF ), is linked to the combustion heat load (Q̇F = ṁF ·H HVF ) by

(Equation 4.16).

Q̇boi l = ηboi l ·Q̇F (4.16)

The boiler efficiency (ηboi l ) depends strongly on the operating condition, particularly when

the load falls below 20 to 10% of the nominal load, as studied by Ottin [1986]. For periods

greater than a day, transient are averaged and a constant mean efficiency is applied.

4.3.2 Heat pumps

The coefficient of performance of heat pumps (COP = Qhp

E hp ) describes the ratio of useful heat

supplied (Qhp ) to work input (E hp ). The centralized/decentralized heat pumps are computed

on the basis of a COP efficiency factor ηCOP defined by (Equation 4.18) linking the theoretical

COPth (Equation 4.18) with the real observed COP .

COP = ηCOP ·COPth (4.17)

COPth = T hot
lm

T hot
l m −T cold

l m

∆Tlm = T1 −T2

ln( T1
T2

)

(4.18)

The results of the linear identification from the data of heat pump certification center [WPZ,

2009]1 are shown in Figure (4.7.1) for decentralized Water/Water heat pumps and Figure (4.7.2)

1Wärmepumpen-Testzentrum WPZ, Interstaatliche Hochschule für Technik (NTB), Buchs SG
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4.3. Empiric Model for the energy conversion technologies

for Air/Water heat pumps.
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4.7.1: COP efficiencies ηCOP = COP/COPth for local
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4.7.2: COP efficiencies ηCOP = COP/COPth for local
Air/Water heat pump.

The COP efficiency ηCOP is a function of the resource and therefore of the technology. Table

(4.3) summarizes the mean efficiency factor adopted for each type of natural resource.

Table 4.3: Theorical COP efficiency factors.

Type Size T cold
lm ηCOP (2005) ηCOP (2030)

Air/water local Tx −5 0.34 0.38
Ground/water local 2 0.43 0.48
Water/water local 3 0.43 0.48
Geostructure/water local 6 0.43 0.48
Surface water/water centralized 6 0.55 0.60
WTP/water centralized 12 0.55 0.60

4.3.3 Cogeneration plant

Thermal (Qchp
th ) and electrical (E chp

el ) power outputs of a combined heat and power cogenera-

tion plant (chp) are given by (Equation 4.19).

˙
Qchp

th = ηth ·Q̇F
˙

E chp
el = ηel ·Q̇F (4.19)

The thermal (ηth) and electrical ηel ) efficiencies depend on the type, size and operating

condition of the technologies. Typical starting value of ηel = 0.4 and ηth = 0.45 are applied by

default.
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Chapter 4. Integration of centralized and decentralized urban energy systems

4.4 Design of Advanced energy conversion system

The interest of the model is to allow for evaluating the integration of advanced energy con-

version systems, like combined heat and power or heat pumping systems. Such conversion

systems have an efficiency that depend on the temperature level of the heat requirement and

of the resource. One could also imagine district heating systems where the preheating is first

done by a heat pump, the rest being supplied by a cogeneration unit whose electricity is used

to drive the heat pump.

4.4.1 Heat pumping resources and performances

The list of possible resources for heat pumping has been first established. This analysis

considers the accessibility of the resource (for example some area are not accessible for the

geothermal drill due to the presence of potable water resources). Each area is therefore

attributed a heat pumping resource (Figure 4.7).

No consumption

Surface water (network)

Waste water treatment plant (network)

Groundwater

Geothermal drilling

Air

Figure 4.7: Inventory of the available energy sources

The electrical consumption of the heat pumps is computed from the composite curves by

summing for each segment [Tk ,Tk+1] of the composite curve (Equation 4.20).

Ė HP =
nk−1∑
k=1

Q̇k+1 −Q̇k

COPk
=

nk−1∑
k=1

Q̇k+1 −Q̇k

ηCOP /(1− T cold
lm,k+1,k

T hot
lm,k+1,k

)
(4.20)
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4.4. Design of Advanced energy conversion system

4.4.2 Distribution temperature evaluation

The composite curves allows to compute the optimal supply temperatures for the district

heating system. In order to maximize the efficiency of the system and avoid having to size

the network to only satisfy the highest temperature in a zone, we consider that decentralized

heat pumps may be used to locally upgrade the temperature level of the distributed heat, as

illustrated in Figure (4.8).
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Figure 4.8: Centralised and decentralized options.

The annual COPz of heat pumping in a zone, defined by the ratio of the required heat Qhot
Y ,z by

the electricity EY ,z , is computed by Equation (4.21). If one removes the conflicting technologi-

cal option at territorial level, a list of COP corresponding to technological scenarios can be

reported for each region.

COPz =

nP∑
P=1

DP (
nc∑

c=1
(Q̇P,c,z )

nP∑
P=1

DP

(
nc∑

c=1
(

nHP∑
HP=1

Ė HP
P,c,z )

) (4.21)

Each points and lines in Figure (4.9) represents annual COPz values for a urban zone.

When considering the combination of centralized and decentralized heat pumps, the optimal

heat distribution temperature may be assessed. For example, Figure (4.9) shows the value of

the COP in the different geographical areas drawn as a function of the supply temperature for

the district heating solutions.
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Figure 4.9: Dependence between COP and resources/networks supply temperatures.

The map of the predicted optimal HP annual COP for 2030 is given in Figure (4.10).
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(Scenario 2030)
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Figure 4.10: COP map considering the available resources for heat pumping in 2030.
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4.4.3 CO2 neutral electricity production

When considering the boiler substitution by the integration of combined heat and power units,

the electricity produced is attributed an amount of CO2 emissions that corresponds to the

extra amount of natural gas used in the cogeneration unit. This calculation accounts for the

efficiency of the conventional boilers (ηboi l
th ) and the CO2 factor of the fuel used in the boiler

( f boi l
CO2

). Applying the same principle, one may compute the CO2 savings that relates to the

use of electricity in a heat pump. Combining heat pumping and combined heat and power

production can therefore be done by using the electrical network as an energy carrier between

the equipments in the system. Considering the amount of electricity used in a heat pump to

compensate the extra amount of CO2 emitted by the cogeneration, on may compute the net

electricity produced while compensating the CO2 emissions. In our system, the aggregation

method is first used to compute the area that can be supplied by a natural gas combined cycle

(NGCC) delivering both heat and electricity. The remaining area is determined by ranking the

decentralized HP COPz to aggregate zones in such a way that the cumulated heat load of the

area compensates the emissions
∑nz

z ṁboi l
CO2,z = ṁchp

CO2
.

The GIS model also identifies the priority zones for installing the heat pumps and the com-

bined cycle. This is done by applying the aggregation mechanism first to the centralized

system. The candidate areas for the heat pumping systems are then identified among the

remaining areas (Figure 4.11).

The fraction of electricity needed to run the heat pumps while compensating the CO2 emis-

sions is computed by Equation (4.22). If the electricity used in heat pumping systems in

the area is higher than Ė HP
CO2,0, the polygeneration system that includes heat pumps and the

combined cycle system will correspond to an overall reduction of CO2 even in areas where

the electricity is already produced without CO2 emissions. In this formula, the COP (Q) refers

to the overall COP of the area corresponding to the heat load of the CO2 compensation, the

value will have to be computed considering a map of COP that will be expressed as a function

of the heat and electricity supplied by the cogeneration unit.

Ė HP
CO2,0 = Ė chp ·

ηboi l
th

f chp
CO2

f boi l
CO2

−ηchp
th

η
chp
e COP (Q)

(4.22)

Finally, the remaining CO2 neutral electricity (Ė chp
CO2,0) that can be exported out of the system

is obtained by Equation (4.23).

Ė chp
CO2,0 = Ė chp − Ė HP

CO2,0 (4.23)
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Avoided CO2 emissions
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Figure 4.11: Combined heat pumping and combined cycle option in the district.

106



4.5. Conclusion

4.5 Conclusion

A method has been presented for the integration of centralized and decentralized energy con-

version equipments, satisfying the heating energy demand of a given urban area. For a given

network nominal supply temperature, the proposed algorithm minimizes the network mass

flow and gives the corresponding share of local and central load. This permits the evaluation

of the size and performance of a predefined mix of centralized and decentralized technologies.

When data from a Geographical Information System are embedded in the proposed algorithm,

this permits evaluation of the integration of advanced energy conversion and comparison of

the performance of urban zones having access to different local energy resources.

A second algorithm has been proposed to determine the best locations, around a given central

area, for the extension of district networks under the constraint of a limited distributed heat

power. This allows, for example, the estimation of the zone of influence of a cogeneration

power plant supplying heat in its neighborhood.

The combined use of these two algorithms offers a wide range of applications. For example,

it is possible from this work to use a genetic algorithm to optimize the network distribution

temperature, the location of the centralized energy conversion system and the zone of the dis-

trict network [Masciarelli, Girardin, and Maréchal, 2009]. This pinpoints the most promising

urban zones for the development of energy infrastructure, promoting efficient use of energy

and local resources.

While the integration algorithm permits the resolution, with comparative ease, of problems

falling under its general structure, its rigid format does not enable, without extra programming,

the introduction of novel variables. These variables are required for the design of more complex

configurations, for example the design of low-temperature district networks supplying heating

and cooling services to urban areas. This scenario is treated in the following Chapter.
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5 Methodology for the Integration of
Low Temperature District Network in
Urban Areas

The part of the Thesis related to the Integration of Low Temperature District

Network was presented at the 5th Dubrovnik Conference on Sustainable Devel-

opment of Energy, Water and Environment Systems, held in Dubrovnik (Croatia)

in September 2009 [Calame-Darbellay, Girardin, and Maréchal, 2009b]. It is also

greatly inspired by two Technical reports of the European project Tetraener1 [Calame-

Darbellay, Girardin, Dubuis, and Maréchal, 2009a; Girardin, Kallhovd, and Maréchal,

2010a].

5.1 Introduction

Starting from audits realized on single buildings, a method using process integration tech-

niques, has been developed to evaluate the retrofitting options and their impacts on the

integration of cooling system in buildings connected to a low temperature district network

using lake water as cold source. As good control strategy is just as important to make the most

of the energy savings potential, the impact of building’s envelope refurbishment has been

studied in parallel.

The proposed method is first demonstrated on a single building and then applied to evaluate

the impact of the optimal integration of cooling and heating systems at the scale of the

Geneva Lake Nation (GLN) Urban area. The analysis also considers the benefits of retrofitting

the heating systems in order to take the best advantage of the low temperature distribution

network. The integrated solution is compared to a conventional configuration of local gas

boilers/refrigeration cycle systems in terms of cost and CO2 emissions

1TETRAENER: “creating residential and administrative communities where external energy dependency is
reduced by optimising the supply/demand balance”, http://www.tetraener.com/
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5.2 Overview

When assessing the retrofit of the energy conversion system, one has first to assess the possible

building retrofit scenarios that will affect both the heat/cold demand but also the tempera-

tures. Such actions should be then modeled in order to represent the impact of these actions

on the energy system configuration and its efficiency.

For the heating/cooling requirements, the retrofit of a building envelope (better insulation,

new windows, cold bridges diminution) lowers the energy needed and leads to a less demand-

ing temperature level in the building heat distribution loop hence allowing a lower heating

temperature and/or a higher cooling temperature. Beside modifying the building structure

(passive measures) or the way it is used (active measures like changing the comfort tempera-

ture or changing the control strategies), actions can also be taken on the energy conversion

system. Therefore, it is important to consider all possible actions as a whole trying to make

the most appropriate choice that maximizes the profit of the system.

In the case of the low temperature district network, such analysis is of prime importance

since the goal is first to maximize the direct use of the distributed cold water. It is therefore

important to study the possibility that a building has to increase the temperature level of the

cold requirement. For the requirement below the cold water distribution a HVAC system will

be needed, and again its efficiency will be highly related not only to the cold delivery but also

to its temperature level. The system configuration has to be optimized in order to maximize

the cold water usage, i.e. maximize the temperature lift realized in the unit so that the flow of

cold water will be minimized. Consequently more clients could be connected with the same

pumping capacity.

The proposed method implement a superstructure integrating the requirements of the build-

ings, the energy conversion technologies, the district network and the lake resource. It uses

Process Integration techniques to meet the challenges of connecting both existing and new

building to the same low temperature resource. Process Integration techniques allows to

propose design and simulation results for equipments supplying both heating and cooling

services for steady operation and multi-period scenarios and to characterize the performance

of the integrated system (size of equipment, investments and operating costs, efficiencies and

emissions) at a scale starting from individual building up to district area, without going into

the detailed calculation of the heat exchanger configurations.

5.3 Building Model

5.3.1 Heating and cooling load

The model of heating and cooling energy signature (§3.3.1, p.71) is applied to assess the multi-

period energy and power requirements. The parameters of the energy signature are either

identified from energy audits [Mermoud et al., 2008a,b] or estimated based on the annual
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building energy consumption.

5.3.2 Heat distribution system

The supply and return temperatures of the domestic hydronic heating system are derived

from the heat exchange model presented in Chapter 3 (§3.4.1, p. 76). It assumes a constant

mass flow (Ṁ0cp ) and considers the maximum heat exchange area available (U A = U0 A0).

The model is determined when the indoor comfort temperature (Ti ) and the two nominal

temperatures (Ts,0) and (Tr,0) are fixed.

Temperature dependence to the cooling loop mass flow Following the same methodology

as for the heating system (Chapter 3, §3.4, p.75), the supply (Ts) and return (Tr ) temperatures

of the cooling system are calculated by the set of Equations (5.1), considering fresh air (a)

pulsed into the rooms at the target temperature (Ta).

Q̇ =U A

Ti −∆Ta −Ts − (Ti −Tr )

ln
(

Ti−∆Ta−Ts
Ti−Tr

)
 (5.1a)

Q̇ = Ṁcp (Tr −Ts) (5.1b)

Q̇ = Ṁcpa (∆Ta) (5.1c)

with ∆Ta = Ti −Ta (5.1d)

Substituting (5.1b) and (5.1c) into (5.1a) gives Equation (5.2).

Ti −∆Ta −Ts

Ti −Tr
= exp

[
U A

(
1

Ṁcp
− 1

Ṁcpa

)]
(5.2)

Equation (5.2) permits the calculation of Ts and Tr as a functions of the cooling load to be

supplied Q̇ (Equation 5.3).

Tr (Q̇) = Ti +
Q̇

(
1

Ṁcp
− 1

Ṁcpa

)
(1−exp

[
U A

(
1

Ṁcp
− 1

Ṁcpa

)] (5.3)

Ts(Q̇) = Tr (Q̇)− Q̇

Ṁcp
(5.4)
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By assumption, the flow (5.5) and (5.6) are considered constant, as well as the (U A) parameter

that represents the available heat transfer area. The value of the (U A) parameter is identified

using Equation (5.7), knowing the nominal temperatures (Ts,0 = 6◦C , Tr,0 = 12◦C ) and the

nominal cooling power (Q̇0). In order to account for the fact that part of the heat exchange

area is not available, a factor of availability (φ= 50%) is applied.

Ṁcp = Q̇0

Tr,0 −Ts,0
(5.5)

Ṁcpa =
Q̇0

∆Ta,0
(5.6)

U A =φ · Q̇0
Tr,0−Ts,0

ln
(

Ti −Ts,0
Ti −Tr,0

) (5.7)

Direct cooling Reducing the flow and, consequently, rising the temperature difference be-

tween supply and return temperature, permits to lower the pumping power. On the other

hand, increasing the flow permits to increase the use of direct cooling. There is therefore an

optimal water distribution flow that realizes the trade off between the pumping energy and

the cooling energy.

The heat load being exchanged directly with the lake water is computed assuming a mini-

mum temperature difference (∆Tl ake = 4◦C ) between the hot stream and the lake water. The

minimum temperature (T ∗
s ) at which the water can leave the direct heat exchange is given by

Equation (5.8).

T ∗
s = max(Ts ,Tl ake +∆Tmi n,l ake ) (5.8)

In direct cooling mode, (T ∗
s ) represents the supply temperature of the cooling loop. If more

cooling power is needed, it represents the highest temperature of the hot source (cooled down)

of the cooling machine (Figure 5.1).

Refrigeration equipment The electrical power supplied to the cooling machine is estimated

considering the theoretical COPth = Tc
Th−Tc

and a Carnot efficiency (COP = ηCOP ·COPth) of

0.35, as reported in [Girardin et al., 2008]). The theoretical COP is computed based on the hot

(h) and cold (c) temperature given in Equation (5.9).

Th = Tl ake,max − (T ∗
s +∆Tl ake,mi n)

ln
(

Tl ake,max

T ∗
s +∆Tl ake,mi n

) (5.9)

Tc = Ts(Text ) (5.10)
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Figure 5.1: Integration of a direct cooling system.

The electrical power of the cooling system is therefore given by Equation (5.11).

Ė(Ṁcp ) = Ṁcp (T ∗
s −Ts)∗ (

Tl ake,max −Ts

Ts
)∗ 1

ηcop
(5.11)

with T ∗
s The pinch point of the cooling system

Tl ake,max The maximum allowed temperature of the lake water at the exit of the

building

Tl ake The temperature of the lake water

ηCOP The efficiency factor of the theoretical COPth

Cooling distribution pumping Equation (5.12) is used to compute the electrical consump-

tion of the circulating pumps.

Ėpump (Ṁcp ) = Ė 0
pump (

Ṁ

Ṁ 0
)3 (5.12)

Optimal mass flow The cooling power consumption is therefore calculated by Equation

(5.13).

Ėtot (Ṁcp ) = Ė(Ṁcp )+ Ėpump (Ṁcp ) (5.13)

The efficiency of the cooling load production is calculated by Equation (5.14)

COPcool i ng (Ṁcp ) = Ṁcp (Tr −Ts)

Ė(Ṁcp )+ Ėpump (Ṁcp )
(5.14)

The best value of the mass flow is therefore calculated by an optimization procedure that max-
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imizes the COPcool i ng (Ṁcp ), that is solved using a conventional 1D optimization approach.

As expected the optimal flow corresponds to the minimum possible flow that allows one to

maximize the direct cooling, which means that the flow is adapted to reach temperatures that

are high enough to profit at least in part of the direct cooling.

When the overall heat load can be satisfied by the lake water, then an additional amount of

cooling duty is realized using the refrigeration cycle that is using the cold water as a cold

source.

The flow rate is optimized by minimizing the use of electricity compared to the cooling

supplied (Equation 5.13) or equivalently, by maximizing the COP of equation (5.15).

The proposed control strategy aims at optimizing the mass flow of the distribution system

(Ṁ(Tx )) in order to maximise the use of the lake resource.

max
Ṁcp

[
COPcool i ng (Ṁcp ) = Ṁcp (Tr −Ts)

Ė(Ṁcp )+ Ėpump (Ṁcp )

]
(5.15)

5.4 Process integration

Having defined the optimal flows, one can define the enthalpy temperature profiles that will

define the heat transfer requirement of the cooling system (i.e. a hot stream to be cooled).

A thermodynamic model of the refrigeration cycle has then been developed. This model

defines as a function of the evaporation and condensation temperatures, the hot and cold

streams to be considered in the problem. The calculations require the definition of the refrig-

erant as well as the definition of the isentropic efficiency of the compressor (typically 70%).

The flowsheet model defines the hot stream and the cold stream of the refrigeration cycle

considering the desuperheating and under cooling of the device. The optimal flow in the cycle

is then computed considering as well the optimal integration of the lake water. The problem

is solved by applying process integration techniques and is solved as a linear programming

problem. The details of the process integration model can be found in [Maréchal et al., 2002].

The process integration model is applied systematically for different values of the external

temperature in order to obtain the annual energy consumption of the cooling system. As

the operating conditions are changing with time, the optimal operating conditions of the

refrigeration cycle have to be determined as well.

The interest of the approach is that it allows to compute the optimal flow rates in the system

as a function of the demand and to redesign the heat exchanger system.
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Table 5.1: Data for the building “R” calibration

Parameters as usual refurbished units

Available installed cooling power [kW ] 1140.0 1140.0
Available installed (U A) [kW ] 82.8 93.9
Installed maximum flow [m3/h] 207.334 207.334
Nominal temperatures “building” cool loop [C ] 6/12 6/12
Nominal temperatures “info” cool loop [C ] 12/16 12/16
Installed pumping power [kW ] 11.40 11.40
Comfort air temperature [C ] 26 28
Sizing air temperature [C ] 26 26
Sizing cooled air target temperature [C ] 16 16

Cooling signature

Constant power [kW ] 40.0 36.0
Signature slope [kW /C ] 40.0 36.0
Cooling threshold temperature [C ] 18 20

Available (U A) for retrofit [kW /C ] 111.50 111.50

Table 5.2: Lake conditions

Lake temperature 9 [C ]
Maximum allowed lake temperature 20 [C ]
Minimum approach temperature for lake direct heat exchange 4 [C ]

In the proposed approach, we considered that the refrigeration cycle may be reused since it

will work in less demanding situations.

Using the results of the process integration approach, the new design of the system is set-up

and the final configuration is evaluated.

5.5 Application of the Retrofit Strategy on a single Building

5.5.1 Heat load requirements from measurements

The building heat loads are defined by calibrating building heating/cooling signatures using

the requirements data given in Table (5.1) and the condition of the Lake water of Table (5.2).

The scenario “without refurbishment” is based on the results of an energy audit [Mermoud

et al., 2008a]. The scenario with refurbishment considers a cooling load reduction of 10%

based on the slope of the signature, with an increase of the threshold temperature of 2◦C

and an increase of the comfort temperature of 2◦C obtained by changing the behavior of the

people.

The cooling signatures of the two scenarios are plotted in Figure (5.2) and the corresponding
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cooling duration curve is presented in Figure (5.3). The scenarios “without refurbishment” is

plotted as a plain line and the scenario “with refurbishment” as a dotted line.
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Figure 5.2: Building Energy cold Signature

refurbishment scenario

Figure 5.3: Duration Curve (0700-1900)

5.5.2 Optimal set points in the distribution system

The water distribution flow calculated as a function of the cooling load is given in Table (D.1,

p.184) and presented in Figure (5.4).

The definition of the terms found in Table (D.1, p.184) is given here.

The optimal supply and return temperatures of the distribution system is given in Figures (5.5)

as a function of the cooling load requirements.
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Description of the terms in Table (D.1) and (D.2)

Duration Number of operating hours where the temperature is between Tx and Tx−1.
For this calculation we considered only the operating hours between 6:00
and 19:00.

Distr. Flow Optimal water flow distribution
Supply T Calculated supply temperature in the distribution system. This tempera-

ture is calculated from the results of the optimal flow calculation and the
available heat transfer area.

Return T Calculated return temperature in optimal operating conditions.
Target T Calculated set point for the air temperature in the cooling blocks.

Figure 5.4: Optimal flow rate control.

Three sections are observed for the optimal control of the hydronic cooling system mass flow :

(1)-(2) At the low cooling loads, the flowrate is maintained at its minimum value and the

return temperature is progressively decreasing.

(2) At a given cooling load, about 290 kW of cooling power, the flow of distributed water is

increased in order to maintain the supply temperature above the lake water temperature . It

should be noted that in our model, the temperature is 4◦C above the supply temperature but,

in reality, since the heat exchange area is fixed, this temperature difference will be lower and

therefore the assumption is still optimistic.
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Figure 5.5: Optimal Temperature control.

(2)-(3) Above a cooling of 290 kW, the flowrate of distributed water is considered to increase

proportionally to the cooling load. The relationship is not linear but in this section the rule is

to maintain the supply temperature above the lake supply temperature in order to maximize

the use of direct cooling.

(3) When the cooling load reaches 480 kW, the heat exchange no longer allows to realize the

direct cooling using the water of the lake. Above this temperature, the cooling load will be

done partially with the cooling cycle. In this case, the cooling load is first supplied by direct

cooling and the rest is supplied by the refrigeration cycle. The refrigeration cycle uses the lake

water as the cold source which allows to still have very good efficiencies.

(3)-(4) Above 480 kW, the cold water distribution flowrate will decrease in order to maintain

the return temperature as high as possible. This allows to optimise the amount of direct

cooling that is used in this case.

5.5.3 Power load distribution in the integrated system

The result of the process integration procedure are given in Table (D.2, p. 185) for different

outdoor temperatures (Tx ).

The definition of the terms found in Table (D.2, p. 185) are given here.
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Description of the terms in Table (D.1) and (D.2)

Tx Outlet temperature
Load Cooling load required according to the signature
Estim. Electricity consumption estimated by the Carnot factor using ηCOP =0.4 %.
Electricity Electricity consumed in the integrated solution (results of the optimal inte-

gration solution
Flow Lake Water flow consumed in the integrated solution
Temp Temperature of the Lake water at the outlet of the building
Direct Cooling Cooling load of the direct exchange with the lake water
COP Calculated COP = Load

Cooli ng

The flowsheet of the cooling system including the lake water integration is given on Figure (5.6)

for the scenarios with and without refurbishment. It considers the reuse of the two cooling

cycles that are now connected on the lake water network. The values are given for the extreme

conditions at Tx = 35◦C.

Figure (5.8) presents, for the scenario without refurbishment, the cooling and electrical loads

to supply the cooling load as a function of the cooling power distributed.

Figure (5.9) shows the hot and cold composite curves of the system (scenario without refur-

bishment).

Figure (5.10) shows the integrated composite curves of the requirement corresponding to

Figure (5.9). The dotted line corresponds to the cooling load required (hot stream), while the

plain line corresponds to the system used to provide the cooling service. One can visualize the

contribution of the cooling cycle and of the direct heat exchange with the lake water. Above

the requirement, the condensation of the cycle is represented and defines a new hot stream

that is cooled using the lake water.

5.5.4 Overall Performance of the Integrated system

Based on operation time of each period, the overall operating cost and the energy savings are

computed, taking into consideration that the cooling requirement is supplied with an annual

COPi ni t i al of 2.79 with an initial energy demand Ei ni t i al of 145’379 kW h/yr .

After retrofit, the annual COP is given by Equation (5.16) and the savings (∆E) by Equation

(5.17).

COP = Qr eq

Er etr o f i t
(5.16)
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 COP 8.2 (COP 11.3)

18'557 kW (0.9 kW)

 720 kW (576 kW)

 15.6 C (17.7 C)9 C

 20.0 m h (21.5 m h)

12 C 6 C

3 C

COP 12.7 (COP 13.2)

 32.8 kW (5.2 kW)

20 C

 771.4 kW (582.1 kW)

 18.2 C
(15.5 C) building loop 680 kW (540 kW) 

    4.9 C (11.6 C)

Info loop 40 W (36 kW)

4 C (4.5 C)

Tx = 35 C

3 3

Figure 5.6: Flowsheet of the cooling system with values estimated at Tx = 35◦C without (and
with) refurbishment.

∆E = Ei ni t i al −Er etr o f i t

Ei ni t i al
(5.17)

The overall performances of the integrated system are summarized in Table (5.3).
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Figure 5.8: Repartition of the Power requirements (scenario without refurbishment).

5.5.5 Synthesis

The results after retrofit show energy savings surpassing 90%. This is explained by use of direct

cooling and use of cold water instead of air as the cold source of the refrigeration cycle.

Refurbishment permits to increase the period during which the direct cooling is feasible and

therefore reduces the use of the refrigeration cycle. The operating time of the refrigeration
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Figure 5.9: Curves of the integrated hot and cold composite curves of the flowsheet (5.6) at
(Tx = 35◦C)
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Figure 5.10: Integrated composite curves of the flowsheet (5.6) at (Tx = 35◦C)

cycle is reduced by 23%, while the electricity consumption is reduced by 49%.
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Table 5.3: Benefits from the connection to the lake water

symbols units descriptions without with
refurbishment refurbishment

Qr eq [kW h/year ] Overall Cooling requirement 405’760 252’612
Ql ake [kW h/year ] Lake Water supply 413’045 256’361
Er etr o f i t [kW h/year ] Overall Electricity 8’432 4’284

COP [−] Annual COP 48.1 58.9
∆E [%] Overall Savings 94.2 98.9
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5.6 Application to the Geneva-Lake-Nation (GLN) Urban district

5.6.1 Method

The geographic information system database contains the location and annual consumption

of the considered buildings.

Starting from these measurements, Energy Signature models are calibrated and the demand

is aggregated to provide the actual thermal power and temperature requirements of the

connected buildings.

5.6.2 Assumptions

The known values for the heating and cooling system of the buildings selected for the study

are presented in Table (5.4). They include the Floor area (Ahs), the space heating efficiencies

(ηhs). the annual space heating (Qhs), the hot water production consumption (Qhw ), the space

cooling (Qcs), the cooling threshold temperature (T cs
tr ) and the cooling nominal temperature

levels (T cs
s,0/T cs

r,0), that have been collected thanks to the work of the UNIGE-CUEPE [Viquerat

et al., 2008], the ScanE [Mayer and Beck, Feb. 3rd 2009, Geneva] and SIG [SIG, 2010].

Table 5.4: Annual consumption of the buildings considered in the “GLN” area.

acronym Ahs ηhs Qhs
2008 Qhw

2008 Qcs
2008 T cs

tr esh T cs
s,0/T cs

r,0 Ti

[m2] [−] [MW h] [MW h] [C ]

A 26’069 0.95 6’300 - - - - -
B 172’848 0.95 7’225 - 2’700 - - -
C 38’909 0.95 6’295 - 900 - - -
D 154’246 0.8 18’500 - 2’580 17 7/13 -
E 28’308 0.95 5’568 1’300 - - -
F 24’300 0.95 5’000 - - - -
G 26’069 0.95 2’520 1’700 - - -
H 51’000 1 2’448 357 - - - -
I 15’433 1 687 216 0 - - -
J 62’315 0.95 4’300 1’400 - -
K 21’153 0.95 4’000 801 18 6/12 26
L 28’100 0.8 5’950 1’311 - -

The missing values are replaced considering the assumptions of Table (5.5).

5.7 Results

The energy requirements and the optimal control strategy of the network flow rate are exam-

ined first. The thermo-economic performance of the integrated solution is then presented
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Table 5.5: Default value for the buildings

Variable Description Value

P Year of measurement 2008
T cs

tr Threshold cooling temperature 18◦C
T hs

tr Threshold heating temperature 16◦C
T cs

s,0/T cs
r,0 Nominal temperature of the cooling system 6/12◦C

Ti indoor temperature 23◦C
c Building category Administrative building, 1980-2005
Acs Cooling area (SRC) Equal to heating area (Ahs)

.

5.7.1 Energy requirements

The sum of the building energy requirement for each temperature interval, obtained by multi-

plication of the mean power by the operating time, is shown in Figure (5.11).

Figure 5.11: Heating (red) and cooling (blue) energy required for the periods defined by the
outdoor temperatures intervals.

The total heating requirement for a typical year is 60’920 MW h
yr while the total cooling demand

is 8’746 MW h
yr . This total energy demand has been plotted in Figure (5.12) throughout the

whole year. It can be seen that the energy demand is largely dominated by the heating demand.

The power requirements (see Figure 5.13) for heating and cooling seem to follow approxi-

mately the same slope. The dimensioning requirement for the cooling is almost the double of

what is required during a typical year.
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5.7. Results

Figure 5.12: Heating and cooling requirement during a typical year.

Figure 5.13: Heating(red) and Cooling(blue) power required for the periods defined by the
outdoors temperatures intervals and nominal requirement at -6◦C.

5.7.2 Optimal cooling mass flow

The mass flow is optimized by maximizing the COP of the total cooling system (Equation 5.15,

p.114). Figure (5.14) shows the overall mass flows of all buildings.
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Figure 5.14: Network/Lake mass flow

5.7.3 Integration of the network and cooling cycles

Figure (5.15) represents the hot and cold composite curves resulting from the integration

for the nominal outdoor temperature of 35◦C. The condensation is observed at 4◦C in the

refrigeration cycle while the lake is at 15◦C. This optimal integration procedure has been

performed for each temperature interval ranging from -6◦C to 35◦C.
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Figure 5.15: Integrated hot (red) and cold (blue) composite curves GLN area-network-cooling
cycles for an outdoor temperature of Tx = 35◦C.

Figure (5.16) is another representation of the integration, where the streams obtained by the
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thermodynamic simulation of the cooling cycles (blue) is separated from the rest of the system

(water network and GLN area requirements).
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Figure 5.16: Integrated composite curves of the GLN area-network (red) and cooling cycles
(blue) for an outdoor temperature of Tx = 35◦C.

The result of the integration of the cooling system for a typical year is presented in Figure

(5.17).The refrigeration cycle (on the top) is used to cover the peaks of the cooling demand

during summer time. During the rest of the time, the cooling requirements could be satisfied

by direct cooling (blue) from the lake water.

Figure 5.17: Results of the optimal integration of the network and cooling cycle for a typical
year.

The overall performance coefficients, defined in Equation (5.15, p. 114), have been obtained

by the optimal integration of direct cooling and refrigeration cycles including pumping power.
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These coefficients are presented in Table (5.6).

Table 5.6: Results after mass flow optimisation

Total electricity consumption 110’600 kW h
Electricity consumption refrigeration cycle 92’240 kW h

COP refrigeration cycle 13.4 -
COP cooling, whole system 79.0 -
COP cooling, whole system with lake pumping 67.8 -

5.7.4 Integration of the network with heat pumps

5.7.5 Assumptions

The scenario without heat pumps and the one with heat pump integration are compared with

regards to the energy bill and the CO2 emissions. The assumption on energy prices and CO2

emissions are listed in Table (5.7).

Table 5.7: Energy prices and CO2 emissions

Energy carrier
Cost Emissions

[C HF /kW h] [gCO2 /kW h]

Natural gas 0.09 234 [SSIGE, 2007]
Swiss Electricity production Mix 0.18 24 [FOEN]
Swiss Electricity Consumption Mix 0.18 143 [FOEN]

5.7.6 Additional Heat pump integration

Figure (5.18) represents the hot and cold composite curves resulting from system integration

at the nominal outdoor temperature of -6◦C.

In the alternative representation of Figure (5.19), the streams obtained by simulation of the

heat pump cycle (blue) are separated from the rest of the system (red).

5.7.7 Annual energy bill and CO2 savings

The heating requirements (60’920 MW h) are actually covered by a natural gas boiler. Consid-

ering efficiencies of 95% for gas boilers, the total use of natural gas equal (64’126 [MW h]).

The estimated electricity consumption are presented in Table (5.8). For the pumping power of

the lake, one obtains an electricity consumption of 129 MW h
yr .
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Figure 5.18: Integrated hot (red) and cold (blue) composite curves of the GLN area-network-
heat pumps for an outdoor temperature of Tx =−6◦C.
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Figure 5.19: Integration of direct cooling and cooling cycles -6◦C

Table 5.8: Final energy consumptions for the integrated low temperature district network.

Heating technology
Gas Boilers Heat pumps

[MW h]

Gas consumption 64’126 0
Electricity consumption 129 21’828
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The energy cost presented in Table (5.9), are computed based on the assumptions of Table

(5.7) and the electricity consumption of Table (5.8)

The corresponding CO2 emissions are given in Table (5.10).

Table 5.9: Energy expenses for the integrated low temperature district network.

Heating technology
Gas Boilers Heat pumps

[MC HF /yr ]

Gas costs 5’771 0
Electricity costs 23 3’929

Total costs 5’795 3’929

Table 5.10: CO2 emissions for the integrated low temperature district network.

Heating technology
Gas Boilers Heat pumps

[tCO2 /yr ]

Emissions from natural gas 15’005 0
El emissions, Swiss production Mix 3 524
El emissions, Swiss Consumption mix 18 3’100

Total emissions, Swiss production Mix 15’008 524
Total emissions, Swiss consumption Mix 15’023 3’100
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5.7.8 Synthesis of the results

The savings obtained are given in Table (5.11). The CO2 emission reduction is about 80% and

even more when considering the Swiss production electricity (96%). The monetary value the

energy saved is estimated at 1’865’500 C HF /year .

Table 5.11: Costs and emissions savings from the heating technology shift.

Savings

Reduced CO2 emissions, Swiss Production mix 14’484 [tCO2/yr ] 96.5%
Reduced CO2 emissions, Actual Swiss consumption Mix 11’923 [tCO2/yr ] 79.4%
Energy bill savings 1’865.5 MC HF /yr 32.2%

Considering a discount rate (i ) of 8% and the life time of the equipments (n) of 20 years, the

net present value (N PV ) of a savings (S) for the coming 20 years computed with Equation

(5.18), release an actual investment of 18.3 [Mi oC HF ]. It is worthwhile to mention that this

evaluation is based on the assumption of a constant gas and electricity prices for the coming

20 years.

N PV = S

r
·
(
1− 1

(1+ i )n

)
(5.18)
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5.8 Conclusion

The GIS-based methodology simulates the buildings’ temperature and energy requirements

and realizes the optimal integration of energy conversion systems using Process Integration

techniques. Process Integration techniques have been used for decades to improve the energy

performance of industrial processes.

Applied to territorial energy planning, this permits the design and simulation of equipment

supplying both heating and cooling services, for steady state operation and multi-period

scenarios. This can be done at a scale starting from individual building up to district areas,

without going into detailed calculation of the heat exchanger network configurations, but giv-

ing the size of the equipment and the performances of the integrated system. The investment

and operating costs, as well as the effficiencies and emissions can then be calculated.

Applied to the design of a low temperature district network, the proposed methodology en-

ables the identification of an optimal strategy that maximizes the use of direct heat exchange.

It also enables the evaluation of the impact of buildings’ envelope refurbishment.

The results give evidence that optimal integration of endogenous renewable energy resources

with heating and cooling equipment can achieve considerable ecological benefits and savings.

This is particulerly suited for areas, like many in Switzerland, where population and industries

centers are situated near large bodies of water.

This method could be further extended to integrate heat storage equipment as well. A further

developement might be to compute the optimal developement sequence for a given temporal

horizon.
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6 Conclusion

Nowadays, urban energy planners and designers, like site managers in the industry, are asked

to meet new environmental standards. They are required to improve the efficiency of their sys-

tems and propose sustainable designs that satisfy the energy requirements with an increasing

share of renewable energy sources. For example in the European Union, more than a thousand

cities signed the climate action and renewable energy package, known as the “Covenant of

Mayors” [SEAP, 2010], that targets by 2020 the reduction by 20% of the CO2 emissions, the

increase by 20% of the energy efficiency and an increase by 20% of renewable energy utilized.

Furthermore, urban energy planners are confronted with multi-scaled systems: ranging geo-

graphically from individual buildings to districts, cities and agglomerations and temporally

from a single to a multi-period model.

To face these challenges a methodology has been proposed that is applied in three stages:

Starting with the identification of disparate information, a Geographical Information System

(GIS) has been prototyped to assess the possible integration of available resources and energy

requirements of urban areas. This permits an assessment of the situation by identifying and

localizing the energy needs, resources and infrastructures in urban areas. This includes for

example specificities such as the geological layers, the land use, the existing building stock, the

heat district networks, the gas and electricity networks and typical meteorological conditions.

The geographical energy needs are estimated using primarily real data and secondarily, when

necessary, statistical values resulting from a local analysis. The future energy requirements are

then estimated based on the urban development prediction.

In the second stage the potential of the available energy resources are characterized. These

include among others geothermal resources, lakes and rivers, solar irradiation, waste water,

industrial wasted heat. Moreover the infrastructures such as energy distribution networks,

roads, railways are identified.
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In the third stage, once the energy needs, the potential of resources and the infrastructure

have been assessed, the optimal energy integration subject to limited resource availability

and temperature levels compatibility is assessed. Thus for example, one may find that the

replacement of decentralized gas boilers by a centralized co-generation plant is beneficial:

distributing heat through a heat district network and electricity to some optimally-situated

decentralized heat pumps would produce extra electricity with a CO2-neutral balance.

Moreover, this allows to outline on a comprehensive map the optimal correlation of each

urban zone with its optimal energy sources.

A further example is the determination of the size of centralized and decentralized equipment

that permits to supply heat and cooling services using lake water as a resource in a substan-

tially more efficient manner then that which is actually done with decentralized gas boilers

and refrigeration cycles.

Application of the methodology was done as follows :

A data model has been proposed to homogenize and prioritize the information coming from

disparate origins.

A statistical approach has been proposed to supply the crucial data which may be missing,

such as used built area and energy consumptions.

A spatial aggregation model has been developed in order to enlarge or refine the perspective

at different scale factors.

As the efficiency of advanced energy conversion systems depends on the required loads and

temperature levels, a model characterizing the heat requirements, where the temperature is

given as a function of the heat load, has been proposed. This permits computing, for each

geographical area, the so called “heat-temperature composite” curve.

A GIS database has been adapted as an analytic tool which permits the identification of terri-

torial opportunities and constraints linking energy resources and demands.

As certain energy resources are accessible only through distribution networks, an algorithm

has been developed to integrate energy conversion technologies of decentralized, partially

centralized or completely centralized configurations. This enables, for example, an assessment

of the efficiency of centralized/decentralized combination of heat pumps for different heat

distribution temperatures. Moreover, an aggregation algorithm has been developed to target

economically promising zones.

In order to optimally correlate energy demand and offer while privileging endogenous renew-

able resources, Process Integration techniques, borrowed from industrial process engineering,

have been applied.

I suggest this GIS-based approach, ignoring the details of the heat exchangers configurations,
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is well suited for large scale urban applications: when solutions are materialized by visually

comprehensible cartographic maps, optimal decision making is facilitated.

139





Bibliography

Bibliography

SR 431.01. Federal Statistics Act (FSA) of 1992 (SR 431.01), October 1992. URL http://www.

admin.ch/ch/e/rs/431_01/index.html.

RS 510.62. Federal Act of 5 October 2007 on Geoinformation (Geoinformation Act, GeoIA), RS

510.62, 2007 5 October. URL http://www.admin.ch/ch/e/rs/c510_62.html.

RS 510.626. RS 510.626, Ordonnance du 21 mai 2008 sur la mensuration nationale (OMN, RS

510.626)., 21 mai 2008. URL http://www.admin.ch/ch/f/rs/510_626/a1.html.

A. E. Adderley, P. W. O’Callaghan, and S.D. Probert. Energy-saving options. Applied

Energy, 30(4):269 – 279, 1988. ISSN 0306-2619. doi: DOI:10.1016/0306-2619(88)

90014-1. URL http://www.sciencedirect.com/science/article/B6V1T-49803G9-2P/2/

f2c97f4b787406c01c783cc796d7414e.

S. B. Akers. Binary decision diagrams. Computers, IEEE Transactions on, C-27(6):509 –516,

june 1978. ISSN 0018-9340. doi: 10.1109/TC.1978.1675141.

B. R. Anderson, A. J. Clark, R. Baldwin, and N. O. Milbank. BREDEM - BRE Domestic Energy

Model: background, philosophy and description. Building Research Establishment report.

Building Research Establishment, 1985. ISBN 9780851253510. URL http://books.google.

com/books?id=e1WzOQAACAAJ.

D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent, and J. Weaver.

Google street view: Capturing the world at street level. Computer, 43(6):32 –38, june 2010.

ISSN 0018-9162. doi: 10.1109/MC.2010.170.

E. Barreiro, J. Belausteguigoitia, E. Perea, R. Rodríguez, A. Romero, and E. Turienzo. City

planning and energy efficiency: Towards an integrated urban design and planning process.

volume 120, pages 43–51, 2009. URL http://www.scopus.com/inward/record.url?eid=2-s2.

0-71749087487&partnerID=40&md5=3b321708cb0f6bfebcd1105c3ac17308.

M. Bauer and J.-L. Scartezzini. A simplified correlation method accounting for heating and

cooling loads in energy-efficient buildings. Energy and Buildings, 27(2):147 – 154, 1998.

ISSN 0378-7788. doi: DOI:10.1016/S0378-7788(97)00035-2. URL http://www.sciencedirect.

com/science/article/B6V2V-3SYYRFM-4/2/b6da1dcd1e83e6e97aeb27f4addfc6a7.

H. Becker, L. Girardin, and F. Maréchal. Energy integration of industrial sites with heat

exchange restrictions. 28:1141–1146, 2010. URL http://www.aidic.it/escape20/.

C. Boissieu. Rapport du groupe de travail « Division par quatre des émissions de gaz à effet de

serre de la France à l’horizon 2050 ». La Documentation française, Paris, octobre 2006.

R. Bolliger. Méthodologie de la synthèse des systèmes énergétiques industriels. PhD thesis,

Lausanne, 2010. URL http://library.epfl.ch/theses/?nr=4867,http://library.epfl.ch/theses/

?nr=4867.

141

http://www.admin.ch/ch/e/rs/431_01/index.html
http://www.admin.ch/ch/e/rs/431_01/index.html
http://www.admin.ch/ch/e/rs/c510_62.html
http://www.admin.ch/ch/f/rs/510_626/a1.html
http://www.sciencedirect.com/science/article/B6V1T-49803G9-2P/2/f2c97f4b787406c01c783cc796d7414e
http://www.sciencedirect.com/science/article/B6V1T-49803G9-2P/2/f2c97f4b787406c01c783cc796d7414e
http://books.google.com/books?id=e1WzOQAACAAJ
http://books.google.com/books?id=e1WzOQAACAAJ
http://www.scopus.com/inward/record.url?eid=2-s2.0-71749087487&partnerID=40&md5=3b321708cb0f6bfebcd1105c3ac17308
http://www.scopus.com/inward/record.url?eid=2-s2.0-71749087487&partnerID=40&md5=3b321708cb0f6bfebcd1105c3ac17308
http://www.sciencedirect.com/science/article/B6V2V-3SYYRFM-4/2/b6da1dcd1e83e6e97aeb27f4addfc6a7
http://www.sciencedirect.com/science/article/B6V2V-3SYYRFM-4/2/b6da1dcd1e83e6e97aeb27f4addfc6a7
http://www.aidic.it/escape20/
http://library.epfl.ch/theses/?nr=4867, http://library.epfl.ch/theses/?nr=4867
http://library.epfl.ch/theses/?nr=4867, http://library.epfl.ch/theses/?nr=4867


Chapter 6. Conclusion

R. Bolliger, D. Favrat, and F. Maréchal. Advanced Power Plant Design Methodology using Pro-

cess Integration and Multi-Objective Thermo-Economic Optimisation. In ECOS 2005, 18th

International Conference on Efficiency, Cost, Optimization, Simulation and Environmental

Impact of Energy Systems, volume 2, pages 777–784, Trondheim, Norway, 2005.

A. T. Booth, R. Choudhary, and D. J. Spiegelhalter. Handling uncertainty in

housing stock models. Building and Environment, 48(1):35–47, 2011. URL

http://www.scopus.com/inward/record.url?eid=2-s2.0-80052594887&partnerID=

40&md5=38d54eed593aba4d18f93b0405408a75.

L. Borel and D. Favrat. Thermodynamics and Energy Systems Analysis; From Energy to Exergy.

Presses Polytechniques et Universitaires Romandes PPUR, Lausanne, 2010. ISBN 978-2-

940222-45-2.

M. Bürer. Multi-Criteria Optimization and Project-Based Analysis of Integrated Energy Sys-

tems for More Sustainable Urban Areas. PhD thesis, EPFL, LENI - IS - STI, Laboratoire

d’énergétique industrielle, CH-1015 Lausanne, Switzerland, 2003.

N. Calame-Darbellay, L. Girardin, M. Dubuis, and F. Maréchal. Monitoring and adaptation

of existing buildings to a hydraulic network Impact of the retrofit of buildings and heat

distribution systems on the system performance. Technical report, 2009a.

N. Calame-Darbellay, L. Girardin, and F. Maréchal. Methodology for the integration of low

temperature district network in urban area. In Zvonimir Guzović, Neven Duić, and Marko
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Appendix A. Chapter 2

Table A.1: Statistical report of housing densities in Switzerland, 2009. Source: FSO [2011a].

Inhabited Period Individual Building with Building partially Housing with
area [m2] homes several households used for habitation other end-use

<30 -1919 813 10148 2382 7199
<30 1919-1945 767 4358 714 2263
<30 1946-1960 594 8680 815 4132
<30 1961-1970 479 15072 1794 7439
<30 1971-1980 254 13574 2482 6407
<30 1981-1990 153 4552 1287 1448
<30 1991-2000 86 2578 600 1009
<30 2001-2005 24 730 113 158
<30 2006-2009 23 480 286 72

30-49 -1919 4580 30872 5304 20318
30-49 1919-1945 3851 18963 1737 7495
30-49 1946-1960 3087 33902 1753 11823
30-49 1961-1970 2852 47221 2490 16522
30-49 1971-1980 1629 39947 3293 12751
30-49 1981-1990 1007 19431 2223 6193
30-49 1991-2000 777 13055 1138 4052
30-49 2001-2005 184 2549 250 319
30-49 2006-2009 164 2608 221 401

50-69 -1919 11217 63797 8085 38157
50-69 1919-1945 8532 56654 2737 16756
50-69 1946-1960 7731 104229 2887 21957
50-69 1961-1970 6014 103747 3182 24132
50-69 1971-1980 4228 68295 2909 15996
50-69 1981-1990 3135 40523 2460 10982
50-69 1991-2000 2090 34406 1929 8951
50-69 2001-2005 667 7144 437 1291
50-69 2006-2009 439 9026 592 1549

70-99 -1919 29791 105824 14511 67462
70-99 1919-1945 23344 73662 5347 25056
70-99 1946-1960 28246 116398 4721 26729
70-99 1961-1970 19312 168757 5522 33298
70-99 1971-1980 16426 140850 4457 26837
70-99 1981-1990 13608 94515 3918 21293
70-99 1991-2000 8676 80559 3067 18231
70-99 2001-2005 2887 21936 412 2445
70-99 2006-2009 2235 29530 591 3264

100-149 -1919 45403 66688 13290 57253
100-149 1919-1945 39343 30841 4355 14957
100-149 1946-1960 43898 32806 3657 11964
100-149 1961-1970 38257 50216 4274 14474
100-149 1971-1980 52993 72430 4468 15008
100-149 1981-1990 53499 76000 4836 18087
100-149 1991-2000 41666 84270 3570 16173
100-149 2001-2005 18051 47702 713 4371
100-149 2006-2009 13569 60221 686 5007

150+ -1919 41010 22268 5945 29186
150+ 1919-1945 27280 7969 1746 5856
150+ 1946-1960 27193 7076 1387 3928
150+ 1961-1970 28645 8892 1566 4417
150+ 1971-1980 49452 12295 1689 4787
150+ 1981-1990 65272 13679 2115 5671
150+ 1991-2000 67527 16376 1593 5122
150+ 2001-2005 39262 13544 472 1572
150+ 2006-2009 32038 15265 444 1309
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Table A.2: Past and predicted mean floor area[ha] by period and type of household in Switzer-
land.

Categories
Building partially Housing with Building with Individual

Total
used for habitation other end-use several households homes

- 1919 497 2269 2757 1830 7353
1919-1945 660 2935 4371 3199 11166
1946-1960 803 3588 6707 4655 15753
1961-1970 971 4378 9811 5988 21148
1971-1980 1138 5061 12783 7939 26921
1981-1990 1306 5688 15169 10210 32373
1991-2000 1430 6232 17535 12343 37540
2001-2005 1456 6352 18672 13481 39961
2006-2009 1485 6482 20079 14393 42439
2010-2020 1563 6841 23948 16901 49254
2020-2030 1634 7167 27466 19182 55449

Table A.3: Number of measurements by period of construction/renovation and type of building
in Canton Geneva, 1990-2006.

Categories
Building partially Housing with Building with Individual

Total
used for habitation other end-use several households homes

-1919 2697 12 957 21 3687
1919-1945 4070 6 2740 16 6832
1946-1960 6143 0 10398 76 16617
1961-1970 4099 11 7389 26 11525
1971-1980 3425 32 6007 47 9511
1981-1990 2506 11 2665 29 5211
1991-2000 667 36 1160 11 1874
2001-2005 0 0 5 0 5
Total 23607 108 31321 226 55262

Table A.4: Individual homes: Energy sources and system used in Switzerland for heating and
hot water production, 2009 FSO [2011b].

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

-1919 Solar collector 326 81 2 0 26 117 177 102 4 0

-1919 Electricity ohmic 29722 39 325 178 15311 4233 19925 2037 68 91

-1919 Wood 10522 13 17 8 276 99 751 61 4 23

-1919 District heating 36 0 543 1 5 11 47 5 0 0

-1919 Heat pump 173 5 5 0 45 42 235 1260 2 1

-1919 Gas 1061 3 44 16 122 10387 448 10 5 8

-1919 Oil 679 6 25 2 189 255 31081 38 9 11

-1919 Coal 11 0 1 59 1 0 9 4 0 0

-1919 Other 145 0 0 2 11 8 23 2 211 3

-1919 None 0 0 0 0 0 0 0 0 0 0

1919-1945 Solar collector 201 52 2 0 22 113 177 65 1 12

1919-1945 Electricity ohmic 7656 20 158 116 12584 5617 19043 963 41 193

1919-1945 Wood 3016 8 4 2 98 65 259 11 1 9

1919-1945 District heating 15 0 627 0 5 16 28 3 0 0

Continued on next page
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Table A.4 – continued from previous page

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

1919-1945 Heat pump 43 2 6 0 24 39 228 730 1 0

1919-1945 Gas 1645 5 13 11 88 13576 510 8 5 65

1919-1945 Oil 242 3 29 3 94 449 30965 58 6 10

1919-1945 Coal 7 0 0 475 2 1 9 0 0 0

1919-1945 Other 47 0 0 0 11 8 11 6 451 2

1919-1945 None 0 0 0 0 0 0 0 0 0 0

1946-1960 Solar collector 134 50 5 0 24 85 246 79 1 0

1946-1960 Electricity ohmic 6104 10 186 181 12813 3469 28400 1125 41 160

1946-1960 Wood 2199 8 3 3 73 39 323 11 4 3

1946-1960 District heating 11 0 419 0 4 14 82 3 3 0

1946-1960 Heat pump 35 1 3 0 35 30 388 912 0 0

1946-1960 Gas 406 2 22 2 50 7549 256 4 3 3

1946-1960 Oil 237 9 40 5 154 327 42703 62 18 13

1946-1960 Coal 5 0 0 140 0 2 5 0 0 0

1946-1960 Other 55 0 1 0 9 3 33 1 420 0

1946-1960 None 0 0 0 0 0 0 0 0 0 0

1961-1970 Solar collector 79 43 1 0 14 46 282 67 0 0

1961-1970 Electricity ohmic 4092 24 174 72 8032 925 17928 808 31 138

1961-1970 Wood 2089 4 6 2 52 20 354 14 1 2

1961-1970 District heating 6 0 451 0 0 8 53 3 0 0

1961-1970 Heat pump 24 2 2 0 23 12 403 758 2 1

1961-1970 Gas 379 4 5 3 38 3643 205 1 2 9

1961-1970 Oil 270 12 35 3 151 230 52942 66 7 7

1961-1970 Coal 5 0 0 2 1 0 6 1 0 0

1961-1970 Other 33 1 0 0 8 1 20 4 57 2

1961-1970 None 0 0 0 0 0 0 0 0 0 0

1971-1980 Solar collector 89 75 2 1 77 67 423 109 4 1

1971-1980 Electricity ohmic 3128 50 135 14 24766 874 13001 2427 25 44

1971-1980 Wood 1906 9 4 1 87 15 374 16 1 1

1971-1980 District heating 11 0 694 0 8 48 258 11 1 0

1971-1980 Heat pump 42 8 6 1 75 27 547 1725 10 1

1971-1980 Gas 233 3 9 1 37 6382 132 6 2 5

1971-1980 Oil 293 14 51 2 170 130 65761 105 5 5

1971-1980 Coal 1 0 0 3 1 0 3 0 0 0

1971-1980 Other 18 0 0 0 13 3 22 5 168 0

1971-1980 None 0 0 0 0 0 0 0 0 0 0

1981-1990 Solar collector 118 82 3 1 79 117 273 204 2 0

1981-1990 Electricity ohmic 4965 61 438 11 34168 2616 27193 10506 40 12

1981-1990 Wood 2708 16 2 2 133 25 253 39 5 1

1981-1990 District heating 9 0 566 0 7 23 89 37 1 0

1981-1990 Heat pump 87 12 17 0 218 84 651 4542 7 0

1981-1990 Gas 170 8 16 2 46 14791 109 36 7 1

1981-1990 Oil 203 8 31 0 183 107 30088 111 2 1

1981-1990 Coal 2 0 1 4 1 0 4 2 0 0

1981-1990 Other 10 0 3 0 11 4 14 21 122 1

1981-1990 None 0 0 0 0 0 0 0 0 0 0

1991-2000 Solar collector 164 142 4 1 20 214 335 369 0 1

1991-2000 Electricity ohmic 2943 54 805 5 5994 4621 20367 16494 60 5

1991-2000 Wood 2642 43 62 0 28 84 106 53 2 2

1991-2000 District heating 28 2 1456 0 5 63 89 54 2 1

1991-2000 Heat pump 78 18 57 0 76 92 331 7406 14 2

1991-2000 Gas 148 9 29 4 41 24145 77 36 6 2

1991-2000 Oil 182 16 19 3 75 111 29811 113 3 2

1991-2000 Coal 3 1 0 2 2 0 7 1 0 0

1991-2000 Other 11 2 3 1 0 9 33 50 228 0

1991-2000 None 0 0 0 0 0 0 0 0 0 0

2001-2005 Solar collector 178 89 12 1 16 210 187 327 25 1

2001-2005 Electricity ohmic 1112 51 578 14 1963 2347 4793 10028 180 1

2001-2005 Wood 957 1 21 0 14 6 16 15 3 1

2001-2005 District heating 29 3 1533 0 1 12 22 35 3 0

2001-2005 Heat pump 55 9 24 0 37 33 80 9192 21 1

2001-2005 Gas 22 1 11 15 19 14376 50 39 8 0

2001-2005 Oil 25 0 0 4 9 22 11600 53 3 0

2001-2005 Coal 0 0 0 11 0 12 8 2 0 0

2001-2005 Other 4 0 1 0 3 12 13 41 439 0

2001-2005 None 0 0 0 0 0 0 0 0 0 0

2006-2009 Solar collector 336 130 12 0 33 438 107 1195 29 0

2006-2009 Electricity ohmic 1028 53 382 5 1488 1113 1033 12033 135 2

2006-2009 Wood 1157 4 18 0 19 5 4 49 2 0

2006-2009 District heating 11 1 1335 0 0 16 6 117 2 0

2006-2009 Heat pump 67 13 11 0 66 60 40 14670 15 0

2006-2009 Gas 20 2 4 2 16 7863 15 52 0 0

Continued on next page

162



Table A.4 – continued from previous page

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

2006-2009 Oil 11 3 4 1 0 4 2791 21 0 0

2006-2009 Coal 1 0 0 0 0 6 3 2 0 0

2006-2009 Other 13 2 1 0 3 4 9 83 276 0

2006-2009 None 0 0 0 0 0 0 0 0 0 0

Table A.5: Building with several households: Energy sources and system used in Switzerland
for heating and hot water production, 2009 FSO [2011b].

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

collector heating ohmic pump

-1919 Solar collector 118 26 7 0 10 81 200 53 3 0

-1919 Electricity ohmic 8961 19 310 69 8167 3980 15296 1102 79 12

-1919 Wood 3690 4 11 2 101 54 405 27 4 1

-1919 District heating 14 0 1154 0 8 31 55 5 1 0

-1919 Heat pump 59 1 11 0 16 30 175 733 0 0

-1919 Gas 186 1 72 12 96 11900 652 13 6 3

-1919 Oil 310 11 38 3 118 317 29323 47 13 4

-1919 Coal 4 0 0 53 0 3 3 0 0 0

-1919 Other 13 0 4 0 3 19 43 7 296 2

-1919 None 0 0 0 0 0 0 0 0 0 0

1919-1945 Solar collector 28 16 1 0 9 58 82 20 1 0

1919-1945 Electricity ohmic 1994 8 123 25 4099 2304 8494 336 22 12

1919-1945 Wood 777 3 5 1 26 20 97 7 0 1

1919-1945 District heating 5 0 835 0 0 15 31 0 0 0

1919-1945 Heat pump 17 0 3 0 16 21 95 310 2 0

1919-1945 Gas 78 1 44 5 45 7403 463 6 2 1

1919-1945 Oil 74 2 51 0 48 324 20285 27 7 5

1919-1945 Coal 1 0 0 221 1 2 4 0 0 0

1919-1945 Other 2 0 7 1 3 17 12 0 204 0

1919-1945 None 0 0 0 0 0 0 0 0 0 0

1946-1960 Solar collector 19 15 1 0 2 42 115 23 0 0

1946-1960 Electricity ohmic 1300 5 207 20 3723 1324 10947 314 13 34

1946-1960 Wood 577 1 0 0 18 13 98 2 2 2

1946-1960 District heating 2 3 1052 0 3 35 105 1 7 0

1946-1960 Heat pump 8 0 1 0 12 13 142 309 0 0

1946-1960 Gas 30 0 24 4 13 5088 388 3 3 4

1946-1960 Oil 69 5 48 1 56 280 27805 32 0 33

1946-1960 Coal 1 0 0 60 1 0 4 0 0 0

1946-1960 Other 3 0 23 0 1 39 112 1 456 0

1946-1960 None 0 0 0 0 0 0 0 0 0 0

1961-1970 Solar collector 21 9 1 0 5 37 121 24 1 0

1961-1970 Electricity ohmic 707 5 88 8 1932 297 5277 246 4 2

1961-1970 Wood 650 0 4 0 8 8 155 6 0 0

1961-1970 District heating 6 0 1017 0 0 35 169 2 8 0

1961-1970 Heat pump 7 1 4 0 7 11 129 290 0 0

1961-1970 Gas 18 3 16 0 8 3836 132 0 1 0

1961-1970 Oil 64 3 93 0 32 230 38312 50 25 1

1961-1970 Coal 0 0 0 11 0 0 2 0 0 0

1961-1970 Other 3 0 30 0 0 45 169 2 489 0

1961-1970 None 0 0 0 0 0 0 0 0 0 0

1971-1980 Solar collector 21 29 1 0 13 23 146 43 1 0

1971-1980 Electricity ohmic 678 10 61 0 4542 210 2938 409 9 2

1971-1980 Wood 780 3 1 0 20 7 120 7 1 0

1971-1980 District heating 2 0 909 0 0 33 191 2 9 0

1971-1980 Heat pump 10 4 7 0 28 7 127 360 1 0

1971-1980 Gas 12 0 31 0 8 2862 83 3 0 0

1971-1980 Oil 90 5 65 0 58 157 33708 35 25 0

1971-1980 Coal 0 0 0 0 0 0 0 0 0 0

1971-1980 Other 1 0 9 0 2 12 72 0 512 0

1971-1980 None 0 0 0 0 0 0 0 0 0 0

1981-1990 Solar collector 26 11 1 0 15 19 53 28 0 0

1981-1990 Electricity ohmic 1334 9 125 6 5770 873 6279 1560 16 2

1981-1990 Wood 983 1 7 0 33 7 119 18 1 0

1981-1990 District heating 2 0 555 0 2 35 81 5 2 0

Continued on next page
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Table A.5 – continued from previous page

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

1981-1990 Heat pump 19 2 9 0 52 13 173 862 8 0

1981-1990 Gas 18 3 23 2 10 6369 144 22 1 0

1981-1990 Oil 61 9 63 0 56 118 16664 45 13 0

1981-1990 Coal 0 0 0 3 0 0 1 0 0 0

1981-1990 Other 3 1 4 0 0 39 50 6 402 0

1981-1990 None 0 0 0 0 0 0 0 0 0 0

1991-2000 Solar collector 38 34 4 0 8 39 99 42 3 0

1991-2000 Electricity ohmic 895 11 192 0 1266 1411 5642 1974 18 0

1991-2000 Wood 1143 10 12 0 7 33 88 13 0 0

1991-2000 District heating 11 2 898 0 1 52 64 9 9 0

1991-2000 Heat pump 19 3 10 0 7 22 96 1289 0 0

1991-2000 Gas 14 0 42 0 14 8414 106 11 1 0

1991-2000 Oil 52 11 41 0 25 206 12788 64 1 0

1991-2000 Coal 0 0 0 0 0 1 2 0 0 0

1991-2000 Other 1 1 4 0 2 73 133 6 1306 0

1991-2000 None 0 0 0 0 0 0 0 0 0 0

2001-2005 Solar collector 20 17 1 0 5 42 45 55 6 0

2001-2005 Electricity ohmic 264 7 85 0 323 679 1207 1047 26 1

2001-2005 Wood 358 1 11 0 7 1 7 3 0 0

2001-2005 District heating 3 0 586 0 0 9 8 9 3 0

2001-2005 Heat pump 11 6 0 0 3 15 31 1340 2 0

2001-2005 Gas 2 0 3 6 7 4873 20 43 1 1

2001-2005 Oil 5 0 7 1 7 10 3882 20 2 0

2001-2005 Coal 0 0 0 3 0 5 1 0 0 0

2001-2005 Other 2 0 3 0 2 12 1 10 169 0

2001-2005 None 0 0 0 0 0 0 0 0 0 0

2006-2009 Solar collector 84 26 14 0 2 175 38 178 5 1

2006-2009 Electricity ohmic 487 6 145 2 309 597 510 1896 52 1

2006-2009 Wood 835 2 13 0 3 7 3 9 0 0

2006-2009 District heating 16 1 913 0 0 20 14 44 2 1

2006-2009 Heat pump 24 4 8 0 8 47 33 4097 4 0

2006-2009 Gas 26 0 5 2 6 5057 10 74 2 1

2006-2009 Oil 4 2 2 1 3 19 1814 16 0 0

2006-2009 Coal 1 0 0 0 0 1 1 0 0 0

2006-2009 Other 4 0 3 0 0 12 4 11 250 0

2006-2009 None 0 0 0 0 0 0 0 0 0 0

Table A.6: Building partially used for habitation: Energy sources and system used in Switzer-
land for heating and hot water production, 2009 FSO [2011b].

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

-1919 Solar collector 33 7 1 0 1 18 39 4 0 0

-1919 Electricity ohmic 2173 4 220 32 1900 1466 5193 148 17 50

-1919 Wood 1547 1 7 1 18 55 102 1 0 17

-1919 District heating 20 0 552 0 1 19 57 1 0 0

-1919 Heat pump 17 0 2 0 12 29 129 159 0 1

-1919 Gas 196 0 20 2 29 3700 203 3 2 12

-1919 Oil 135 2 36 3 44 187 11436 23 2 18

-1919 Coal 4 0 0 45 0 0 2 1 0 0

-1919 Other 25 0 1 0 4 6 29 1 102 3

-1919 None 0 0 0 0 0 0 0 0 0 0

1919-1945 Solar collector 13 5 1 0 3 4 13 2 1 1

1919-1945 Electricity ohmic 492 1 48 12 585 388 1903 47 8 19

1919-1945 Wood 467 0 3 0 4 9 30 0 0 1

1919-1945 District heating 4 0 174 0 2 3 22 2 0 0

1919-1945 Heat pump 3 0 2 0 3 6 54 52 0 0

1919-1945 Gas 79 0 3 1 12 1087 82 2 0 1

1919-1945 Oil 26 1 14 0 17 60 4000 10 0 4

1919-1945 Coal 0 0 0 13 0 0 1 0 0 0

1919-1945 Other 11 0 0 0 2 0 8 0 13 0

1919-1945 None 0 0 0 0 0 0 0 0 0 0

1946-1960 Solar collector 8 2 0 0 1 5 11 1 0 0

1946-1960 Electricity ohmic 316 1 60 10 458 269 1930 44 5 14

Continued on next page
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Table A.6 – continued from previous page

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

1946-1960 Wood 308 1 3 0 8 9 18 0 1 2

1946-1960 District heating 1 0 171 0 1 5 10 0 0 1

1946-1960 Heat pump 3 1 1 0 2 7 34 41 0 0

1946-1960 Gas 36 0 7 0 2 767 63 0 0 2

1946-1960 Oil 19 1 9 0 9 34 3645 4 2 5

1946-1960 Coal 0 0 0 14 0 2 1 0 0 0

1946-1960 Other 4 0 0 0 1 3 8 1 18 0

1946-1960 None 0 0 0 0 0 0 0 0 0 0

1961-1970 Solar collector 4 2 0 0 0 2 21 3 0 0

1961-1970 Electricity ohmic 239 1 45 2 313 114 1154 34 3 7

1961-1970 Wood 278 2 1 0 0 2 24 0 1 0

1961-1970 District heating 0 0 226 0 0 1 23 0 0 1

1961-1970 Heat pump 1 0 0 0 2 4 45 36 0 0

1961-1970 Gas 58 0 9 0 4 670 55 2 1 3

1961-1970 Oil 21 2 19 0 11 55 4795 12 4 5

1961-1970 Coal 0 0 0 2 1 0 0 0 0 0

1961-1970 Other 10 0 1 0 2 0 10 0 16 2

1961-1970 None 0 0 0 0 0 0 0 0 0 0

1971-1980 Solar collector 2 3 6 0 1 7 21 6 0 0

1971-1980 Electricity ohmic 198 0 30 0 590 106 826 55 7 6

1971-1980 Wood 230 0 2 0 2 4 18 3 0 1

1971-1980 District heating 5 0 235 0 0 9 31 2 0 0

1971-1980 Heat pump 0 0 4 0 7 3 40 60 0 0

1971-1980 Gas 52 1 3 1 3 633 36 3 0 0

1971-1980 Oil 23 0 12 0 16 37 4157 11 2 5

1971-1980 Coal 0 0 0 2 0 0 0 0 0 0

1971-1980 Other 3 0 2 0 0 2 5 0 11 0

1971-1980 None 0 0 0 0 0 0 0 0 0 0

1981-1990 Solar collector 6 2 0 0 0 7 12 5 0 0

1981-1990 Electricity ohmic 221 2 59 0 761 267 1288 208 5 3

1981-1990 Wood 271 2 3 0 3 7 20 3 0 0

1981-1990 District heating 4 1 131 0 2 6 12 1 0 0

1981-1990 Heat pump 7 0 4 0 7 12 66 179 0 0

1981-1990 Gas 25 0 9 0 4 1025 39 4 3 1

1981-1990 Oil 16 1 4 0 12 31 2579 15 1 0

1981-1990 Coal 0 0 0 1 0 0 0 0 0 0

1981-1990 Other 5 0 1 0 1 1 5 1 16 0

1981-1990 None 0 0 0 0 0 0 0 0 0 0

1991-2000 Solar collector 9 11 2 0 0 8 16 11 0 0

1991-2000 Electricity ohmic 198 3 42 3 255 205 738 165 1 4

1991-2000 Wood 219 1 2 0 0 4 15 0 0 0

1991-2000 District heating 4 0 164 0 1 8 11 2 0 0

1991-2000 Heat pump 7 2 2 0 1 11 23 164 0 0

1991-2000 Gas 14 0 12 0 3 935 20 3 0 1

1991-2000 Oil 9 1 3 0 7 35 1618 11 2 2

1991-2000 Coal 0 0 0 0 0 0 0 0 0 0

1991-2000 Other 0 0 2 0 0 5 6 3 32 0

1991-2000 None 0 0 0 0 0 0 0 0 0 0

2001-2005 Solar collector 5 1 0 0 0 3 6 5 0 0

2001-2005 Electricity ohmic 39 0 11 0 48 63 119 53 6 4

2001-2005 Wood 59 0 0 0 1 2 0 0 0 0

2001-2005 District heating 0 0 65 0 0 3 1 2 0 0

2001-2005 Heat pump 0 0 0 0 0 1 3 69 0 0

2001-2005 Gas 5 0 1 0 0 232 0 0 0 0

2001-2005 Oil 1 0 0 0 1 0 242 2 1 0

2001-2005 Coal 0 0 0 0 0 0 0 0 0 0

2001-2005 Other 1 0 1 0 1 4 0 0 13 0

2001-2005 None 0 0 0 0 0 0 0 0 0 0

2006-2009 Solar collector 11 3 2 0 0 10 3 7 0 0

2006-2009 Electricity ohmic 38 0 12 0 38 51 47 82 4 1

2006-2009 Wood 69 0 0 0 0 0 0 0 0 0

2006-2009 District heating 0 1 48 0 0 3 1 4 0 0

2006-2009 Heat pump 0 0 0 0 0 2 2 181 0 0

2006-2009 Gas 1 0 1 0 1 338 1 3 0 0

2006-2009 Oil 2 0 0 0 0 3 118 1 0 0

2006-2009 Coal 0 0 0 0 0 0 1 0 0 0

2006-2009 Other 0 0 0 0 0 0 2 0 6 1

2006-2009 None 0 0 0 0 0 0 0 0 0 0
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Table A.7: Housing with other end-use: Energy sources and system used in Switzerland for
heating and hot water production in 2009 FSO [2011b].

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

-1919 Solar collector 216 28 2 0 6 46 110 41 1 0

-1919 Electricity ohmic 23667 15 359 79 5150 2792 11880 918 47 34

-1919 Wood 17327 11 23 1 177 71 746 46 12 6

-1919 District heating 30 0 976 0 1 24 58 3 0 1

-1919 Heat pump 167 0 6 1 28 33 144 552 2 0

-1919 Gas 247 2 66 3 61 8569 369 13 7 2

-1919 Oil 566 7 49 5 91 278 19710 40 9 5

-1919 Coal 11 0 0 60 0 1 5 0 0 0

-1919 Other 112 1 11 1 4 26 29 6 336 1

-1919 None 0 0 0 0 0 0 0 0 0 0

1919-1945 Solar collector 34 7 1 0 0 7 29 11 0 0

1919-1945 Electricity ohmic 3237 3 64 18 1190 714 3748 210 10 10

1919-1945 Wood 2712 1 2 1 26 12 143 12 0 0

1919-1945 District heating 2 0 346 0 0 4 18 0 0 0

1919-1945 Heat pump 26 0 3 0 1 11 50 120 0 0

1919-1945 Gas 52 1 22 2 19 2521 136 4 3 0

1919-1945 Oil 99 1 9 1 24 122 7607 12 3 2

1919-1945 Coal 3 0 0 29 0 0 2 0 0 0

1919-1945 Other 18 0 3 1 0 13 3 0 76 0

1919-1945 None 0 0 0 0 0 0 0 0 0 0

1946-1960 Solar collector 14 6 2 0 2 5 32 7 0 0

1946-1960 Electricity ohmic 1629 5 80 9 912 439 3208 116 4 4

1946-1960 Wood 1241 2 2 1 9 8 85 4 2 2

1946-1960 District heating 3 0 356 0 2 5 11 0 0 0

1946-1960 Heat pump 19 0 0 0 2 6 59 79 0 0

1946-1960 Gas 14 0 12 0 5 1376 59 1 0 0

1946-1960 Oil 59 2 41 0 18 67 7137 13 6 1

1946-1960 Coal 2 0 0 9 0 0 0 0 0 0

1946-1960 Other 8 0 8 0 1 17 17 0 70 1

1946-1960 None 0 0 0 0 0 0 0 0 0 0

1961-1970 Solar collector 17 8 2 0 0 6 31 9 0 0

1961-1970 Electricity ohmic 833 1 17 3 397 121 1422 75 4 7

1961-1970 Wood 986 2 5 0 7 10 94 1 1 0

1961-1970 District heating 3 0 395 0 0 4 38 1 0 0

1961-1970 Heat pump 12 0 1 0 0 8 81 69 1 0

1961-1970 Gas 22 3 4 0 1 939 45 1 2 0

1961-1970 Oil 47 3 73 0 19 80 8441 13 11 4

1961-1970 Coal 1 0 0 1 0 0 0 0 0 0

1961-1970 Other 3 0 11 0 0 5 23 1 60 1

1961-1970 None 0 0 0 0 0 0 0 0 0 0

1971-1980 Solar collector 18 7 0 0 4 4 47 7 0 0

1971-1980 Electricity ohmic 653 3 22 0 1029 71 908 170 3 1

1971-1980 Wood 1049 1 3 0 8 3 103 4 0 1

1971-1980 District heating 5 0 346 0 1 6 41 3 0 0

1971-1980 Heat pump 7 0 2 0 6 3 65 143 0 0

1971-1980 Gas 10 0 7 0 3 731 32 1 4 0

1971-1980 Oil 68 1 44 0 8 47 7531 15 12 2

1971-1980 Coal 0 0 0 1 0 0 1 0 0 0

1971-1980 Other 4 0 10 0 3 2 19 0 39 0

1971-1980 None 0 0 0 0 0 0 0 0 0 0

1981-1990 Solar collector 19 6 1 0 4 6 23 14 1 0

1981-1990 Electricity ohmic 1045 3 35 1 1474 298 2029 637 13 2

1981-1990 Wood 1272 4 4 0 16 12 65 8 1 0

1981-1990 District heating 2 0 244 0 0 13 15 6 0 0

1981-1990 Heat pump 9 0 4 0 11 6 65 352 4 0

1981-1990 Gas 12 1 7 0 4 2208 47 4 13 0

1981-1990 Oil 25 1 12 0 11 27 4005 15 20 2

1981-1990 Coal 0 0 0 1 0 0 0 0 0 0

1981-1990 Other 2 0 3 0 1 8 8 3 90 0

1981-1990 None 0 0 0 0 0 0 0 0 0 0

1991-2000 Solar collector 26 23 1 0 1 12 30 18 0 0

1991-2000 Electricity ohmic 734 12 74 0 307 356 1498 608 11 2

1991-2000 Wood 1351 4 7 0 8 10 60 6 1 0

1991-2000 District heating 5 0 302 0 0 16 17 5 0 0

1991-2000 Heat pump 18 0 2 0 1 12 36 427 1 0

1991-2000 Gas 16 1 6 1 2 2306 35 1 2 0

1991-2000 Oil 48 1 19 0 8 55 3051 13 0 0

1991-2000 Coal 0 0 0 0 0 0 1 0 0 0

1991-2000 Other 2 0 3 0 1 20 16 6 269 0

Continued on next page
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Table A.7 – continued from previous page

Period Hot water system → Wood Solar District Coal Electricity Gas Oil Heat Other None
Heating system ↓ collector heating ohmic pump

1991-2000 None 0 0 0 0 0 0 0 0 0 0

2001-2005 Solar collector 5 3 0 0 1 4 1 8 0 0

2001-2005 Electricity ohmic 95 0 22 0 56 64 153 144 6 0

2001-2005 Wood 145 0 0 0 0 6 3 2 0 0

2001-2005 District heating 2 0 130 0 0 1 2 1 0 0

2001-2005 Heat pump 0 1 0 0 0 1 3 176 0 0

2001-2005 Gas 3 0 1 0 0 535 2 2 0 1

2001-2005 Oil 3 0 1 0 0 3 432 3 0 1

2001-2005 Coal 0 0 0 0 0 0 0 0 0 0

2001-2005 Other 1 0 0 0 1 0 0 2 28 0

2001-2005 None 0 0 0 0 0 0 0 0 0 0

2006-2009 Solar collector 16 3 2 0 1 22 7 34 3 0

2006-2009 Electricity ohmic 60 0 15 0 34 72 49 178 1 0

2006-2009 Wood 138 0 1 0 0 0 1 2 1 0

2006-2009 District heating 0 0 133 0 0 4 3 4 1 0

2006-2009 Heat pump 0 3 5 0 4 8 3 323 0 1

2006-2009 Gas 6 0 1 1 1 471 0 1 6 0

2006-2009 Oil 1 0 0 0 0 0 165 0 0 0

2006-2009 Coal 0 0 0 0 0 0 0 0 0 0

2006-2009 Other 1 0 0 0 0 4 1 1 7 0

2006-2009 None 0 0 0 0 0 0 0 0 0 0
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A.1.2: 1919-1945
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A.1.3: 1961-1970
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A.1.4: 1961-1970
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A.1.5: 1971-1980
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A.1.6: 1981-1990
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A.1.7: 1991-2000

Figure A.1: Individual homes(ResidIndividual): Heat consumption histograms and density
function fitting.
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A.2.2: 1919-1945
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A.2.3: 1961-1970
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A.2.4: 1961-1970
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A.2.5: 1971-1980
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A.2.6: 1981-1990
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A.2.7: 1991-2000
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A.2.8: 2001-2005

Figure A.2: Building with several households(ResidCollective): Heat consumption histograms
and density function fitting.
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Heat consumption [MW/(m².year)]
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A.3.1: <1919
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A.3.2: 1919-1945
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A.3.3: 1961-1970
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A.3.4: 1961-1970
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A.3.5: 1981-1990
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A.3.6: 1981-1990
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A.3.7: 1991-2000

Figure A.3: Building partially used for habitation(Mix) Heat consumption histograms and
density function fitting.
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A.4.5: 1981-1990
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A.4.6: 1981-1990
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A.4.7: 1991-2000

Figure A.4: Housing with other end-use(MixOther): Heat consumption histograms and density
function fitting.
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Table A.8: Specific heating and hot water final energy consumption grouped by category for a
typical year in Geneva.

A.4.1: Mean values

µ(qhs+hw
f ,Yr e f

) Building partially Housing with Building with Individual

[M J/(m2.Yr e f )] used for habitation other end-use several households homes

<1919 494 501 543 570
1919-1945 529 545 560 666
1946-1960 591 616 619 561
1961-1970 623 686 627 631
1971-1980 569 528 610 547
1981-1990 486 488 493 533
1991-2000 427 410 463 459
2001-2005 392 354 447 436
2006-2009 362 340 414 422
2010-2020 294 244 343 350
2010-2030 227 163 305 298

A.4.2: Standard deviation

σ(qhs+hw
f ,Yr e f

) Building partially Housing with Building with Individual

[M J/(m2.Yr e f )] used for habitation other end-use several households homes

<1919 118 59 123 95
1919-1945 112 111 107 107
1946-1960 116 83 124 88
1961-1970 116 54 111 92
1971-1980 98 107 82 71
1981-1990 101 38 93 96
1991-2000 100 44 106 48
2001-2005 99 41 94 67
2006-2009 97 21 93 60
2010-2020 91 24 86 53
2010-2030 88 9 87 44
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Table A.9: Specific heating useful energy requirements.

A.4.1: Mean values

q̄hs
u,Yr e f

Building partially Housing with Building with Individual

[M J/(m2.Yr e f )] used for habitation other end-use several households homes

<1919 349 239 331 393
1919-1945 378 278 345 471
1946-1960 429 334 394 385
1961-1970 456 391 400 443
1971-1980 411 265 387 373
1981-1990 343 227 290 362
1991-2000 294 169 266 301
2001-2005 265 134 252 282
2006-2009 241 123 227 270
2010-2020 186 82 170 211
2010-2030 136 49 143 168

A.4.2: Standard deviation

σ(qhs
u,Yr e f

) Building partially Housing with Building with Individual

[M J/(m2.Yr e f )] used for habitation other end-use several households homes

<1919 102 96 110 87
1919-1945 97 120 99 98
1946-1960 101 108 113 81
1961-1970 102 97 103 86
1971-1980 87 117 82 69
1981-1990 88 89 88 87
1991-2000 86 85 96 51
2001-2005 85 76 88 64
2006-2009 82 71 85 59
2010-2020 75 50 77 53
2010-2030 68 29 74 46
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Table A.10: Estimated share of heating and DHW technologies ([%]) in proportion to the
inhabited area in Switzerland, 2009.

A.4.1: Space heating technologies

Technologies
1st

Median Mean
3r d

Quartile Quartile

oil 47.41 54.16 54.10 61.05
gas 10.59 15.53 16.06 20.81
wood 6.28 10.15 10.68 14.59
elec,ohm 4.47 8.06 8.75 12.48
elec,hp 4.31 7.47 7.97 10.96
dhn 0.00 0.46 2.26 3.64
coal 0.00 0.00 0.12 0.00
none 0.00 0.00 0.06 0.00

A.4.2: Domestic hot water technologies

Technologies
1st

Median Mean
3r d

Quartile Quartile

oil 33.03 39.75 39.83 46.60
elec,ohm 28.94 35.70 35.81 42.27
gas 8.48 12.99 13.63 18.13
wood 1.21 3.66 4.52 6.94
elec,hp 1.37 3.36 4.16 6.11
dhn 0.00 0.36 1.97 3.15
coal 0.00 0.00 0.08 0.00
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Table B.1: Annual final and useful energy requirements of the Geneva case study.

Category
Construction/

nb
Final energy (qboi l ) Useful energy

Renovation µ±σµ σ Heating HW Cooling Electricity

[-] [kW h/(m2 ·year )] [kW h/(m2 ·year )]

Residential < 1920 494 166.17±3.11 69.14 115.27 34.28 0.00 27.78
Residential 1920-1970 2533 181.39±0.82 41.51 128.97 34.28 0.00 27.78
Residential 1970-1980 938 174.84±1.20 36.80 123.07 34.28 0.00 27.78
Residential 1980-2005 1582 135.28±1.06 42.24 87.47 34.28 0.00 27.78
Residential 2005-2020 0 - - 38.77 34.28 0.00 27.78
Residential 2020-2030 0 - - 26.60 34.28 0.00 27.78
Residential Renovated < 1920 0 - - 35.12 34.28 0.00 27.78
Residential Renovated 1920-1970 0 - - 52.17 34.28 0.00 27.78
Residential Renovated 1970-1980 0 - - 47.30 34.28 0.00 27.78
Residential Renovated 1980-2005 0 - - 54.60 34.28 0.00 27.78
Administrative < 1920 29 137.05±12.04 64.86 111.92 11.43 0.00 22.22
Administrative 1920-1970 32 136.88±6.15 34.80 111.76 11.43 0.00 22.22
Administrative 1970-1980 18 141.64±8.11 34.41 116.05 11.43 13.15 22.22
Administrative 1980-2005 27 124.18±9.59 49.81 100.31 11.43 19.11 22.22
Administrative 2005-2020 0 - - 55.63 11.43 25.37 22.22
Administrative 2020-2030 0 - - 44.45 11.43 27.99 22.22
Administrative Renovated < 1920 0 - - 52.28 11.43 25.98 22.22
Administrative Renovated 1920-1970 0 - - 67.92 11.43 26.03 22.22
Administrative Renovated 1970-1980 0 - - 63.45 11.43 27.55 22.22
Administrative Renovated 1980-2005 0 - - 70.16 11.43 25.49 22.22
Commercial < 1920 1 56.11±0.00 0.00 27.65 22.85 0.00 33.33
Commercial 1920-1970 1 111.67±0.00 0.00 77.65 22.85 0.00 33.33
Commercial 1970-1980 1 97.22±0.00 0.00 64.65 22.85 34.33 33.33
Commercial 1980-2005 5 84.67±14.14 31.63 53.35 22.85 44.12 33.33
Commercial 2005-2020 0 - - 22.87 22.85 52.94 33.33
Commercial 2020-2030 0 - - 15.25 22.85 56.45 33.33
Commercial Renovated < 1920 0 - - 20.58 22.85 53.32 33.33
Commercial Renovated 1920-1970 0 - - 31.25 22.85 53.39 33.33
Commercial Renovated 1970-1980 0 - - 28.20 22.85 56.46 33.33
Commercial Renovated 1980-2005 0 - - 32.77 22.85 53.00 33.33
Industrial < 1920 4 181.11±18.21 36.43 151.57 11.43 0.00 16.67
Industrial 1920-1970 6 183.75±19.80 48.51 153.95 11.43 0.00 16.67
Industrial 1970-1980 1 146.67±0.00 0.00 120.57 11.43 0.00 16.67
Industrial 1980-2005 5 101.89±16.92 37.84 80.27 11.43 0.00 16.67
Industrial 2005-2020 0 - - 43.59 11.43 0.00 16.67
Industrial 2020-2030 0 - - 34.42 11.43 0.00 16.67
Industrial Renovated < 1920 0 - - 40.84 11.43 0.00 16.67
Industrial Renovated 1920-1970 0 - - 53.68 11.43 0.00 16.67
Industrial Renovated 1970-1980 0 - - 50.01 11.43 0.00 16.67
Industrial Renovated 1980-2005 3 144.26±1.80 3.12 55.51 11.43 0.00 16.67
Education < 1920 1 100.83±0.00 0.00 67.90 22.85 0.00 11.11
Education 1920-1970 1 192.50±0.00 0.00 150.40 22.85 0.00 11.11
Education 1970-1980 2 196.11±55.00 77.78 153.65 22.85 1.37 11.11
Education 1980-2005 0 - - 153.65 22.85 3.04 11.11
Education 2005-2020 0 - - 83.05 22.85 4.83 11.11
Education 2020-2030 0 - - 65.40 22.85 5.65 11.11
Education Renovated < 1920 0 - - 77.75 22.85 5.21 11.11
Education Renovated 1920-1970 0 - - 102.46 22.85 5.23 11.11
Education Renovated 1970-1980 0 - - 95.40 22.85 5.52 11.11
Education Renovated 1980-2005 0 - - 105.99 22.85 4.95 11.11
Hospital < 1920 0 - - 96.51 45.71 0.00 27.78
Hospital 1920-1970 0 - - 86.41 45.71 0.00 27.78
Hospital 1970-1980 5 159.56±13.52 30.24 97.89 45.71 6.14 27.78
Hospital 1980-2005 5 148.22±28.42 63.55 87.69 45.71 8.01 27.78
Hospital 2005-2020 0 - - 34.33 45.71 9.98 27.78
Hospital 2020-2030 0 - - 20.99 45.71 10.77 27.78
Hospital Renovated < 1920 0 - - 30.31 45.71 10.06 27.78
Hospital Renovated 1920-1970 0 - - 49.01 45.71 10.07 27.78
Hospital Renovated 1970-1980 0 - - 43.67 45.71 10.67 27.78
Hospital Renovated 1980-2005 0 - - 51.67 45.71 10.00 27.78
Hotel < 1920 5 159.00±10.21 22.82 97.39 45.71 0.00 33.33
Hotel 1920-1970 2 203.33±12.22 17.28 137.29 45.71 0.00 33.33
Hotel 1970-1980 2 223.33±31.11 44.00 155.29 45.71 4.61 33.33
Hotel 1980-2005 2 128.47±2.64 3.73 69.92 45.71 7.56 33.33
Hotel 2005-2020 0 - - 23.67 45.71 10.83 33.33
Hotel 2020-2030 0 - - 12.11 45.71 12.49 33.33
Hotel Renovated < 1920 0 - - 20.20 45.71 11.11 33.33
Hotel Renovated 1920-1970 0 - - 36.39 45.71 11.13 33.33
Hotel Renovated 1970-1980 0 - - 31.76 45.71 11.77 33.33
Hotel Renovated 1980-2005 0 - - 38.70 45.71 10.78 33.33
Other < 1920 903 150.49±1.33 39.85 107.69 27.75 0.00 27.78
Other 1920-1970 1421 173.59±1.62 60.90 128.48 27.75 0.00 27.78
Other 1970-1980 473 163.41±1.59 34.67 119.31 27.75 8.51 27.78
Other 1980-2005 715 136.00±1.49 39.95 94.65 27.75 11.69 27.78
Other 2005-2020 0 - - 45.69 27.75 14.85 27.78
Other 2020-2030 0 - - 33.45 27.75 16.19 27.78
Other Renovated < 1920 0 - - 42.02 27.75 15.10 27.78
Other Renovated 1920-1970 0 - - 59.15 27.75 15.12 27.78
Other Renovated 1970-1980 0 - - 54.26 27.75 16.00 27.78
Other Renovated 1980-2005 0 - - 61.60 27.75 14.89 27.78
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Table B.2: Parameters of the energy signature model for typified buildings of the Geneva case
study.

Category
Construction/ Heating Cooling

Renovation khs
1 khs

2 T hs
tr kcs

1 kcs
2

W /(C ·m2) W /m2 C W /(C ·m2) W /m2

Residential < 1920 -1.81 28.06 15.5 0.00 0.00
Residential 1920-1970 -2.02 31.20 15.5 0.00 0.00
Residential 1970-1980 -2.09 32.32 15.5 0.00 0.00
Residential 1980-2005 -1.52 23.59 15.5 0.00 0.00
Residential 2005-2020 -0.83 12.91 15.5 0.00 0.00
Residential 2020-2030 -0.63 9.77 15.5 0.00 0.00
Residential Renovated < 1920 -0.99 15.25 15.5 0.00 0.00
Residential Renovated 1920-1970 -0.99 15.28 15.5 0.00 0.00
Residential Renovated 1970-1980 -1.02 15.76 15.5 0.00 0.00
Residential Renovated 1980-2005 -1.06 16.43 15.5 0.00 0.00
Administrative < 1920 -1.93 27.49 14.2 0.00 0.00
Administrative 1920-1970 -1.93 27.45 14.2 0.00 0.00
Administrative 1970-1980 -2.15 30.56 14.2 1.59 22.65
Administrative 1980-2005 -1.87 26.51 14.2 2.32 32.93
Administrative 2005-2020 -0.80 11.41 14.2 3.08 43.71
Administrative 2020-2030 -0.60 8.52 14.2 3.39 48.22
Administrative Renovated < 1920 -1.00 14.21 14.2 3.15 44.77
Administrative Renovated 1920-1970 -1.00 14.18 14.2 3.16 44.84
Administrative Renovated 1970-1980 -0.97 13.72 14.2 3.34 47.47
Administrative Renovated 1980-2005 -1.15 16.29 14.2 3.09 43.93
Commercial < 1920 -0.42 6.94 16.4 0.00 0.00
Commercial 1920-1970 -1.10 18.03 16.4 0.00 0.00
Commercial 1970-1980 -1.01 16.48 16.4 4.16 68.12
Commercial 1980-2005 -0.84 13.81 16.4 5.35 87.54
Commercial 2005-2020 -0.58 9.47 16.4 6.42 105.03
Commercial 2020-2030 -0.45 7.32 16.4 6.85 112.00
Commercial Renovated < 1920 -0.38 6.15 16.4 6.47 105.78
Commercial Renovated 1920-1970 -0.75 12.19 16.4 6.47 105.92
Commercial Renovated 1970-1980 -0.64 10.39 16.4 6.85 112.03
Commercial Renovated 1980-2005 -0.67 10.89 16.4 6.43 105.16
Industrial < 1920 -2.08 34.03 16.4 0.00 0.00
Industrial 1920-1970 -2.11 34.56 16.4 0.00 0.00
Industrial 1970-1980 -1.78 29.13 16.4 0.00 0.00
Industrial 1980-2005 -1.20 19.59 16.4 0.00 0.00
Industrial 2005-2020 -0.59 9.70 16.4 0.00 0.00
Industrial 2020-2030 -0.46 7.45 16.4 0.00 0.00
Industrial Renovated < 1920 -0.74 12.12 16.4 0.00 0.00
Industrial Renovated 1920-1970 -0.74 12.12 16.4 0.00 0.00
Industrial Renovated 1970-1980 -0.68 11.14 16.4 0.00 0.00
Industrial Renovated 1980-2005 -0.78 12.70 16.4 0.00 0.00
Education < 1920 -1.21 17.27 14.2 0.00 0.00
Education 1920-1970 -2.61 37.20 14.2 0.00 0.00
Education 1970-1980 -2.87 40.87 14.2 0.17 2.37
Education 1980-2005 -2.03 28.84 14.2 0.37 5.24
Education 2005-2020 -0.93 13.19 14.2 0.59 8.34
Education 2020-2030 -0.70 10.02 14.2 0.69 9.75
Education Renovated < 1920 -0.98 13.88 14.2 0.63 9.00
Education Renovated 1920-1970 -1.10 15.58 14.2 0.63 9.02
Education Renovated 1970-1980 -1.03 14.72 14.2 0.67 9.52
Education Renovated 1980-2005 -1.22 17.32 14.2 0.60 8.54
Hospital < 1920 -1.45 23.76 16.4 0.00 0.00
Hospital 1920-1970 -1.45 23.76 16.4 0.00 0.00
Hospital 1970-1980 -1.59 25.96 16.4 0.74 12.18
Hospital 1980-2005 -1.44 23.54 16.4 0.97 15.90
Hospital 2005-2020 -0.71 11.62 16.4 1.21 19.80
Hospital 2020-2030 -0.55 9.02 16.4 1.31 21.38
Hospital Renovated < 1920 -0.81 13.29 16.4 1.22 19.96
Hospital Renovated 1920-1970 -0.81 13.26 16.4 1.22 19.99
Hospital Renovated 1970-1980 -0.79 12.87 16.4 1.29 21.18
Hospital Renovated 1980-2005 -0.91 14.96 16.4 1.21 19.83
Hotel < 1920 -1.16 19.06 16.4 0.00 0.00
Hotel 1920-1970 -1.71 27.91 16.4 0.00 0.00
Hotel 1970-1980 -2.14 35.00 16.4 0.56 9.14
Hotel 1980-2005 -0.90 14.79 16.4 0.92 15.00
Hotel 2005-2020 -0.81 13.23 16.4 1.31 21.48
Hotel 2020-2030 -0.61 10.00 16.4 1.51 24.78
Hotel Renovated < 1920 -0.93 15.18 16.4 1.35 22.04
Hotel Renovated 1920-1970 -0.96 15.63 16.4 1.35 22.08
Hotel Renovated 1970-1980 -0.93 15.26 16.4 1.43 23.35
Hotel Renovated 1980-2005 -0.83 13.61 16.4 1.31 21.38
Other < 1920 -1.33 21.71 16.4 0.00 0.00
Other 1920-1970 -1.69 27.68 16.4 0.00 0.00
Other 1970-1980 -1.78 29.05 16.4 0.00 0.00
Other 1980-2005 -1.27 20.77 16.4 0.00 0.00
Other 2005-2020 -0.69 11.30 16.4 0.00 0.00
Other 2020-2030 -0.53 8.61 16.4 0.00 0.00
Other Renovated < 1920 -0.76 12.47 16.4 0.00 0.00
Other Renovated 1920-1970 -0.83 13.61 16.4 0.00 0.00
Other Renovated 1970-1980 -0.79 13.00 16.4 0.00 0.00
Other Renovated 1980-2005 -0.86 14.13 16.4 0.00 0.00
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Appendix B. Chapter 3

Table B.3: Seasonal mean power requirements computed with the energy signature model for
the Geneva case study.

Category Chauffage [W /m2] Cooling [W /m2] Hot Water [W /m2]
Summer Mid-Season Winter Annual Summer Mid-Season Winter Annuel Annuel

Residential < 1920 3.44 9.99 24.60 16.19 0.00 0.00 0.00 0.00 3.61
Residential 1920-1970 3.81 11.15 27.25 17.89 0.00 0.00 0.00 0.00 3.61
Residential 1970-1980 3.80 11.50 28.18 18.38 0.00 0.00 0.00 0.00 3.61
Residential 1980-2005 2.81 8.36 20.81 13.69 0.00 0.00 0.00 0.00 3.61
Residential 2005-2020 1.60 4.62 11.54 7.73 0.00 0.00 0.00 0.00 3.61
Residential 2020-2030 1.20 3.50 8.78 5.89 0.00 0.00 0.00 0.00 3.61
Residential Renovated < 1920 1.88 5.45 13.59 9.07 0.00 0.00 0.00 0.00 3.61
Residential Renovated 1920-1970 1.89 5.46 13.62 9.09 0.00 0.00 0.00 0.00 3.61
Residential Renovated 1970-1980 1.96 5.64 14.04 9.38 0.00 0.00 0.00 0.00 3.61
Residential Renovated 1980-2005 1.97 5.85 14.63 9.72 0.00 0.00 0.00 0.00 3.61
Administrative < 1920 3.27 9.39 23.61 15.97 0.00 0.00 0.00 0.00 1.27
Administrative 1920-1970 3.26 9.37 23.58 15.95 0.00 0.00 0.00 0.00 1.27
Administrative 1970-1980 3.50 10.36 26.11 17.49 7.77 4.95 0.00 6.95 1.27
Administrative 1980-2005 3.09 9.02 22.81 15.40 11.30 7.19 0.00 10.10 1.27
Administrative 2005-2020 1.33 3.86 10.08 6.92 15.00 9.55 0.00 13.41 1.27
Administrative 2020-2030 1.04 2.89 7.56 5.23 16.55 10.53 0.00 14.79 1.27
Administrative Renovated < 1920 1.70 4.83 12.49 8.57 15.36 9.78 0.00 13.73 1.27
Administrative Renovated 1920-1970 1.70 4.82 12.46 8.55 15.39 9.79 0.00 13.76 1.27
Administrative Renovated 1970-1980 1.63 4.66 12.06 8.28 16.29 10.37 0.00 14.56 1.27
Administrative Renovated 1980-2005 1.94 5.56 14.26 9.78 15.07 9.59 0.00 13.47 1.27
Commercial < 1920 0.88 2.56 6.34 4.19 0.00 0.00 0.00 0.00 2.54
Commercial 1920-1970 2.28 6.65 16.48 10.90 0.00 0.00 0.00 0.00 2.54
Commercial 1970-1980 2.08 6.07 15.07 9.96 20.30 12.92 0.00 18.15 2.54
Commercial 1980-2005 1.74 5.09 12.62 8.34 26.09 16.60 0.00 23.32 2.54
Commercial 2005-2020 1.19 3.49 8.65 5.72 31.30 19.92 0.00 27.98 2.54
Commercial 2020-2030 0.92 2.70 6.69 4.42 33.38 21.24 0.00 29.84 2.54
Commercial Renovated < 1920 0.78 2.27 5.62 3.72 31.52 20.06 0.00 28.18 2.54
Commercial Renovated 1920-1970 1.54 4.49 11.14 7.37 31.56 20.09 0.00 28.22 2.54
Commercial Renovated 1970-1980 1.31 3.83 9.50 6.28 33.39 21.25 0.00 29.84 2.54
Commercial Renovated 1980-2005 1.37 4.01 9.95 6.58 31.34 19.94 0.00 28.01 2.54
Industrial < 1920 4.29 12.54 31.11 20.57 0.00 0.00 0.00 0.00 1.27
Industrial 1920-1970 4.36 12.74 31.59 20.88 0.00 0.00 0.00 0.00 1.27
Industrial 1970-1980 3.68 10.73 26.63 17.60 0.00 0.00 0.00 0.00 1.27
Industrial 1980-2005 2.47 7.22 17.91 11.84 0.00 0.00 0.00 0.00 1.27
Industrial 2005-2020 1.22 3.57 8.87 5.86 0.00 0.00 0.00 0.00 1.27
Industrial 2020-2030 0.94 2.75 6.81 4.50 0.00 0.00 0.00 0.00 1.27
Industrial Renovated < 1920 1.53 4.47 11.08 7.32 0.00 0.00 0.00 0.00 1.27
Industrial Renovated 1920-1970 1.53 4.47 11.08 7.33 0.00 0.00 0.00 0.00 1.27
Industrial Renovated 1970-1980 1.41 4.11 10.19 6.73 0.00 0.00 0.00 0.00 1.27
Industrial Renovated 1980-2005 1.60 4.68 11.61 7.67 0.00 0.00 0.00 0.00 1.27
Education < 1920 2.09 5.86 15.35 10.61 0.00 0.00 0.00 0.00 2.54
Education 1920-1970 4.32 12.65 32.54 22.22 0.00 0.00 0.00 0.00 2.54
Education 1970-1980 4.69 13.90 35.65 24.27 0.81 0.52 0.00 0.73 2.54
Education 1980-2005 3.40 9.78 25.40 17.42 1.80 1.14 0.00 1.60 2.54
Education 2005-2020 1.65 4.46 11.75 8.14 2.86 1.82 0.00 2.55 2.54
Education 2020-2030 1.25 3.40 8.95 6.22 3.34 2.13 0.00 2.99 2.54
Education Renovated < 1920 1.75 4.71 12.37 8.57 3.08 1.96 0.00 2.76 2.54
Education Renovated 1920-1970 1.86 5.27 13.86 9.57 3.09 1.97 0.00 2.76 2.54
Education Renovated 1970-1980 1.87 5.00 13.10 9.09 3.26 2.08 0.00 2.92 2.54
Education Renovated 1980-2005 2.10 5.88 15.39 10.64 2.93 1.86 0.00 2.62 2.54
Hospital < 1920 3.00 8.75 21.72 14.36 0.00 0.00 0.00 0.00 4.82
Hospital 1920-1970 3.00 8.75 21.72 14.36 0.00 0.00 0.00 0.00 4.82
Hospital 1970-1980 3.27 9.57 23.73 15.69 3.63 2.31 0.00 3.24 4.82
Hospital 1980-2005 2.97 8.68 21.52 14.23 4.74 3.02 0.00 4.24 4.82
Hospital 2005-2020 1.47 4.28 10.62 7.02 5.90 3.76 0.00 5.28 4.82
Hospital 2020-2030 1.14 3.32 8.25 5.45 6.37 4.05 0.00 5.69 4.82
Hospital Renovated < 1920 1.68 4.90 12.15 8.03 5.95 3.79 0.00 5.32 4.82
Hospital Renovated 1920-1970 1.67 4.89 12.12 8.01 5.96 3.79 0.00 5.32 4.82
Hospital Renovated 1970-1980 1.62 4.74 11.76 7.78 6.31 4.02 0.00 5.64 4.82
Hospital Renovated 1980-2005 1.89 5.51 13.67 9.04 5.91 3.76 0.00 5.28 4.82
Hotel < 1920 2.40 7.02 17.42 11.52 0.00 0.00 0.00 0.00 7.55
Hotel 1920-1970 3.52 10.29 25.51 16.87 0.00 0.00 0.00 0.00 7.55
Hotel 1970-1980 4.42 12.90 31.99 21.15 2.72 1.73 0.00 2.43 7.55
Hotel 1980-2005 1.87 5.45 13.52 8.94 4.47 2.84 0.00 4.00 7.55
Hotel 2005-2020 1.67 4.88 12.09 8.00 6.40 4.07 0.00 5.72 7.55
Hotel 2020-2030 1.26 3.68 9.14 6.04 7.38 4.70 0.00 6.60 7.55
Hotel Renovated < 1920 1.91 5.59 13.87 9.17 6.57 4.18 0.00 5.87 7.55
Hotel Renovated 1920-1970 1.97 5.76 14.28 9.44 6.58 4.19 0.00 5.88 7.55
Hotel Renovated 1970-1980 1.93 5.62 13.95 9.22 6.96 4.43 0.00 6.22 7.55
Hotel Renovated 1980-2005 1.72 5.02 12.44 8.22 6.37 4.05 0.00 5.70 7.55
Other 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table B.4: Design temperature of the domestic hydronic system of the Geneva case study.

Category heating Cooling
T.sizing T.supply T.return T.treshold T.supply T.return T.treshold

[◦C ] [◦C ] [◦C ] [◦C ] [◦C ] [◦C ] [◦C ]
Residential < 1920 -6/35 65.0 50.0 16.6 12.0 17.0 18.0
Residential 1920-1970 -6/35 65.0 50.0 16.7 12.0 17.0 18.0
Residential 1970-1980 -6/35 65.0 50.0 16.7 12.0 17.0 18.0
Residential 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Residential 2005-2020 -6/35 41.5 33.9 16.0 12.0 17.0 18.0
Residential 2020-2030 -6/35 39.6 32.3 15.9 12.0 17.0 18.0
Residential Renovated < 1920 -6/35 54.4 44.1 16.1 12.0 17.0 18.0
Residential Renovated 1920-1970 -6/35 54.4 44.1 16.1 12.0 17.0 18.0
Residential Renovated 1970-1980 -6/35 53.8 43.8 16.1 12.0 17.0 18.0
Residential Renovated 1980-2005 -6/35 56.3 45.3 16.1 12.0 17.0 18.0
Administrative < 1920 -6/35 65.0 50.0 15.7 12.0 17.0 18.0
Administrative 1920-1970 -6/35 65.0 50.0 15.7 12.0 17.0 18.0
Administrative 1970-1980 -6/35 65.0 50.0 15.8 12.0 17.0 18.0
Administrative 1980-2005 -6/35 65.0 50.0 15.6 12.0 17.0 18.0
Administrative 2005-2020 -6/35 41.5 33.9 14.8 12.0 17.0 18.0
Administrative 2020-2030 -6/35 39.6 32.3 14.7 12.0 17.0 18.0
Administrative Renovated < 1920 -6/35 54.4 44.1 15.0 12.0 17.0 18.0
Administrative Renovated 1920-1970 -6/35 54.4 44.1 15.0 12.0 17.0 18.0
Administrative Renovated 1970-1980 -6/35 53.8 43.8 14.9 12.0 17.0 18.0
Administrative Renovated 1980-2005 -6/35 56.3 45.3 15.1 12.0 17.0 18.0
Commercial < 1920 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Commercial 1920-1970 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Commercial 1970-1980 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Commercial 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Commercial 2005-2020 -6/35 41.5 33.9 16.4 12.0 17.0 18.0
Commercial 2020-2030 -6/35 39.6 32.3 16.4 12.0 17.0 18.0
Commercial Renovated < 1920 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Commercial Renovated 1920-1970 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Commercial Renovated 1970-1980 -6/35 53.8 43.8 16.4 12.0 17.0 18.0
Commercial Renovated 1980-2005 -6/35 56.3 45.3 16.4 12.0 17.0 18.0
Industrial < 1920 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Industrial 1920-1970 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Industrial 1970-1980 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Industrial 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Industrial 2005-2020 -6/35 41.5 33.9 16.4 12.0 17.0 18.0
Industrial 2020-2030 -6/35 39.6 32.3 16.4 12.0 17.0 18.0
Industrial Renovated < 1920 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Industrial Renovated 1920-1970 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Industrial Renovated 1970-1980 -6/35 53.8 43.8 16.4 12.0 17.0 18.0
Industrial Renovated 1980-2005 -6/35 56.3 45.3 16.4 12.0 17.0 18.0
Education < 1920 -6/35 65.0 50.0 14.6 12.0 17.0 18.0
Education 1920-1970 -6/35 65.0 50.0 15.1 12.0 17.0 18.0
Education 1970-1980 -6/35 65.0 50.0 15.2 12.0 17.0 18.0
Education 1980-2005 -6/35 65.0 50.0 14.9 12.0 17.0 18.0
Education 2005-2020 -6/35 41.5 33.9 14.5 12.0 17.0 18.0
Education 2020-2030 -6/35 39.6 32.3 14.5 12.0 17.0 18.0
Education Renovated < 1920 -6/35 54.4 44.1 14.6 12.0 17.0 18.0
Education Renovated 1920-1970 -6/35 54.4 44.1 14.6 12.0 17.0 18.0
Education Renovated 1970-1980 -6/35 53.8 43.8 14.6 12.0 17.0 18.0
Education Renovated 1980-2005 -6/35 56.3 45.3 14.6 12.0 17.0 18.0
Hospital < 1920 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hospital 1920-1970 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hospital 1970-1980 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hospital 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hospital 2005-2020 -6/35 41.5 33.9 16.4 12.0 17.0 18.0
Hospital 2020-2030 -6/35 39.6 32.3 16.4 12.0 17.0 18.0
Hospital Renovated < 1920 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Hospital Renovated 1920-1970 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Hospital Renovated 1970-1980 -6/35 53.8 43.8 16.4 12.0 17.0 18.0
Hospital Renovated 1980-2005 -6/35 56.3 45.3 16.4 12.0 17.0 18.0
Hotel < 1920 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hotel 1920-1970 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hotel 1970-1980 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hotel 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Hotel 2005-2020 -6/35 41.5 33.9 16.4 12.0 17.0 18.0
Hotel 2020-2030 -6/35 39.6 32.3 16.4 12.0 17.0 18.0
Hotel Renovated < 1920 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Hotel Renovated 1920-1970 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Hotel Renovated 1970-1980 -6/35 53.8 43.8 16.4 12.0 17.0 18.0
Hotel Renovated 1980-2005 -6/35 56.3 45.3 16.4 12.0 17.0 18.0
Other < 1920 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Other 1920-1970 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Other 1970-1980 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Other 1980-2005 -6/35 65.0 50.0 16.4 12.0 17.0 18.0
Other 2005-2020 -6/35 41.5 33.9 16.4 12.0 17.0 18.0
Other 2020-2030 -6/35 39.6 32.3 16.4 12.0 17.0 18.0
Other Renovated < 1920 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Other Renovated 1920-1970 -6/35 54.4 44.1 16.4 12.0 17.0 18.0
Other Renovated 1970-1980 -6/35 53.8 43.8 16.4 12.0 17.0 18.0
Other Renovated 1980-2005 -6/35 56.3 45.3 16.4 12.0 17.0 18.0
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Table C.1: Topological constraint.

Unique root node among starting nodes
∑

s∈Ns
Xs = 1 (C.1a)

At least one root node having a child
∑

(s,i )∈P
s∈Ns

Ys,i ≥ 1 (C.1b)

Root node have no parent
∑

(i ,s)∈P
s∈Ns

Yi ,s = 0 (C.1c)

No connection between root nodes
∑

(s1,s2)∈P
s1,s2∈Ns

Ys1,s2 = 0 (C.1d)

Parent nodes are connected Y j ,n <= X j , ∀( j ,n) ∈ P (C.1e)

Each node has only one parent
∑

( j ,n)∈P Y j ,n = Xn , ∀n ∈ N −Ns (C.1f)

Unique connection from parent to child node Y j ,n +Yn, j <= 1, ∀( j ,n) ∈ P (C.1g)

Minimal delivered power
∑

n∈N Xn · (Q̇0)n ≥ Q̇t ar g et (C.1h)

Table C.2: Flow balances.

Energy balance 1
∑

( j ,n)∈P

(
Q̇ j ,n − (Q̇loss) j ,n

)−∑
(n,i )∈P Q̇n,i = (Q̇0)n ·Xn , ∀n ∈ N −Ns

(C.2a)

Energy balance 2
∑

(s,n)∈P
s∈Ns

Q̇s,n =∑
n∈N−Ns

(Q̇0)n ·Xn +∑
( j ,n)∈P (Q̇l oss) j ,n (C.2b)

flow constraint 1 Q̇ j ,n ≤ Q̇max ·Y j ,n , ∀( j ,n) ∈ P (C.2c)

flow constraint 2 Q̇ j ,n ≥ Q̇mi n ·Y j ,n , ∀( j ,n) ∈ P (C.2d)

∆P pi pe
loss = 1

2
·ρ · v2 ·

(
γ ·L

d

)
(C.3)
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Q̇pi pe
loss = ṁ · cp w ·

(
T pi pe

i n −T pi pe
out

)
(C.4)
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Table D.1: Temperatures as a function of the Heat Load.

D.0.1: Scenario as Usual

Tx Duration Load Water Flow Supply T Return T Target T
[C ] [hour ] [kW ] [m3/h] [C ] [C ] [C ]

19 163 80.0 20.7 22.2 24.5 25.5
20 173 120.0 20.7 20.5 23.7 25.5
21 153 160.0 20.7 18.7 22.9 25.3
22 167 200.0 20.7 16.9 22.2 25.2
23 137 240.0 20.7 15.0 21.4 25.0
24 122 280.0 20.7 13.2 20.6 24.8
25 99 320.0 24.8 13.0 19.8 24.1
26 86 360.0 30.9 13.0 19.1 23.0
27 88 400.0 39.9 13.0 18.3 21.6
28 79 440.0 55.5 13.0 17.5 19.8
29 60 480.0 84.9 12.9 16.8 17.7
30 52 520.0 85.7 11.8 16.0 17.0
31 45 560.0 80.8 10.6 15.2 16.5
32 26 600.0 73.7 9.2 14.5 16.2
33 16 640.0 67.1 7.8 13.7 16.0
34 9 680.0 61.7 6.4 12.9 15.9
35 2 720.0 57.6 4.9 12.2 15.7

Total 1477

D.0.2: Refurbishment scenario

Tx Duration Load Water Flow Supply T Return T Target T
[C ] [hour ] [kW ] [m3/h] [C ] [C ] [C ]

21 153 72.0 20.7 24.5 24.4 27.5
22 167 108.0 20.7 23.0 23.5 27.5
23 137 144.0 20.7 21.5 22.7 27.4
24 122 180.0 20.7 19.8 21.9 27.3
25 99 216.0 20.7 18.2 21.1 27.2
26 86 252.0 20.7 16.6 20.3 27.0
27 88 288.0 20.7 14.9 19.5 26.9
28 79 324.0 20.7 13.3 18.6 26.7
29 60 360.0 23.6 13.0 17.8 26.1
30 52 396.0 28.0 13.0 17.0 25.2
31 45 432.0 34.0 13.0 16.2 23.9
32 26 468.0 43.1 13.0 15.4 22.3
33 16 504.0 59.5 13.0 14.5 20.3
34 9 540.0 83.2 12.7 13.7 18.3
35 2 576.0 81.7 11.6 12.9 17.7

Total 1141
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Table D.2: Power Requirement of the system as a function of the Outlet Temperature and the
Cooling Load.

D.0.1: Scenario as Usual

Tx Load Estim. Electricity Flow Temp Direct Cooling COP
[C ] [kW ] [kW e] [kW e] [m3/h] [C ] [kW ]

19 80.0 0.0 3.8 6.5 20.0 83.5 21.2
20 120.0 0.0 3.8 9.7 20.0 123.4 31.6
21 160.0 0.0 3.8 12.8 20.0 163.3 41.9
22 200.0 0.0 3.8 15.9 20.0 203.2 52.1
23 240.0 0.0 3.9 19.0 20.0 243.1 62.3
24 280.0 0.0 3.9 22.2 20.0 283.1 72.3
25 320.0 0.0 3.9 25.3 20.0 323.0 82.1
26 360.0 0.0 3.9 28.4 20.0 362.9 91.5
27 400.0 0.1 4.0 38.2 18.1 402.7 99.1
28 440.0 0.2 4.2 45.8 17.3 442.5 104.3
29 480.0 0.9 4.9 70.2 14.9 482.1 97.4
30 520.0 3.0 7.9 79.8 14.7 524.7 66.1
31 560.0 6.0 17.1 76.5 15.4 574.0 32.8
32 600.0 10.0 25.4 71.1 16.5 622.5 23.6
33 640.0 14.8 32.8 65.9 17.8 669.9 19.5
34 680.0 20.4 40.5 63.6 18.7 717.7 16.8
35 720.0 26.8 53.9 66.8 18.9 770.9 13.4

D.0.2: Refurbishment scenario

Tx Load Estim. Electricity Flow Temp Direct Cooling COP
[C ] [kW ] [kW e] [kW e] [m3/h] [C ] [kW ]

21 72.0 0.0 3.5 5.9 20.0 75.3 20.8
22 108.0 0.0 3.5 8.7 20.0 111.3 30.6
23 144.0 0.0 3.6 11.5 20.0 147.3 40.1
24 180.0 0.0 3.7 14.3 20.0 183.3 49.3
25 216.0 0.0 3.7 17.2 20.0 219.3 58.2
26 252.0 0.0 3.8 20.0 20.0 255.3 66.7
27 288.0 0.0 3.8 22.8 20.0 291.3 75.0
28 324.0 0.0 3.9 25.6 20.0 327.3 83.0
29 360.0 0.0 4.0 28.4 20.0 363.3 90.6
30 396.0 0.0 4.0 31.2 20.0 399.3 97.9
31 432.0 0.1 4.1 34.1 20.0 435.3 104.6
32 468.0 0.1 4.3 40.4 19.0 471.3 108.2
33 504.0 0.3 4.7 49.3 17.9 507.3 107.4
34 540.0 1.2 5.6 70.7 15.6 543.3 95.7
35 576.0 3.1 8.6 77.4 15.5 582.1 67.1
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