
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Faltings, président du jury
Prof. K. Aberer, directeur de thèse

Prof. A. Ailamaki, rapporteur
Prof. D. Kossmann, rapporteur

Prof. C. Pu, rapporteur

Linear Scalability of Distributed Applications

THÈSE NO 5278 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 3 FÉvRIER 2012

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Nicolas Bonvin

Résumé

L’explosion des applications sociales, du commerce électronique ou de
la recherche sur Internet a créé le besoin de nouvelles technologies et
de systèmes adaptés au traitement et à la gestion efficace d’un nombre
considérable de données et d’utilisateurs. Ces applications doivent fonc-
tionner sans interruption tous les jours de l’année, et doivent donc être
capables de survivre à de subites et brutales montées en charge, ainsi
qu’à toutes sortes de défaillances logicielles, matérielles, humaines et or-
ganisationnelles.

L’augmentation (ou la diminution) élastique et extensible des ressources
affectées à une application distribuée, tout en satisfaisant des exigences
de disponibilité et de performance, est essentielle pour la viabilité com-
merciale mais présente de grands défis pour les infrastructures actuelles.
En effet, le Cloud Computing permet de fournir des ressources à la de-
mande: il devient désormais aisé de démarrer des dizaines de serveurs
en parallèle (ressources de calcul) ou de stocker un très grand nombre
de données (ressources de stockage), même pour une durée très limitée,
en payant uniquement pour les ressources consommées. Toutefois, ces
infrastructures complexes constituées de ressources hétérogènes à faible
coût sont sujettes aux pannes. En outre, bien que les ressources offertes
par le Cloud Computing soient considérées comme pratiquement illimitées,
seule une gestion adéquate de celles-ci peut répondre aux exigences des
clients et ainsi éviter de trop fortes dégradations de performance.

Dans cette thèse, nous nous occupons de la gestion adaptative de ces
ressources conformément aux exigences spécifiques des applications. Tout
d’abord, nous abordons le problème de la gestion des ressources de stock-
age avec garanties de disponibilité dans un environnement intra-cloud
et trouvons leur allocation optimale de manière décentralisée grâce à
une économie virtuelle. Notre approche répond efficacement aux aug-
mentations soudaines de charge ou aux pannes et profite de la distance
géographique entre les nœuds pour améliorer la disponibilité des données.

Nous proposons ensuite une approche décentralisée de gestion adapta-
tive des ressources de calcul pour des applications nécessitant une haute
disponibilité et des garanties de performance lors de pics de charge, de
pannes soudaines ou de mises à jour des ressources. Notre approche
repose sur une économie virtuelle entre les différents composants de
l’application et sur un système propageant en cascade les objectifs de
performance des composants individuels de manière à satisfaire les ex-
igences globales de l’application. Notre approche parvient à répondre
aux exigences de l’application avec le minimum de ressources.

Enfin, comme les vendeurs de stockage proposent des tarifs pouvant
varier considérablement, nous présentons une méthode inter-cloud d’allo-
cation de ressources de stockage provenant de plusieurs vendeurs en
fournissant à l’utilisateur un système qui garantit le meilleur tarif pour
stocker et servir ses données, tout en satisfaisant ses besoins en matière
de disponibilité, durabilité, latence, etc. Notre système optimise en per-
manence le placement des données en fonction de leur type et de leur
mode d’utilisation, tout en minimisant les coûts de migration d’un ven-
deur à un autre, afin d’éviter de rester prisonnier de l’un d’eux.

Mots Clés: base de données, architecture, modèle économique, cloud
computing, haute-disponibilité, extensibilité

i

Abstract

The explosion of social applications such as Facebook, LinkedIn and
Twitter, of electronic commerce with companies like Amazon.com and
Ebay.com, and of Internet search has created the need for new tech-
nologies and appropriate systems to manage effectively a considerable
amount of data and users. These applications must run continuously ev-
ery day of the year and must be capable of surviving sudden and abrupt
load increases as well as all kinds of software, hardware, human and
organizational failures.

Increasing (or decreasing) the allocated resources of a distributed appli-
cation in an elastic and scalable manner, while satisfying requirements
on availability and performance in a cost-effective way, is essential for
the commercial viability but it poses great challenges in today’s infras-
tructures. Indeed, Cloud Computing can provide resources on demand: it
now becomes easy to start dozens of servers in parallel (computational
resources) or to store a huge amount of data (storage resources), even for
a very limited period, paying only for the resources consumed. However,
these complex infrastructures consisting of heterogeneous and low-cost
resources are failure-prone. Also, although cloud resources are deemed
to be virtually unlimited, only adequate resource management and de-
mand multiplexing can meet customer requirements and avoid perfor-
mance deteriorations.

In this thesis, we deal with adaptive management of cloud resources
under specific application requirements. First, in the intra-cloud environ-
ment, we address the problem of cloud storage resource management
with availability guarantees and find the optimal resource allocation in a
decentralized way by means of a virtual economy. Data replicas migrate,
replicate or delete themselves according to their economic fitness. Our
approach responds effectively to sudden load increases or failures and
makes best use of the geographical distance between nodes to improve
application-specific data availability.

We then propose a decentralized approach for adaptive management of
computational resources for applications requiring high availability and
performance guarantees under load spikes, sudden failures or cloud re-
source updates. Our approach involves a virtual economy among service
components (similar to the one among data replicas) and an innovative
cascading scheme for setting up the performance goals of individual com-
ponents so as to meet the overall application requirements. Our approach
manages to meet application requirements with the minimum resources,
by allocating new ones or releasing redundant ones.

Finally, as cloud storage vendors offer online services at different rates,
which can vary widely due to second-degree price discrimination, we
present an inter-cloud storage resource allocation method to aggregate re-
sources from different storage vendors and provide to the user a system
which guarantees the best rate to host and serve its data, while satisfying
the user requirements on availability, durability, latency, etc. Our sys-
tem continuously optimizes the placement of data according to its type
and usage pattern, and minimizes migration costs from one provider to
another, thereby avoiding vendor lock-in.

Keywords: database, architecture, economic model, cloud computing,
high-availability, scalability

ii

Acknowledgements

Let me begin by thanking my thesis supervisor, Prof. Dr. Karl Aberer,
who helped me throughout my Ph.D and allowed me to work on topics
that interested me particularly. I also thank the members of my thesis
committee for their constructive and encouraging comments: Prof. Dr.
Anastasia Ailamaki, Prof. Dr. Boi Faltings, Prof. Dr. Donald Kossmann

and Prof. Dr. Calton Pu.

A big thank you to my officemates, to Chantal and to all members of
the LSIR lab. I’m particularly thankful to Thanasis for his invaluable
assistance, work and friendship throughout my Ph.D, and Ho Young for
his support and friendship.

I also want to thank my parents and my family for their unfailing support,
my flatmates, my friends and all who are dear to me and supported me.

Finally, I would like to deeply thank Nicolas Cordonier who helped me
make the right choice at an important moment, Claire-Lise who gave me
confidence in myself, and Rachel who encouraged me throughout this
wonderful adventure.

Thank you.

iii

Contents

Contents v

List of Figures ix

List of Tables xiii

List of Algorithms xv

I Introduction 1

1 Introduction 3
1.1 Distributed Applications . 5

1.1.1 Service-Orientation . 6
1.1.2 Cloud Computing . 7

1.2 Scalability . 8
1.2.1 A Motivating Example . 10

1.3 Contribution of the Work . 13
1.4 Scope and Limitations . 15
1.5 Structure of the Thesis . 16
1.6 Selected Publications . 16

II State of the Art 19

2 Distributed Application Scalability 21
2.1 Introduction . 21
2.2 Scalability Best Practises . 24
2.3 Cloud Computing . 26

2.3.1 Definition . 26
2.3.2 Benefits . 29
2.3.3 Cloud Storage . 31

2.4 Conclusion . 33

3 Database Scalability 35

v

Contents

3.1 Introduction . 35
3.2 Relational Databases . 37

3.2.1 Replication . 37
3.2.2 Database Sharding . 39

3.3 NoSQL Databases . 44
3.4 NewSQL Databases . 47
3.5 Consistency Models . 48

3.5.1 Strong Consistency . 48
3.5.2 Eventual Consistency . 51

3.6 Conclusion . 52

III Contributions 55

4 Building Highly-Available and Scalable Cloud Storage 57
4.1 Introduction . 57
4.2 Skute: Scattered Key-Value Store 59

4.2.1 Physical Node . 59
4.2.2 Virtual Node . 60
4.2.3 Virtual Ring . 60
4.2.4 Routing . 62
4.2.5 Data Consistency . 62

4.3 Problem Definition . 63
4.3.1 Maximize Data Availability 63
4.3.2 Minimize Communication Cost 64
4.3.3 Maximize Net Benefit . 64

4.4 The Individual Optimization . 65
4.4.1 Board . 65
4.4.2 Physical Node . 66
4.4.3 Maintaining Availability 66
4.4.4 Virtual Node Decision Tree 68

4.5 Equilibrium Analysis . 71
4.6 Rational Strategies . 73
4.7 Simulation Results . 74

4.7.1 The Simulation Model . 74
4.7.2 Convergence to Equilibrium and Optimal Solution . . . 75
4.7.3 Fault Tolerance against Correlated Failures and Adap-

tation to New Resources 75
4.7.4 Adaptation to the Query Load 78
4.7.5 Scalability of the Approach 81

4.8 Implementation and Experimental Results in a Real Testbed . . 83
4.8.1 Verification of Simulation Results 84
4.8.2 Scalable Performance . 84
4.8.3 Adaptivity to Varying Load 86
4.8.4 Adaptivity to Failure . 86

4.9 Potential Applications . 87
4.10 Related Work . 88
4.11 Conclusion . 90

5 Building Highly-Available and Scalable Cloud Applications 91

vi

Contents

5.1 Introduction . 92
5.2 Motivation . 94

5.2.1 Running Example . 94
5.3 Scarce: the Quest of Autonomic Applications 96

5.3.1 The Approach . 96
5.3.2 Server Agent . 96
5.3.3 Routing Table . 97
5.3.4 Economic Model . 98

5.4 Maintaining High-Availability . 101
5.5 Meeting SLA Performance Guarantees 102

5.5.1 Cascading Performance Constraints 102
5.6 Automatic Provisioning of Cloud Resources 104

5.6.1 Adaptivity to Slow Servers 104
5.7 Evaluation . 105

5.7.1 Scalability, High-Availability and Load-Balancing 106
5.7.2 SLA Performance Guarantees 111

5.8 Related Work . 118
5.9 Conclusion . 119

6 Federation of Cloud Storage 121
6.1 Introduction . 121
6.2 Motivation . 123

6.2.1 Avoiding Vendor Lock-in 123
6.2.2 Paying a Fair Price . 124

6.3 Scalia: Multi-Cloud Storage . 125
6.3.1 Engine Layer . 126
6.3.2 Caching Layer . 132
6.3.3 Database Layer . 134
6.3.4 Life cycle of read and write operations 135
6.3.5 Private Storage Resources 137
6.3.6 Discussion . 138

6.4 Evaluation . 139
6.4.1 Experimental Setup . 139
6.4.2 Slashdot Effect Scenario 140
6.4.3 Gallery Scenario . 141
6.4.4 Adding Storage Resources 142
6.4.5 Active repair . 146
6.4.6 Pricing Update . 148

6.5 Related Work . 148
6.6 Conclusions . 149

IV Conclusion 151

7 Conclusion 153
7.1 Summary of the Work . 153
7.2 Future Work . 154

7.2.1 Improving the Current Work 154
7.2.2 Future Directions . 155

vii

Contents

Bibliography 157

Curriculum Vitae 169

viii

List of Figures

1.1 Distributed computing vs parallel computing 5
1.2 Vertical vs horizontal Scalability . 9
1.3 Scaling from 1 to 4 servers . 10
1.4 Master-slave database replication . 11
1.5 Master-slave replication does not scale 12
1.6 Master-slave replication limited by write operations 12

2.1 Stateful function . 21
2.2 Stateless function . 22
2.3 Storing sessions locally . 22
2.4 Storing sessions centrally . 23
2.5 Storing sessions at client side . 24
2.6 Management responsibilities in cloud stack 28
2.7 Effort and opportunity in the cloud stack 29
2.8 Fixed vs on-demand capacity . 30
2.9 Cloud Storage Gateways . 32
2.10 Content Delivery Network . 33

3.1 Master-slave replication . 37
3.2 Tree replication . 38
3.3 Multi-master replication . 39
3.4 Database partitioning: horizontal vs vertical 40
3.5 Simplified data modelof a weblog 41
3.6 Vertical database partitioning . 41
3.7 Horizontal database partitioning . 42
3.8 Database sharding . 43
3.9 NoSQL databases landscape . 45
3.10 CAP theorem . 46
3.11 Eventual Consistency . 49
3.12 Strong Consistency: read operation 50
3.13 Strong Consistency: write failure . 51

4.1 Ring topology . 60
4.2 3 applications with different availability levels 61
4.3 Data consistency during node migration 63

ix

List of Figures

4.4 Decision tree of the virtual node agent 70
4.5 Replication process at startup . 76
4.6 Concurrent rack failures . 77
4.7 Skute: robustness against upgrades and failures 77
4.8 Number of Queries per Partition . 78
4.9 Number of Virtual Nodes per Partition 78
4.10 Total amount of virtual nodes with uniform load 79
4.11 Average query load per virtual ring with evenly distributed queries 80
4.12 Average query load per server with evenly distributed queries . . 80
4.13 Average virtual rent price with evenly distributed queries 81
4.14 Average query load per virtual ring with unevenly distributed

queries . 82
4.15 Average query load per server with unevenly distributed queries . 82
4.16 Storage saturation . 83
4.17 Network saturation . 84
4.18 Average query load with unevenly distributed queries 85
4.19 Response time and throughput . 85
4.20 Load peak . 86
4.21 Server crash . 87
4.22 Using Skute as a cache . 88
4.23 Using Skute in an anycast DNS service 89

5.1 An application on a cloud computing infrastructure 95
5.2 Example of a distributed application 95
5.3 Server and agents . 97
5.4 Contention level of servers . 99
5.5 SLA propagation . 103
5.6 Statistics about the response time . 105
5.7 Response time of different placement approaches 108
5.8 Throughput of different placement approaches 108
5.9 Framework scalability . 109
5.10 Failure percentages during crashes 109
5.11 Adding new cloud resources . 110
5.12 Routing policies . 110
5.13 Architecture of a test application . 111
5.14 Resources consumed . 112
5.15 Mean response time . 112
5.16 95th percentile response time . 113
5.17 Throughput when load varies . 113
5.18 Computed SLA constraints . 114
5.19 SLA violations . 115
5.20 Response time in case of slow servers 115
5.21 Resources used in case of slow servers 116
5.22 Response times during scalability experiment 117
5.23 Throughput during scalability experiment 117
5.24 Resources used during scalability experiment 118

6.1 Erasure coding . 123
6.2 Multi datacenter architecture . 126
6.3 Time left to live for a class of objects 128

x

List of Figures

6.4 Classification of objects . 128
6.5 Periodic Optimization . 131
6.6 Trend detection (1 day decision period) 133
6.7 Trend detection (1 week decision period) 134
6.8 Concurrent writes . 136
6.9 Amount of resources for the Slashdot scenario 139
6.10 Total cost of the Slashdot scenario 140
6.11 Amount of resources for the gallery scenario 141
6.12 Total cost for the gallery scenario . 141
6.13 Resources used when adding a public storage provider 143
6.14 Total cost when adding a public storage provider 143
6.15 Amount of resources when adding a private storage resource . . . 144
6.16 Cost per hour when adding a private storage resource 144
6.17 Cumulative cost when adding a private storage resource 145
6.18 Total cost when adding a private storage resource 145
6.19 Active repair . 147
6.20 Pricing update . 147

xi

List of Tables

1.1 Availability measurement . 5

4.1 Example of quorum parameters . 63
4.2 Parameters of small-scale and large-scale experiments. 76

5.1 The local routing table . 97

6.1 Example of storage rules . 124
6.2 Example of provider sets . 124
6.3 Providers’ abbreviations . 124
6.4 Example of providers prices . 125
6.5 Metadata of a file . 137
6.6 Sets of providers . 139

xiii

List of Algorithms

5.1 Updating the replicas’ coefficients 106
6.1 Computing the best set of providers 129
6.2 Computing the best threshold of a set of providers 130
6.3 Trend detection: alert() function 132
6.4 Trend detection . 133

xv

Part I

Introduction

1

Chapter 1

Introduction

Communicating is the essence of human beings. In recent years, electronic
means, such as email or mobile phone, have changed the way people interact.
A large proportion of individuals and a majority of businesses communicate
using digital networks, usually connected to Internet. With the democratiza-
tion of Internet access, virtual social networks have emerged in the digital
world, reproducing and even amplifying the social interactions occurring in
the real world. The dissemination of information to a wide spectrum of dif-
ferent people becomes near real time, thanks to communication tools such as
Facebook [13] or Twitter [50] which offer greater reactivity compared to tradi-
tional media like radio or television. The way of consuming is also changing,
reflecting the impressive growth of electronic commerce, as demonstrated by
the success of e-commerce companies such as Amazon.com [3]. Such plat-
forms allowing a huge number of people to communicate instantaneously,
dealing with a considerable number of users or customers, or managing a
vast amount of data, require a very high degree of reliability and should
tackle every kind of failure gracefully in order to remain trusted and useful.
As a consequence of these new communication tools, popular events are re-
layed quickly to an impressive number of people and can cause virtual flash
crowds, which can easily take down computer infrastructures. Imagine a
company having the chance to run a website that becomes popular, a large
number of Internet users might suddenly want to access the site at the same
time. Such a company should be well prepared for this situation in order
to cope with the sudden load and remain successful. To build a robust web
application, a very important aspect is to be able to grow and shrink the in-
frastructure rapidly and at a limited cost. An application architecture for a
highly demanded website needs to achieve three goals:

1. scalability, which is characterized by the ability to gracefully handle
additional traffic or data growth while maintaining service quality and
maintainability of a computer system;

2. high-availability, which refers to a computer system that is continu-
ously operational for a contractual measurement period;

3. performance, which corresponds to the amount of useful work accom-
plished by a computer system compared to the time and resources used.

3

1. Introduction

To be flexible enough to support the addition or removal of resources, an
application has to be split into several components so that they can be dis-
tributed among the available resources. The design of a distributed applica-
tion involves many trade-offs that need to be considered when building a
solution. Should an application be very fast for a limited amount of users
(focusing on performance), or should the application deliver acceptable per-
formance for a large amount of users (focusing on scalability), or maybe
both? The concepts of scalability and performance are often linked, but they
are distinct: performance measures the time taken for a request to be exe-
cuted, whereas scalability measures the ability of the system to maintain the
performance of a request under growing load.

Similarly, should an application be designed to maximize throughput or min-
imize latency? A good trade-off would probably be to strive for maximal
throughput with acceptable latency. A distributed application will also have
to deal with consistency, availability and network partitions tolerance, but as
described in Section 3.3, achieving all three properties at the same time is not
possible; therefore several architectural decisions have to be taken at design
time by choosing the objectives the application should be optimized for.

In distributed applications, besides scalability, there are others reasons for
adding additional resources to the system: redundancy is mandatory to make
a system highly-available. An application and its underlying infrastructure
should be designed to ensure business continuity and to avoid unplanned
downtime. A properly designed system should handle transparently hard-
ware and software failures without affecting the ability of an end user to
access the application. Within a local site, an highly-available application is
usually deployed across several identical servers and can operate basically in
two modes:

• active-passive: passive nodes are in a standby configuration and do not
serve requests until a failure is detected in the software or hardware of
one of the active nodes; in that case, a passive node becomes active,
replacing the failed node. The number of passive nodes is a tradeoff
between cost and reliability requirements. In a two nodes setup, this
mode is usually called failover.

• active-active: all nodes serve requests. When one of the nodes has a
software or hardware failure, the surviving nodes take over the appli-
cation load of the failed node and requests are served by the remaining
active nodes. This mode eliminates the need for standby nodes, but re-
quires extra capacity on all active nodes to cope with the load of failing
nodes.

The traditional metric to evaluate the availability of a system is the uptime,
which corresponds to the fraction of time the application is handling requests.
It is typically measured in nines as shown in Table 1.1 and can be defined as:

availability = MTBF/(MTBF + MTTR) (1.1)

where MTBF is a metric representing the meantime-between-failure and MTTR
corresponds to the mean-time-to-repair. Given Eq. 1.1, the uptime of an applica-

4

1.1. Distributed Applications

tion can be improved either by reducing the time to fix failures or by reducing
their frequency.

Table 1.1: Availability measurement

Availability % Downtime per year Downtime per month
90% (“one nine”) 36.5 days 72 hours
95% 18.25 days 36 hours
98% 7.30 days 14.4 hours
99% (“two nines”) 3.65 days 7.20 hours
99.5% 1.83 days 3.60 hours
99.8% 17.52 hours 86.23 minutes
99.9% (“three nines”) 8.76 hours 43.2 minutes
99.95% 4.38 hours 21.56 minutes
99.99% (“four nines”) 52.56 minutes 4.32 minutes
99.999% (“five nines”) 5.26 minutes 25.9 seconds
99.9999% (“six nines”) 31.5 seconds 2.59 seconds

However, adding more resources and redundancy does not automatically
result in a more performant, more scalable or more available system: the
application has to be developed carefully from the beginning, and should be
deployed among distinct geographical zones. Indeed, a scalable application
with a very high level of redundancy may still be unreachable if it has been
deployed in a single site: the datacenter itself should be seen as a single point
of failure.

Designing, building and deploying an application that is at the same time
performant, scalable and highly-available is complex and presents a wide
range of architectural, technical and operational challenges.

1.1 Distributed Applications

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU Memory

CPU CPU CPU

a) Distributed Computing b) Parallel Computing

Figure 1.1: Distributed computing versus parallel computing

Historically, a distributed system has been considered as a network of indi-

5

1. Introduction

vidual computers, or nodes, which are physically distributed within several
geographical areas. However, the concept has evolved and now it can also
describe systems with autonomous processes running on the same physical
node. A distributed system comprises autonomous processes, or components,
which have their own dedicated local memory and communicate by message
passing. In parallel computing, a shared memory is accessed and used to ex-
change data among all processors, contrary to distributed computing where
each processor has its own memory, as depicted in Figure 1.1. That is, a
distributed application comprises distinct components physically located on
various computer systems and interacting by exchanging messages over a
network.

In the following subsections, we discuss the key technologies underlying
large-scale distributed applications, namely service-orientation, which is a de-
sign paradigm to build applications in the form of services and cloud comput-
ing, which allows to use on-demand computing and storage resources.

1.1.1 Service-Orientation

A service-oriented architecture (SOA) is governed by a flexible set design prin-
ciples ensuring the separation of concerns in the application. Following this
architecture, the application is split into a set of interoperable services, which
are distributed software components partitioned into operational capabili-
ties, each designed to address an individual concern. A service is charac-
terized [84] by eight key aspects:

• Standardized service contract: all services of the same technical system
are exposed through contracts following the same rules of standardiza-
tion.

• Loose coupling: coupling refers to the degree of direct knowledge that
one service has of another. In a loosely coupled system, the interdepen-
dencies between the services are reduced to the minimum. The contract
of a service must therefore impose a loose coupling of its clients. It is
essential to avoid the technical and functional coupling between con-
sumers and service providers: the coupling requires the consumer to
know the exchange protocol and format of the provider, complicating
or even prohibiting the development of the application on a larger scale.
The consumers of a service should be only linked to the service contract
and not to the service itself.

• Abstraction: the service contract should only contain essential informa-
tion to its invocation. Only such information should be published. The
principle of abstraction is to provide the services as black boxes. The
only available information to the consumers of a service are those con-
tained in its contract. Thus, the designers and developers of a software
component consuming a service are not aware of the implementation
of the service.

• Reusability: a service expresses a logic independent of any particular
business process or technology and can be therefore positioned as a
reusable resource. The implementation of an application following a

6

1.1. Distributed Applications

service-oriented architecture is intended, among other things, to avoid
wasting resources by eliminating redundancies.

• Autonomy: a service must exercise strong control over its underlying
execution environment. A service must comply with its contract, which
usually includes a service-level agreement (SLA 1), regardless of the
volume of requests it has to process. Concurrent accesses to a service
should not change in any way its behavior, reliability or performance.
The stronger the control, the more predictable the service execution.

• Statelessness: A service must minimize the resource consumption by
delegating the management of state information when necessary. The
responsibility for state management is delegated to the service con-
sumers. Delegating the state management to the clients meets the
REST [86] design principles of web services.

• Discoverability: a service is complemented by a set of communica-
tion metadata through which it can be discovered and interpreted ef-
fectively.

• Composability: a service must be designed to participate in service
compositions. The objective is to determine the ”right” granularity of
services in order to decompose the solution to a high-level business
problem into a set of ”smaller reusable processing units” (i.e., the ser-
vices). The idea is to be able to reconstruct indefinitely the business
logic inside high-level composite services.

While building an application following the aforementioned principles is a
good start, several aspects have to be considered before having a highly-
available and scalable application. An application composed of many ser-
vices is useful only when all services are available and able to perform their
respective tasks. If a single service fails or is overloaded, then the whole
application is impacted. Therefore, services have to be replicated to achieve
high-availability and to be able to cope with growing load. Replicating a
service should first take into account the geographical location of the other
replicas, such that two replicas of the same service are not physically hosted
on the same rack or the same datacenter, so as to avoid correlated failures.
Second, the replication process should also take into account the available
resources (CPU, memory, disk space, network) of the servers dedicated to
the application in order to choose the best suited server for hosting a new
replica of the service. These replication problems are addressed in the con-
text of distributed databases where data partitions are cleverly replicated and
migrated (see Chapter 4), as well as in the context of distributed applications
composed of many services (see Chapter 5).

1.1.2 Cloud Computing

Since a couple of years, it is possible to rent dedicated servers in well con-
nected datacenters and more recently, virtualization solutions have enabled a
new way of provisioning on-demand computing and storage resources: cloud

1http://en.wikipedia.org/wiki/Service level agreement

7

1. Introduction

computing is “a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction” [62].

Apart from the aspects of privacy and data security, which are among the
main obstacles to the wide adoption of cloud computing, building an ap-
plication that takes advantage of a cloud computing infrastructure presents
several challenges. Unlike traditional distributed applications that rely on
dedicated servers with predictable performance, an application developed
for the cloud must adapt to the underlying virtualized, ephemeral and unre-
liable infrastructure, whose performance can vary suddenly. Moreover, mod-
ern distributed applications should derive advantage of the elasticity of cloud
computing, which refers to the ability to amplify and instantly upgrade stor-
age, computing and network resources on demand. They should also be able
to dynamically react to changing conditions, such as software and hardware
failures or quickly varying volume of requests, by dynamically adapting the
location and the amount of replicas of the services composing the applica-
tion. Lacking the complete control of the infrastructure, deploying, updating
and monitoring cloud-based applications becomes more complex. Therefore,
building autonomic and adaptive applications that only consume the mini-
mum resources necessary for their tasks opens interesting research areas. In
Chapter 5, we will present a framework addressing these problems specific
to applications deployed on a cloud computing infrastructure.

1.2 Scalability

A very concise and generic definition of scalability was given in [143]:

Essentially, it means how well a particular solution fits a problem
as the scope of that problem increases.

In other words, scalability corresponds to the ability to gracefully handle
additional traffic or data growth while maintaining service quality and main-
tainability of the system. A system whose capacity can be augmented by
adding more of the same software or hardware is called horizontally scalable
and this is the only true form of scalability as the system capacity can grow
almost indefinitely. An architecture should allow the system capacity to be
increased or decreased when the application needs change. The efficiency
of an horizontally scalable system increases (or decreases) after hardware is
added (or removed) proportionally to the capacity added (or removed). On
the other hand, a system not able to scale horizontally (i.e., to scale out) can
be scaled up by adding resources (processors, storage, and/or RAM) to the
server running the application to achieve greater productivity: this is referred
to as vertical scalability. Vertical scalability is bounded (e.g., one cannot add
an arbitrarily large amount of CPUs or RAM), expensive and proprietary. In
addition to its ability to grow to an almost infinite capacity, a system based
on a horizontally scalable architecture proves less costly for a given capac-
ity than a system based on a vertically scalable architecture, as depicted in
Figure 1.2. A scalable system has the following characteristics:

8

1.2. Scalability

$10'000
Server

$10'000
Server

$1000
server

$1000
server

$500
server

$500
server

$500
server

$500
server

$500
server

$500
server

$500
server

$500
server

$500
server

$500
server

a) vertical scalability b) horizontal scalability

C
a

pa
ci

ty

Servers

C
a

pa
ci

ty

Servers1 1 2 3 4

Figure 1.2: Vertical vs horizontal scalability: the price growth for vertical scaling is exponential.
For a system with the same capacity, the vertical approach costs 10’000$ while the horizontal
one costs only 2’000$

• it becomes more cost effective when the system grows, thanks to econo-
mies of scale;

• it is able to deal with semantic and resources heterogeneity;

• it is operationally efficient;

• it is resilient;

• increasing the allocated resources results in a proportional increase in
term of capacity.

Scalability is an architectural concern related to maintainability of the sys-
tem, traffic and dataset growth. However, both scalability and performance
are important as an application should handle current commitments (perfor-
mance) and also future ones (scalability). Performance and scalability have
to act symbiotically in order to allow a cost-efficient growth of a business: a
scalable application needs to have the capability to adapt to growing work-
load, respectively ensure a certain performance with a growing workload.
For e-commerce websites, social networking sites and other large distributed
applications, the ability to scale is directly related to the success or failure of
the business. Several scalability requirements can be defined [138] for large
applications:

• user load scalability: the application needs to cope with a fast growing
number of users (potentially millions of users);

• data load scalability: the application needs to cope with a fast growing
amount of data (potentially petabytes of data), which is either produced
by a few users or by the aggregate of many users;

• computational scalability: operations on the data should be able to
scale for both an increasing number of users and increasing data sizes;

9

1. Introduction

• scale adaptivity: in order to cope with increasing or decreasing appli-
cation load, the architecture and operational environment should pro-
vide the ability to add or remove resources quickly, without application
changes or impact on the availability of the application.

Most of the scalable application architectures are based on function and data
partitioning, sharing the work load on many servers. Functional partitioning
aims at splitting an application into several loosely-coupled services each per-
forming a specific task, following the service-oriented architecture approach.
However, functional partitioning can be too limited to offer high scalability
when the amount of users or data increases consequently and the load of a
single functional area surpasses the capacity of a single machine. Therefore
data partitioning should be used in conjunction with functional partitioning,
such that the application work load is also spread over a set of data partitions
hosted on different machines.

1.2.1 A Motivating Example

DBWeb DBWeb DBWeb

Web

Web

a) One server b) Two servers c) Four servers

Figure 1.3: Scaling an application from one to four servers

Let us consider an example inspired by [87] of a simple web application com-
posed of a web server and a database: what are the problems encountered
when scaling the application from a single server to a few dozen servers?

The web server is responsible for handling the business logic and for prepar-
ing as well as sending the reply to the client. The database stores persistently
the data needed by the application (i.e., the web site). In the simplest sce-
nario, both the web server and the database can run on the same server. But
eventually, the web site gets slow, and a point is reached where tuning the
settings of the servers or of the application does not help anymore. Moreover,
having only one server implies a high risk in case of failure, the server being
a single point of failure (SPOF) as shown in Figure 1.3 a).

To improve the performance of the web site, the database is moved to its own
dedicated server, as depicted in Figure 1.3 b). Now, instead of having a single

10

1.2. Scalability

Master

Web

Web

Web

Slave

Replication

Reads/Writes

Reads

Figure 1.4: Master-slave database replication architecture.

point of failure, the architecture comprises two: there are no hot or cold spare
servers to replace a failed server. As the web site starts to be successful, more
and more people access the application, resulting again in poor performance.
Now the web server reaches high CPU utilization as a result of growing traffic
and is no more able to process requests with acceptable latency: more web
servers are required. After having added two more web servers, the setup
has now three servers dedicated to the application and a database server, as
depicted in Figure 1.3 c). The users’ requests are now balanced between the
three web servers using a load-balancing mechanism. However, as a result
of growing volume of requests sent by the web servers, the database reaches
high I/O utilization and is no more able to process incoming requests with
acceptable latency. Furthermore, the database is a single point of failure.

We discuss now how this issue is commonly resolved in this example sit-
uation and the reasons why database scaling is more complex. The most
straightforward approach to improve the performance of the database layer
is to add an additional database server and to configure the first one as mas-
ter and the second one as slave, such that the write operations are performed
on the master and the read requests can be handled by both the master and
the slave, as depicted in Figure 1.4. To cope with growing load, additional
web servers and database servers need to be added, hitting alternatively CPU
bounds and I/O bounds. This architecture, as shown in Figure 1.5, is appro-
priate for moderate load, but performance will drop for high traffic condi-
tions, as soon as the volume of write requests surpasses the capacity of one
of the database servers: adding additional slave database servers will exacer-
bate the problems rather than solving them.

Besides the master being a single point of failure, this architecture does not
improve the write scalability and only solves partially the read scalability
issue. Moreover, maintaining such an infrastructure quickly becomes in-
creasingly difficult. Although the read operations are spread among several
servers, the scalability of reads is limited by the write operations that are
replicated from the master to every slave. Let us imagine a server being
able to handle 800 operations per second (either read or write). Consider the
following load on a single server: 600 reads per second and 200 writes per

11

1. Introduction

Master
Web

Slave

Replication

Reads/Writes

Reads

Slave Slave

Slave Slave Slave

Web

Web

Web

Web

Web

Figure 1.5: Master-slave database replication architecture is suitable only for moderated traffic
web site: write operations are not scalable.

second (Figure 1.6 a)). If a second server (i.e., a slave) is added, the read
operations will be shared between both servers while each server has still to
perform all write operations, as depicted in Figure 1.6 b). When the amount
of write operations increases, Figure 1.6 c) shows that the resources of the
slaves will be eventually dedicated mostly to write operations, penalizing
the performance of read operations. At this point, not only the web site is
not able to handle the write load, but it also cannot serve the read requests
with satisfactory performance.

600 read / s

200 write / s

300 read / s

200 write / s

300 read / s

200 write / s

50 read / s

750 write / s

a) One server b) Two servers: one master and one slave

50 read / s

750 write / s

50 read / s

750 write / s

50 read / s

750 write / s

50 read / s

750 write / s

c) Five servers: one master and four slave

Figure 1.6: Master-slave database replication: the servers’ resources will eventually be consumed
by write operations.

12

1.3. Contribution of the Work

In order to avoid that the write load consumes all the database server re-
sources, one might think that adding additional master database servers
would resolve the write scalability issue. Let us consider a write-mostly web
application selling a finite amount of goods such as airline tickets, where
the number of seats for a given flight is limited. Thus, the database has to
enforce that only a fixed number of tickets, let us say 200, will be sold per
flight. When a single master database is no more able to cope with the write
load due to limited capacity, a second master database could be added, such
that some write operations are performed on the first master database and
the remaining write operations are processed by the second master database.
If both master databases do not interact during a write operation, the web
application might sell up to 400 tickets for a flight of only 200 seats, as each
master database is allowed to sell up to 200 tickets. To avoid inconsistencies,
both master databases have to cooperate in order to limit the number of sold
tickets: a write operation has to be acknowledged by both master databases,
thus removing the benefit in term of write scalability of having a second
master database. As a write operation has to be performed by both master
database servers, it has to succeed or fail as a unit, called a transaction [92],
and therefore requires advanced techniques providing strong consistency in
distributed transactions [93], such as 2 phase commit [60, 91, 131, 120], 3
phase commit [146], Paxos [114] or various approaches to state machine
replication [70, 112]. As distributed transactions come with their own price,
namely performance penalty and complexity, these techniques are mainly
used to improve the fault-tolerance of a master database by adding additional
replicas rather than improving its performance or scalability.

In this example, we first have seen that scaling the read operations using a
common master-slave architecture is only appropriate for moderated load.
Second, using multiple master database servers does not improve the write
scalability as the integrity of data in a distributed transaction has to be en-
sured by non scalable distributed protocols introducing complexity and over-
head. In order to cope with high traffic web applications, a scalable database
layer has to be built using more sophisticated approaches, as explained in
Section 3.2.

1.3 Contribution of the Work

In this thesis, we make the following contributions to database and cloud
application scalability as well as to storage federation. In the first instance,
we improve the cost-efficiency and the scalability of key-value stores, which
are usually used to implement cloud storage solutions. In a second step, we
propose an approach that allows an application to take advantage of the elas-
ticity provided by a cloud computing infrastructure, while at the same time
addressing its major challenges, namely the unpredictable performance and
the ephemeral nature of cloud resources. Finally, to further improve the scal-
ability of cloud storage, we propose a solution for federating multiple cloud
storage providers, where the location of a data is determined at creation time
and readjusted periodically, based on the constraints and the optimization
objectives defined by the data owner.

13

1. Introduction

In the area of database scalability we propose a scattered key-value store
(Chapter 4) which is designed to provide high and differentiated data avail-
ability statistical guarantees to multiple applications in a cost-efficient way
in terms of rent price and query response times in a cloud environment.
Distributed key-value stores being a widely employed service case of cloud
storage, our approach combines the following innovative characteristics:

• it enables a computational economy for cloud storage resources;

• it provides differentiated availability statistical guarantees to different
applications despite failures by geographical diversification of replicas;

• it applies a distributed economic model for the cost-efficient self-orga-
nization of data replicas in the cloud that is adaptive to adding new
storage resources, to node failures and to client locations;

• it efficiently and fairly utilizes cloud resources by performing load bal-
ancing in the cloud adaptively to the query load.

In the area of application scalability we propose a cost-efficient approach
(Chapter 5) for dynamic and geographically-diverse replication of compo-
nents in a cloud computing infrastructure that effectively adapts to load vari-
ations and offers service availability guarantees. Our approach combines the
following unique characteristics:

• adaptive adjustment of cloud resource allocation in order to statistically
satisfy response time or availability SLA requirements;

• cost-effective resource allocation and component placement for mini-
mizing the operational costs of the cloud application;

• detection and removal or replacement of stale cloud resources;

• component replication and migration for accommodating load varia-
tions and for supple load balancing;

• decentralized self-management of the cloud resources for the applica-
tion;

• geographically-diverse placement of clone component instances.

In the area of storage federation we introduce a system (Chapter 6) that
continuously adapts the placement of data among several storage providers
subject to optimization objectives, such cost minimization. Our system com-
bines the following unique and novel characteristics:

• adaptive data placement based on the real-time data access patterns, so
as to minimize the price that the data owner has to pay to the cloud stor-
age providers given a set of customer rules, e.g., availability, durability,
etc. Other optimization goals for data placement are also conceivable,
such as:

– maintaining a certain monthly budget by relaxing some constraints,
such as lock-in or availability;

14

1.4. Scope and Limitations

– minimizing query latency by promoting the most high-performing
providers;

• compliance of rules set by customers for a data, such as data durability,
data availability and level of vendor lock-in;

• orchestration of a non-static set of public cloud and corporate-owned
private storage resources;

• a robust distributed architecture for its implementation that is able to
handle a large number of objects stored, which are accessed by a large
number of potential users.

1.4 Scope and Limitations

This thesis focuses essentially on how to build scalable distributed applica-
tions accessible through the Web. Specifically, we focus on applications that
are facing a rapid increase in terms of traffic, users or data. It is necessary for
such applications to absorb the extra load quickly without having to rewrite
the application or to change the architecture. Ideally, only the addition of
new physical resources should be sufficient to ensure the smooth operation
of the application. To meet these objectives, the class of applications called

“scalable” should follow certain best practices in terms of architectural design
and development. In particular, an application should be split into compo-
nents that avoid as much as possible to share states, to access the same data at
the same time (i.e., data contention) or to take decisions requiring the partic-
ipation of several components (e.g., distributed transactions). Indeed, these
practices have the effect of greatly limiting the ability of the application to
scale. For example, sharing a state between two or more components requires
a shared storage medium, which introduces data contention, or synchroniza-
tion mechanisms, which become ineffective with a large state or when the
amount of components to be synchronized increases. Avoiding synchroniza-
tion between components and data contention, or reducing as much as possi-
ble coupling (i.e., dependencies between components) and shared or mutable
states are not only recommended to build distributed applications, but are
also considered as general good programming practices. Similarly, the ap-
plication components should process requests asynchronously and in a non-
blocking manner (e.g., with the help of queues), so as to handle load peaks
more gracefully, by delaying requests that could not be processed immedi-
ately instead of dropping them.

Therefore, following current scalability best practices (see Section 2.2), the
application components are thus considered in this thesis to be stateless, hor-
izontally split, loosely coupled and do not require distributed transactions
or strong consistency most of the time. In modern web applications, most
of the requests do not require transactional guarantees and can be satisfied
using only eventual consistency. Typical applications include social web ap-
plications managing thousands of users along with the large amount of data
produced and shared by the users, or applications whose workload can be
easily parallelized (e.g., transcoding music files). However, most of current

15

1. Introduction

frameworks (e.g., .NET [33] or Java EE [22]) for building corporate web ap-
plications do not follow the scalability best practices and encourage devel-
opers to build stateful applications. Therefore, legacy, stateful, coupled or
transaction-oriented applications are not addressed in this thesis, as scalabil-
ity should be taken into account at design time already.

Finally, the economic-based load-balancing mechanism presented in Chap-
ters 4 and 5 is a generic approach that could be applied not only to data
partitions or application components, but also to other kinds of resource al-
location problems, such as operators placement in a distributed stream pro-
cessing infrastructure for example.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows: in Chapter 2 we dis-
cuss the problems related to application scalability, formulate best practises
to design large-scale, robust, cloud-ready and scalable applications, and give
a broad overview of cloud computing and cloud storage. In Chapter 3 we de-
scribe and classify the databases available today and discuss the challenges
of scaling distributed databases. In Chapter 4 we introduce Skute, a self-
managed and highly-available key-value store designed to leverage the ge-
ographical diversity of resources. In Chapter 5, we propose an economic,
lightweight approach for dynamic accommodation of load spikes and fail-
ures for composite web services deployed in clouds. In Chapter 6 we intro-
duce Scalia, a cloud storage brokerage solution, that continuously adapts the
placement of data based on its access pattern and subject to optimizations
objectives, such as storage costs. We provide the conclusions of our work
and outline future directions in Chapter 7.

1.6 Selected Publications

This thesis is based on the following main publications:

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “Autonomic SLA-driven
Provisioning for Cloud Applications”. In 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2011.

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “An economic approach
for scalable and highly-available distributed applications”. In Proc. of
the 3rd IEEE International Conference on Cloud Computing (CLOUD), 2010.

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “A self-organized, fault-
tolerant and scalable replication scheme for cloud storage”. In Proc. of
the ACM Symposium on Cloud Computing 2010 (SOCC), 2010.

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “Cost-efficient and Dif-
ferentiated Data Availability Guarantees in Data Clouds”. In the 26th
IEEE International Conference on Data Engineering (ICDE), 2010.

16

1.6. Selected Publications

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “Dynamic Cost-Efficient
Replication in Data Clouds”. In First ACM Workshop on Automated Con-
trol for Datacenters and Clouds (ACDC), 2009.

The following work is also part of this thesis, but it is still under reviewing:

• N. Bonvin, T. G. Papaioannou, and K. Aberer. “Scalia: multi-cloud
adaptive storage”.

Although these publications are not directly related to this thesis, several
architectural concepts and distributed applications best practises have been
developed and used in this thesis:

• Z. Miklos, N. Bonvin, P. Bouquet, M. Catasta, D. Cordioli, P. Fankhauser,
J. Gaugaz, E. Ioannou, H. Koshutanski, A. Mana, C. Niederee, T. Pal-
panas, and H. Stoermer. “From Web Data to Entities and Back”. In
22nd International Conference on Advanced Information Systems Engineer-
ing (CAISE), 2010.

• E. Ioannou, S. Sathe, N. Bonvin, A. Jain, S. Bondalapati, G. Skobelt-
syn, C. Niederée, and Z. Miklos. “Entity Search with NECESSITY”. In
Proceedings of the 12th International Workshop on the Web and Databases,
2009.

17

Part II

State of the Art

19

Chapter 2

Distributed Application Scalability

2.1 Introduction

1: inc()

2: inc() = 1

client server

value = 0

3: inc()

4: inc() = 2

value = value + 1 = 1
return value

counter = 0

counter = 1

counter = 2

value = value + 1 = 2
return value

Figure 2.1: Stateful implementation of a function incrementing a value

In Section 1.2.1, a motivating example was introduced where the applica-
tion layer was composed of web servers. The scalability bottleneck was the
database layer and not the application layer: it was assumed that the web
servers are stateless, and therefore the application layer can easily scale out
by simply adding new servers. However, in practice not every application
deployed on an application server is stateless, as this depends on how the
application was conceived. Let us consider a very simple application with
a single function that increments a value by one, starting from zero. In a
traditional implementation, the application stores a local variable initialized
at zero and increments it every time the function is called. Figure 2.1 de-
picts the interactions between a client that increments its local counter and
the application providing the increment function. First, the client sends an

21

2. Distributed Application Scalability

incr() message to the application, which in turn reads its local variable value,
increments it by one and sends the reply – 1 – back to the client. When the
client sends a second request, the application will again increment its local
variable and return the result, and so on. This kind of implementation is
called stateful as the application keeps a local variable (i.e., a state) holding
the current value of the counter.

1: inc(0)

2: inc() = 1

client server

3: inc(1)

4: inc() = 2

counter = 0

counter = 1

counter = 2

return 0 + 1

return 1 + 1

Figure 2.2: Stateless implementation of a function incrementing a value

Another way of implementing the application without requiring to store a
state at the server side is to carry the state with the function call, as depicted
in Figure 2.2. The client sends the value of its local counter when it calls
incr(). The application only needs now to increment the received value and
sends the result back. There is no need to store anything at the server side.
This kind of implementation is called stateless.

Load balancer

Client 1

App server 2

Client 2

Session:
client 2

App server 1 App server 3

Session:
client 1

Figure 2.3: Storing sessions locally at the application server

A stateful application keeps a separate state per client, called a session. In or-

22

2.1. Introduction

der to scale the application layer, a load-balancer is placed in front of several
application servers. A common scenario is that each application server stores
the sessions of its clients locally, as depicted in Figure 2.3. Obviously, a client
has to be served always by the same application server, the one which has
stored the session locally. The load-balancer has to be intelligent 1 enough
to route the requests of a client always to the same application server. While
this setup has the advantage of being easy and cheap to deploy, it does not
provide fault-tolerance: if an application server crashes, then all the sessions
stored on it disappear resulting in unwanted behaviours and bad user expe-
rience. Moreover, hot-spots are unavoidable as the load on a server depends
on the volume of the requests: for example, few heavier users may have a
large impact in term of resource usage or load-balancers using hash-based
routing are unable to properly handle tricky cases such as a large number of
users behind a NAT 2 device having the same IP address.

Load balancer

Client 1

App server 2

Client 2

Session:
client 1
client 2

App server 1 App server 3

Figure 2.4: Storing sessions centrally

A better architecture that provides fairer load-balancing as well as fault-
tolerance of the application layer is shown in Figure 2.4. The sessions are
stored centrally in a database or in an in-memory key-value store such as
Memcached [26]. A client request can now be handled by any application
server. If an application server crashes, the next request can be served by
another server as the client session is still available in the centralized store.
This approach achieves better load-balancing without creating hot-spots and
does not require a clever load-balancer that routes the clients’ requests always
to the same server. However, the centralized store becomes now the bottle-
neck and needs therefore to be scalable, as the scalability issue was pushed
down the stack to the database layer. The scalability of the database layer is
discussed in Chapter 3.

Even if some scalable NoSQL databases (see Chapter 3.3) were developed

1This feature is called ”sticky session”.
2http://en.wikipedia.org/wiki/Network address translation

23

2. Distributed Application Scalability

Load balancer

Client 1

App server 2

Client 2

App server 1 App server 3

Session: client 2

Session: client 2 Session: client 1

Session: client 1

Figure 2.5: Storing sessions at the client side using cookies

specifically to tackle the session case, avoiding completely the sessions re-
mains the best solution, as depicted in Figure 2.5. However, this is rarely
feasible in practise due to security constraints and the limited size of the data
that can be stored in a cookie or in the URL query string 3.

A monolithic or stateful application will obviously not be able to take advan-
tage of the elasticity offered by the cloud computing paradigm. Section 2.2
will give recommendations to build robust and scalable application, so as to
be able to fully exploit the power of cloud computing, while addressing the
issues inherent to it.

2.2 Scalability Best Practises

There is no unique recipe or commercial product that will make an appli-
cation scalable. Every application has different concerns and has to cope
with different constraints. However, looking at the infrastructure of success-
ful large-scale applications allows to infer some best practises. In particular,
[58, 98, 43, 55] give simple practical recommendations to design and deploy
large-scale services. Specific recommendations regarding the elaboration of
cloud applications are discussed in [154]. We provide an overview of several
architectural best practises to build robust and scalable applications:

• keep it simple: keep things simple and robust. This general advice
is even more relevant when designing large-scale distributed systems.
Complex interactions between the components or complicated algo-
rithms increase the hassle of deploying and debugging the application.
Simple things are easier to get right.

• expect failures: designing for failures is a core concept of large-scale ap-
plications composed of many components. Failures will happen, and
often! The application should continue to work without human interac-
tion even if the underlying physical hardware or components fail. For
example, Netflix 4, a company relying almost exclusively on a cloud

3http://en.wikipedia.org/wiki/Query string
4http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

24

2.2. Scalability Best Practises

computing infrastructure, kills random servers and services in its in-
frastructure continuously, just to ensure that the application will sur-
vive real failures.

• implement redundancy and fault recovery: the application should be
designed such that any system or component can crash at any time
while still satisfying the performance objectives (e.g., service level agree-
ments). A careful architectural design and redundancy are required to
achieve four or five nines of availability.

• implement loose coupling and be stateless: the application should
be split into independent stateless components, so as to minimize the
impact of change across dependencies between the components. The
functional decomposition groups similar pieces of functionality, while
trying to decouple unrelated functionality as much as possible, in order
to maximize the flexibility of scaling the components independently of
one another. Decoupling also allows components to continue to work,
maybe in a degraded mode, when other components have failed.

• split horizontally: loose coupling is not enough by itself as the load
of a single functional area can surpass the capacity of a single machine.
The functional area should be split into manageable, adjustable and
fine-grained partitions: for example, by using a look-up table the man-
ageable partitions can be freely moved between the available resources.

• be asynchronous: components should be non-blocking and should in-
teract in an asynchronous manner (e.g., through a queue), so that each
component can be scaled independently. Moreover, asynchronous flows
can better handle load peaks by spreading the load over time with the
help of queues, thus decreasing the infrastructure costs compared to
a synchronous architecture, which has to be provisioned for the peak
load (instead of the average load). For example, approaches like SEDA
– Staged Event-Driven Architecture 5 – can be considered to decompose
an application into a set of stages connected by queues.

• avoid distributed transactions: distributed transactions across various
database partitions are slow, costly and not scalable: guaranteeing im-
mediate consistency between the partitions is achieved using a block-
ing two-phase commit protocol. However, in most large-scale appli-
cations, relaxed transactional guarantees are sufficient as discussed in
Chapter 3.

• cache appropriately: caching slow-changing or read-only data can dras-
tically reduce the load on the infrastructure, and thus the costs. Caching
should be used at all levels.

• audit, profile, monitor and trigger alerts: every interaction between
components should be measured, monitored and should report anoma-
lies. The normal behaviour of the application has to be understood.
Some persistent bugs are not reproducible in development or staging
environments, so sufficient production data has to be collected and
maintained.

5http://en.wikipedia.org/wiki/Staged event-driven architecture

25

2. Distributed Application Scalability

• automate everything: human beings make mistakes all the time and
are usually less efficient under stress. So, automating every process
(provisioning, deployment, failover, . . .) is much more reliable, as au-
tomated processes are testable. Moreover, in order to be able to scale,
limiting the necessity for human management is essential to keep the
human operational expense manageable.

2.3 Cloud Computing

2.3.1 Definition

Being still an evolving paradigm, the definition of cloud computing may
change over time. According to the NIST 6, its definition [122] is the follow-
ing:

Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud
model promotes availability and is composed of five essential
characteristics, three service models, and four deployment mod-
els.

Essential Characteristics

• on-demand self-service: a consumer can unilaterally provi-
sion computing capabilities, such as server time and network
storage, as needed automatically without requiring human
interaction with each service’s provider;

• broad network access: capabilities are available over the net-
work and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs);

• resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant mo-
del, with different physical and virtual resources dynami-
cally assigned and reassigned according to consumer demand.
There is a sense of location independence in that the cus-
tomer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter). Examples of resources include storage, pro-
cessing, memory, network bandwidth, and virtual machines;

6National Institute of Standards and Technology. http://www.nist.gov/

26

2.3. Cloud Computing

• rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time;

• measured service: cloud systems automatically control and
optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of ser-
vice (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service;

Service Models

• cloud Software as a Service (SaaS): the capability provided
to the consumer is to use the provider’s applications run-
ning on a cloud infrastructure. The applications are accessi-
ble from various client devices through a thin client interface
such as a web browser (e.g., web-based email). The consumer
does not manage or control the underlying cloud infrastruc-
ture including network, servers, operating systems, storage,
or even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings;

• cloud Platform as a Service (PaaS): the capability provided
to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed ap-
plications and possibly application hosting environment con-
figurations;

• cloud Infrastructure as a Service (IaaS): the capability pro-
vided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models

27

2. Distributed Application Scalability

• private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or
a third party and may exist on premise or off premise;

• community cloud: the cloud infrastructure is shared by sev-
eral organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements, pol-
icy, and compliance considerations). It may be managed by
the organizations or a third party and may exist on premise
or off premise;

• public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services;

• hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that re-
main unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

VirtualizationVirtualization

ServerServer

StorageStorage

NetworkingNetworking

RuntimeRuntime

MiddlewareMiddleware

O/SO/S

VirtualizationVirtualization

ServerServer

StorageStorage

NetworkingNetworking

ApplicationsApplications

DataData

RuntimeRuntime

MiddlewareMiddleware

O/SO/S

VirtualizationVirtualization

ServerServer

StorageStorage

NetworkingNetworking

N
etw

ork
la

yer
Infra

structure
la

yer
P

latfo
rm

laye
r

S
e

rvice
laye

r

ApplicationsApplications

DataData

RuntimeRuntime

MiddlewareMiddleware

O/SO/S

N
on

-f
un

ct
io

na
l

F
u

nc
tio

na
l ApplicationsApplications

DataData

M
an

a
g

e
d

 b
y

c u
s

to
m

e
r

Infrastructure
as a Service

Platform
as a Service

Software
as a Service

M
a

n
ag

e
d

 b
y

p
ro

vi
d

er

M
a

n
ag

e
d

 b
y

p
ro

vi
d

er

M
a

n
ag

ed
 b

y
p

ro
vi

d
e

r

M
an

a
g

e
d

 b
y

cu
st

o
m

er

Figure 2.6: Management responsibilities of the different cloud models

Based on the previous definition, it is possible to define the responsibilities
of the user and the provider for each service model, as depicted in Figure 2.6.

28

2.3. Cloud Computing

Network layerNetwork layer

Infrastructure layerInfrastructure layer

Platform layerPlatform layer

Service layerService layer

SaaSPaaSIaaS

N
on

-f
un

ct
io

na
l

F
u

nc
tio

na
l

Billing model

Cheap

Expensive

End usersEnd users

Delta of Opportunity / Delta of Effort

Figure 2.7: Delta of effort and opportunity of the different cloud models

The stack of an application contains four different layers: the network layer,
the infrastructure layer, the platform layer and the service layer. An IaaS
provider manages the network and the infrastructure layers, that is the net-
working, the storage, the physical servers and the virtualization. The man-
agement of the platform and service layers is left to the customer. In a PaaS
model, the provider also manages the platform layer which consists of the op-
erating system, the runtime and the middleware. The customer only needs
to manage its applications and the corresponding data. Finally, in a SaaS
model, all layers are managed by the provider, the customer only consumes
the services.

There exists a delta of effort and a delta of opportunity between the three
models IaaS, PaaS and SaaS as shown in Figure 2.7. The delta of effort quan-
tifies the amount of skills, abilities, experience and technology that a user has
to provide in order to deliver a fully functional service. The delta of oppor-
tunity represents the area in which the user can innovate and differentiate
against its competitors. Both the delta of effort and the delta of opportunity
decrease when going from the IaaS model to the SaaS model.

2.3.2 Benefits

With the traditional deployment model where most physical resources such
as servers, network devices and storage systems are directly managed by the
user, the latter stays in full control of the whole system, allowing to focus on
data consistency and to ensure easier sharing and reuse of data and compo-
nents, stronger privacy and security as well as customizability. However, this

29

2. Distributed Application Scalability

model does not take advantage of the economies of scale and the elasticity of-
fered by the cloud computing paradigm, which provides easier provisioning
of resources, focuses on data availability (rather than consistency) and allows
to more directly reach regional as well as global markets, as cloud providers
are present all around the globe. Cloud computing providers manage a large
amount of low-cost computers using automated maintenance and system
management tools. Thanks to the automation, only a few administrators are
sufficient to manage thousands of computers in a simple and cost-effective
manner. Moreover, virtualization techniques make multiple operating sys-
tems running on the same computer possible, allowing a flexible and efficient
use of the computing resources.

Figure 2.8: The problem with fixed capacity: the capacity is either wasted (in green) or insufficient
(in red) according to the demand (in blue)

Predicting how much capacity will be needed as demand changes and plan-
ning the required resources to cope with application load remains an im-
portant and difficult problem. For example, a startup company providing
online services that suddenly get very popular, needs quickly more comput-
ing power or storage to serve the increasing load. The company should react
rapidly not to lose customers. Similarly, to handle flash-crowd, the underly-
ing infrastructure has to be flexible and reactive. With cloud computing it is
now possible to automatically use as much computing or storage resources
as needed, on demand without the need of over-provisioning or the risk of
under-provisioning. Let us consider an application with a traffic demand
varying over time, as depicted by Figure 2.8. With a fixed capacity, resources
are either wasted when the demand is below the allocated capacity (in green
in Figure 2.8) or insufficient during load peaks (in red in Figure 2.8). Thanks
to the new cloud computing solutions, a user pays only for the resources
consumed while being always able to satisfy the demand.

Cloud computing presents several benefits, explaining why a growing amount
of companies embrace it:

• efficiency: cloud computing has the potential to lower hardware and
IT costs by removing the need for a company to buy hardware and
to maintain its own small data center by a dedicated team, having to

30

2.3. Cloud Computing

take care of power, cooling, redundancy, etc. Concerning private clouds,
virtualized applications can run on top of a pool of resources, requiring
less hardware and thus less staff.

• agility: resources can be added and removed at will very quickly, al-
lowing to survive load peaks or hardware failures more easily.

• flexibility: pay only for what you consume. Hosted services are billed
on a monthly basis, while infrastructure and platform services are usu-
ally billed based on the capacity used.

A well designed application that can take into account new resources auto-
matically will largely benefit from the cloud computing paradigm, allowing
to support a fast growing amount of traffic without pain. However, this
novel paradigm is not perfect yet and requires several improvements, espe-
cially with public clouds: data security, confidentiality, privacy, support or
vendors’ lock-in are still a major concern.

2.3.3 Cloud Storage

Similarly to provisioning processing resources on demand (i.e., virtual ma-
chines), providing storage resources on demand is also a fundamental part
of the IaaS service model. Cloud storage enables a new way of storing and
distributing data, where the data owner is billed based on its usage with a
minimal commitment. Among the advantages of cloud storage we can cite
the predictable storage and delivery costs, the ability to access data from
anywhere with many different kind of devices using standard protocols (e.g.,
HTTP) and the almost infinite capacity offered by these new solutions. Fa-
mous cloud storage providers include Amazon S3 [2], Google Storage [16],
Microsoft Azure [27], RackSpace Cloud Files [42] or EMC Atmos [12]. Sim-
ilarly to cloud computing, a big advantage of cloud storage is the ability to
deliver on-demand capacity, avoiding the need for capacity planning.

Storage Interface

There are three fundamental ways to access and interact with a network stor-
age:

1. block storage: block storage systems are accessed using standard pro-
tocols such as iSCSI [20] or AoE [106]. A storage area network (SAN 7)
typically provides block-based storage, where file system concerns are
left on the client side. It provides high data throughput using direct
access to the data at disk or fibre channel level. A SAN appears as a
disk which has to be formatted and mounted by the client operating
system.

2. file storage: it is accessed by network file sharing protocols such as
CIFS [9] or NFS [140]. Network-attached storage (NAS 8) provides stor-
age as well as a file system. A NAS appears as a file server to the client

7http://en.wikipedia.org/wiki/Storage Area Network
8http://en.wikipedia.org/wiki/Network-attached storage

31

2. Distributed Application Scalability

operating system and multiple clients can access the data at the same
time.

3. object storage: object storage encapsulate the data, including attributes
and metadata, allowing to determine data layout on a per-object basis,
thus improving flexibility and manageability. It is typically accessed
through a REST [86] or SOAP [47] API. Unlike block or file storage,
clients usually access the data remotely over Internet. This is the inter-
face offered by the cloud storage providers.

Cloud Storage Gateway

Storing and retrieving data from a cloud storage provider requires program-
ming skills in order to interact with the provider’s proprietary API. Moreover,
every provider has its own API which makes difficult and costly to use sev-
eral providers at the same time. As cloud storage providers provide only an
object storage interface, a file or block interface is required to allow existing
applications to use this new kind of elastic storage: Cloud Storage Gateways
allow to access several cloud storage providers through a traditional file or
block access, removing the need to use the providers’ proprietary API, as
depicted in Figure 2.9. A local Cloud Storage Gateway comes usually as
an appliance which not only provides a transparent access to multiple cloud
providers, but also offers advanced features such as caching, encryption, com-
pression or deduplication [121] for example.

Remote
Gateway

Remote
Gateway

Cloud
Storage

File/Block Access
ApplicationApplication

API Call

Internet LAN

Local
Gateway

Local
Gateway

Cloud
Storage

File or
Block Access

ApplicationApplication
API Call

LAN Internet

Cloud
StorageApplicationApplication

API Call

Internet
a)

b)

c)

Figure 2.9: Access to Cloud Storage: a) direct access b) access through a remote gateway c)
access through a local gateway

Content Delivery

Cloud storage is mainly used to store large amount of static files like pictures
or read-mostly data. To deliver data quicker to the end user, the data should
be stored geographically close to the consumers. If the end users of a photo-
sharing website are mainly located in Europe, it makes sense to choose a
cloud storage provider also located in Europe. However, most of the time

32

2.4. Conclusion

User

Cache

Figure 2.10: Content Delivery Network

the visitors of a web site do not come from a single region. In order to
serve end users’ requests efficiently, the data should be cached close to its
destination. Large cloud storage providers also offer a worldwide caching
system working seamlessly with their storage solution: a content delivery
network (CDN) [104].

A CDN is composed of multiple computers interconnected on Internet pro-
viding content efficiently to end users by replicating the content on those
computers and by redirecting the users to the geographically closest copy of
the data, so as to minimize the end-to-end latency, as depicted on Figure 2.10.
That is, the same data exists in multiple locations cleverly dispersed over the
world, allowing to serve the data to a large number of end users reliably even
during sudden demand peaks.

Beside reducing the load of the server hosting the original data and mini-
mizing the latency for end users, a CDN technology also provides some sort
of content redundancy: if the origin server has a failure, the content is still
cached and accessible to the users, allowing the application to work in a
degraded mode.

2.4 Conclusion

Cloud computing offers a lot of new opportunities for small companies as
well as for big players, allowing to build an application that can grow from
hundreds to millions of clients in a very short time span. In Chapter 5, we de-
scribe a framework to build highly-available and scalable applications, which
are able to take advantage of the elasticity of the cloud computing infrastruc-
ture while coping with unreliable resources. Cloud storage and CDN technol-
ogy permit to store and deliver a huge amount of data efficiently, reliably and
in a cost-effective manner. A non-negligible part of the global Internet traffic

33

2. Distributed Application Scalability

is already served by CDNs: for example, Akamai 9, a leading CDN provider,
is known to deliver between 15% and 20% [126] of all Internet traffic world-
wide. With the rise of cloud storage and their coupled delivery offers, the
percentage of data served by content delivery networks will probably keep
on growing.

However, several issues need to be tackled before a widespread adoption of
cloud computing can happen, especially regarding data governance, security
and business environment. The ownership of a data stored in a cloud in-
frastructure managed by a third-party or the right to access it are questions
related to data governance. In the case of legal dispute between the provider
and the data owner, which is the legal jurisdiction? Data privacy and con-
fidentiality are also a primary concern for many cloud users. Security is
another big challenge: data stored in a cloud should be always available, but
only to the authorized people. A large amount of work has still to be done
in order to ensure only authorized access, integrity and availability of data.
Definitive deletion of data should also be ensured by the cloud providers. Fi-
nally, interoperability between cloud providers and data portability is manda-
tory to drive competition so as to increase the resilience and the maturity of
the cloud computing ecosystem. The market is still reticent about cloud stor-
age, mainly because transferring data between cloud storage providers is still
a major problem, as there is no peering agreements between providers. To-
day, there is no standard allowing to move data around, thus the customers
are locked in by vendors: switching to a new provider involves a prohibitive
cost. In Chapter 6, we describe an approach able to avoid the vendors’ lock-
in, while storing content to the optimal set of cloud storage providers so as
to minimize the costs.

9http://www.akamai.com/

34

Chapter 3

Database Scalability

3.1 Introduction

In Chapter 2, we have discussed the scalability challenges occurring at the
application layer, along with the related opportunities offered by cloud com-
puting in general and cloud storage in particular. In this Chapter, we will
discussed the challenges to reliably store and query information in a scalable
manner.

As non trivial applications require a database to store important in a persis-
tent manner, the database layer should also be scalable in order to handle the
load generated by the application layer. In the current corporate computing
architectures, the database layer is mostly composed of relational database
management systems (RDBMS) 1, which provide a set of properties guaran-
teeing that transactions are processed reliably. The main characteristics of a
reliable transaction system [92, 93] are known under the acronym ACID [97]:

• atomicity: this property prevents that a series of updates to the database
occur only partially, which is more problematic than entirely rejecting
the whole series. That is, a series of database operations, called a trans-
action, either all occur or nothing occurs.

• consistency: this property ensures that any transaction the database
performs will take it from one consistent state to another. It ensures
the correctness of the database, and states that only valid data will be
written to the database.

• isolation: this property defines how/when the changes made by one
operation become visible to other concurrent operations. It requires
that other operations cannot access data that has been modified during
a transaction that has not yet completed.

• durability: this property guarantees that the results of transactions that
have committed will be stored permanently even in case of any kind of
system failure.

1http://en.wikipedia.org/wiki/Relational database management system

35

3. Database Scalability

The databases following the relational model are able to support a large range
of applications, but are at the same time complex and come with perfor-
mance constraints. Many applications do not require such a rich program-
ming model, but will benefit from lighter, simpler and more scalable data
stores. With the rise of very large web applications such as Amazon.com,
Facebook or Google, new classes of data stores have been developed to store
and fetch key-values pairs very efficiently, to store and process huge amount
of data or to deal with large graphs for example. Structured storage systems
can be classified [99] into several categories based on the underlying goal an
application wants to achieve:

• feature-first: a relational database management system, such as Oracle
Database [39], MS SQL Server [28], IBM DB2 [19] or MySQL [31] is the
natural choice to support typical corporate applications such as enter-
prise resource planning (ERP) 2, human resource management systems
(HRMS) 3 or customer relationship management (CRM) 4. Although
these softwares can be demanding and business critical, they usually
run on a single database instance and thus only vertical scaling is con-
sidered, even in large companies.

• scale-first: for very large applications such as Amazon.com, Facebook
or Google scaling the database layer is more important than the features.
As such applications do not run on a single database instance, scalabil-
ity is accomplished either by horizontally partitioning the dataset (see
Section 3.2.2) or by using a scalable NoSQL datastore (see Section 3.3),
such as Apache Cassandra [4], Project Voldemort [40] or Apache HBase
[18].

• simple structure storage: a large amount of applications do no require
the features of a relational database management system, let alone its
costs and complexity. They also do not have the scalability require-
ments of the scale-first class of applications; they just need a structured
storage that is simple, cheap, easy to manage, fast and that can process
simple queries efficiently. Data stores such as Berkeley DB [5], which
is an embedded key-value database, CouchDB [10] or MongoDB [30]
typically fall into this category.

• purpose-optimized stores: existing relational database management
systems are not optimized for many classes of applications, such as
data warehousing, stream processing, RDF processing, analytics for sci-
entific research or time series processing. Many databases have been
developed by companies focusing exclusively on specific market seg-
ments such as OpenTSDB [38], VoltDB [51], SciDB [46] or Hadapt [17].

It distinctly appears that no unique solution is appropriate for all kinds of
problems or applications: it is important to find the suitable solution for a
given problem, and therefore both relational and non-relational structured
storage systems are essential and should coexist.

2http://en.wikipedia.org/wiki/Enterprise resource planning
3http://en.wikipedia.org/wiki/Human resource management system
4http://en.wikipedia.org/wiki/Customer relationship management

36

3.2. Relational Databases

3.2 Relational Databases

The first approach to scale a relational database is to take advantage of the
replication mechanisms, as will be described in Section 3.2.1. However, as
shown in Section 1.2.1, replication cannot scale beyond a certain point. To
further scale the database layer, it is required to partition the database (as
will be described in Section 3.2.2).

3.2.1 Replication

The various modes of replication expand the read capacity over multiple
servers, by keeping multiple replicas of the data on multiple servers. How-
ever, the write capacity cannot be scaled satisfyingly with this method.

Master-Slave Replication

Master

Slave

Replication

Reads and writes

Reads

Slave

Figure 3.1: Master-slave replication

In a master-slave replication setup, all write operations, such as insert, update,
delete, create or alter, are performed on the master server. All changes are
then replicated asynchronously to the slave servers. In the example depicted
in Figure 3.1, the read capacity has grown by three, as all servers can handle
read requests. In order to further scale the read capacity, new slaves simply
need to be added to the setup.

However, beside being a single point of failure, the master server remains
a bottleneck, as all write operations have to be handled by it, before being
replicated to the slaves. A major problem with this setup was pointed out
in the motivating example of Section 1.2.1: as every server has to perform
every write operation, the master-slave setup cannot scale the write capacity
and eventually, if the write load increases, the read capacity will be absorbed
by the write load. Finally, a problem specific to asynchronous replication
occurs when network traffic increases: when replication is delayed, slave
servers may return stale data. Replication lag, which corresponds to the time
it takes for an operation executed on the master to be executed on a slave,
is usually low (in the order of milliseconds) for an idle system, but can be

37

3. Database Scalability

problematic when the server load increases as the application functionality
may be impaired.

Tree Replication

Slave

Replication

Reads and writes

Reads

Slave/
Master

Slave

SlaveSlave

Replication

Master

Figure 3.2: Tree replication

In a master-slave setup with a large amount of slaves connected to a single
master, the resources requirement (such as bandwidth for example) of the
master becomes considerable. Consequently, to limit the number of slaves
connected to a single master, a replication tree [102] can be created by turn-
ing some slaves into a master of further slaves, as shown in Figure 3.2. Ad-
ditionally, the tree replication allows to replicate only a portion of data from
a master to its slaves, reducing data traffic and creating specialized slaves.
When a specialized slave replicates only a single table, its capacity can be in-
creased by dropping unused indexes or by changing the underlying storage
engine (e.g., using MyISAM instead of InnoDB in the case of MySQL.)

However, this replication scheme involves greater replication lag as shown
in Figure 3.2: a write operation is first executed on the master and then
replicated to the second-level slaves. Once the operation is performed on the
second level, it gets replicated to the third level, and so on until the update
reaches all bottom slaves. Another drawback of this approach is that the
bottom slaves will go stale if a middle-tier slave encounters a failure, which
can lead to inconsistencies impacting the application functionality.

Multi-Master replication

In a multi-master replication [102, 111] scenario, the data is stored by a group
of computers (i.e., the master database servers) and updated by any member
of that group. In case of a master failure, other members of the group are still
able to update the database. Transactions can be propagated among masters
using two ways: synchronously or asynchronously.

38

3.2. Relational Databases

Master

Reads and writes

Reads

Replication Master

Slave Slave

Replication Replication

Figure 3.3: Multi-master replication

Synchronous replication increases communication latency and involves ad-
vanced techniques such as 2 phase commit [60, 91, 131, 120], 3 phase com-
mit [146], Paxos [114] or various approaches to state machine replication [70,
112]. According to the protocol or the number of faulty master tolerated, per-
formance and availability of a multi-master setup can be less than the ones
of a single master setup. In addition, the scalability of this approach is lim-
ited because every write operation has to be acknowledged by a minimum
number of master database servers in order to reach a quorum [153, 88] such
that consistency of the data can be guaranteed. For example, in the case
of state machine replication with non-byzantine failures [116], the group of
master database servers should be composed at least of 2 f + 1 members [115],
where f is the number of faulty servers.

Asynchronous replication is more popular due to its advantages over syn-
chronous replication. First, it uses less network bandwidth and provides
higher performance, by grouping the transactions rather than propagating
each transaction separately. Second, it is more resilient to failures: if a master
server crashes, other master servers still can execute the updates. However
despite all its advantages, asynchronous replication has several drawbacks:
concurrent updates on two different master servers can lead to conflicts and
data inconsistencies. As a simple workaround to avoid inconsistencies, the
application interacting with the database should never write the same entry
on two different servers at the same time, by using for example a third party
locking mechanism such as ZooKeeper [107]. Moreover, in case of a large
number of concurrent write operations to the database, no single “valid” copy
of the data exists: entries written on one master server will take some time to
get replicated to the other master servers, that is, each master database server
may have a different copy of the data at a given point of time.

3.2.2 Database Sharding

As discussed in the previous section, replicating data only permits to scale
the read capacity. In order to also scale the write capacity, data needs to be
split into partitions, or shards, which may be spread over multiple indepen-
dent servers with their own resources, such that partitions have dedicated

39

3. Database Scalability

Vertical Partitioning

Horizontal Partitioning

Figure 3.4: Database partitioning: horizontal versus vertical

write capacity. That is, the total write capacity of a database is directly re-
lated to the number of its partitions.

There are two basic ways of partitioning the data as shown in Figure 3.4. The
first approach, known as vertical partitioning, is to split the attributes by cre-
ating tables containing fewer attributes (i.e., fewer columns) and making use
of supplementary tables for the remaining attributes. While vertically parti-
tioning the data is relatively easy to set up, it only offers limited scalability.
The second approach, called horizontal partitioning, splits the tuples (i.e., the
rows) into different tables, allowing to scale to any number of partitions.

While partitioning is also used to improve the performance of a database
server within a single instance of a schema, by reducing index sizes for exam-
ple, we discuss it here in the context of scalability, where multiple instances
of the schema exist, allowing the load to be split across multiples servers.
Database sharding is directly related to shared nothing architectures [148]
and goes beyond horizontal partitioning: as partitions are spread over multi-
ple independent servers, potentially hosted in different datacenters, the load
of a partitioned table is also spread over multiple servers, not just over multi-
ple indexes like in the case of horizontal partitioning.

Vertical Partitioning

The main idea is to put on different partitions tables belonging to different
functional areas, such as business units (like administration, sales, marketing,
production, finance, . . .), or belonging to different functional aspects of an ap-
plication: for example in a SOA-based application, services are in charge of
independent parts of the application, each providing a separate functionality,
and will therefore probably access distinct tables of the database. Both the
data and load scalability are driven by the functional aspects of the appli-
cation. The latter has to be modified to pick the right partition depending

40

3.2. Relational Databases

on the tables that are queried. Moreover, the join operations spanning sev-
eral partitions have now to be moved to the application level, increasing the
complexity and the load of the application. The database is no more truly
relational, and the scalability is limited because a functional aspect of an ap-
plication cannot grow over the capacity of the underlying database server
hosting the partition.

Posts

Users Comments

is written by one has many

Figure 3.5: Simplified data model of a weblog application

Figure 3.5 presents a simplified database schema of a web application allow-
ing an author to post blog entries, which anonymous readers can comment.
The database contains only three tables: users used to store the details and
credentials of the authors of a blog, posts which contains the blog entries
posted by the authors and comments which stores the comments attached to a
blog entry. Let’s imagine that the current database is no more able to process
the queries and thus its capacity needs to be increased. After having anal-
ysed the application, it appears that the table posts has grown too much and
requires too many resources. A solution is to place posts on a second server,
while users and comments stay on the initial server, as depicted on Figure 3.6.
Although the scalability issue has been resolved by vertically partitioning the
database, moving posts to another cluster broke the relational model: the com-
ments attached to a blog entry are no more linked by a relational constraint,
as they are now on a different partition. So, if a blog entry is deleted, the ap-
plication should now take care of deleting the related comments. Previously,
this action was handled automatically by the database (e.g., using cascading
triggers).

Master
Users
Posts

Comments

Replication

Slave
Users
Posts

Comments

Slave
Users
Posts

Comments

Master
Users

Comments

Replication

Master
Posts

Slave
Users

Comments

Slave
Posts

Figure 3.6: Vertical partitioning: as the table posts needs additional capacity, it is moved to a
different partition

41

3. Database Scalability

What happens if the table posts keeps growing beyond the capacity of the
server hosting the partition? This scalability barrier can be solved by splitting
the table into two or more tables; this technique, called horizontal partition-
ing, is described in the next subsection.

Horizontal Partitioning

Horizontally partitioning the data is the most general approach to scale out
a database to arbitrary sizes. Instead of splitting tables based on functional
aspects, the tuples of a table are now split by key into several smaller tables
(in term of rows), each of them being hosted on a different partition. When
the size of the dataset or the amount of queries to the database increases, the
number of partitions is also increased so as to keep a similar amount of data
and queries per partition: adding new servers permits to increase the read
and the write capacity of the database, as the global load is spread over a
greater number of servers.

This partitioning scheme comes with a non negligible cost in term of com-
plexity: a range query on a table spread over multiple partitions requires to
fetch data on all involved partitions, merge and sort the data to obtain the
final answer to the query. Things are getting even more complicated with a
join operation involving multiple tables located on several partitions. Queries
across partitions can be circumvented using denormalization [145, 141, 160],
that is, by grouping or by adding redundant data, so as to be able to fetch
related data from the same partition. For example, tables with data that is not
frequently updated such as a list of countries could be easily duplicated on
each partition to avoid queries across partitions. Finally, a layer responsible
for handling the partition access logic needs to be created, further increasing
the complexity of this approach.

Replication

Master
Users_A-M
Posts_EN

Comments_EN

Slave
Users_A-M
Posts_EN

Comments_EN

Master
Users_N-Z
Posts_FR

Comments_FR

Master
Users_A-M
Posts_EN

Comments_EN

Slave
Users_N-Z
Posts_FR

Comments_FR

Master
Users
Posts

Comments

Replication

Slave
Users
Posts

Comments

Slave
Users
Posts

Comments

Figure 3.7: Horizontal partitioning: tables are partitioned into smaller tables according to a key,
such as the language of the blog posts or the name of the authors

Figure 3.7 shows a possible partitioning of the database: the table posts is
now split into two tables posts FR and posts EN containing the posts written
in French and those written in English (we consider in this example that half
of the writers are French speaking, and the other half are English speaking).

42

3.2. Relational Databases

In order to avoid cross-partitions queries, the comments related to a blog
entry are hosted on the same partition. Finally, to balance the load between
both partitions, the table users is split based on the first letter of their names.

The decision how to split a dataset depends on the nature of the application
and how the data will be queried or accessed. There exists three main ways
of partitioning the data:

• hash based: the dataset is split according to a hash function. A simple
approach is to use the modulo function with the number of partitions,
as depicted in Figure 3.8: when a new partition is added to further scale
out, the data will have to be rebalanced, which is a complicated and
costly operation. However, using a consistent hashing mechanism [110]
mitigates the amount of data that needs to be moved, by using virtual
partitions.

• range based: the dataset is split according to several ranges. In the case
of the table users, the users with their name starting from ’a’ to ’m’ go
to the first partition and users with their name starting from ’n’ to ’z’ go
to the second partition. Other kind of ranges can be imagined: a time
range can be used to partition the table posts: entries written between
2000 and 2009 go to a first partition while entries between 2010 and
2019 go to another partition.

• directory based: the dataset is split arbitrarily and a level of indirection
is added so as to map each partition key to a partition. Altering the
mapping, which is stored in a directory, allows to move the data corre-
sponding to a partition key to a different partition easily. Although this
partitioning scheme is the most flexible, it introduces overhead, makes
more difficult for an application to query the database and may create
a single point of failure.

Master
Posts

Partitioning logicPartitioning logic

Master
Posts

Master
Posts

Master
Posts

Partition 0 Partition 1 Partition 2 Partition 3

% 4 = 0 % 4 = 1 % 4 = 2 % 4 = 3

ApplicationApplication

Figure 3.8: Horizontal partitioning: a layer manages the logic to access the partitions

43

3. Database Scalability

Discussion

Sharding a database results in the dataset being fragmented and spread over
multiple separate servers, reducing the advantages of the relational model.
This approach might cause more problems than it solves. If the relational
constraints on the data are not needed or not available due to database shard-
ing, then a traditional relational database might be unnecessary; in that case
a NoSQL or NewSQL database is easier to scale. It also worth to mention
that in practice relational databases scale vertically (i.e., by adding resources
such as memory and CPU to the database server) substantially more than
commonly admitted by many specialists [143]. Moreover, aggressive caching
at every layer (client, application, database, . . .) greatly reduces the read load
of the database, and should be therefore considered before using advanced
techniques such as sharding.

3.3 NoSQL Databases

The term NoSQL standing for “Not only SQL” was popularised in early 2009
and is an umbrella term to define a class of non-relational structured storage
systems that differ from classic relational database management systems by
focusing on specific niches such as scalability or graph processing for exam-
ple. The rapid development of NoSQL databases was partly influenced by
two key research papers:

• Google BigTable [71] defines a specific data model focused on storing
and querying multi-column data and uses a range-based partitioning
scheme which allows data to be stored on multiple distributed nodes;

• Amazon Dynamo [78] uses a simpler key-value data model, but the sys-
tem is more resilient to failures, thanks to a looser consistency model.

Although there is today no widely accepted definition, a NoSQL data store
has some of the following properties: non relational, distributed, (horizontal)
scalable, schema-free, easy replication support, simple API 5, big data 6 ready,
eventually consistent.

While Figure 3.9 gives a gross overview of the data models of the main
NoSQL databases available, they might be better classified using a four di-
mensional representation: query model vs. data model vs. distribution
model vs. disk/memory data structure. A survey of existing NoSQL ap-
proaches is presented in [151].

NoSQL data stores were primarily developed with a strong focus on scala-
bility by making some engineering trade-offs described by the CAP theorem,
which was introduced in [68] and formally proven in [89]. It states that a dis-
tributed system can satisfy any two of the following guarantees at the same
time, but not all three:

5http://en.wikipedia.org/wiki/Api
6http://en.wikipedia.org/wiki/Big data

44

3.3. NoSQL Databases

NoSQL

Key-Value Store

Document Store

Column Store

Graph Store

Persistent

Volatile

Dynamo, Voldemort,
Riak

Memcached, Scalaris

MongoDB, CouchDB,
OrientDB

Hadoop/Hbase,
Cassandra, BigTable

Neo4j, FlockDB

Object Database

Db40, ZODB

XML Database

eXist, BaseX

Data structure Store

Redis, Hazelcast

Figure 3.9: NoSQL databases landscape

• consistency: all clients see the same data, even in presence of concur-
rent updates. The definition given in [89] defines consistency as being

“equivalent to requiring requests of the distributed shared memory to
act as if they were executing on a single node, responding to operations
one at a time”.

• availability: all clients are able to access some version of the data, even
in the presence of failures. In [89], it is defined as “every request re-
ceived by a non-failing node in the system must result in a response.”

• partition tolerance: the system continues to operate despite arbitrary
message loss: the system properties hold even when the system is par-
titioned. However, no definition of partition tolerance is given in [89],
which has led to some confusion [135].

This theorem is sometimes used inappropriately as the justification for giv-
ing up consistency [149]. The problem is that the concept of consistency
in ACID does not describe the same concept as consistency in CAP [162].
In the proof [89] of the CAP theorem, consistency means that every object
is linearizable [103]: if a client gets a response, it has the right answer, de-

45

3. Database Scalability

A
Availability

C
Consistency

P
Tolerance to

network partitions

CP

CA

AP

Figure 3.10: Brewer’s Conjecture: CAP theorem

spite concurrency. Linearizability, or one-copy serializability [64], ensures
that operations are serializable and applied in a consistent order. In fact, it
corresponds to the concept of isolation from concurrent operations in ACID
and not consistency in ACID. Moreover, in the proof of the CAP theorem, the
concept of transaction is not tackled, where a transaction, which may commit
or abort, has a start, a sequence of operations and an end. Contrary to CAP,
ACID refers to an entire transaction.

As depicted in Figure 3.10, there are three choices offered by the CAP theo-
rem:

• CA: consistent and available, but not partition tolerant; HBase and
BigTable are notable examples of CA systems.

• AP: available and partition tolerant, but not consistent; Amazon Dy-
namo and Cassandra belong to the AP systems for example.

• CP: consistent and partition tolerant, but not available;

The last kind of system is consistent and partition tolerant (CP), but not avail-
able: a system that is never available is completely useless. In fact, a system
that is consistent and partition tolerant (CP) sacrifices availability only in
case of a network partition. An available and tolerant to partitions system
(AP) sacrifices consistency all the time, not just in case of a network parti-
tion. Availability and consistency in the CAP theorem are therefore asym-
metric [54], where some properties apply in general while others apply only
when there is a network partition. The asymmetry resides in the probabili-
ties of different failures. The lesson of the CAP theorem is that if there is a
possibility of network partitions, then availability and consistency cannot be
achieved at the same time: the choice is almost always between consistency
and availability.

However, the trade-off between consistency and availability may give a wrong
perception that a system has to give up consistency in order to get availabil-
ity. Even if a system has to give up only one property, some systems such
as PNUTS [73] want to give up both consistency and availability at the same

46

3.4. NewSQL Databases

time, in order to decrease latency. First, PNUTS gives up availability: if the
master replica of a data is unreachable, then the data can no more be up-
dated. Then, regarding network partitions, keeping the consistency between
two replicas located at two geographically distant places is costly in term of
latency, and might be undesirable in many applications. So, to reduce latency,
the replication is done in an asynchronous manner, which in turn reduces
consistency. Under normal circumstances, PNUTS gives up consistency for
latency, and when a network partition occurs, it gives up availability rather
than additional consistency.

PACELC [54] is an evolution of the CAP theorem that takes into account the
asymmetry of availability and consistency as well as the impact of latency:
if there is a network partition (P), a system may choose between availability
(A) or consistency (C) else (E) a system may choose between latency (L) or
consistency (C). Using this model, systems such as Cassandra or Dynamo are
labelled as PA/EL, while full ACID compliant database systems can be seen
as PC/EC systems. Finally, PNUTS is an example of a PC/EL system. Even
if PACELC goes in the right direction to properly define distributed systems,
the existence of PC/EL is debatable [163] and somehow confusing.

Although most of the NoSQL data stores are scalable and capable of manag-
ing a large amount of data, highly skewed popularity of data items is rarely
taken into account properly, which can have a severe impact on the global
performance of the data store. Moreover, data being highly valuable, a data
store must ensure that data will be always available, despite failures. Data
should be replicated in several geographical distinct places, so as to survive
to major failures (e.g., a datacenter failure). In Chapter 4, we improve a
Dynamo-based data store, such that popular data items are given more re-
sources to handle the load, while data replicas are geographically spread to
avoid correlated failures.

3.4 NewSQL Databases

The term NewSQL [36] defines relational databases designed for scalabil-
ity while preserving the structured query language (SQL), the relational
model and the ACID properties, contrary to NoSQL databases which do
not provide all the features of the traditional relational database systems.
These databases, such as ScaleBase [44], GenieDB [15], NimbusDB [37], Xer-
ound [53], VoltDB [51] or Schooner [45], try to improve the relational database
model in reaction to the success of NoSQL databases. The term NewSQL be-
ing misleading, [36] gives the following explanation:

And to clarify, like NoSQL, NewSQL is not to be taken too liter-
ally: the new thing about the NewSQL vendors is the vendor, not
the SQL.

They can be divided in several categories:

• new MySQL storage engines: besides scaling very well, this category
offers the same programming interface for MySQL users. The obvious

47

3. Database Scalability

limitation is that only MySQL is supported. Xeround or Schooner are
good examples of databases in this category.

• new databases: completely new databases are designed to enable scal-
ability while offering features of the traditional relational databases.
Some examples of this category are VoltDB or NimbusDB.

• transparent sharding: instead of extending an existing database or cre-
ating a new database to support the scalability requirements, transpar-
ent sharding addresses the complexity of sharding and provides a run-
time infrastructure to make the shards appear as a single database to
applications. Being database agnostic, this solution allows to reuse ex-
isting database systems. ScaleBase and dbShards [11] are examples of
this category.

Similarly to NoSQL databases, each NewSQL solution addresses specific
needs.

3.5 Consistency Models

The main approaches to data consistency in NoSQL databases are strong
consistency where all replicas remain synchronized, and eventual consistency
where replicas are allowed to get unsynchronized, but will eventually be
synchronized with each other.

Let’s consider a distributed database consisting of N nodes, where a data d
is stored. According to [155], three quorum parameters are important:

• R: the number of replicas of d to read from;

• W: the number of replicas of d that acknowledge the write operation
before the operation completes;

• S: the number of nodes that store replicas of d.

As long as R+W > S, strong consistency is ensured because the read set and
the write set always overlap on at least one element. When R + W ≤ S, the
read set and the write sets might not overlap, hence only eventual consistency
can be guaranteed.

The values for R and W have a direct impact on the availability or the perfor-
mance of the database. If W = S, then a write operation has to be acknowl-
edged by all S replicas and thus will fail if one of the S replica is unavailable.
On the other hand, we can now set R = 1 which provides very good read
performance.

3.5.1 Strong Consistency

The goal of strong consistency is to ensure that all replicas hosting the value
of a given key will always reach a consensus on that value. That is, all
clients querying the database have to see the same view, even in presence of
concurrent updates: every read has to return data from the latest successful

48

3.5. Consistency Models

100100

S=3, W=2, R=1

A

100100 B

00 C

Coordinator

Add (100)

Add (100)

Add (100)

OK

Add (100)

OKOK

100100 A

100100 B

00 C

Coordinator

Balance ?

0

0

Balance ?

Figure 3.11: Only eventual consistency can be ensured when R + W ≤ S

write. There are basically two ways to achieve this: either, all operations (read,
write, delete) for a given key have to be executed on the same unique node,
or a distributed transaction protocol is required such as Paxos [114] or two-
phase commit [60, 91, 131, 120]. Note that consistency cannot be achieved at
the same time with availability and partition tolerance as seen in Section 3.3.

As an example, consider a simple banking system where an account, repre-
sented by its own key, has 3 replicas (i.e., S = 3) and an initial balance of
0 $. The account myaccount is thus replicated on 3 different nodes, namely A,
B and C. Let’s deposit 100 $ into myaccount and directly check the balance
to verify that the money is really on the account. On Figure 3.11, the write
operation is successfully performed by nodes A and B, but node C did not
get the message, due to a temporary network failure for example. As W = 2,
the coordinator confirms to the user that the write operation was a success.
When the user wants to check the balance of the account, as R = 1, the co-
ordinator sends the request to only one node, C in this case. An old value
(0 $) is returned to the client, instead of the expected value (100 $). Strong
consistency is not ensured here because R + W = S with the current settings
(S = 3, W = 2, R = 1). To achieve strong consistency (i.e., R + W > S), we
can either:

• increase the number of nodes to read from: on Figure 3.12 the coordi-
nator sends the write operation to all nodes, but again node C does not
receive the request. As W = 2, the operation is reported as successful to
the user. When the user checks the balance, the read operation is sent to

49

3. Database Scalability

100100

S=3, W=2, R=2

A

100100 B

00 C

Coordinator

Add (100)

Add (100)

Add (100)

OK

Add (100)

OKOK

100100 A

100100 B

00 C

??

Coordinator 0

Balance ?

Balance ?

100

100100 A

100100 B

00 C

Coordinator

100

Balance ?

100

Balance ?

Figure 3.12: Strong Consistency: detecting conflicts at read time

nodes A and C as R = 2. The coordinator detects the conflicting values
returned by the nodes (0 $ and 100 $), and thus asks the third node to
form a quorum. The correct value (100 $) is then returned to the client.
An anti-entropy mechanism [81, 90, 129] such as read-repair [78] (see
Section 3.5.2) can be used to resynchronize node C.

• increase the number of nodes that need to acknowledge the write opera-
tions: on Figure 3.12 as W = 3 the write operation fails because node C
did not send back its acknowledgement. The transaction is rollbacked
and an error is reported to the user.

A large amount of databases ensuring strong consistency adopts W = S and
R = 1: no need to detect stale values or to resolve conflicts, as all replicas
are always synchronized. While the design is simplified, the availability is

50

3.5. Consistency Models

100100

S=3, W=3, R=1

A

100100 B

00 C

Coordinator

Add (100)

Add (100)

Add (100)

OK

Add (100)

OKFAILED

Figure 3.13: Strong Consistency: write failure

reduced, since write operations will fail (or hang) on any replica failure. An-
other popular setup is R + W = S + 1: strong consistency is ensured while
achieving greater availability, since replicas can be temporarily unsynchro-
nized.

3.5.2 Eventual Consistency

In an eventual consistent model (i.e., R+W ≤ S), read operations may return
inconsistent values as updates are in progress. After an update, the model
only guarantees that subsequent read operations will return the updated
value eventually. While concurrency control [65, 161] is usually obtained us-
ing locking or multiversion concurrency control (MVCC), a database needs
to implement several techniques to detect conflicts among unsynchronized
replicas and has to replicate data efficiently:

Versioning Detecting conflicts and data versioning are important since some
replicas may have a different value for the same key. Vector Clock [85, 61],
a type of versioning, is often used to deal with multiple versions of the
same value, for example in eventually consistent systems like Dynamo [78]
or Voldemort [40]. Another approach used for example by Cassandra [4] is
multiversion storage, where a timestamp is stored on each key: when two
versions of the same key are in conflict, the version with the most recent
timestamp is returned.

Conflict Resolution Several approaches are available to resolve conflicts
when they are detected. Dynamo-like systems use a client-side approach
where the application is responsible for choosing the correct value or for
merging the conflicting versions. A simplified approach taken by Cassandra
is to always return the latest value. Hybrid solutions mixing both approaches
are also implemented in systems like CouchDB [10].

Hinted Handoff A mechanism to deal with failed nodes is called hinted
handoff [78, 4]. If a write operation is sent to a replica that is temporarily

51

3. Database Scalability

unavailable, the system will write a hint to one of the available replicas (or
to neighboring nodes or to the coordinator, depending on the systems). This
hint suggests that the write operation needs to be replayed to the unavailable
node when it has recovered. Hinted handoff provides two advantages: first
it reduces the time for a failed node to be synchronized again and second it
allows to achieve extreme write availability in the case of consistency is not
important.

Anti-Entropy When a node storing the hint for a failed node is down or
when a node is unavailable for a long period, the replicas must still syn-
chronize from one-another. A mechanism called anti-entropy [81, 90, 129]
compares all the replicas of each key and updates each stale replica to the
latest version. Anti-entropy is usually implemented using Merkle Trees [123],
which are exchanged by replicas to pinpoint inconsistencies while minimiz-
ing the amount of transferred data, as replicas contain mostly similar data.

Read Repair Read repair [78] is an anti-entropy mechanism to optimistically
update stale replicas after the coordinator has returned a consistent value
from a read request. This mechanism proactively resolves conflicts with little
additional work: as every replicas has sent its version of the data to the
coordinator, using a conflict-resolution protocol the latter is able to push the
latest consistent value to any stale replicas.

Gossiping Gossiping [108, 78] is a classical mechanism to exchange informa-
tion between a large amount of nodes efficiently and in a scalable manner. A
gossip protocol makes sure that eventually every node is aware of the state
of the other nodes and is typically used for cluster membership and failure
detection.

3.6 Conclusion

Scaling the database layer while ensuring high availability remains one of
the most challenging issue of large-scale applications. Different modern ap-
proaches try to address the performance and scalability requirements of the
database layer. First, the NoSQL databases focus on horizontal scalability in
distributed architectures and are designed to address schemaless and non-
relational data management. Second, the NewSQL databases offer scalabil-
ity in distributed architectures while providing relational data management
with ACID properties. Third, data cache (or grid) solutions, which are in-
creasingly positioned as potential alternatives to relational databases, are de-
signed to keep data in memory so as to increase database and application
performance.

While it is clear that no unique structured storage system fits every class
of applications, choosing between relational and non-relational solutions is
a non-trivial decision which will have consequences throughout the whole
development and life cycle of the application. Distributed database is a hot

52

3.6. Conclusion

research topic and few people have a practical experience of such systems.
The complexity of maintaining multiple disparate systems and of making
them transparent to the application layer requires extra work. The added
complexity of distributing the database has also an economic cost in term of
infrastructure and engineering: typically, join queries across multiple systems
are slow and expensive.

In Chapter 4, we present a highly-available distributed database that repli-
cates data in geographically diverse locations in order to minimize the conse-
quences of correlated failures. Our approach also finds the optimal resource
allocation which balances the query processing overhead while being able to
handle flash crowds.

53

Part III

Contributions

55

Chapter 4

Building Highly-Available and Scalable
Cloud Storage

Failures of multiple types are common in current datacenters, partly due
to the higher scales of the data stored. As data scales up, supporting its
availability becomes more complex, since different availability levels per ap-
plication or per data item may be required. In this chapter, we propose a
self-managed key-value store that dynamically allocates the resources of a
data cloud to several applications in a cost-efficient and fair way. Our ap-
proach offers and dynamically maintains multiple differentiated availability
guarantees to each different application despite failures. We employ a virtual
economy, where each data partition (i.e., a key range in a consistent-hashing
space) acts as an individual optimizer and chooses whether to migrate, repli-
cate or remove itself based on net benefit maximization regarding the utility
offered by the partition and its storage and maintenance cost. As proven by
a game-theoretical model, no migrations or replications occur in the system
at equilibrium, which is soon reached when the query load and the used
storage are stable. Moreover, by means of extensive simulation experiments,
we have proven that our approach dynamically finds the optimal resource
allocation that balances the query processing overhead and satisfies the avail-
ability objectives in a cost-efficient way for different query rates and storage
requirements. Finally, we have implemented a fully working prototype of
our approach that clearly demonstrates its applicability in real settings.

4.1 Introduction

Cloud storage is becoming a popular business paradigm, e.g., Amazon S3 [2],
Google Storage [16], Rackspace Cloud Files [42], etc. Small companies that
offer large Web applications can avoid large capital expenditures in infras-
tructure by renting distributed storage and pay per use. The storage capacity
employed may be large and it should be able to further scale up. However,
as data scales up, hardware failures in current datacenters become more fre-

57

4. Building Highly-Available and Scalable Cloud Storage

quent [130]: e.g., overheating, power (PDU 1) failures, rack failures, network
failures, hard drive failures, network re-wiring and maintenance. Also, geo-
graphic proximity significantly affects data availability: e.g., in case of a PDU
failure ∼500-1000 machines suddenly disappear, or in case of a rack failure
∼40-80 machines instantly go down. Furthermore, data may be lost due to
natural disasters, such as tornadoes destroying a complete data center, or
various attacks (DDoS, terrorism, etc.). On the other hand, as [75] suggests,
Internet availability varies from 95% to 99.6%. Also, the query rates for Web
applications data are highly irregular, e.g. ,the “Slashdot effect” 2, and an
application may become temporarily unavailable.

To this end, the support of service level agreements (SLAs) with data availabil-
ity guarantees in cloud storage is very important. Moreover, in reality, differ-
ent applications may have different availability requirements. Fault-tolerance
is commonly dealt with by replication. Existing works usually rely on ran-
domness to diversify the physical servers that host the data; e.g., in [137],
[113] node IDs are randomly chosen, so that peers that are adjacent in the
node ID space are geographically diverse with a high probability. To the best
of our knowledge, no system explicitly addresses the geographical diversity
of the replicas. Also, from the application perspective, geographically dis-
tributed cloud resources have to be efficiently utilized to minimize renting
costs associated to storage and communication. Clearly, geographical diver-
sity of replica locations and minimizing communication cost are contradic-
tory objectives. From the cloud provider perspective, efficient utilization of
cloud resources is necessary both for cost-effectiveness and for accommodat-
ing load spikes. Moreover, resource utilization has to be adaptive to resource
failures, addition of new resources, load variations and the distribution of
client locations.

Distributed key-value store is a widely employed service case of cloud stor-
age. Many Web applications (e.g., Amazon.com) and many large-scale social
applications (e.g., LinkedIn, Last.fm, etc.) use distributed key-value stores.
Also, several research communities (e.g., peer-to-peer, scalable distributed
data structures, databases) study key-value stores, even as complete database
solutions (e.g., BerkeleyDB [5]). As a novel contribution of this thesis, we
propose a scattered key-value store (referred to as Skute), which is designed
to provide high and differentiated data availability statistical guarantees to
multiple applications in a cost-efficient way in terms of rent price and query
response times. Our approach combines the following innovative character-
istics:

• It enables a computational economy for cloud storage resources.

• It provides differentiated availability statistical guarantees to different
applications despite failures by geographical diversification of replicas.

• It applies a distributed economic model for the cost-efficient self-orga-
nization of data replicas in the cloud storage that is adaptive to adding
new storage, to node failures and to client locations.

1Power Distribution Unit
2http://en.wikipedia.org/wiki/Slashdot effect

58

4.2. Skute: Scattered Key-Value Store

• It efficiently and fairly utilizes cloud resources by performing load bal-
ancing in the cloud adaptively to the query load.

Optimal replica placement is based on distributed net benefit maximization
of query response throughput minus storage as well as communication costs,
under the availability constraints. The optimality of the approach is proven
by comparing simulation results to those expected by numerically solving an
analytical form of the global optimization problem. Also, a game-theoretic
model is employed to observe the properties of the approach at equilibrium.
A series of simulation experiments prove the aforementioned characteristics
of the approach. Finally, employing a fully working prototype of Skute, we
experimentally demonstrate its applicability in real settings.

The rest of the chapter is organized as follows: In Section 4.2, the scattered
key-value data store is presented. In Section 4.3, the global optimization
problem that we address is formulated. In Section 4.4, we describe the in-
dividual optimization algorithm that we employ to solve the problem in a
decentralized way. In Section 4.5, we define a game-theoretical model of the
proposed mechanism and study its equilibrium properties. In Section 4.6, we
discuss the applicability of our approach in an untrustworthy environment.
In Section 4.7, we present our simulation results on the effectiveness of the
proposed approach. In Section 4.8, we describe the implementation of Skute
and discuss our experimental results in a real testbed. In Section 4.10, we
outline some related work. Finally, in Section 4.11, we conclude our work.

4.2 Skute: Scattered Key-Value Store

Skute is designed to provide low response time on read and write operations,
to ensure replicas’ geographical dispersion in a cost-efficient way and to offer
differentiated availability guarantees per data item to multiple applications,
while minimizing bandwidth and storage consumption. The application data
owner rents resources from a cloud of federated servers to store its data.
The cloud could be a single business, i.e., a company that owns/manages
data server resources (”private“ clouds), or a broker that represents servers
that do not belong to the same businesses (”public“ clouds). The number of
data replicas and their placement are handled by a distributed optimization
algorithm autonomously executed at the servers. Also, data replication is
highly adaptive to the distribution of the query load among partitions and to
failures of any kind so as to maintain high data availability.

4.2.1 Physical Node

We assume that a physical node (i.e., a server) belongs to a rack, a room, a
data center, a country and a continent. Note that finer geographical granu-
larity could also be considered. Each physical node has a label of the form

“continent-country-datacenter-room-rack-server” in order to precisely iden-
tify its geographical location. For example, a possible label for a server lo-
cated in a data center in Berlin could be “EU-DE-BE1-C12-R07-S34”.

59

4. Building Highly-Available and Scalable Cloud Storage

0

0.25

0.5

0.75

key1

T1
T2

T3

TM

Tu

Tv

Figure 4.1: Each data item is mapped to a value on a circular range [0, 1), which is split into M
equally sized partitions

4.2.2 Virtual Node

In order to scale out, the dataset is partitioned using a variant of consistent
hashing [110] and spread over a set of physical nodes to share the load. The
output of the consistent hash function is a range ∈ [0, 1) and is considered
as a circular space (i.e., the key space) forming a ring, a flexible and resilient
routing geometry [94]. As depicted in Figure 4.1, the key space is split into
M equally sized partitions delimited by the positions T1 to TM, called to-
kens. The number of partitions is chosen such that M >> N, where N is
the number of physical nodes in the system. A data item is identified by a
key (produced by a one-way cryptographic hash function such as MD5 [134]),
which is used to compute the item position in the ring by (consistent) hashing
it. A virtual node (alternatively a replica of a partition) holds data of a parti-
tion with a range of keys in (previous token, token], as in [78]. For example,
in Figure 4.1, a data item with the key key1 is assigned to the virtual nodes
responsible for the key range (Tu, Tv], as Tu < hash(′key1′) ≤ Tv. Data of a
partition is managed by one or more virtual nodes, where a virtual node may
replicate or migrate its data to another server, or suicide (i.e., delete its data
replica) according to a decision making process described in Section 4.4.4.
A physical node hosts a varying number of virtual nodes depending on the
query load, the size of the data managed by the virtual nodes and its own
capacity (i.e., CPU, RAM, disk space, etc.). Two virtual nodes managing the
same partition are never hosted on the same physical server.

4.2.3 Virtual Ring

Our approach employs the concept of multiple virtual rings on a single
cloud in an innovative way (cf. Section 4.10 for a comparison with [152]).
Thus, as subsequently explained, we allow multiple applications to share the

60

4.2. Skute: Scattered Key-Value Store

App. A App. B App. C

Applications

virtual
node virtual

ring

Availability
Level

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

1

2

3

4

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

Figure 4.2: Three applications with different availability levels

same cloud infrastructure for offering differentiated per data item and per
application availability guarantees without performance conflicts. The single-
application case with one uniform availability guarantee has been presented
in [66]. In the present work, each application uses its own virtual rings, while
one ring per availability level is needed, as depicted in Figure 4.2. Each vir-
tual ring consists of multiple virtual nodes that are responsible for different
data partitions of the same application that demand a specific availability
level. This approach provides two main advantages over existing key-value
stores:

• Multiple data availability levels per application: within the same ap-
plication, some data may be crucial and some may be less important.
In other words, an application provider may want to store data with
different availability guarantees. Other approaches, such as [78], also
argue that they can support several applications by deploying a key-
value store per application. However, as data placement for each data
store would be independent in [78], an application could severely im-
pact the performance of others that utilize the same resources. Unlike
existing approaches, Skute allows a fine-grained control of the resources
of each server, as every virtual node of each virtual ring acts as an in-
dividual optimizer (as described in Section 4.4.4), thus minimizing the
impact among applications.

• Geographical data placement per application: data that is mostly ac-
cessed from a given geographical region should be moved close to that
region. Without the concept of virtual rings, if multiple applications
were using the same data store, data of different applications would
have to be stored in the same partition, thus removing the ability to
move data close to the clients. However, by employing multiple virtual
rings, Skute is able to provide one virtual store per application, allowing
the geographical optimization of data placement.

61

4. Building Highly-Available and Scalable Cloud Storage

4.2.4 Routing

Skute could be seen as a O(1) distributed hash table (DHT), similarly to [78].
A physical node is responsible to manage the routing table of all virtual rings
hosted in it, in order to minimize the update costs. Upon migration, replica-
tion and suicide events, hierarchical broadcast that leverages the geographical
topology of servers is employed. This approach costs O(N) where N is the
number of servers, but it uses the minimum network spanning tree. The po-
sition of a moving virtual node (i.e., during the migration process) is tracked
by forwarding pointers (e.g., SSP chains [144]). Also, the routing table is peri-
odically updated using a gossiping protocol for shortening/repairing chains
or updating stale entries (e.g., due to failures). According to this protocol, a
server exchanges with random log(N) other servers the routing entries of the
virtual nodes that they are responsible for.

The scalability of this approach is experimentally proven in a real testbed, as
described in Section 4.8.

4.2.5 Data Consistency

As a virtual node is allowed to migrate or replicate to a new server, maintain-
ing data consistency during these operations is highly important. We aim to
maintain only eventual data consistency among replicas by the use of vector-
clock versioning and an anti-entropy mechanism known as read-repair, as
in described in Section 3.5.2. In read-repair, conflicting versions of data are
presented to the user upon read requests for semantic reconciliation.

For a migration, a virtual node v has to move from a physical node p1 to
another physical node p2. Once v has elected p2 as its best candidate for a
migration and once p2 has agreed to host the new virtual node, v broadcasts
the routing table update and starts copying its data to p2. A request for a key
belonging to v is now routed to p2, which knows that this key is currently
under migration. In case of a read request, p2 makes a proxy call to p1 to
return the correct data to the client. A write request is performed locally by
p2, after a proxy read to p1 for ensuring proper versioning. Figure 4.3 depicts
read and write operations during a migration.

For replication, the virtual node v has to copy itself from a physical node p1
to another physical node p2. This process happens similarly to the migration
one.

Potential inconsistency among the replicas of v is tolerated and is resolved at
read time. As discussed in Section 3.5, three quorum parameters are impor-
tant:

• R: the number of replicas of v to read from;

• W: the number of replicas of v that acknowledge the write operation
before the operation completes;

• S: the number of physical nodes that store replicas of v.

As long as R + W > S, strong consistency is ensured because the read set
and the write set always overlap on at least one element. When R + W ≤ S,

62

4.3. Problem Definition

V

P1

V

P2

1: Read()

2: Proxy Read()

3: Data

4: Data

V

P1

V

P2

1: Write()

2: Proxy Read()

During: V is migrating to P2

Figure 4.3: Data consistency during a virtual node migration

the read set and the write sets might not overlap, hence only weak/eventual
consistency (WEC) can be guaranteed. Configuring the values of R, W and
S is a tradeoff between performance and consistency as shown in Table 4.1,
and depends on the application needs.

Table 4.1: Example of quorum parameters (SC: strong consistency, WEC: Weak/Eventual con-
sistency)

R W S Comment
2 2 3 SC, focus on fault tolerance
1 3 3 SC, focus on consistency
1 2 3 WEC only
1 6 10 WEC only, focus on very high read load

Contrary to [78], the number of replicas, S, is changing dynamically in case
of replication or suicide. Recall that S is stored at the routing table of the
physical node. The values for R and W are selected as functions of S on a per
virtual ring basis based on the performance needs.

4.3 Problem Definition

The data belonging to an application is split into M partitions, where each
partition i has ri distributed replicas. We assume that N servers are present
in the data cloud.

4.3.1 Maximize Data Availability

The first objective of a data owner d (i.e., application provider) is to provide
the highest availability for a partition i, by placing all of its replicas in a set Sd

i
of different servers. Data availability generally increases with the geographi-
cal diversity of the selected servers. Obviously, the worst solution in terms of
data availability would be to put all replicas at a server with equal or worse
probability of failure than others.

We denote as Fj a failure event at server j ∈ Sd
i . These events may be indepen-

dent from each other or correlated. If we assume without loss of generality

63

4. Building Highly-Available and Scalable Cloud Storage

that events F1 . . . Fk are independent and that events Fk+1 . . . F|Sd
i | are corre-

lated, then the probability a partition i to be unavailable is given as follows:

Pr(i unavailable) = Pr(F1 ∩ F2 ∩ . . . ∩ F|Sd
i |) =

k

∏
j=1

Pr(Fj) · Pr(Fk|Fk+1 . . . ∩ F|Sd
i |)·

Pr(Fk+1|Fk+2 ∩ . . . ∩ F|Sd
i |) · . . . · Pr(F|Sd

i |) ,

(4.1)

if Fk+1 ∩ Fk+2 ∩ . . . F|Sd
i | 6= �.

Otherwise, when Fk+1 ∩ Fk+2 ∩ . . . F|Sd
i | = �, the events are uncorrelated and

Pr(Fk+1|Fk+2 ∩ . . . ∩ F|Sd
i |) · . . . · Pr(F|Sd

i |) = 1.

4.3.2 Minimize Communication Cost

While geographical diversity increases availability, it is also important to take
into account communication cost among servers that host different replicas,
in order to save bandwidth during replication or migration, and to reduce
latency in data accesses and during conflict resolution for maintaining data

consistency. Let
~~Ld be a M × N location matrix with its element Ld

ij = 1

if a replica of partition i of application d is stored at server j and Ld
ij = 0

otherwise. Then, we maximize data proximity by minimizing network costs
for each partition i, e.g., the total communication cost for conflict resolution
of replicas for the mesh network of servers where the replicas of the partition
i are stored. In this case, the network cost cn for conflict resolution of the
replicas of a partition i of application d can be given by

cn(
~Ld

i) = sum(~Ld
i ·

~~NC · ~Ld
i

T
) , (4.2)

where ~~NC is a strictly upper triangular N× N matrix whose element NCjk is
the communication cost between servers j and k, and sum denotes the sum
of matrix elements.

4.3.3 Maximize Net Benefit

Every application provider has to periodically pay the operational cost of
each server where he stores replicas of his data partitions. The operational
cost of a server is mainly influenced by the quality of the hardware, the
physical hosting, the access bandwidth and storage allocated to the server,
and the query processing and communication overhead. The data owner
wants to minimize his expenses by replacing expensive servers with cheaper
ones, while maintaining a minimum data availability promised by SLAs to
his clients. He also obtains some utility u(.) from the queries answered by
its data replicas that depends on the popularity (i.e., query load) popi of

64

4.4. The Individual Optimization

the data contained in the replica of the partition i and the response time
(i.e., processing and network latency) associated to the replies. The network
latency depends on the distance of the clients from the server that hosts
the data, i.e., the geographical distribution Gi of query clients. Overall, he
seeks to maximize his net benefit and the global optimization problem can
be formulated as follows:

max{u(popi, Gi)− ~Ld
i ~c

T + cn(
~Ld

i)}, ∀i, ∀d

s.t.

1− Pr(F
Ld

i1
1 ∩ F

Ld
i2

2 ∩ . . . F
Ld

iN
N) ≥ thd ,

(4.3)

where ~c is the vector of operational costs of servers with its element cj be-
ing an increasing function of the data replicas of the various applications
located at server j. This also accounts for the fact that the processing latency
of a server is expected to increase with the occupancy of its resources. F0

j
for a particular partition denotes that the partition is not present at server
j and thus the corresponding failure event at this server is excluded from
the intersection and thd is a minimum availability threshold promised by the
application provider d to clients. This constrained global optimization prob-
lem takes 2M·N possible solutions for every application and its solution is
computationally tractable only for small sets of servers and partitions.

4.4 The Individual Optimization

The data owner rents storage space located in several data centers around
the world and pays a monthly usage-based real rent. Each virtual node is
responsible for the data in its key range and should always try to keep data
availability above a certain minimum level required by the application while
minimizing the associated costs (i.e., for data hosting and maintenance). To
this end, a virtual node can be assumed to act as an autonomous agent on be-
half of the data owner to achieve these goals. Time is assumed to be split into
epochs. A virtual node may replicate or migrate its data to another server,
or suicide (i.e., delete its data replica) at each epoch and pay a virtual rent
(i.e., an approximation of the possible real rent, defined later in this section)
to servers where its data are stored. These decisions are made based on the
query rate for the data of the virtual node, the renting costs and the mainte-
nance of high availability upon failures. There is no global coordination and
each virtual node behaves independently. Only one virtual node of the same
partition is allowed to suicide at the same epoch by employing Paxos [114]
distributed consensus algorithm among virtual nodes of the same partition.
The virtual rent of each server is announced at a board and is updated at the
beginning of a new epoch.

4.4.1 Board

At each epoch, the virtual nodes need to know the virtual rent price of the
servers. Each server maintains its own local board, a list linking each server

65

4. Building Highly-Available and Scalable Cloud Storage

with its virtual rent price, and periodically updates the virtual prices of a ran-
dom subset (log(N)) of servers by contacting them directly (i.e., gossiping),
having as N the total number of servers. This fully decentralized architecture
has been experimentally verified in a real testbed to be very efficient without
creating high communication overhead (cf. Section 4.8).

When a new server is added to the network, the data owner estimates its
confidence level based on its hardware components and its location. This esti-
mation depends on technical factors (e.g., redundancy, security, etc.) as well
as non-technicals ones (e.g., political and economical stability of the country,
etc.) and it is rather subjective.

4.4.2 Physical Node

The virtual rent price c of a physical node for the next epoch is an increasing
function of its query load and its storage usage at the current epoch and it
can be given by:

c = up · (1 + α · storage usage + β · query load) , (4.4)

where α, β are normalizing factors and up is the unit price for marginal
usage of the server, which can be calculated by dividing the real rent of the
previous billing period (e.g., an hour) to the mean usage of the server in
the previous billing period. We consider that the real rent price per server
takes into account the network cost for communicating with the server, i.e.,
its access link. To this end, it is assumed that access links are going to be the
bottleneck ones along the path that connects any pair of servers and thus we
do not take explicitly into account distance between servers. Multiplying the
real rent price with the query load satisfies the network proximity objective.
The query load and the storage usage at the current epoch are considered
to be good approximations of the ones at the next epoch, as they are not
expected to change very often at very small time scales, such as a time epoch.
The virtual rent price per epoch is an approximation of the real monthly price
that is paid by the application provider for storing the data of a virtual node.
Thus, an expensive server tends to be also expensive in the virtual economy.
A server agent residing at the server calculates its virtual rent price per epoch
and updates the board.

4.4.3 Maintaining Availability

A virtual node always tries to keep the data availability above a minimum
level thd (i.e., the availability level of the corresponding virtual ring), as spec-
ified in Section 4.3. As estimating the probabilities of each server to fail
necessitates access to a large set of historical data and private information of
the server, we approximate the potential availability of a partition (i.e., vir-
tual node) by means of the geographical diversity of the servers that host its

66

4.4. The Individual Optimization

replicas. Therefore, the availability of a partition i is defined as the sum of
diversity of each distinct pair of servers, i.e.,:

availi =
|Si |

∑
k=0

|Si |

∑
j=k+1

con fk · con f j · diversity(sk, sj) (4.5)

where Si = (s1, s2, . . . , sn) is the set of servers hosting replicas of the virtual
node i and con fk, con f j ∈ [0, 1] are the confidence levels of servers k, j. The di-
versity function returns a value calculated based on the geographical distance
among each server pairs. This distance is represented as a 6 bit number, each
bit corresponding to the location parts of a server, namely continent, country,
data center, room rack and server. Note that more bits would be required to
represent additional geographical location parts than those considered. The
most significant bit (leftmost) represents the continent while the least signif-
icant bit (rightmost) represents the server. Starting with the most significant
bit, each location part of both servers are compared one by one to compute
their similarity: if the location parts are equivalent, the corresponding bit is
set to 1, otherwise 0. Once a bit has been set to 0, all less significant bits are
also set to 0. For example, two servers belonging to the same data center but
located in different rooms cannot be in the same rack, thereby all bits after
the third bit (data center) have to be 0. The similarity number would then
look like this:

cont coun data room rack serv
1 1 1 0 0 0

A binary “NOT” operation is then applied to the similarity to get the diver-
sity value:

111000 = 000111 = 7(decimal)

The diversity values of server pairs are summed up, because having more
replicas in distinct servers located even in the same location always results in
increased availability.

When the availability of a virtual node falls below th, it replicates its data to
a new server. Note that a virtual node can know the locations of the replicas
of its partition from the routing table of its hosting server and thus calculate
its availability according to 4.5. The best candidate server is selected so as to
maximize the net benefit between the diversity of the resulting set of replica
locations for the virtual node and the virtual rent of the new server. Also,
a preference weight gj is associated to a server j according to its location
proximity to the geographical distribution Gi of clients querying a virtual
node managing the partition i. Gi is approximated by the virtual node by
storing the number of client queries per location l. Thus, the availability
is increased as much as possible at the minimum cost, while the network
latency for the query reply is decreased. Specifically, a virtual node managing
a partition i with current replica locations in Si maximizes:

arg
j

max
|Si |

∑
k=0

(gj · con f j · diversity(sk, sj)− cj) , (4.6)

67

4. Building Highly-Available and Scalable Cloud Storage

where cj is the virtual rent price of candidate server j. gj is the weight related
to the proximity (i.e., inverse average diversity) of the location of the candi-
date server j to the geographical distribution of clients querying the partition
i managed by the virtual node and is given by:

gj =
∑l ql

1 + ∑l ql · diversity(l, sj)
, (4.7)

where ql is the number of queries for the partition i of the virtual node per
client location l. To this end, we assume that the client locations are encoded
similarly to those of servers. In fact, if client requests reach the cloud by the
geographically nearest cloud node to the client (e.g., by employing geoDNS),
we can take the location of this cloud node as the client location. However,
having virtual nodes to choose the destination server j for replication accord-
ing to (4.6) would render j a bottleneck for the next epoch. Instead, the
destination server is randomly chosen among the top-k (with k = dln(N)e)
ones, ranked according to the maximized quantity in (4.6).

The minimum availability level th allows a fine-grained control over the repli-
cation process. A low value means that a partition will be replicated on
few servers potentially geographically close, whereas a higher value enforces
many replicas to be located at diverse locations. However, setting a high
value for the minimum level of availability in a network with a few servers
can result in an undesirable situation, where all partitions are replicated ev-
erywhere. To circumvent this, a maximum number of replicas per virtual
node is allowed.

4.4.4 Virtual Node Decision Tree

As already mentioned, a virtual node agent may decide to replicate, migrate,
suicide or do nothing with its data at the end of an epoch. Note that decision
making of virtual nodes does not need to be synchronized. Upon replication,
a new virtual node is associated with the replicated data. The decision tree
of a virtual node is depicted in Figure 4.4. First, it verifies that the current
availability of its partition is greater than th. If the minimum acceptable
availability is not reached, the virtual node replicates its data to the server
that maximizes availability at the minimum cost, as described in Subsection
4.4.3.

If the availability is satisfactory, the virtual node agent tries to minimize costs.
During an epoch, virtual nodes receive queries, process them and send the
replies back to the client. Each query creates a utility value for the virtual
node, which can be assumed to be proportional to the size of the query reply
and inversely proportional to the average geographical distance of the client
locations from the server of the virtual node. For this purpose, the balance
(i.e., net benefit) b for a virtual node managing a partition i is defined as
follows:

b = u(pop, Gi)− c , (4.8)

where u(pop, Gi) = f (pop)
h(Gi)

is assumed to be the epoch query load of the
partition with a certain popularity pop divided by the average proximity of

68

4.4. The Individual Optimization

the virtual node to the client locations and normalized to monetary units,
and c is the virtual rent price. f () and h() are two increasing functions. To
this end, a virtual node decides to:

I) Migrate or Suicide If it has negative balance for the last f epochs, then
it migrates or suicides. First, the virtual node calculates the availability of its
partition without its own replica. If the availability is satisfactory, the virtual
node suicides, i.e., deletes its replica. Otherwise, the virtual node tries to find
a less expensive (i.e., busy) server that is closer to the client locations (accord-
ing to maximization formula (4.6)). To avoid a data replica oscillation among
servers, the migration is only allowed if the following migration conditions
apply:

• The minimum availability is still satisfied using the new server,

• the absolute price difference between the current and the new server is
greater than a threshold,

• the current server storage usage is above a storage soft limit, typically
70% of the hard drive capacity, and the new server is below that limit.

II) Replicate If it has positive balance for the last f epochs, it may replicate.
For replication, a virtual node has also to verify that:

• It can afford the replication by having a positive balance b′ for consecu-
tive f epochs:

b′ = u(pop, Gi)− cn − (1 + ϕ) · c′

where cn is a term accounting for the network cost to maintain con-
sistency between the replicas of the virtual nodes managing the same
partition, which can be approximated as the number of replicas of the
partition times a fixed average communication cost parameter for con-
flict resolution and routing table maintenance. c′ is the current virtual
rent of the candidate server for replication (randomly selected among
the top-k ones ranked according to the formula (4.6)), while the factor
(1+ϕ) accounts for a ϕ · 100% increase at this rent price at the next epoch
due to the potentially increased occupied storage and query load of the
candidate server (an upper bound of ϕ = 0.2 can typically be assumed).
This action aims to distribute the load of the current server towards one
located closer to the clients. Thus, it tends to decrease the processing
and network latency of the queries for the partition.

• the average bandwidth consumption bdwr for answering queries per
replica after replication (left term of left side of inequality (4.9)) plus
the bandwidth used to replicate the partition of size ps is less than the
respective bandwidth bdw per replica without replication (right side of
inequality (4.9)) for a fixed number win of epochs to compensate for
steep changes of the query rate. A large win value should be used for
bursty query load. Specifically, the virtual node replicates if:

win ∗ q ∗ qs

|Si|+ 1
+ ps <

win ∗ q ∗ qs

|Si|
, (4.9)

69

4. Building Highly-Available and Scalable Cloud Storage

New epoch

availability < th

Replicate

Suicide

b < 0

without me:
availability > th

 b' > 0 &&
bdw

r
 < bdw

migration
conditions ?

Migrate to cheaper server

Reset popularity

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

Figure 4.4: Decision tree of the virtual node agent

where q is the average number of queries for the last win epochs, qs is
the average size of the replies, |Si| is the number of servers currently
hosting replicas of partition i and ps is the size of the partition.

At the end of a time epoch, the virtual node agent sets the lowest utility
value u(pop, Gi) to the current lowest virtual rent price among the servers to
prevent unpopular nodes from migrating indefinitely. Otherwise, unpopular
virtual nodes would have a negative balance at every epoch, forcing them
to migrate to cheaper servers. As the decision process is not centralized nor
synchronized between the virtual nodes, the unpopular virtual nodes would
continuously be able to find servers with cheaper virtual rent prices, mainly
because of the effect on virtual rent prices of migrations of other unpopular
virtual nodes.

A virtual node that either gets a large number of queries or has to provide
large query replies becomes wealthier. At the same time, the load of its
hosting server will increase, as well as the virtual rent price for the next
epoch. Popular virtual nodes on the server will have enough “money” to pay
the growing rent price, as opposed to unpopular ones that will have to move
to a cheaper server. The transfer of unpopular virtual nodes will in turn
decrease the virtual rent price, hence stabilizing the rent price of the server.
This approach is self-adaptive and balances the query load by replicating
popular virtual nodes.

70

4.5. Equilibrium Analysis

4.5 Equilibrium Analysis

Without global coordination, we have to ensure that the system will even-
tually reach equilibrium under stable conditions. As virtual nodes are able
to migrate, replicate, stay or suicide, their behaviour have to be analysed in
order to make sure that no virtual node will keep migrating indefinitely. As-
sume that M is the original number of partitions (i.e., virtual nodes) in the
system. These virtual nodes may belong to the same or to different appli-
cations and compete among each other. Time is assumed to be slotted in
rounds. At each round, a virtual node (which is either responsible for an
original partition or a replica of the partition) is able to migrate, replicate,
suicide (i.e., delete itself) or do nothing (i.e., stay) competitively to other vir-
tual nodes in a repeated game. Before expressing the expected payoffs (i.e.,
a number reflecting the desirability of an outcome) of the actions of a virtual
node, let us define several quantities:

• u(t)
i is the utility gained by the queries served by the partition for which

virtual node i is responsible and only depends on its popularity at
round t; for simplicity and without loss of generality, we assume that
clients are geographically uniformly distributed. To this end, a virtual
node expects that this popularity will be maintained at the next round
of the game.

• r(t)i is the number of replicas of virtual node i at round t.

• C(t+1)
c is the expected price at round t + 1 of the cheapest server at

round t. Note that it is a dominant strategy for each virtual node to
select the cheapest server to migrate or replicate to, as any other choice
could be exploited by competitive rational virtual nodes.

• C(t+1)
e is the price at round t + 1 of the current hosting server at round

t, therefore C(t)
e > C(t)

c . In case of replication, two virtual nodes will
henceforth exist in the system, having equal expected utilities, but the
old one paying C(t+1)

e and the new one paying C(t+1)
c .

• f i
d is the mean communication cost per replica of virtual node i for data

consistency.

• f i
c is the communication cost for migrating virtual node i.

• a(t)i is the utility gain due to the increased availability of virtual node i
when a new replica is created.

The expected single round strategy payoffs at round t + 1 by the various
actions made at round t of the game for a virtual node i are given by:

• Migrate: EVM =
u(t)

i

r(t)i

− f i
c − f i

d · r
(t)
i − C(t+1)

c

• Replicate:

EVR =
u(t)

i +a(t)i

r(t)i +1
− f i

c − f i
d(r

(t)
i + 1)− 1

2 (C
(t+1)
c + C(t+1)

e)

71

4. Building Highly-Available and Scalable Cloud Storage

• Suicide: EVD = 0

• Stay: EVS =
u(t)

i

r(t)i

− f i
dr(t)i − C(t+1)

e

In the aforementioned formula of EVR, we calculate the expected payoff per
copy of the virtual node after replication. Notice that EVR is expected to
be initially significantly above 0, as the initial utility gain a from availability
should be large in order the necessary replicas to be created. Also, if the
virtual price difference among servers is initially significant, then EVM − EVS
will be frequently positive and virtual nodes will migrate towards cheaper
servers. As the number of replicas increases, a decreases (and eventually
becomes a small constant close to 0 after the required availability is reached)
and thus EVR decreases. Also, as price difference in the system is gradually
balanced, the difference EVM − EVS becomes more frequently negative, so
fewer migrations happen. On the other hand, if the popularity (i.e., query
load) of a virtual node is significantly deteriorated (i.e., u decreases), while
its minimum availability is satisfied (i.e., a is close to 0), then it may become
preferable for a virtual node to commit suicide.

Next, we consider the system at equilibrium and that the system conditions,
namely the popularity of virtual nodes and the number of servers, remain
stable. If we assume that each virtual node i plays a mixed strategy among
its pure strategies, specifically it plays migrate, replicate, suicide and stay
with probabilities x, y, z and 1 − x − y − z respectively, then we calculate
C(t+1)

c , C(t+1)
e as follows:

C(t+1)
c = C(t)

c [1 + (x + y)∑M
i=1 r(t)i] (4.10)

C(t+1)
e = C(t)

e [1− (x + z + ϕy)] (4.11)

In equation (4.10), we assume that the price of the cheapest server at the next
time slot increases linearly with the number of replicas that are expected to
have migrated or replicated to that server until the next time slot. Also, in
equation (4.11), we assume that the expected price of the current server at the
next time slot decreases linearly with the fraction of replicas that are expected
to abandon this server or replicate until the next time slot. 0 < ϕ << 1 is
explained as follows: recall that the total number of queries for a partition is
divided by the total number of replicas of that partition and thus replication
also reduces the rent price of the current server. However, the storage cost for
hosting the virtual node remains and, as the number of replicas of the virtual
node in the system increases, it becomes the dominant cost factor of the rent
price of the current server. Therefore, replication only contributes to C(t+1)

e
in a limited way, as shown in equation (4.11). Note that any cost function
(e.g., a convex one, as storage is a constrained resource) could be used in our
equilibrium analysis, as long as it was increasing to the number of replicas,
which is a safe assumption.

Henceforth, for simplicity, we drop i indices as we deal only with one virtual
node. Recall that the term a becomes close to 0 at equilibrium. Then, the
replicate strategy is dominated by the migrate one, and thus y = 0. Also,

72

4.6. Rational Strategies

the suicide strategy has to be eventually dominated by the migrate and stay
strategies, because otherwise every virtual node would have have the incen-
tive to leave the system; thus z = 0. Therefore, the number r of replicas of a
virtual node becomes fixed at equilibrium and the total sum Nr of the replicas
of all virtual nodes in the cloud is also fixed. As y = z = 0 at equilibrium, the
virtual node plays a mixed strategy among migrate and stay with probabili-
ties x and 1− x respectively. The expected payoffs of these strategies should
be equal at equilibrium, as the virtual node should be indifferent between
them:

EVM = EVS ⇔
u
r
− fc − fd r− Cc(1 + x Nr) =

u
r
− fd r− Ce(1− x)⇔

x =
Ce − Cc − fc

Ce + Cc Nr

(4.12)

The nominator of x says that in order for any migrations to happen in the
system at equilibrium the rent of the current server used by a virtual node
should exceed the rent of the cheapest server more than the cost of migra-
tion for this virtual node. Also, the probability to migrate decreases with
the total number of replicas in the system. Considering that each migration
decreases the average virtual price difference in the system, then the number
of migrations at equilibrium will be almost 0.

4.6 Rational Strategies

We have already accounted for the case that virtual nodes are rational, as
we have considered them to be individual optimizers. In this section, we
consider the rational strategies that could be employed by servers in an un-
trustworthy environment. No malicious strategies are considered, such as
tampering with data, deliberate data destruction or theft, because standard
cryptographic methods (e.g., digital signatures, digital hashes, symmetric en-
cryption keys) could easily alleviate them (at a performance cost) and the
servers would have legal consequences if discovered employing them. Such
cryptographic methods should be employed in a real untrustworthy environ-
ment, but we refrain from further dealing with them in this chapter. However,
rational servers could have the incentive to lie about their virtual prices, so
that they do not reflect the actual usage of their storage and bandwidth re-
sources. For example, a server may over-utilize its bandwidth resources by
advertising a lower virtual price (or equivalently a lower bandwidth utiliza-
tion) than the true one and increase its profits by being paid by more virtual
nodes. At this point, recall that the application provider pays a monthly rent
per virtual node to each server that hosts its virtual nodes. In case of server
over-utilization, some queries to the virtual nodes of the server would have to
be buffered or even dropped by the server. Also, one may argue that a server
can increase its marginal usage price at will in this environment, which then
is used to calculate the monthly rent of a virtual node. This is partly true, de-
spite competition among servers, as the total actual resource usage of a server
per month cannot be easily estimated by individual application providers.

73

4. Building Highly-Available and Scalable Cloud Storage

The aforementioned rational strategies could be countered as follows: in Sec-
tion 4.4, we assumed that virtual nodes assign to servers a subjective confi-
dence value based on the quality of the resources of the servers and their
location. In an untrustworthy environment, the confidence value of a server
could also reflect its trustworthiness for reporting its utilization correctly. This
trustworthiness value could be effectively approximated by the application
provider by means of reputation based on periodical monitoring of the per-
formance of servers to own queries. The aforementioned rational strategies
are common in everyday transactions among sellers and buyers, but in a
competitive environment, comparing servers based on their prices and their
offered performance provides them with the right incentives for truthful re-
porting [80]. Therefore, in a cloud with rational servers, application providers
should divide the virtual rent price cj by the confidence con f j of the server j
in the maximization formula (4.6), in order to provide incentives to servers
to refrain from employing the aforementioned strategies.

4.7 Simulation Results

4.7.1 The Simulation Model

We assume for our simulation a cloud storage environment consisting of N
servers geographically distributed according to different scenarios that are
explained on a per case basis. Data per application is assumed to be split
into M partitions having each represented by a virtual node. Each server has
fixed bandwidth capacities for replication and migration per epoch. They
also have a fixed bandwidth capacity for serving queries and a fixed storage
capacity. All servers are assumed to be assigned the same confidence. The
popularity of the virtual nodes (i.e., the query rate) is distributed according to
the Pareto distribution, which has the following probability density function:

fX(x) =
α ∗ xα

m
xα+1 f or x ≥ xm (4.13)

where xm is the minimum possible value of a random variable X, and α is the
shape parameter. In our simulation, we set xm = 1 and α = 50 as parameters
of the distribution, which will be referred to as Pareto(1, 50) in the remain-
der of this thesis. The number of queries per epoch is Poisson distributed
with a mean rate λ, which is different per experiment. For facilitating the
comparison of the simulation results with those of the analytical model of
Section 4.3, the geographical distribution of query clients is assumed to be
uniform and thus gj is 1 for any server j. The size of every data partition
is assumed to be fixed and equal to 256MB. Time is considered to be slot-
ted into epochs. At each epoch, virtual nodes employ the decision making
algorithm of Subsection 4.4.4. Note that decision making of virtual nodes is
not synchronized. Each server updates its available bandwidth for migration,
replication or answering queries, and its available storage after every data
transfer that is decided to happen within one epoch. Previous data migra-
tions and replications are taken into account in the next epoch. The virtual

74

4.7. Simulation Results

price per server is determined according to formula (4.4) at the beginning of
each epoch.

4.7.2 Convergence to Equilibrium and Optimal Solution

We first consider a small scale scenario to validate our results solving numer-
ically the optimization problem of Section 4.3. Specifically, we consider a
data cloud consisting of N = 5 servers dispersed in Europe: two servers are
hosted in Switzerland in separate data centers, one in France and two servers
are hosted in Germany in the same rack of the same data center. Data be-
longs to two applications and it is split into M = 50 partitions per application
that are randomly shared among servers at startup. The mean query rate is
λ = 300 queries per epoch. The minimum availability level in the simulation
model is configured so as to ensure that each partition of the first (resp. sec-
ond) application is hosted by at least 2 (resp. 4) servers located at different
data centers. In the analytical model of Section 4.3, we assume a bad scenario
where each server has probability 0.3 to fail and that the failure probabilities
of the first 3 server are independent, while those of the Germany data centers
are correlated, so as Pr[F4|F5] = Pr[F5|F4] = 0.5. We set th1 = 0.9 for the first
application and th2 = 0.985 for the second application. Only network-related
operational costs (i.e., access links) are considered the dominant factor for the
communication cost and thus distance of servers is not taken into account in
decision making; therefore we assume cn = 0, in both the simulation and
the analytical model. The same confidence is assigned to all servers in the
simulation model. The monthly operational cost c of each server is assumed
to be 100$. Also, as the geographical distribution of query clients is assumed
to be uniform, the utility function in the analytical model only depends on
the popularity popi of the virtual node i and is taken equal to 100 · popi. The
detailed parameters of this experiment are shown in the left column (small
scale) of Table 4.2.

As depicted in Figure 4.5, the virtual nodes start replicating and migrating
to other servers and the system soon reaches equilibrium, as predicted in Sec-
tion 4.5. The convergence process actually takes only about 8 epochs, which
is very close to the communication bound for replication (i.e., total data size
/ replication bandwidth = 10GB / 1.5GB per epoch≈ 6.6 epochs). Also, as
revealed by comparing the numerical solution of the optimization problem
of Section 4.3 with the one that is given by simulation experiments, the pro-
posed distributed economic approach solves rather accurately the optimiza-
tion problem. Specifically, the average number of virtual nodes of either
application per server were the same and the distributions of virtual nodes
of either application per server were similar.

4.7.3 Fault Tolerance against Correlated Failures and Adaptation
to New Resources

Failures of servers within a cloud are correlated: if a rack fails, every server
in it will also fail. The same holds of course for rooms or even datacenters.

75

4. Building Highly-Available and Scalable Cloud Storage

Table 4.2: Parameters of small-scale and large-scale experiments.

Parameter Small scale Large scale

Servers 5 200

Server storage 10 GB 10 GB

Server price 100$ 100$ (70%), 125$ (30%)

Total data 10 GB 100 GB

Average size of an item 500 KB 500 KB

Partitions 50 10000

Queries per epoch Poisson (λ = 300) Poisson (λ = 3000)

Query key distribution Pareto (1,50) Pareto (1,50)

Storage soft limit 0.7 0.7

Win 20 100

Replication bandwidth 300 MB/epoch 300 MB/epoch

Migration bandwidth 100 MB/epoch 100 MB/epoch

0 5 10 15
10

20

30

40

50

Amount of virtual node per server over time

Epoch

V
irt

ua
l n

od
e

App A: EU−CH−GVA−CO1−R11−S1

App A: EU−CH−ZUR−CO2−R22−S2

App A: EU−FR−PAR−CO3−R33−S3

App A: EU−DE−BER−CO4−R44−S4

App A: EU−IT−ROM−CO5−R55−S5

App B: EU−CH−GVA−CO1−R11−S1

App B: EU−CH−ZUR−CO2−R22−S2

App B: EU−FR−PAR−CO3−R33−S3

App B: EU−DE−BER−CO4−R44−S4

App B: EU−IT−ROM−CO5−R55−S5

Figure 4.5: Small-scale scenario: replication process at startup

In this experiment, we compare the fault-tolerance of our geographical place-
ment strategy with that of random replica placement, which is a commonly
used strategy. We assume 18 racks, each containing 10 servers that are phys-
ically hosted as depicted in the bottom-right side of Figure 4.6. We simulate
concurrent rack failures in the cases of 2, 3 and 4 replicas per data item, by
concurrently shutting down 1 up to 18 racks (all racks). Each experiment is
repeated 5 times. Figure 4.6 shows the percentage of data lost due to the
rack failures. Clearly, our geographical replica placement outperforms the
random placement strategy. For example, in the case of 2 replicas per data
item, the geographical placement can always sustain a datacenter failure (i.e.,
racks 1 to 6 concurrently crash) without any data loss, as opposed to the
random placement strategy where more than 10% of the data is lost.

Also, we consider a large-scale scenario in which data belongs to three differ-
ent applications with a requirement for a minimum number of 2, 3, 4 replicas

76

4.7. Simulation Results

1 2 3 4 5 6 7 8 9 101112131415161718

0

20

40

60

80

100 Concurrent Rack Failures with 4 Replicas

Geographic
Random

Failed Racks

D
a

ta
 L

o
ss

 (
%

)

Physical Placement of Racks

1 2 3
Room 1

Datacenter 1

4 5 6
Room 2

7 8 9
Room 3

Datacenter 2

10 11 12
Room 4

13 14 15
Room 5

Datacenter 3

16 17 18
Room 6

1 2 3 4 5 6 7 8 9 101112131415161718

0

20

40

60

80

100
Concurrent Rack Failures with 2 Replicas

Geographic
Random

Failed Racks

D
a

ta
 L

o
ss

 (
%

)

1 2 3 4 5 6 7 8 9 101112131415161718

0

20

40

60

80

100
Concurrent Rack Failures with 3 Replicas

Geographic
Random

Failed Racks

D
a

ta
 L

o
ss

 (
%

)

Figure 4.6: Concurrent rack failures with 2 replicas (top, left) and 3 replicas (top, right). Concur-
rent rack failures with 4 replicas (bottom, left); Physical placement of racks within 3 datacenters
(bottom, right)

Figure 4.7: Large-scale scenario: robustness against upgrades and failures. The top figure only
depicts the 20 epochs close to the removal (epoch 200) of 30 randomly chosen servers, while
the bottom figure depicts the complete experiment with both the addition (epoch 100) and the
removal of servers.

respectively. Servers are shared among 10 countries with 2 datacenters per
country, 1 room per datacenter, 2 racks per room, and 5 servers per rack. The
other parameters of this experiment are shown in the right column (large-
scale) of Table 4.2. At epoch 100, we assume that 30 new servers are added
to the data cloud, while 30 random servers are removed at epoch 200. As
depicted in Figure 4.7, our approach is very robust to resource upgrading
or failures: the total number of virtual nodes remains constant after adding
resources to the data cloud and increases upon failure to maintain high avail-
ability.

77

4. Building Highly-Available and Scalable Cloud Storage

0

100

200

300

400

500

600

700

Queries per Partition

Partition

N
um

be
r

of
 Q

ue
ri

es

1 50

Figure 4.8: Number of Queries per Partition

0

2

4

6

8

10

12

14

Virtual Nodes per Partition

Partition

N
um

be
r

of
 V

ir
tu

al
 N

od
es

1 50

Figure 4.9: Number of Virtual Nodes per Partition

4.7.4 Adaptation to the Query Load

In order the system to be adaptive, the number of replicas of a partition
should depend on the query load to that partition. In the first simple sce-
nario, a single virtual ring composed of M = 50 partitions is considered. The
minimum number of replicas per partition is two and the number of servers
is N = 20. A constant rate of 3000 queries per epoch following the Pareto(1,
50) distribution are sent to the key-value store. As depicted in Figure 4.8,
a few number of partitions hosting popular keys receive most of the query
load. The overloaded virtual nodes react and replicate, such that the num-
ber of virtual nodes of a partition corresponds to the popularity of the keys
belonging to a partition, as depicted in Figure 4.9.

Next, we simulate a load peak similar to what would result from the Slash-
dot effect 3: in a short period the query rate gets multiplied by 60. Hence, at
epoch 200 the mean rate of queries per epoch increases from 3000 to 183000
in 25 epochs and then slowly decreases for 250 epochs until it reaches the
normal rate of 3000 queries per epoch. Following the large-scale scenario of
Table 4.2, the data belongs to three different applications with a requirement

3http://en.wikipedia.org/wiki/Slashdot effect

78

4.7. Simulation Results

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100
Average amount of virtual nodes per server

Epoch

N
um

be
r

of
 v

irt
ua

l n
od

es

Figure 4.10: Large-scale scenario: total amount of virtual nodes in the system over time when
the queries are evenly distributed among applications

for a minimum number of 2, 3, 4 replicas respectively. We first consider
the case where the load is evenly distributed among the applications. Fol-
lowing the Pareto distribution properties, a small amount of virtual nodes
are responsible for a large amount of queries. These virtual nodes become
wealthier thanks to their high popularity, and they are able to replicate to
one or several servers in order to handle the increasing load. Therefore, the
total amount of virtual nodes is adjusted to the query load, as depicted in Fig-
ure 4.10. The number of virtual nodes remains almost constant during the
high query load period. This is explained as follows: for robustness, repli-
cation is only initiated by a high query load. However, a replicated virtual
node can survive even with a small number of requests before committing
suicide. Therefore, the number of virtual nodes decreases when the query
load is significantly reduced. Finally, around epoch 400, the balance of the
additional replicated virtual nodes becomes negative and they commit sui-
cide. More importantly, one application does not impact the performance of
the others despite the variations in the total query load, as depicted in Fig-
ure 4.11. Moreover, the query load is balanced among the servers, as depicted
in Figure 4.12, and the small variation in the virtual rent prices of the servers
confirms that the equilibrium objective is reached, as depicted in Figure 4.13.

In the second case, where 4/7, 2/7 and 1/7 fractions of the total query load
are attracted by application 1 (virtual ring 0), 2 (virtual ring 1) and 3 (virtual
ring 2) respectively, the uneven query load does not impact the performance
of the other applications as depicted in Figure 4.14, and the load is balanced
among the servers as well, as depicted in Figure 4.15. However, the variation
of the average load per server is greater than in the case where the load is
evenly distributed. As most of the query load (i.e., 4/7 of the total query
load) is attracted by the application with the smallest minimum number of
replicas (i.e., application 1 on virtual ring 0 has a minimum number of 2

79

4. Building Highly-Available and Scalable Cloud Storage

0 100 200 300 400 500 600

0

200

400

600
Virtual Ring 0 (1/3 load, 2 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 100 200 300 400 500 600

0

200

400

600
Virtual Ring 1 (1/3 load, 3 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 100 200 300 400 500 600

0

200

400

600
Virtual Ring 2 (1/3 load, 4 replicas)

Epoch

N
um

be
r

of
 r

eq
ue

st
s

Average query load per server

200 servers (1/3: 125$, 2/3: 100$), max load: 183K requests/epoch

Figure 4.11: Large scale scenario: average query load per virtual ring per server over time when
the queries are evenly distributed among applications

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200
200 servers (1/3: 125$, 2/3: 100$), max load: 183K requests/epoch

Epoch

N
um

be
r

of
 r

eq
ue

st
s

Average query load per server

Figure 4.12: Large scale scenario: average query load per server over time when the queries are
evenly distributed among applications

80

4.7. Simulation Results

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Epoch

V
irt

ua
l r

en
t

Average virtual rent price per server

Figure 4.13: Large scale scenario: average virtual rent price per server over time when the queries
are evenly distributed among applications

replicas), the replication process of the popular partitions must last longer to
better balance the load among the servers.

4.7.5 Scalability of the Approach

Initially, we investigate the scalability of the approach regarding the storage
capacity. For this purpose, we assume the arrival of insert queries that store
new data into the cloud. The insert queries are again distributed according
to Pareto(1, 50). We allow a maximum partition capacity of 256MB after
which the data of the partition is split into two new ones, so that each virtual
node is always responsible for up to 256MB of data. The insert query rate is
fixed and equal to 2000 queries per epoch, while each query inserts 500KB of
data. We employ the large-scale scenario parameters, but with the number
of servers N = 100 and 2 racks per room in this case. The initial number of
partitions is M = 200. We fill the cloud up to its total storage capacity. As
depicted in Figure 4.16, our approach manages to balance the used storage
efficiently and fast enough so that there are no data losses for used capacity
up to 96% of the total storage. At that point, virtual nodes start not fitting to
the available storage of the individual servers and thus they cannot migrate
to accommodate their data.

Next, we consider that the query rate to the cloud is not distributed according
to Poisson, but it increases with the rate of 200 queries per epoch until the
total bandwidth capacity of the cloud is saturated. In this experiment, real
rents of servers are uniformly distributed in [1$, 100$]. Now, our approach
for selecting the destination server of a new replica is compared against two
other rather basic approaches:

• random: a random server is selected for replication and migration, as

81

4. Building Highly-Available and Scalable Cloud Storage

0 100 200 300 400 500 600
0

500

1000
Virtual Ring 0 (4/7 load, 2 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 100 200 300 400 500 600
0

500

1000
Virtual Ring 1 (2/7 load, 3 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 100 200 300 400 500 600
0

500

1000
Virtual Ring 2 (1/7 load, 4 replicas)

Epoch

N
um

be
r

of
 r

eq
ue

st
s

200 servers (1/3: 125$, 2/3: 100$), max load: 183K requests/epoch

Average query load per server

Figure 4.14: Large scale scenario: average query load per virtual ring per server over time when
4/7, 2/7, 1/7 of the queries are attracted by application 1, 2, 3 respectively

0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

1600
200 servers (1/3 125$, 2/3 100$), max load: 183K requests/epoch

Epoch

N
um

be
r

of
 r

eq
ue

st
s

Average query load per server

Figure 4.15: Large scale scenario: average query load per server over time when 4/7, 2/7, 1/7
of the queries are attracted by application 1, 2, 3 respectively

82

4.8. Implementation and Experimental Results in a Real Testbed

0 20 40 60 80 100
0

20

40

60

80

100
Insert failures

Total cloud storage capacity used (in %)

In
se

rt
 fa

ilu
re

s
(in

 %
)

Figure 4.16: Storage saturation: insert failures

long as it has the available bandwidth capacity for migration and repli-
cation, and enough storage space.

• greedy: the cheapest server is selected for replication and migration,
as long as it has the available bandwidth capacity for migration and
replication, and enough storage space.

As depicted in Figure 4.17, our approach (referred to as “economic”) out-
performs the simple approaches regarding the amount of dropped queries
having the bandwidth of the cloud completely saturated. Specifically, only
5% of the total queries are dropped at this worst case scenario. Therefore,
our approach multiplexes the resources of the cloud very efficiently.

4.8 Implementation and Experimental Results in a Real Testbed

We have implemented a fully working prototype of Skute on top of Project
Voldemort [40], which is an open source implementation of Dynamo [78]
written in Java. Servers are not synchronized and no centralized component
is required. The epoch is considered to be equal to 30 seconds. We have im-
plemented a fully decentralized board based on a gossiping protocol, where
each server exchanges its virtual rent price periodically with a small (log(N),
where N is the total number of servers) random subset of servers. Rout-
ing tables are maintained using a similar gossiping protocol for routing en-
tries. The periods of these gossiping protocols are assumed to be 1 epoch. In
case of migration, replication or suicide of a virtual node, the hosting server
broadcasts the routing table update using a distribution tree leveraging the
geographical topology of the servers.

Our testbed consists of N = 40 Skute servers, hosted by 8 machines (OS:
Debian 5.0.3, Kernel: 2.6.26-2-amd64, CPU: 8 core Intel Xeon CPU E5430 @
2.66GHz, RAM: 16GB) with Sun Java 64-Bit VMs (build 1.6.0 12-b04) and
connected in a 100 Mbps LAN. According to our scenario, we assume a Skute
data cloud spanning across 4 European countries with 2 datacenters per coun-

83

4. Building Highly-Available and Scalable Cloud Storage

0 10 20 30 40 50 60 70 80 90 100 110
−5

0

5

10

15
Increasing query rate until full cloud network capacity

T
ot

al
 fa

ilu
re

s
(in

 %
)

0 10 20 30 40 50 60 70 80 90 100 110

0

20

40

0 10 20 30 40 50 60 70 80 90 100 110
−5

0

5

10

Total cloud bandwidth used (in %)

random

greedy

economic

Figure 4.17: Network saturation: query failures

try. Each datacenter is hosted by a separate machine and contains 5 Skute
servers, which are considered to be at the same rack. That is, the physical
distance between servers in our testbed is not fully representative of a real
deployment across 4 countries, where the latency between servers would be
greater. We consider 3 applications, each of M = 50 partitions, with a min-
imum required availability of 2, 3 and 4 replicas respectively. 250000 data
items of 10KB have been evenly inserted in the 3 applications. We generate
100 data requests per second using a Pareto(1,50) key distribution, denoted as
application traffic. We refer as control traffic to the data volume transferred
for migrations, replications and the maintenance of the boards as well as the
routing tables.

4.8.1 Verification of Simulation Results

We first validate our simulation results of Section 4.7, by repeating the ex-
periment of Figure 4.14. Specifically, at second 460, the total request rate is
suddenly multiplied by 60 (from 6 to 360 requests/sec) and then slowly (5
requests/sec) decreases back to the initial rate. As depicted in Figure 4.18,
the system adapts to the sudden load change similarly to the simulated one.

4.8.2 Scalable Performance

Also, we measure the effectiveness of the dynamic replication scheme in
terms of response time and throughput. To this end, we increase the number
of concurrent users that continuously send read requests for a particular data

84

4.8. Implementation and Experimental Results in a Real Testbed

400 500 600 700 800 900 1000 1100 1200 1300

0

5

10

Virtual Ring 0 (4/7 of total load, min 2 replicas)

400 500 600 700 800 900 1000 1100 1200 1300

0

5

10

Virtual Ring 1 (2/7 of total load, min 3 replicas)

R
eq

ue
st

s
/ S

ec
on

d

400 500 600 700 800 900 1000 1100 1200 1300

0

5

10

Virtual Ring 3 (1/7 of total load, min 4 replicas)

Time (sec)

40 servers (1/3: 125$, 2/3: 100$), max load = 360 requests/second
Average Query Load per Server

Figure 4.18: Average query load per virtual ring per server over time when 4/7, 2/7, 1/7 of the
queries are attracted by application 1, 2, 3 respectively

20 40 60 80 100
500

1000

1500

2000

2500

3000
Throughput

Concurrent Users

R
eq

ue
st

s
pe

r
S

ec
on

d

20 40 60 80 100
0

50

100

150

200

250

300
Response Time

Concurrent Users

T
im

e
(m

s.
)

Skute

Static

Skute

Static

Figure 4.19: Left: Average response time (95-percentile). Right: Average throughput

85

4. Building Highly-Available and Scalable Cloud Storage

1800 1900 2000 2100 2200 2300 2400 2500 2600
0

5

10

15

x 104 Control and Application Traffic

Time (sec)

D
at

a
tr

an
sf

er
re

d
(K

B
)

Control

Application

1800 1900 2000 2100 2200 2300 2400 2500 2600
120

120.5

121
Average Virtual Rent per Server

Time (sec)

V
irt

ua
l R

en
t

replication

Figure 4.20: Top: Application and control traffic in case of a load peak. Bottom: Average virtual
rent in case of a load peak.

item (i.e., the data popularity) from 0 to 100. As depicted in Figure 4.19, Skute
achieves low response time and high throughput respectively, as compared
to static replication with fixed number of replicas.

4.8.3 Adaptivity to Varying Load

We next evaluate the behavior of the system in case of a load peak. At second
1980, additional 100 requests per second are generated for a unique key. After
100 seconds, at second 2080, the popular virtual node hosting this unique key
is replicated, as shown by the peak in the control traffic in Figure 4.20(top).
Moreover, as depicted in Figure 4.20(bottom), the average virtual rent price
increases during the load peak, as more physical resources are required to
serve the increased number of requests. It further increases after the replica-
tion of the popular virtual node, because more storage is used at a server for
hosting the new replica of the popular partition.

4.8.4 Adaptivity to Failure

Finally, the behavior of the system in case of a server crash is assessed. At
second 2800, a Skute server collapses. As soon as the virtual nodes detect the
failure (by means of the gossiping protocols), they start replicating the par-
titions hosted on the failed Skute server to satisfy again the minimum avail-
ability guarantees. Figure 4.21(top) shows that the replication process (as
revealed by the increased control traffic) starts directly after the crash. More-
over, as depicted in Figure 4.21(bottom), the average virtual rent increases

86

4.9. Potential Applications

2600 2800 3000 3200 3400 3600
0

2

4

6

8

x 104 Control and Application Traffic

Time (sec)

D
at

a
tr

an
sf

er
re

d
(K

B
)

2600 2800 3000 3200 3400 3600
120

121

122

123
Average Virtual Rent per Server

Time (sec)

V
irt

ua
l R

en
t

Control

Applicationserver crash

 40 servers 39 servers

Figure 4.21: Top: Application and control traffic in case of a server crash. Bottom: Average
virtual rent in case of a server crash.

during the replication process, because the same storage and processing re-
quirements as before the crash, have to be now satisfied by fewer servers.
Note that, in every case and especially when the system is at equilibrium, the
control traffic is minimal as compared to the application one.

4.9 Potential Applications

So far, we have seen that Skute is able to provide high-availability guarantees
by geographical diversity and query load-balancing by adaptive replica man-
agement. In this section, we explain why our approach could also provide an
attractive alternative as a caching solution for large web applications. Typi-
cally, client requests first hit a reverse proxy, which is usually responsible for
filtering the requests and serving directly static content. Dynamic content is
handled by the application servers which have to query the database tier to
complete the request. Thus, the main bottleneck of a large application often
resides at the database tier. To this end, a caching tier is added to the archi-
tecture to decrease the load on the database. Then, mostly write operations
contact the database. We propose that a memory-based Skute store is used
as a caching layer. This solution has two main advantages as compared to
common caching solutions, such as Memcached [26]: i) Adding or removing
a new node in Memcached involves many cache entries invalidation, as op-
posed to Skute. Also, a single failure in Memcached may result in disabling
entirely the caching tier with serious performance losses for cache restora-
tion. ii) In Memcached, even if a popular data is cached, there is usually only
one server responsible for serving the data. However, in Skute, adaptive data
replication improves the read query performance.

Moreover, deploying the caching tier, across several datacenters may be ben-

87

4. Building Highly-Available and Scalable Cloud Storage

Proxy Proxy

App Server App Server App Server App Server

Internet

Node Node Node

Node Node Node

Node Node Node

Node Node Node

Skute CachePersistent Storage Pool

DB DB DB

DB DB DB

DB DB DB

Proxy

App Server App Server

Datacenter 1 Datacenter 2

Skute Cache

Node Node Node

Node Node Node

Figure 4.22: Architecture of a large web application using a Skute cache

eficial for large web applications for fault-tolerance and for moving the data
closer to the clients. However, maintaining consistent storage at the database
layer can be costly in terms of communication overhead. Our approach can
serve as a geographically distributed in-memory caching tier, having the per-
sistent storage residing at a single datacenter, as depicted in Figure 4.22. Read
operations are mostly sent to the caching tier, while write ones are sent to the
database. Therefore, application data can reside closer to the final clients and
high data availability can be guaranteed.

Anycast Service In the case of a global service relying on anycast to serve
clients closely to their geographical location, the content of the service should
be replicated or mirrored to every edge server. For DNS services, a common
practice is to use rsync over ssh to mirror the zones among the authoritative
servers or to rely on the master-slave architecture provided directly by the
DNS server. In order to maintain consistency, write operations are performed
only at a single facility and mirrored to the others facilities. Obviously, when
the master facility is unreachable, no write operation is possible. This might
be a real problem for systems like CDNs where new DNS entries are contin-
uously added or updated. Using Skute as the DNS server backend permits
write operations to any facilities, while ensuring that every edge server has
eventually a local replica of the zones.

4.10 Related Work

Dealing with network failure, strong consistency (which databases care of)
and high data availability cannot be achieved at the same time [63]. High data

88

4.10. Related Work

DNS edge server

DNS server

Skute

DNS server

Skute

DNS server

Skute

US West US East Europe

Figure 4.23: Architecture of an anycast DNS service

availability by means of replication has been investigated in various contexts,
such as P2P systems [137, 113], data clouds, distributed databases [128, 78]
and distributed file systems [95, 142]. In the P2P storage systems PAST [137]
and Oceanstore [113], the geographical diversity of the replicas is based on
random hashing of data keys. Oceanstore deals with consistency by serializ-
ing updates on replicas and then applying them atomically. In the distributed
databases and systems context, Coda [142], Bayou [128] and Ficus [95] al-
low disconnected operations and are resilient to issues, such as network par-
titions and outages. Conflicts among replicas are dealt with different ap-
proaches that guarantee event causality. In distributed data clouds, Amazon
Dynamo [78] replicates each data item at a fixed number of physically distinct
nodes. Dynamo deals with load balancing by assuming the uniform distribu-
tion of popular data items among nodes through partitioning. However, load
balancing based on dynamic changes of query load are not considered. In all
the aforementioned systems, replication is employed in a static way, i.e., the
number of replicas and their location are predetermined. Also, no replication
cost considerations are taken into account and no geographical diversity of
replicas is employed.

In [152], data replicas are organized in multiple rings to achieve query load-
balancing. However, only one ring is materialized (i.e., has a routing table)
and the other rings are accessible by iteratively applying a static hash func-
tion. This static approach for mapping replicas to servers does not allow
to perform advanced optimizations, such as moving data close to the end
user and ensuring the geographical diversity between replicas, or offering a
different availability level per application/data item.

Some economic-aware approaches are dealing with the optimal locations of
replicas. Mariposa [150] aims at latency minimization in executing com-
plex queries over relational distributed databases, i.e., not primary-key ac-
cess queries on which we focus. Sites in Mariposa exchange data items (i.e.,

89

4. Building Highly-Available and Scalable Cloud Storage

migrate or replicate them) based on their expected query rate and their pro-
cessing cost using combinatorial auctions, where winner determination is
tricky and synchronization is required. In our approach, asynchronous indi-
vidual decisions are taken by data items regarding replication, migration or
deletion, so that high availability is preserved and dynamic load balancing
is performed. Also, in [147], a cost model is defined for the factors (e.g.,
query load, network and storage capacity) that affect data and application
migration for minimizing latency in replying queries.

On the other hand, in the Mungi operating system [100], a commodity market
of storage space has been proposed. Specifically, storage space is lent by
storage servers to users and the rental prices increase as the available storage
runs low (similarly to congestion pricing in networks), forcing users to release
unneeded storage. This approach does not take into account the different
query rates for the various data items and it does not have any availability
objectives.

In [105], an approach is proposed for reorganizing replicas evenly in case that
new storage is added into the cloud, while minimizing data movement. Relo-
cated data and new replicas are randomly assigned with higher probability
to newer servers. However, this replication approach does not consider geo-
graphical distribution of replicas, differentiated availability levels to multiple
applications, or data popularity.

In [59] and [77] efficient data management for the consistency of replicated
data in distributed databases is addressed by an approach guaranteeing one-
copy serializability in the former and snapshot isolation in lazy replicated
databases (i.e., where replicas are synchronized by separate transactions) in
the latter. In our case, we do not expect high update rates in a key-value store
and therefore concurrent copy of changes to all replicas can be an acceptable
approach.

4.11 Conclusion

In this chapter, we described Skute, a robust, scalable and highly-available
key-value store that dynamically adapts to varying query load or disasters
by determining the most cost-efficient locations of data replicas with respect
to their popularity and their client locations. We experimentally proved that
our approach converges fast to equilibrium, where as predicted by a game-
theoretical model no migrations happen for steady system conditions. Our
approach achieves net benefit maximization for application providers and
therefore it is highly applicable to real business cases. We have built a fully
working prototype in a distributed setting that clearly demonstrates the feasi-
bility, the effectiveness and the low communication overhead of our approach.
As a future work, we plan to investigate the employment of our approach for
more complex data models, such as the one in Bigtable [71].

90

Chapter 5

Building Highly-Available and Scalable
Cloud Applications

The service-oriented architecture (SOA) paradigm for orchestrating large-
scale distributed applications offers significant cost savings by reusing ex-
isting services. However, the high irregularity of client requests and the dis-
tributed nature of the approach may deteriorate service response time and
availability. Static replication of components in datacenters for accommo-
dating load spikes requires proper resource planning and underutilizes the
cloud infrastructure. Moreover, no service availability guarantees are offered
in case of datacenter failures. In this chapter, we propose a cost-efficient ap-
proach for dynamic and geographically-diverse replication of components in
a cloud computing infrastructure that effectively adapts to load variations
and offers service availability guarantees. In our virtual economy, compo-
nents rent server resources and replicate, migrate or delete themselves ac-
cording to self-optimizing strategies. We experimentally prove that such an
approach outperforms in response time even full replication of the compo-
nents in all servers, while offering service availability guarantees under fail-
ures.

Significant achievements have been made for automated allocation of cloud
resources. However, the performance of applications may be poor in peak
load periods, unless their cloud resources are dynamically adjusted. More-
over, although cloud resources dedicated to different applications are virtu-
ally isolated, performance fluctuations do occur because of resource sharing,
and software or hardware failures (e.g., unstable virtual machines, power out-
ages, etc.). In this chapter, we propose a decentralized economic approach for
dynamically adapting the cloud resources of various applications, so as to sta-
tistically meet their SLA performance and availability goals in the presence of
varying loads or failures. According to our approach, the dynamic economic
fitness of a Web service determines whether it is replicated or migrated to
another server, or deleted. The economic fitness of a Web service depends on
its individual performance constraints, its load, and the utilization of the re-
sources where it resides. Cascading performance objectives are dynamically
calculated for individual tasks in the application workflow according to the
user requirements.

91

5. Building Highly-Available and Scalable Cloud Applications

By fully implementing our framework, we experimentally prove that our
adaptive approach statistically meets the performance objectives under peak
load periods or failures, as opposed to static resource settings.

5.1 Introduction

Cloud computing is deemed to replace high capital expenses for infrastruc-
ture with lower operational ones for renting cloud resources on demand by
the application providers. However, with static resource allocation, a cluster
system would be likely to leave 50% of the hardware resources (i.e., CPU,
memory, disk) idle, thus baring unnecessary operational expenses without
any profit (i.e., negative value flows). Moreover, as clouds scale up, hard-
ware failures of any type are unavoidable.

A successful online application should be able to handle traffic spikes and
flash crowds efficiently. Moreover, the service provided by the application
needs to be resilient to all kinds of failures (e.g., software stales, hardware,
rack or even datacenter failures, etc.). A naive solution against load vari-
ations would be static over-provisioning of resources, which would result
into resource underutilization for most of the time. Resource redundancy
should be employed to increase service reliability and availability, yet in a
cost-effective way. Most importantly, as the size of the cloud increases its
administrative overhead becomes unmanageable. The cloud resources for an
application should be self-managed and adaptive to load variations or fail-
ures.

With the emergence of the cloud computing paradigm, avoiding high capital
investment for infrastructure becomes viable. Lower operational expenses are
expected for renting cloud resources on demand by the application providers.
Although achievements in automated cloud resource provisioning were enou-
gh for the first wave of “best effort” application deployments, adaptive re-
source allocation for satisfying the performance and availability objectives of
mission-critical application remains an open issue. With static resource allo-
cation (based on resource planning and over-provisioning), a cluster system
would be likely to leave 50% of the hardware resources (i.e., CPU, memory,
disk) idle, thus baring unnecessary operational expenses without any profit
(i.e., negative value flows). Moreover, as described in [79], the performance of
multiple identical virtual machines may greatly vary, and thus might drasti-
cally reduce the performance of a distributed application. On the other hand,
as clouds scale up, software and hardware failures of any type (e.g., software
stales, virtual machines go “wonky”, i.e become unstable), hardware or rack
or even datacenter failures, etc.) are unavoidable and often spatially correlated
[130]. Resource redundancy should be employed to increase service reliabil-
ity and availability, yet in a cost-effective way. Another concern is that, as the
size of the cloud increases, its administrative overhead becomes unmanage-
able.

In this chapter, we focus on cost-effective autonomic resource allocation, so
as to adaptively satisfy service level agreements (SLAs) for performance and
availability statistical guarantees against load variations and software / hard-

92

5.1. Introduction

ware failures. We propose a middleware (“Scattered Autonomic Resources”,
referred to as Scarce) that performs supple sharing to avoid stranded and
underutilized computational resources and dynamically adapts to changing
conditions, such as failures, load variations or “wonky” servers or virtual ma-
chines. As our framework works indifferently on top of virtualized and/or
physical servers, henceforth, we use the terms server and virtual machine in-
terchangeably, unless stated otherwise. Our middleware simplifies the de-
velopment of online applications composed of multiple independent compo-
nents (e.g., web services) following the Service Oriented Architecture (SOA)
principles. We consider a virtual economy, where components are treated as
individually rational entities that rent computational resources from servers,
and migrate, replicate or exit according to their economic fitness. This fitness
expresses the difference between the utility offered by a specific application
component and the cost for retaining it in the cloud. The server rent price is
an increasing function of the utilization of server resources. Moreover, com-
ponents of a certain application are dynamically replicated to geographically-
diverse servers according to the availability requirements of the application.

The economic approach and the geographical diversity of components along
with their ability to migrate or replicate are directly inspired by Skute as de-
scribed in Chapter 4, such that a component in Scarce is treated similarly to
a virtual node in Skute. However, in this chapter, we deal with applications
where components have dependencies and performance constraints among
them, contrary to virtual nodes. Moreover, Scarce focuses on practical issues
occurring when deploying an application on a cloud infrastructure: plac-
ing the components so as to offer robustness and performance guarantees
on top of an elastic infrastructure with unpredictable performance becomes
challenging. Our approach combines the following unique characteristics:

• Adaptive adjustment of cloud resource allocation in order to statisti-
cally satisfy response time or availability SLA requirements.

• Cost-effective resource allocation and component placement for mini-
mizing the operational costs of the cloud application.

• Detection and removal or replacement of stale cloud resources.

• Component replication and migration for accommodating load varia-
tions and for supple load balancing.

• Decentralized self-management of the cloud resources for the applica-
tion.

• Geographically-diverse placement of clone component instances.

Having implemented a full prototype of our approach, we experimentally
prove that it effectively accommodates load spikes, it satisfies compliance to
the SLA response-time requirements, it cost-effectively utilizes the cloud re-
sources, and it provides a dynamic geographical replica placement without
thrashing. We finally reveal the trade-off between cost-effectiveness and meet-
ing strict SLA requirements; the latter may necessitate a more conservative
(over-provisioning) resource allocation approach.

The remainder of this chapter is organized as follows: in Section 5.2, we
present a motivating example application. In Section 5.3, we describe our

93

5. Building Highly-Available and Scalable Cloud Applications

economic approach for autonomic component replica management. Section
5.5 describes how SLAs are propagated. In Section 5.6, we describe how
the components dynamically adapt their resources to honor their SLA. Sub-
section 5.6.1 describes how “wonky”and cloud resources are detected and
removed. In Section 5.7, we present our experimental results. In Section 5.8,
we overview the related work and, finally in Section 5.9, we conclude our
work.

5.2 Motivation

Elastic platforms are becoming more and more popular and start to be a
viable alternative to host distributed applications and web applications in
particular. In a typical cloud infrastructure, a user can rent virtual machines
(VM) and allocate dedicated resources (such as CPU cores, RAM, disk space,
etc.) to them in order to closely match the application needs. Moreover,
through the cloud infrastructure application programming interface (API),
the user is able to programmatically increase or decrease the resources allo-
cated to a virtual machine, and can also start new VMs or stop unused ones.
The virtualization technologies that have greatly contributed to the success of
cloud computing also come with some drawbacks. In effect, a user does not
have full control over the underlying infrastructure. For example, in today’s
public cloud infrastructures, such as Amazon EC2 [1] or Rackspace Cloud
Servers [41], a user does not have the possibility to choose on which physical
server a VM will be started. Moreover, a VM may migrate during its lifetime
from one physical server to another. Also, a user has no control over the vir-
tual machines that are collocated on the same physical server. This may have
a large performance impact, if for example, a collocated VM performs an I/O
intensive work. Figure 5.1 shows an architectural view of a distributed appli-
cation hosted by a cloud computing infrastructure. The application consists
of 5 replicated components (Comp 1 to Comp 5) and spans 4 VMs and 3 phys-
ical servers. In such elastic infrastructures, each physical server hosts several
VMs. As the application owner has usually no control on where its VMs are
hosted, the application responsiveness may suffer from an overloaded VM of
another customer hosted at the same physical server as the one employed by
the application VM.

A well-engineered cloud application should be able to detect slow or “wonky”
VMs and react accordingly. A desirable reaction would be to first gradually
redirect the traffic for the components of the “wonky” VM to their replica
components elsewhere. Second, if the overall performance of the application
has suffered considerably, a new VM should be started in order to take over
the redirected traffic. At some point, the “wonky” VM will not receive any
traffic and can safely be removed, thus saving rental costs.

5.2.1 Running Example

Building an application that both provides robust guarantees against failures
(hardware, network, etc.) and handles dynamically load spikes is a non-

94

5.2. Motivation

Comp 1

Comp 2 Agent

VM1
Comp 3

Comp 3

Comp 4 Agent

VM2
Comp 5

Comp 4

Comp 1

Agent

VM3

Other customer VM

Other customer VM

Other customer VM

Physical server i

Other customer VM

Other customer VM

Other customer VM

Physical server j

Other customer VM

Physical server k

Other customer VM

Comp 2

Comp 5

Agent

VM4

Figure 5.1: Overview of a distributed application composed of 5 components (i.e., Comp 1 to
Comp 5) deployed on a cloud computing infrastructure

trivial task. As a running example, we have developed a simple web appli-
cation for selling e-tickets (print@home) composed of 4 independent compo-
nents:

• A web front-end, which is the entry point of the application and serves
the HTML pages to the end user.

• A user manager for managing the profiles of the customers. The pro-
files are stored in an highly scalable, eventually consistent, distributed,
structured key-value store [4].

• A ticket manager for managing the number of available tickets for an
event. This component uses a relational database management system
(MySQL).

• An e-ticket generator that produces e-tickets in PDF format (print@home).

Web Frontend

ACID
DB

Ticket Mgr NoSQL
DB

Distributed application

API

Client

Ticket Gen User Mgr

Client...

Figure 5.2: A distributed application using different components.

Each component can be regarded as a stateless, standalone and self-contained
web service. Figure 5.2 depicts the application architecture. A token (or a
session ID) is assigned to each customer’s browser by the web front-end and

95

5. Building Highly-Available and Scalable Cloud Applications

is passed to each component along with the requests. This token is used as a
key in the key-value database to store the details of the client’s shopping cart,
such as the number of tickets ordered. Note that even if the application uses
the concept of sessions, the components themselves are stateless (i.e., they do
not need to keep an internal state between two requests).

This application is highly sensitive to traffic spikes, when, for example, tickets
for a concert of a famous band are sold. If the spike is foreseeable, one
wants to be able to add spare servers that will be used transparently by the
application for a short period of time, without having to reconfigure the
application. After this period, the servers have to be removed transparently to
the end users. As this application is business-critical, it needs to be deployed
on different geographical regions, hence on different datacenters.

5.3 Scarce: the Quest of Autonomic Applications

5.3.1 The Approach

We consider applications formed by many independent and stateless compo-
nents that interact among each other to provide a service to the end user, as
in the Service Oriented Architecture (SOA) paradigm. A component is self-
managing, self-healing and is hosted by a server (or a virtual machine), which
in turn is allowed to host many different components. A component can stop,
migrate or replicate to a new server according to its load or availability. The
approach to maintain high availability is explained in Section 5.4.

5.3.2 Server Agent

The server agent is a special component that resides at each server and is re-
sponsible for managing the resources of the server according to our economic-
based approach, as shown in Figure 5.3. Specifically, this agent is responsible
for starting and stopping the components of the various applications at the
local server, as well as checking the “health” of the services, e.g., by verifying
if the service process is still running, or by issuing a test request and checking
that the corresponding reply is correct. The agent knows the properties of
every service that composes the application, such as the path of the service
executable, and its minimum and maximum replication factor. This knowl-
edge is acquired when the agent starts, by contacting another agent, referred
to as “bootstrap agent”. Any running agent participating in the application
cluster can act as a bootstrap agent.

During the startup phase, the agent also retrieves the current routing table
from the bootstrap agent. The routing table provides a mapping between
services and servers (cf. Section 5.3.3). The number of replicas of a service
and their placement are handled by a distributed optimization algorithm
autonomously executed by the agents.

In an untrustworthy environment, where a server agent may be malicious,
the functionality of decision making could be implemented directly in the

96

5.3. Scarce: the Quest of Autonomic Applications

Gossiping

Agent

Agent

Agent

Agent

Routing table

Monitor

Manager

Agent Service 1

Server i

Service 2

Service n

Agent

...

b)a)

Figure 5.3: a) Agents communicate using a gossiping protocol b) A server or a virtual machine
hosts many services along with an agent responsible for managing them

component itself. While being robust to strategic behaviors of server agents,
this approach tends to waste resources, as every component would have to
perform the tasks of a server agent (i.e., maintaining the routing table, gos-
siping, etc.).

We assume, as in Chapter 4, that a server belongs to a rack, a room, a dat-
acenter, a city, a country and a continent. Note that finer or coarser geo-
graphical granularity could also be considered, especially in a cloud environ-
ment where the rack and room information may not be available. A label of
the form “continent-country-city-datacenter-room-rack-server” is attached to
each server in order to precisely identify its geographical location. For exam-
ple, a possible label for a server located in a data center in London could be

“EU-UK-LON-D1-C03-R11-S07”.

5.3.3 Routing Table

Instead of using a centralized repository for locating services, such as a UDDI
registry (uddi.xml.org), each server keeps locally mappings (i.e., a routing
table) between components and servers. This routing table (e.g., Table 5.1)
is maintained by a gossiping algorithm (see Figure 5.3), where each agent
contacts a random subset [log(N) where N is the total number of servers] of
remote agents and exchanges information about the services running at their
respective server.

Table 5.1: The local routing table

component servers
component 1 server A, server B
component 2 server B, server C
component 3 server A

A component may be hosted by several servers, therefore we consider 4 differ-
ent policies that a server s may use for choosing the replica of a component:

• a proximity-based policy: thanks to the labels attached to each server,
the geographically nearest replica is chosen;

97

5. Building Highly-Available and Scalable Cloud Applications

• a rent-based policy: the least loaded server is chosen; this decision is
based on the rent price of the servers.

• a random-based policy: a random replica is chosen.

• a net benefit-based policy: the geographically closest and least loaded
replica. For every replica of the component residing at server j, we
compute a weight:

wpj =
ε + proximity(s, j)− rentj

∑i∈replicas(ε + proximity(s, i)− renti)
, (5.1)

where 0 < ε << 1 is a very small positive, proximity(s, j) returns a
value corresponding to the geographical proximity of s and j according
to their labels (the greater the value, the closer the servers) and rentj
is the virtual rent of the server j, which gives an approximation of its
load, as will be described in Section 5.3.4. This weight represents the
probability that the replica j will be chosen.

5.3.4 Economic Model

Service replication should be highly adaptive to the processing load and to
failures of any kind in order to maintain high service availability. To this end,
each component is treated by the server agent as an individual optimizer that
acts autonomously so as to ascertain the availability guarantees pre-specified
by the SLA and to balance its economic fitness. Time is assumed to be split
into epochs. At every epoch, the server agent verifies from the local routing
table that the minimum requirement on the number of replicas for every
component is satisfied; thus, no global or remote knowledge is required. If
the required availability level is not satisfied and if the service is not already
running locally, the agent starts the service. When the service has started, the
server agent informs all others by using a hierarchical broadcast to update
their respective routing tables.

At each epoch, a service pays a virtual rent to the servers where it is running.
The virtual rent corresponds to the usage of the server resources, such as
CPU, memory, network, disk I/O and space. A service may be replicated or
migrated to another server, or stopped by the server agent. These decisions
are made based on the service demand, the renting cost and the maintenance
of high availability upon failures. There is no global coordination and each
server agent behaves independently for each hosted service. Only one replica
of a service is allowed to be stopped at the same epoch by employing the
Paxos [114] distributed consensus algorithm. The virtual rent of a server is
updated at the beginning of a new epoch by the server agent. The price of
the other servers participating in the application cluster are updated by the
same gossiping algorithm that is used to maintain the routing table.

The actions (i.e., replication, migration, stop) performed by the server agent
on behalf of a component c hosted at a server s are directly related to the
economic fitness or balance of the component c, which is given by:

balancec = utilityc − rents , (5.2)

98

5.3. Scarce: the Quest of Autonomic Applications

The utility of a component corresponds to the value that it creates for the
various applications that employ it and it can be safely assumed to be an
increasing function of the server resources utilized by the component. We
denote as xc the usage percentage of the server resources by the component c
and as xc

s the contention level of the server s for a given application component
c. xc can be calculated as follows:

xc =
wc · cpuc + wm ·memc + wn · netc + wd · diskc

wc + wm + wn + wd
, (5.3)

where cpuc, memc, netc, diskc are the component usage percentages for CPU,
memory, network and disk respectively. xc is normalized to [0, 1]. wc, wm,
wn, wd ∈ [0, 1] are weights to adapt to different kinds of application compo-
nents (CPU-intensive, I/O-intensive, etc.): a high CPU, memory, network or
disk usage corresponds to a high value for wc, wm, wn, wd respectively. The
resource usage of a component can be determined using standard process
performance tools available on Linux, such as top [49], iotop [21], lsof [25],
sysstat [48], NetHogs [34] or by reading the appropriate files under /proc.

CC

CPU: 30%
I/O: 5%

S1

CPU: 70%
I/O: 20%

S2

CPU: 25%
I/O: 65%

?

Figure 5.4: Contention level of servers with respect to a component

xc
s is calculated similarly to xc by employing the resource utilization percent-

ages for the total server instead of the single component ones:

xc
s =

wc · cpus + wm ·mems + wn · nets + wd · disks

wc + wm + wn + wd
, (5.4)

where cpus, mems, nets, disks are the server usage percentages for CPU, mem-
ory, network and disk respectively, and wc, wm, wn, wd are the weights of the
component c. That is, xc

s , which is normalized to [0, 1], depends not only
on the server usage but also on the kind of the component (CPU-intensive,
I/O-intensive, etc.). For example, imagine a component c that has to migrate
to another server and can choose between two servers, s1 and s2. Let us
consider a simple scenario, where only CPU and disk I/O usage are taken
into account, as depicted in Figure 5.4. Both servers having the same total
resource usage of 45%, the component should give preference to the server
that will offer the best performance (i.e., the least contention) for its kind of
resource utilization, namely s2 because xc

s2
< xc

s1
. To this end, the utility of

99

5. Building Highly-Available and Scalable Cloud Applications

a component c residing at server s is assumed to be given by the following
convex formula:

utilityc =
xc − x∗s
(C− xc)2 , (5.5)

where C > 1 is a constant determining the starting point of the fast-increasing
part of the curve. utilityc is normalized to [0, k] with k > 1 in order the
utility of c to be greater than the rent price of the server s, such that the
component could be wealthy enough to afford the rent of another server in
case of replication. The selection of the parameters k and C determines the
reactivity of the balance of a component with respect to its resource usage.
Typical values are k = C = 5. x∗s is a component utilization threshold that
determines when the component residing at s is economically fit-enough to
replicate, i.e.,:

x∗s =
srvMinUsage
|componentss|

, (5.6)

where |componentss| is the number of components running at the server and
srvMinUsage is a percentage threshold denoting a soft limit for server utiliza-
tion, e.g., 25%. The utility function is chosen so that it grows exponentially
to the usage and it is 0 for xc = x∗s . The virtual rent paid by the component c
to the server s is given by:

rents = con fs · xs , (5.7)

where con fs ∈ [0, 1] is a subjective estimation of the server quality and reli-
ability based on technical factors (hardware quality, datacenter connectivity,
redundancy, etc.) as well as non-technicals ones (e.g., political and economi-
cal stability of the country hosting the server, etc.).

Based on the balancec, at the beginning of a new epoch, a component may:

• migrate or stop: if it has negative balance for the last f epochs. First,
the component calculates its availability without itself. If the availabil-
ity is satisfactory, the component stops. Otherwise, it tries to find a less
expensive (i.e., busy) server that is closer to the client locations (accord-
ing to maximization formula (5.9)). To avoid oscillations of a replica
among servers, the migration is only allowed if the following migration
conditions apply:

– The minimum availability is still satisfied using the new server,

– the absolute price difference between the current and the new
server is greater than a threshold,

– the xs of the current server s is above the soft limit srvMinUsage.

• replicate: if it has positive balance for the last f epochs, it may replicate.
For replication, a component has also to verify that it can afford the
replication by having a positive balance b′ for consecutive f epochs:

b′ = balancec − (1 + ϕ) · rents′

where rents′ is the current virtual rent of the candidate server s′ for
replication (randomly selected among the top-k ones ranked accord-
ing to the formula (5.9)), while the factor 1 + ϕ accounts for a ϕ·100%

100

5.4. Maintaining High-Availability

increase at this rent price in the next epoch due to the potentially in-
creased usage of the candidate server (an upper bound of ϕ = 0.2 can
typically be assumed). This action aims to distribute to load of the cur-
rent server towards another one located closer to the clients. Thus, it
tends to decrease the processing and network latency of the requests
for the component.

5.4 Maintaining High-Availability

Server or component failures or network partitioning may unexpectedly oc-
cur at any time and they are often spatially-correlated. As estimating the
probability of each server to fail necessitates access to a large set of historical
data and private information of the server, we adopt the approach of 4.4.3 for
maintaining high availability by geographically-diverse placement of compo-
nent replicas. The availability of a service i is defined as the sum of diversities
between each distinct pair of servers, i.e.,:

availi =
|Si |

∑
i=0

|Si |

∑
j=i+1

con fi · con f j · diversity(si, sj) (5.8)

where Si = (s1, s2, . . . , sn) is the set of servers hosting replicas of the service
i and con fi, con f j ∈ [0, 1] are the confidence levels of servers i, j. The diver-
sity function returns a value calculated based on the geographical distance
among each server pair. This distance can be represented as a n- bit number,
having each bit corresponding to the n location parts of a server, e.g., conti-
nent, country, city, data center, room rack, server etc. The most significant bit
(leftmost) represents the wider enclosing geographical location (e.g., the con-
tinent), while the least significant bit (rightmost) represents the server. When
two servers are not in the same location part, their corresponding diversity bit
is set to 1, otherwise to 0. Once a bit has been set to 0, all less significant bits
are also set to 0. For example, two servers belonging to the same data center
but located in different rooms cannot be in the same rack, thereby all bits
after the third bit (data center) have to be 0. The proximity number would
then look like this:

cont coun city datac room rack serv
1 1 1 0 0 0 0

A binary “NOT” operation is then applied to the proximity to get the diver-
sity value:

1110000 = 0001111 = 15(decimal)

The diversity values of the server pairs are summed up, because having more
replicas in distinct servers always results in increased availability regardless
of their location. A component knows the locations of its replicas by the local
routing table at the server where it is hosted.

The availability of a component should always be kept above a minimum
level th, which is derived by the SLA. When the availability of a component

101

5. Building Highly-Available and Scalable Cloud Applications

falls below th, a new service instance should be started (i.e., replicated) at a
new server. The best candidate server is selected so as to maximize the net
benefit between the diversity of the resulting set of replica locations for the
service and the virtual rent of the new server, i.e.,

|Si |

∑
k=1

gj · con f j · diversity(sk, sj)− rent j , (5.9)

where rent j is the virtual rent price of candidate server j. gj is a weight
related to the proximity (i.e., inverse average diversity) of the server location
to the geographical distribution of the client requests for the service (cf. 4.4.3).
Note that client requests may come from other components. As a result, the
components will tend to replicate closer to the components that heavily rely
on the services of the former. The components rank servers according to
their net benefit (5.9) and randomly choose the target for replication among
the top-k ones for avoiding server congestion. Note that the same approach
according to (5.9) is used for choosing the candidate server for component
migration.

5.5 Meeting SLA Performance Guarantees

Autonomic migration or replication of the application components in order
to utilize in a fair manner the available resources may not always be good
enough to guarantee acceptable end-to-end service quality. If the latency
of client requests is not satisfactory and the allocated resources to the ap-
plication are not underutilized, one solution is to give more resources to the
application, e.g., by increasing the number of cores of a virtual machine (VM),
or by starting a new VM.

To this end, our framework is able to manage the physical resources dedi-
cated to the application based on a SLA defined by the application owner. If
the SLA is not met, then the framework asks for more resources via the cloud
API. Or, if the application easily honors the SLA, it can remove some extra
resources.

5.5.1 Cascading Performance Constraints

The application owner requires the compliance of the performance to certain
constraints pre-specified in a SLA, e.g., an upper bound on the response time
for a service request. In case of complex applications that consist of many
components that have dependencies on each other (as the one depicted in
Figure 5.5), it is not always possible to comply to the SLA-driven perfor-
mance constraints, unless the latter are individually set to each component
constituting the application. However, the performance constraints can be
directly derived by the SLA only for the entry component (i.e., the one that
receives the user requests) of the application; derivation of the performance
constraints for the other components by the SLA would necessitate a priori
knowledge of the application internals, e.g., the exact execution workflow,

102

5.5. Meeting SLA Performance Guarantees

the hardware resources allocated to each component, the component com-
putational needs, etc. Moreover, the performance constraints for each com-
ponent should change over time, in order for the SLA to be met, due to i)
the dynamic demand for the application, ii) the fact that its components are
multiplexed with the components of other applications and iii) the dynamic
behaviour (e.g., software stales, hardware failures, etc.) of the cloud infras-
tructure.

Comp C (srv3)

Comp B (srv2)Comp B (srv1) Comp A (srv2)Comp B (srv4)

L=minmedian367,371.5,382.5 ,median 379=371.5

L=410ms
sTime=25ms

L=400ms
sTime=30ms

L=410ms
sTime=35ms

L=390ms
sTime=10ms

L=382.5ms L=371.5ms L=367ms L=379ms

Figure 5.5: Propagation of SLA from parents to children. The child Comp C receives 4 SLA
updates from its parents: 3 from replicas of Comp B and 1 from Comp A. The new SLA of the
child component is computed following equation (5.12).

More formally, assuming that the SLA requirement is an upper bound in the
response time, the response time Lj of a component j can be calculated as
follows:

Lj = sTimej + maxi∈D(j)(Li) , (5.10)

where sTimej is the service time of the j component, which is the time re-
quired by a component j to process the request locally, not accounting for
the response time of the components D(j) that it depends on. Therefore, the
response time of a component is the sum of its service time and the response
time of the slowest of the components that it depends on.

In order to meet the user requirements, each component j periodically propa-
gates the individual suggested performance constraints (e.g., an upper bound
L̃i in the response time) to its dependencies i ∈ D(j) according to the follow-
ing formula:

L̃i = L̃j − κ · sTimej − λ · propji, ∀i ∈ D(j) , (5.11)

where propji is the network delay between components j and i, while κ, λ
are factors (typically 1.1) to take into account the volatility of the service time
and the network delay respectively. These performance constraints are called
suggested because the components D(j) may receive performance constraints
from other dependent components, not only from j.

When a component receives individual performance constraints from depen-
dent components, it groups together the constraints that come from replicas
of a certain component. Then, in order to compute its individual SLA con-
straint L̂i, the component i chooses the minimum value among the median
SLA values of each group, i.e.,:

L̂i = min{median(Λ0), . . . , median(Λn)} , (5.12)

103

5. Building Highly-Available and Scalable Cloud Applications

where Λg is the group of the suggested performance constraints sent by the
replicas of the dependent component g, while n is the number of unique
dependent components (not counting the replicas). Choosing the median()
performance constraint instead of the mininum() or the average() allows the
system to be more robust against unstable hosts. Each component i should
satisfy that its response time meets its individual constraint within a certain
confidence bound d, i.e.,

Li ≤ L̂i − d .

The selection of the global confidence bound implies a trade-off between the
worst-case SLA-compliance and cost-efficiency. The proper value of d per
application can be dynamically learnt by employing a tatonnement process
for meeting the performance constraint of the application. Starting at zero, d
is periodically incremented or decremented (while keeping d ≥ 0) by a small
value (e.g., 0.05) based on the percentage of time the constraint L̂i is violated
over a time period.

5.6 Automatic Provisioning of Cloud Resources

As explained in Section 5.3, the framework takes care of balancing the load
among the available cloud resources in a fair way, by the use of autonomic mi-
gration, replication and suicide of components. However, these mechanisms
might not be sufficient to ensure that the end-to-end latency is acceptable for
an application owner. Essentially, each component of the distributed applica-
tion needs to satisfy an individual SLA. When the application load is globally
balanced, if a component is not able to process the requests fast enough, it
usually means that the dedicated cloud resources are too scarce to host the
application and to provide acceptable performance. A component that does
not comply to its SLA is allowed to dynamically ask for more resources. If
the virtual machine (VM) hosting the component is able to scale up (vertical
scaling), the server agent will assign more resources to it (e.g., increasing the
number of CPU cores, adding memory, etc.) by interacting directly with the
cloud infrastructure API. If the VM is already at the maximum of its capacity,
the server agent will start a new VM (horizontal scaling), with the minimum
amount of dedicated resources. After a short period of time, some compo-
nents will migrate or replicate to the new available VM. Essentially, after this
load-balancing process, the component is probably able to meet its SLA. On
the other hand, when a server agent realizes that the components, which it is
responsible for, have enough resources to serve requests x times faster than
required by their respective SLAs, the framework will decrease the dedicated
resources of the VM. Thus, the adaptive provisioning of cloud resources is
mainly driven by the capacity of the components to satisfy their SLA.

5.6.1 Adaptivity to Slow Servers

Each component keeps locally statistics about the latencies of its children.
Every time a component sends a request to one of its dependencies, it stores
the mean and the 95th percentile of its response time. With these statistics,

104

5.7. Evaluation

Comp B (srv2) Comp A: replicas of Comp B

Host 95p latency coefficient

srv2 23.0 0.4

srv3 29.2 0.32

srv4 31.1 0.28

Comp B (srv3)

Comp B (srv4)

Comp A (srv1)

Figure 5.6: Comp A keeps statistics about the response time of requests sent to its children
locally. Based on the 95th percentile of the response time of the children, a parent computes the
probability of choosing a replica of Comp B.

the component computes a routing coefficient for every replica of a child
component (i.e., a component that it depends on) in order to dynamically
choose an appropriate replica. This coefficient is the probability that the
child replica will be chosen for processing of subsequent requests.

Figure 5.6 illustrates an example where there are three replicas of the child
component Comp B. At the beginning, each child component has a coefficient
of p = 1/R = 1/3, where R is the number of replicas, i.e., 3 in this case.
Periodically, the parent component (i.e., the dependent one) updates the coef-
ficients based on the latency of the children, as shown in pseudo-code in the
Algorithm 5.1. According to the algorithm, a small value δ is added to the
coefficient of the fastest component, which is subtracted from the coefficient
of a randomly chosen one that is slower by more than θ. δ expresses the
robustness/adaptivity trade-off of the reaction to the current component per-
formance and it is referred to as reactivity factor. If the replica of Comp B on
server srv2 is faster than the two other replicas, then, after some time, it will
have a greater coefficient, e.g., 0.4, while the coefficients of components Comp
B on servers srv3, srv4 will become 0.32, 0.28 respectively. So, on the average,
Comp B on srv2 will receive 40% of the requests from the parent, Comp B on
srv3 32% and Comp B on srv4 will only get 28%, so that the latency of the
overall requests is minimized.

If one of the VMs (or the underlying physical server) is much slower than the
others, then the components hosted at this slow VM will gradually receive
less and less requests, and thus the server agent will scale the VM down. At
some point, the VM may also be completely stopped.

When a new replica of a component shows up at a server (after a migration
or a replication), only a small coefficient δ0 (e.g., δ0 = 0.1) is assigned to
the replica, in order not to overload it until it is properly initialized. The
coefficient of the other replicas of the same component is then decreased by
δ0/(R− 1). When a replica of a component disappears (after a suicide or a
migration), its coefficient is equally shared among the rest of the replicas of
the component.

5.7 Evaluation

The results regarding the load-balancing, the scalability and the fault-tolerance
of the approach are discussed in Section 5.7.1. The effectiveness of our ap-

105

5. Building Highly-Available and Scalable Cloud Applications

Algorithm 5.1 Routine for updating the forwarding coefficients of child com-
ponents by a small value δ (e.g., δ = 0.05)
Require: set of child components S,

array P of component coefficients,
array L of component 95th perc. of response times

Ensure: ∑
|S|
j=1 P[j] = 1

f astest← arg
j

min L[j]

slowComps← {}
for all j ∈ S \{ f astest} do

if L[j]− L[f astest] > θ then
slowComps← slowComps + {j}

end if
end for
slower ← Random(slowComps)
P[slower]← P[slower]− δ
P[f astest]← P[f astest] + δ

proach for meeting statistical SLA performance guarantees under varying
request load and software/hardware failures is investigated in Section 5.7.2.

5.7.1 Scalability, High-Availability and Load-Balancing

Experimental Setup

We employ two different testbed settings: a single-application setup consist-
ing of 7 servers and a multi-application setup consisting of 15 servers. In the
former setup, the cloud resources serve 1 application and in the latter one 3
applications. The hardware specification of each server is Intel Core i7 920
@ 2.67 GHz, 8GB Ram, Linux 2.6.32-trunk-amd64. We run two databases
(MySQL 5.1 [31] and Cassandra 0.5.0 [4]) as well as one generator of client re-
quests for each application (FunkLoad 1 1.10) on their own dedicated servers.
Thus, the cloud consists of 4 and 10 servers in the single- application and the
multi-application setup respectively. We assume that the components of the
application may require 1 up to all servers in the cloud. The parameters
employed in the utility formula are C = 5, k = 5, while x∗s = 25%.

We simulate the behavior of a typical user of the e-ticket application of Sec-
tion 5.2 by performing the following actions: 1) request the main page that
contains the list of entertainment events; 2) request the details of an event
A; 3) request the details of an event B; 4) request again the details of the
event A; 5) login into the application and view user account; 6) update some
personal information; 7) buy a ticket for the event A; 8) download the cor-
responding ticket in PDF. A client continuously performs this list of actions
over a period of 1 minute. An epoch is set to 15 seconds and an agent sends

1http://funkload.nuxeo.org/

106

5.7. Evaluation

gossip messages every 5 seconds. Moreover, the default routing policy is the
random-based policy.

We consider two different placements of the components:

• A static approach where each component is assigned to a server by the
system administrator.

• A dynamic approach where all components are started on a single
server and dynamically migrate / replicate / stop according to the load
or the hardware failures.

Results

Dynamic vs Static Replica Placement First, we employ the single-application
experimental setup to compare our approach with static placements of the
components, where we consider two cases: i) each different component is
hosted at a different dedicated server; ii) full replication, where every compo-
nent is hosted at every server. The response time of the 95% percentile of the
requests is depicted in Figure 5.7. In the static placement (i), where a compo-
nent runs on its own server, the response time is lower bounded by that of
the slowest component (in our case, the service for generating PDF tickets).
Thus, the response time increases exponentially when the server hosting this
component is overloaded. In the case of full replication [static placement (ii)],
the requests are balanced among all servers, keeping the latency relatively
low, even when the amount of concurrent users is significant. In the dynamic
placement approach, all components are hosted at a single server at startup:
then, when the load increases, a busy component is allowed to replicate, and
unpopular components may replicate to a less busy server. Our economic
approach achieves better performance than full replication, because the to-
tal amount of CPU available in the cloud is used in an adaptive manner by
the components: processing intensive (or “heavy”) components migrate to
the least loaded servers and heavily-used components are assigned more re-
sources than others. Therefore, the cloud resources are shared according to
the processing needs of components and no cloud resources are wasted by
over-provisioning.

Also, as the cloud resources are properly utilized by the economic approach,
the application throughput (i.e., the number of request served per second)
that it achieves outperforms static placements, as depicted in Figure 5.8.

Scalability Having established the effectiveness of our dynamic component
placement approach over static ones, we next investigate the resulting scal-
ability in the cloud in the multi-application experimental setup. We assume
that all 10 servers reside at 1 datacenter. We gradually increase the number
of concurrent users from 150 to 1500. The service requests are equally shared
among applications and randomly routed among the replicas of a component.
As depicted in Figure 5.9, the response time per application increases linearly
to the load and the resources of the cloud are shared among the components
of different applications in a fair way. The experiment is repeated 5 times
and mean values and confidence intervals are presented.

107

5. Building Highly-Available and Scalable Cloud Applications

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10
Response time 95th percentile

Concurrent users

S
ec

on
ds

1 component/server (4 servers)

full replication (4 servers)

dynamic (4 servers)

Figure 5.7: Response time of different placement approaches

0 50 100 150 200
0

100

200

300

Throughput

Concurrent users

R
eq

ue
st

s
/ S

ec
on

d

1 component/server (4 servers)

full replication (4 servers)

dynamic (4 servers)

Figure 5.8: Throughput compared with different placement approaches

High-Availability Next, we show that our approach is highly resilient to
hardware failures. To this end, we employ the single-application experimental
setup. We assume that each component has 2 replicas (i.e., 2 instances) that
reside at separate servers. 10 concurrent clients continuously send requests
for 1 minute. After 30 seconds, one random server between those hosting the
replicas of a component fails. As illustrated in Figure 5.10, the percentage
of requests that were not satisfied is 0.34% in this case. The failures corre-
spond to requests already sent to the failed replica. If both servers hosting
the replicas of a component fail at the same time, 3.58% of the requests are
lost. Due to the gossiping protocol, the remaining servers quickly detect the
failure, start the failed components locally and broadcast the updated routing
entries for them.

Adaptation to New Cloud Resources In this experiment, we investigate
the adaptability of our dynamic placement approach when new resources
are added to the cloud. We employ the single-application experimental setup,
but the number of available servers in the cloud ranges from 1 to 10. The
application is concurrently accessed by 1500 users, while service requests are
equally shared among the replicated instances of a particular component. As

108

5.7. Evaluation

150 300 450 600 750 900 1050 1200 1350 1500
0

2

4

6

8

10

12

14

16

18
Response Time (95th percentile) of 3 applications on the same cloud

Concurrent Users

S
ec

on
ds

Application 1

Application 2

Application 3

Figure 5.9: 95% percentile response times for 3 different applications as load increases

0 1 2
0

1

2

3

4
Request failure in case of servers crash

Failed replica

R
eq

ue
st

s
fa

ile
d

(in
 %

)

Figure 5.10: Request failure percentages when 0, 1 and 2 replicas (out of 2) crash

observed by Figure 5.11, our dynamic placement approach fully exploits the
new server resources that are added to the cloud, as the application response
time decreases, while the service throughput increases. The experiment is
repeated 5 times and mean values and confidence intervals are presented.

Evaluation of Routing Policies When multiple instances of a particular com-
ponent are available, the requests have to be split among the several instances
of the requested component to efficiently balance the load. One approach
could be that the requests are equally shared (i.e., at random) among the in-
stances of the requested component. However, this approach does not take
into account neither the network delay among the service hosting the re-
questing and the requested components, nor the load at the servers hosting

109

5. Building Highly-Available and Scalable Cloud Applications

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Response Time

Available Servers

S
ec

on
d

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

150

175

200
Throughput

Available Servers

R
eq

ue
st

s
/ S

ec
on

d

95th percentile

average

Figure 5.11: Response time (left) and throughput (right), when new cloud resources are added

the instances of the requested components. To this end, we experimentally
investigate the three other approaches that were described in Section 5.3.3.

0 50 100 150 200
0

1

2

3

4

5

Response time 95th percentile (50% / 50%)

Concurrent users

S
ec

on
ds

0 50 100 150 200
0

1

2

3

4

5

6

7

Response time 95th percentile (80% / 20%)

Concurrent users

S
ec

on
ds

rent − based

random − based

proximity − based

netbenefit − based

rent − based

random − based

proximity based

netbenefit − based

Figure 5.12: Response time when requests between datacenters are: i) 50%-50% (left), ii) 80%-
20% (right)

In this case, we employ the single-application setup, but the 4 servers of the
cloud are located in 2 datacenters (2 servers per datacenter). The round-trip
time between the datacenters is 50 ms and the minimum availability (i.e.,
number of replica per component) is set to 2.

First, the application requests are evenly split between the two datacenters
(50% to datacenter 1, 50% to datacenter 2). As depicted in Figure 5.7.1(left),
the proximity-based routing policy achieves the lowest response time, as it
saves the delay for transmitting requests between the datacenters. However,
it may result in an unbalanced server usage if the traffic is not balanced
between the datacenters, as illustrated in Figure 5.7.1(right). The rent-based
policy (as well as the net benefit one) may suffer from the fact that the rents
of servers may not always be up-to-date due to the gossiping algorithm. The
net benefit routing policy performs at least as good as the random one both
for balanced and for unbalanced load between datacenters, as depicted in
Figure 5.7.1, yet at a higher computational cost at runtime.

110

5.7. Evaluation

5.7.2 SLA Performance Guarantees

Experimental Setup

Component 4

Component 5Component 3

Component 2
Component 1

SLA: 500 ms

Figure 5.13: Architecture of a test application composed of 5 components

In our evaluation, we consider an application composed of 5 different com-
ponents, as depicted on Figure 5.13. The results presented in this section
refer to an application that is mostly CPU-intensive, hence wc >> wm, wn, wd
for every component. However, we have also conducted experiments with
different types of applications (I/O intensive, CPU intensive, a mix of both,
etc.) and with different component workflows (fully parallel, fully sequen-
tial, a mix of parallel/sequential with several numbers of tiers) with similar
conclusions on the effectiveness of our approach. At startup, all components
are started on a single 1-core server. The minimum number of replicas per
component for ensuring fault-tolerance is set to 2.

The underlying cloud infrastructure is composed of 8 8-cores servers (Intel
Core i7 920 @ 2.67 GHz, 8GB Ram, Linux 2.6.32-trunk-amd64). The com-
ponents interact with the cloud infrastructure through an API that allows
asking for more resources (adding cores to a server, starting a new server)
or less resources (remove cores from a server, stopping a server). Although
each server CPU has 8 cores, we only allow a server to employ 2, 3 or 6 cores
at maximum in our evaluation, in order to force the earlier provisioning of a
new server. The servers reside on a 1Gbps switched Ethernet LAN.

We have set the SLA (by means of an upper bound in the response time) of
the first component of the application (i.e., “Component 1” on Figure 5.13)
to be 500 ms, while no confidence bound (i.e., d = 0) was considered. The
parameters employed in the utility formula are C = 5, k = 5, while x∗s = 25%.

Results

Adaptation to Varying Load In this experiment, we investigate the reactiv-
ity of our framework to quickly increasing or shrinking load of application
requests. The initial load is assumed to be 5 requests per second. At the
8-th minute of the experiment, we start increasing the load every minute by
5 requests per second until the total traffic reaches 60 requests per second.
Then, we keep the request load constant for 15 minutes. Afterwards, we start
decreasing the load every minute by 5 requests per second until the initial
load is reached. We allow a maximum number of 3 cores to be employed per
server.

We compare the performance (in terms of response time) of our dynamic
approach with that of a static one under the same load conditions. In the

111

5. Building Highly-Available and Scalable Cloud Applications

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

re
so

ur
ce

Time (min.)

Resource usage

cores
servers

Figure 5.14: Scarce: Resources used by the application over time for varying request load

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

Time (min.)

Requests latency

Scarce: mean
Static: mean

Figure 5.15: Mean response times of the application (SLA: 500 ms) as perceived by remote
clients under the adaptive approach (Scarce) and the static setup

static setup, the total amount of cloud resources allocated to the application
remains constant and equal to 2 servers with 2 cores each. During the total
time of the experiment (60 minutes), our dynamic approach has employed
for the application components 4 cores on the average from the cloud. For
a fair comparison regarding the performance, we also employed a total of 4
cores for the application in the static setup.

As depicted in Figure 5.14, our framework reacts appropriately to the increas-
ing amount of requests by asking for more cloud resources in order to satisfy
the SLA. Once the additional resources are no longer required for SLA com-
pliance (i.e., the 95th percentile response time of every component in the

112

5.7. Evaluation

server is x times faster than required), then the framework releases them for
reducing the costs. Clearly, in the long run, the overall cost for the static setup
would be much higher, as the user would constantly pay for 4 cores even in
low load periods (where 2 cores can satisfy the SLA). Our framework uses
the minimum required resources to serve the application within the SLA re-
quirements by fully leveraging the elasticity of today’s cloud infrastructures.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

Time (min.)

95th perc. Response Time

Scarce
Static

Figure 5.16: 95th percentile response times of the application (SLA: 500 ms) as perceived by
remote clients under Scarce and the static setup

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

re
qu

es
ts

/s
ec

Time (min.)

Throughput

Figure 5.17: Throughput of the application during the varying load experiments

Also, thanks to the adaptivity of our framework, the maximum request load
for the application (60 requests per second) can be sustained, while keeping

113

5. Building Highly-Available and Scalable Cloud Applications

the average response time under 500 ms, as shown in Figure 5.15. The static
approach is also able to serve the maximum request load, but the average
response time is greater and significantly varies with time. Also, our adaptive
framework achieves much lower 95th percentile of the response time than
that of the static approach, as depicted in Figure 5.16. The framework only
reacts when the 95th percentile of the response time reaches 500 ms. Until
minute 13, the static setup has more resources (i.e., 2 servers with 2 cores)
compared to Scarce, and therefore performs better. After minute 20, Scarce
has allocated the needed resources to the application to meet the SLA and
clearly outperforms the static setup.

However, the confidence bound d should be properly selected, according to
the application tolerance to the QoS violations. There is a clear trade-off be-
tween worst-case SLA-compliance and cost-efficiency in the selection of the
confidence bound. As shown in Figure 5.19, if the application is assumed to
be inelastic and the confidence bound is selected as d = 60% · response time,
then our adaptive approach would allow almost no SLA violations, as op-
posed to the static setup.

As soon as the number of requests per second sent to the application in-
creases, the service time as well as the response time of each component
are impacted. Recall that each component periodically sends a suggested
SLA constraint update to its child components. As the suggested SLA up-
date (given by equation (5.11)) depends on the component service time, the
application load has a direct effect on the derived SLA constraint of each
component. This effect is depicted in Figure 5.18, where the SLA constraints
for the components are getting stricter with the growing application load.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45 50

sl
a

(m
s)

Time (min.)

Components SLA over time

component1
component2
component3
component4
component5

Figure 5.18: Computed SLA constraints of the components hosted at a server

Adaptation to Slow Servers A recurring issue with cloud infrastructures is
that the user has no control over the performance of the rented resources. As

114

5.7. Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

S
LA

 v
io

la
tio

ns
 (

in
 %

)

Time (1 unit = 15 sec.)

Percentage of SLA violations: 95th percentile response time (SLA: 500 ms)

Scarce
Static

Figure 5.19: Percentage of SLA violations from Scarce and the static approach when the 95th
percentile response time should stay under 500 ms

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

la
te

nc
y

(m
s)

Time (min.)

Response Time

mean
95th perc

Figure 5.20: Mean and 95th percentile response times of the application (SLA: 500 ms) as
perceived by remote clients in case of a “wonky” server

a physical server is shared by several virtual machines (VM), a VM might in-
tensively use the I/O subsystem, and may therefore degrade the performance
for the other VMs collocated on the same physical server. In addition, a phys-
ical server, which has an unreliable hardware component or a non-optimized
operating system setup, will also have poorer performance, and will there-
fore negatively impact the application end-to-end latency. Our framework is
able to detect slower servers and to discard them transparently to the appli-
cation. In this case, the maximum number of cores allowed to be employed
per server is 2.

115

5. Building Highly-Available and Scalable Cloud Applications

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

re
so

ur
ce

Time (min.)

Resource usage

cores
servers

Figure 5.21: Resources used by the application over time in case of a “wonky” server

Here, the request load is assumed to be 25 requests per second to the entry
component of the application. After 4 minutes, one of the server starts to
be slower and every component hosted at it serves requests with a delay of
200ms. All components that are not hosted at the “wonky” server detect
this slowdown, adapt the coefficients of their dependencies accordingly and
the traffic is slowly redirected to faster components. Two minutes later (at
minute 6), a new server is started, because some components are no more
able to honor their SLA due to the redirected traffic. At minute 11, the wonky
server is removed from the cloud by the framework as it receives only a
negligible amount of requests. As shown in Figure 5.20, our approach quickly
adapts to the situation and renders the response time of the application again
compliant to the SLA. The dynamic resource allocation for the application in
this scenario is depicted in Figure 5.21.

Scalability and Stability In this experiment, the rate of requests for the ap-
plication increases every minute by 5 requests/second until reaching the load
of 150 requests/second. Each server is allowed to employ up to 6 cores. In
Figure 5.22, the 95th percentile of the response time quickly stabilizes close
to the SLA constraint after the request rate stops increasing and becomes
constant. Finally, as shown in Figure 5.24, the global amount of physical
resources employed follows the trend of the request load (depicted in Fig-
ure 5.23).

Discussion

Simple approaches proposed by cloud providers such as Amazon allow a
customer to set rules to automatically add or remove resources when a met-
ric (e.g., CPU usage) goes above or below a threshold H and L respectively.
However, even if the CPU usage higher than H, the performance constraint

116

5.7. Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

la
te

nc
y

(m
s)

Time (min.)

Response Time

mean
95th perc

Figure 5.22: Mean and 95th percentile response times of the application (SLA: 500ms) as
perceived by remote clients in the scalability experiment

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

re
qu

es
ts

/s
ec

Time (min.)

Throughput

Figure 5.23: Scarce: Throughput of the application during the scalability experiment

per component may be met, or vice versa. The employment of fine-grained
metrics, such as 95th percentile of response time per component (server met-
rics are not enough), is required to use the minimum amount of resources for
a given SLA. Moreover, Scarce efficiently multiplexes components at servers
based on component migration and replication.

117

5. Building Highly-Available and Scalable Cloud Applications

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120

re
so

ur
ce

Time (min.)

Resource usage

cores
servers

Figure 5.24: Resources used by the application over time during the scalability experiment

5.8 Related Work

There is significant related work in the area of economic approaches for re-
source management in distributed computing. In [157], an approach is pro-
posed for the utilization of idle computational resources in an heterogeneous
cluster. Agents assign computational tasks to servers, given the budget con-
strain for each task, and compete for CPU time in sealed-bid second-price
auction held by the latter. In a similar setting, Popcorn approach [132] em-
ploys a first-price sealed-bid auction model.

Cougaar distributed multi-agent system [101] has an adaptivity engine which
monitors load by employing periodic “health-check” messages. An elected
agent operates as load balancer and determines the appropriate node for
each agent that must be relocated based on runtime performance metrics,
e.g., message traffic and memory consumption. Also, a coordinator com-
ponent determines potential failure of agents and restarts them. However,
cost-effectiveness is not among the objectives of Cougaar, and moreover our
approach is more lightweight in terms of communication overhead.

In [69], a virtual currency (called Egg) is used for expressing a user’s willing-
ness to pay as well as a provider’s bid for a accepting the job, and finally is
given to the winning provider as compensation for job execution. The central
Egg entity informs all candidate providers about the new job and acquires
responses (opportunity cost estimations for accepting the job). However, the
approach in [69] is centralized and it does not provide availability guarantees.

In [125], applications trade computing capacity in a free market, which is
centrally hosted, and are then automatically activated in virtual machines on
the traded nodes on-call of traffic spikes. The applications are responsible
for declaring their required number of nodes at each round based on usage
statistics and allocate their statically guaranteed resources or more based on
their willingness to pay and the equilibrium price; this is the highest price

118

5.9. Conclusion

at which the demand saturates the cluster capacity. However, [125] does not
deal with availability guarantees, as opposed to our approach. Also, our
approach accommodates traffic spikes in a prioritized way per application
without requiring the determination of the equilibrium price.

Pautasso et al. propose in [127] an autonomic controller for the JOpera dis-
tributed service composition engine over a cluster. The autonomic controller
starts and stops navigation (i.e., scheduler) and dispatcher (i.e., execution
and composition) threads based on several load-balancing policies that de-
pend on the size of their respective processing queues. However, proper
thread placement in the cluster and communication overhead among threads
are not considered in [127].

Also, SLA provisioning for web services [76] or multi-tier web applications
[156, 119] has been studied. [156, 119] adapt the behavior of the underlying
resources based on the capacity of an application to honor an SLA. However,
monitoring of SLA compliance in [76, 156, 119] may require the involvement
of third-parties or centralized services. A decentralized approach for SLA
provisioning in grids based on service migration between containers is pro-
posed in [133]. However, this approach does not dynamically vary the total
amount of allocated resources to the application according to the load and the
potential software/hardware failures in the cloud, as opposed to our work.

A bio-networking approach was proposed in [158], where services are pro-
vided by autonomous agents that implement basic biological behaviors of
swarms of bees and ant colonies such as replication, migration, or death. To
survive in the network environment, an agent obtains “energy” by provid-
ing a service to the users. However, [158] does not consider the problem of
satisfying performance constraints.

Moreover, several implementation frameworks exist towards reliable SOA-
based applications: [117] is a mechanism for specifying fault tolerant web
service compositions, [83] is a virtual communication layer for transparent
service replication, and [139] is a framework for the active replication of ser-
vices across sites. These frameworks do not consider dynamic adaptation to
changing conditions, such as load spikes, or do not provide guarantees for
geographical diversity of replicas.

5.9 Conclusion

We proposed an economic, lightweight approach for dynamic accommoda-
tion of load spikes and failures for composite web services deployed in
clouds, so as to satisfy performance and availability guarantees. We derive
performance constraints per component and we scale up existing VMs or cre-
ate new whenever they are not met. Application components act as individ-
ual optimizers and autonomously replicate, migrate across VMs or terminate
based on their economic fitness. Their resource inter-dependencies are im-
plicitly taken into account by means of server rent prices. The requests are
routed across components based on their respective prior performance. Our
approach also detects unstable cloud resources and reacts accordingly, so as
to minimize the end-to-end application response time. As a future work, we

119

5. Building Highly-Available and Scalable Cloud Applications

intend to explore our economic paradigm for autonomic resource manage-
ment in the context of multiple competitive or cooperative cloud providers.

120

Chapter 6

Federation of Cloud Storage

A growing amount of data is produced daily resulting in an increased de-
mand for storage solutions. While cloud storage providers offer a virtually
infinite storage capacity to their customers, data owners seek geographical
and provider diversity in data placement, in order to avoid vendor lock-
in and to increase availability and durability. Moreover, the cloud storage
providers have chosen their pricing policies very carefully, so as to attract a
precise class of consumers and according to their specific resource constraints.
Also, depending on the data access pattern, a certain cloud provider may be
cheaper than another one. In this chapter, we introduce Scalia, a cloud stor-
age brokerage solution that continuously adapts the placement of data based
on its access pattern and subject to optimizations objectives, such as storage
costs. Scalia is implemented based on a scalable architecture that cleverly con-
siders the re-positioning of only selected objects that may significantly lower
the storage cost. By an extensive series of simulation experiments, we prove
the cost-effectiveness of Scalia against static placements and its proximity to
the ideal dynamic placement in various scenarios of data access patterns, of
cloud resources available and of pricing policies.

6.1 Introduction

Cloud providers are offering efficient on-demand storage solutions that can
virtually scale indefinitely. Many public cloud storage providers are already
available in the market, such as Amazon S3 [2], Google Storage [16], Mi-
crosoft Azure [27] or RackSpace CloudFiles [42] and one may expect new
providers to appear in the coming years. The offers in terms of pricing among
providers vary significantly and may change over time to adapt to the market.
Choosing the best-suited or cheapest provider for your data implies knowing
in advance the access pattern to the data. Data that is rarely accessed should
be stored at a cloud provider mainly with a low storage price, regardless of
its access prices. On the other hand, a very popular data may be hosted on a
provider with attractive price for the outgoing bandwidth. In most cases, it is
difficult to know in advance the access pattern of a data item, and therefore
one needs an adaptive solution to choose the most cost-efficient provider.

121

6. Federation of Cloud Storage

However, finding a suitable provider based on the access pattern of the data
is not enough. A provider may end its business or suddenly increase its
pricing policy. There exist many other technical as well as non-technical (e.g.,
boycotting a provider) reasons a user may want to change its provider. There-
fore, in order to safely host its data and minimize the impact of the migration
to a new provider, a user needs to proactively avoid vendor lock-in (i.e., be-
ing dependent on a specific service vendor with substantial switching costs)
and ensure high durability and availability by geographic diversification of
the data placement (e.g., the recent Amazon outage 1 reminds us not to put
all eggs in one basket).

The authors of [57] clearly underline the advantages of splitting a data object
(e.g., a file) into chunks and storing them across several storage providers, in
order to reduce costs and avoid vendor lock-in. However, a more adaptive
approach is required to cope with dynamically changing conditions, such as
varying data access patterns, evolving pricing policies, new providers arrival,
as well as providers’ bankruptcy. Moreover, different data access patterns
result in different optimal sets of providers in terms of charging.

In this chapter, we introduce Scalia, a system that continuously adapts the
placement of data among several storage providers subject to optimization ob-
jectives, such cost minimization. Our system combines the following unique
and novel characteristics:

1. Adaptive data placement based on the real-time data access patterns, so
as to minimize the price that the data owner has to pay to the cloud stor-
age providers given a set of customer rules, e.g., availability, durability,
etc. Other optimization goals for data placement are also conceivable,
such as a) maintaining a certain monthly budget by relaxing some con-
straints, such as lock-in or availability, or b) minimizing query latency
by promoting the most high-performing providers.

2. Compliance with the rules set by customers for data, such as data dura-
bility, data availability and level of vendor lock-in.

3. Orchestration of a non-static set of public cloud and corporate-owned
private storage resources.

4. A robust distributed architecture for its implementation that is able to
handle a large number of objects stored, which are accessed by a large
number potential users.

The remainder of this chapter is organized as follows: In Section 6.2, we dis-
cuss the problems of vendor lock-in and paying unfairly high prices when
fixed sets of cloud storage providers are employed. In Section 6.3, we de-
scribe our Scalia brokerage architecture, the adaptive data placement mecha-
nism, the data caching layer, the metadata storage layer and Scalia actions in
data read/write operations. In Section 6.4, we assess the effectiveness of our
approach for cost-effective data placement. In Section 6.5, we present some
related work, and finally, in Section 6.6, we provide our concluding remarks.

1http://aws.amazon.com/message/65648/

122

6.2. Motivation

Provider A

data

Erasure coding (3,4)

1 2 3 4

Provider B Provider C

Provider D

Figure 6.1: Erasure coding (m, n): any m-subset of the n chunks contains a complete copy of
the data

6.2 Motivation

6.2.1 Avoiding Vendor Lock-in

Erasure Coding

In order to avoid vendor lock-in, data has to be hosted by multiple storage
providers. However, despite being simple and reactive, storing full replicas
of the same data is too costly [159, 136]. With the aid of erasure coding
(m, n) [82], a data can be split into n chunks (n > m), where any m-subset is
sufficient to reconstruct a complete copy of the data. The rate r = m

n < 1 of
an erasure code is the fraction of chunks required to rebuild the original data.
The disk space needed to store an r-encoded object increases by a factor of 1

r .
In Figure 6.1, the original data can be rebuilt with the chunks stored at any 3
of the 4 cloud providers. For example, RAID 1 (mirroring without parity or
striping) can be achieved by setting m = 1, while RAID 5 (block-level striping
with distributed parity) can be described by (m = k, n = k + 1), where k ≥ 3.

Redundant striping presents several advantages. First, it allows to tolerate up
to n−m provider outages, hence greatly improving the durability as well as
the availability of the stored data. The user may also choose how to recover
from a provider failure. One might decide to reconstruct the missing chunks
from the other providers and store them to new providers, or on the other
hand, one might decide to ignore the failure and wait for the provider to
recover. Second, striping provides a finer granularity than full replication,
which permits to read from the cheapest provider or to move a restricted
number of chunks to a cheaper provider. Also, it gives a better control on
the cost by allowing to store and serve data from public providers as well as
private storage facilities.

123

6. Federation of Cloud Storage

Table 6.1: Example of storage rules

name durability availability zones lock-in
rule 1 99.99999 99.99 EU, US 0.3
rule 2 99.999 99.99 EU 1
rule 3 99.99 99.99 all 0.2

6.2.2 Paying a Fair Price

Given customer (i.e., data owner/producer) requirements (possibly differenti-
ated per data item), such as data durability, data availability or independence
from cloud providers to avoid vendors lock-in, it then becomes a non-trivial
task to find the cloud storage provider(s) or combinations of cloud storage
providers that offer the best price to store users’ data. To make things worse,
the ratio of read/write operations of a data object over a period of time (i.e.,
the data access pattern) affects the resulting charging for the customer, as
providers implicitly promote certain access patterns with their pricing poli-
cies. Scalia provides an engine that optimizes the placements of data chunks
following the rules set by the data owner, while also taking into account the
access patterns of the data in order to compute the cheapest provider set.
A default rule, rules per data object classes or rules per data object can be
defined in Scalia (e.g., using an API or a Web interface), so as to specify the
availability, the durability, the geographical zone(s) and the lock-in factor of
the data, as described in Table 6.1. The lock-in factor obj[lockin] ∈ (0, 1] of a
data object obj is defined as:

obj[lockin] =
1

Nobj
, (6.1)

where Nobj is the number of minimum distinct providers where the data
object obj will be stored.

Table 6.2: Example of provider sets (c.f Table 6.3 for abbreviations)

name durability availability zones
S3(h) 99.999999999 99.9 EU, US, APAC
S3(l) 99.99 99.9 EU, US, APAC
RS 99.9999 99.9 US

Azu 99.9999 99.9 US
Ggl 99.9999 99.9 US

Table 6.3: Providers’ abbreviations.

abbreviation description
S3(h) Amazon S3 with high durability
S3(l) Amazon S3 with low durability
RS RackSpace CloudFiles
Azu Microsoft Azure
Ggl Google Storage

124

6.3. Scalia: Multi-Cloud Storage

Given the users’ rules, the engine stores the user data at the cheapest provider
set among the complete range of possible alternatives, and continuously
adapts the data placement to match the data access pattern. For example,
a user looking to store non-critical and ephemeral data will not be interested
in avoiding vendor lock-in or storing its data to a high durability provider.
On the other hand, if one wants to store critical data over a long period of
time, vendor lock-in as well as durability become serious issues. Cold data
may be stored at providers offering the cheapest storage price, disregarding
the price of bandwidth or operations, while popular data should be stored
to providers showing interesting prices regarding outgoing bandwidth. By
only specifying simple rules, a user should be able to always pay a fair price,
corresponding exactly to his real needs.

Table 6.4: Example of providers prices in USD per GB for storage, bandwidth in and out, or in
USD per 1000 requests for the operations (c.f Table 6.3 for abbreviations).

name storage bdw in bdw out ops
S3(h) 0.14 0.1 0.15 0.01
S3(l) 0.093 0.1 0.15 0.01
RS 0.15 0.08 0.18 0.0

Azu 0.15 0.1 0.15 0.01
Ggl 0.17 0.1 0.15 0.01

6.3 Scalia: Multi-Cloud Storage

In this section, we describe Scalia in detail and present its complete architec-
ture, which enables to aggregate public cloud storage providers and private
storage resources. Scalia can run directly at the customer premises as an inte-
grated hardware and software solution (i.e., an appliance) or can be deployed
as a hosted service across several datacenters, putting the emphasis on pro-
viding a scalable and highly-available architecture with no single point of
failure, able to guarantee higher availability than the storage providers. In
the first deployment model, the appliance is located directly in the customer’s
data center, with the advantage of not introducing additional network latency,
not having to pay any extra service fee and not being dependent on the avail-
ability of the hosted service. On the other hand, when Scalia is accessed as
hosted service, a customer does not need to install any additional hardware
or software and will pay only service fees. The hosted service can be operated
by an independent broker for multiple customers.

In Figure 6.2, for simplicity, we consider Scalia as a hosted service in a setup
consisting of only a pair of datacenters. A client can send requests indiffer-
ently to each datacenter. The Scalia brokerage system consists of three layers:
a layer of stateless engines, a caching layer and a database layer. The engines
provide an Amazon S3-like interface, where the users can put, get, list and
delete their data using a key-value data model. The engines are responsi-
ble for computing the best provider set according to the user requirements,
for maintaining the cost-effective data placement using the access history of
the data, for splitting and storing the chunks at the most suitable providers,

125

6. Federation of Cloud Storage

engine

Datacenter 1 Datacenter 2

cache

NoSQL

engine engine engine

Provider A Provider B Provider C Provider D

client client client client client client client

Log agg Log agg

engine

cache

NoSQL

engine engine engine

Log agg Log agg

Figure 6.2: Multi datacenter architecture

for reconstructing the data from the chunks and finally for deleting the data.
Each engine works independently and does not keep a state. This allows this
layer to scale linearly by just adding new engine components. The caching
layer is not mandatory, yet if employed, it greatly improves the performance
for read operations of popular data and reduces the corresponding costs for
data fetching. The database layer is responsible for hosting the metadata
of the data stored in the remote storage providers, and to store their access
statistics.

6.3.1 Engine Layer

The engine acts as a proxy between the client and the cloud storage providers,
offering a unified API to all providers, including data storage to private re-
sources. Mainly, it is responsible for storing the chunks of data to the op-
timal providers, and serving the data either directly from the cache or by
reconstructing it using the chunks stored at the remote providers.

The engine also takes care of maintaining the optimality of the chunk place-
ment of an object obj, by periodically recomputing the best provider set
using the data access statistics of the last |Dobj| sampling periods, where
Dobj ⊂ Hobj is referred to as decision period and corresponds to the period
of historical access statistics used to compute the optimal chunks placement.
The access statistics of a data object obj are kept in the history Hobj. The sam-
pling period s is a time period where the statistics per object are collected
and aggregated, typically 1 hour. Knowing the recent access history of a data
permits to precisely adjust the set of providers, as we can reasonably sup-
pose that the access pattern of the data in the near future will be similar to

126

6.3. Scalia: Multi-Cloud Storage

the current. Choosing a large decision period allows to predict the access pat-
tern farer in the future, and thus permits to make better placement choices in
the long run. However, imagine that the chunks of a data object were placed
based on the assumption that the object would be stored for at least 6 months,
and the object was in fact deleted after 1 week. The chosen placement would
have been probably wrong, resulting in higher costs for the end user. Thus,
the decision period Dobj has to be dynamically adjusted as it depends on the
lifetime of the object, the burstiness of its access pattern and the resulting
economic impact of the latter.

In practice, it is determined based on a dichotomic search between 0 and
min(TTLobj, Hobj), where TTLobj is the time left to live of the data object obj,
as described below. When a periodic optimization procedure begins (as will

be described in Section 6.3.1), historical access statistics of length
Dobj

2 , Dobj,
and 2 ∗ Dobj are considered in parallel (i.e., coupling) when computing the
best set of providers using Algorithm 6.1. Dobj is then updated to the decision
period based on which the cheapest set of providers is found among the three
best sets. This approach for updating Dobj is applied every T optimization
procedures. Initially, T = 1 and whenever Dobj is found to be adequate, T is
doubled, otherwise, T is reset to the initial value, i.e., T = 1. The maximum
value of T can be considered to be a period of weeks. We consider here two
approaches to determine TTLobj:

• an indication of the object lifetime can be provided by the end user at
write time, allowing Scalia to make the optimal choices;

• otherwise, Scalia employs statistics collected from all data objects to
find out the most probable lifetime of a certain data item, as will be
explained in the next subsection;

Classification of Objects

An object belongs to a class of objects determined by its metadata such as
size or MIME type. The class of an object C(obj) is derived using a simple
hash of relevant metadata:

C(obj) = MD5(obj[mime] | discretize(obj[size]))

where discretize() is a function which rounds a number to a close integer
(e.g., the size of an object is rounded up to the closest megabyte).

For every class of object, Scalia collects statistics regarding the resources used
(i.e., bandwidth in and out, operations, deletion time, . . .) and computes the
lifetime distribution of the class, in order to dynamically assign a satisfying
value for the decision period Dobj and to predict the lifetime of a new object
at the time of insertion. As shown in Figure 6.3, given the deletion time of
the objects of a certain class (left), one can compute the most probable time
left-to-live for an object (right). For example, at insertion time, the lifetime
of an object of that class is expected to be 3.25 hours, while a 2 hours old
object is expected to live for 1.55 hour more. The lifetime distribution of
the classes of objects stabilizes after a training phase, and thus does not incur

127

6. Federation of Cloud Storage

0 1 2 3 4 5 6
0

2

4

6

8
Deletion Time

Time (Hours)

O
b

je
ct

s

0 1 2 3 4 5 6
0

0.5
1

1.5
2

2.5
3

3.5
Time Left to Live

Lifetime (Hours)

E
xp

e
ct

e
d

 H
o

ur
s

to
 L

iv
e

Figure 6.3: Time left to live for a class of objects, as computed by the statistics. The class
contains 20 objects, whose lifetime varies from 0 to 6 hours.

row_key

bdwin bdwout

value value

ts ts

ops

value

ts

lifetime

value

ts

Figure 6.4: Statistics are used to improve the first placement of an object

extra computing costs. The statistics and distributions of the classes of objects
are periodically refreshed using map-reduce jobs in the database layer.

Placement Algorithm

The time is divided into sampling periods. In current public cloud storage
system, this period usually corresponds to 1 hour. For a sampling period
si at time i, statistics of a data object obj are collected, such as the used
storage si[storage], the incoming bandwidth si[bwdin], the outgoing band-
width si[bwdout] as well as the number of operations si[ops]. Let H(obj) =
{st−0, st−1, st−2, . . . , st−|H|} be the list of access history statistics of the data
object at time t.

At insertion time, a data object has obviously no access history, and therefore
the provider set chosen by the placement algorithm might change in a near
future, when the data object has some accesses. Therefore, Scalia uses the
statistics collected for the class of the object to determine the statistically best
set of providers for this new object. Intuitively, a large archive file is most
probably a backup, which will not be read often. On the other hand, a small
image (such as a logo) will have plenty of read operations. The optimal set
of providers for the aforementioned two examples will be different. Thus,
thanks to the statistics collected for each class of objects, the probability that
the first placement is already optimal increases. As depicted in Figure 6.4,
given row key = C(obj), the placement algorithm has access to the most
probable values regarding the resources that the new object obj will use and
its lifetime, and therefore is able to make the best possible placement at this
early point.

Let P(obj) = {pi} be the set of storage providers (both public and private)
available for storing the data object obj, with |P| being the total number of

128

6.3. Scalia: Multi-Cloud Storage

Algorithm 6.1 Compute the best provider set for storing the chunks of a data
object obj based on its access history H(obj).

1: price← MAX DOUBLE
2: providers← {}
3: threshold← 0
4: combs← {}{}
5: /* combs is a list of provider sets */
6: combs← getAllCombinations(P(obj))
7: for all pset ∈ combs do
8: /* check lockin criteria */
9: lockin← 1/|pset|

10: continue if lockin > obj[lockin]
11: /* check durability criteria */
12: th← getThreshold(pset, obj[durability])
13: continue if th ≤ 0
14: /* check availability criteria */
15: av← getAvailability(pset, th);
16: continue if av < obj[availability]
17: pr ← computePrice(pset, H(obj))
18: if pr < price then
19: price← pr
20: providers← pset
21: threshold← th
22: end if
23: end for
24: return {providers, threshold}

providers. A data object has to satisfy several properties contained in the
service level agreement (SLA) with the user, such as the minimum durabil-
ity obj[durability], the minimum availability obj[availability] and the lock-in
ratio obj[lockin]. Note that the algorithm is not restricted only to these user
requirements.

Algorithm 6.1 describes how to compute the best provider set for storing
the chunks of a data object obj based on its access history H(obj). The func-
tion getAllCombinations() returns the list of every combination of the |P|
providers available for an object. As described in Algorithm 6.2, the largest
value of m, as defined in Subsection 6.2.1, for a set of providers is given by
getThreshold(), so as to satisfy the durability constraint of the object. Let us
recall that having a value as large as possible for m, referred to as threshold,
reduces the vendors lock-in and minimizes the storage overhead introduced
by the erasure coding of the object. In Algorithm 6.2, starting from zero,
the number of failed providers is increased until the durability constraint
obj[durability] (dr in Algorithm 6.2) is no more satisfied by comparing dr
with the probability that the object obj can be reconstructed from the non-
failed providers according to the durability SLA of each provider. When the
threshold is equal or less than zero, the set of providers is not able to sat-
isfy the durability constraint. The function getAvailability() computes the
availability of the object offered by the set of providers passed in parameter

129

6. Federation of Cloud Storage

Algorithm 6.2 getThreshold() function: compute the largest threshold given
the set of providers pset and the required durability dr.
Require: pset, dr

1: dura← 0
2: f ailuresOK ← −1
3: combs← {}{}
4: while dura < dr && f ailuresOK < |pset| do
5: f ailuresOK ← f ailuresOK + 1
6: upP← 0
7: /* getCombinations() returns all combinations (without duplicates)
8: of size ’ f ailuresOK’ from the elements of ’pset ’*/
9: combs← getCombinations(pset, f ailuresOK)

10: for comb ∈ combs do
11: upPComb← 1
12: for all p ∈ pset do
13: if p ∈ comb then
14: /* provider p has failed */
15: upPComb← upPComb ∗ (1− p[durability])
16: else
17: /* provider p has not failed */
18: upPComb← upPComb ∗ p[durability]
19: end if
20: end for
21: upP← upP + upPComb
22: end for
23: dura← dura + upP
24: end while
25: return |pset| − f ailuresOK

according to their SLA, in order to be compared with the minimum avail-
ability requirement obj[availability] of the object. The availability value av
is obtained by computing the probability of the object to be successfully re-
assembled when up to th providers are unreachable. Finally, given the access
history of an object, the function computePrice() returns the cost a user has
to pay if the object is stored on the provider set given in parameter.

The complexity of Algorithm 6.1 is O(2|P|), where |P| is the number of cloud
storage providers. However, only the minimally feasible solutions have to be
explored, which are much fewer than 2|P| − 1. As there are currently only
a few (less than 15) cloud storage providers available on the market, the op-
timal solution is still computationally feasible. If the number of providers
increases, then suboptimal solutions have to be considered. Actually, this op-
timization problem resembles the multi-dimensional knapsack problem [96],
which is NP-complete. In the knapsack problem, one has to maximize the
value of items in a knapsack, while respecting a maximum weight constraint.
In our case, we want to minimize price, while satisfying the minimum avail-
ability, durability, and lock-in constraints. For any fixed number of con-
straints, the knapsack problem does admit a pseudo-polynomial time algo-
rithm (similar to the one for basic knapsack) and a polynomial-time approxi-

130

6.3. Scalia: Multi-Cloud Storage

NoSQL

engine1

1) 2)

engine2 engine3 engine4

4) 4) 4) 4)
3)

5)

(engine1 is the current leader)
1) get modified/accessed objects since last optimization
2) A={object key1,object key2,object key3,...}
3) A → {a1, a2, a3, a4}
4) send ai to enginei
5) for each key in ai, get the statistics and recompute placement only if necessary

5) 5)5)

Figure 6.5: Periodic Optimization

mation scheme. Optimizing Algorithm 6.1 is left for future work.

Periodic Optimization

Recomputing the placement of every data item may become costly as the
number of unique data objects can be very large (e.g., Amazon S3 is reported
to store more than 339 billion objects as of June 2011). Iterating over all en-
tries (i.e., a full table scan) is obviously not a scalable solution. Note that the
provider set of an object will change only if its access history varies signifi-
cantly or if the set of storage providers P(obj) changes. Therefore, detecting
the changes of the access history pattern of the objects and only optimiz-
ing the placement of the objects that may have a new economically-efficient
provider set greatly reduces the amount of work and resources needed to
continuously ensure that every object is optimally placed. It also permits to
run the optimization procedure often, so that the system reacts fast. More-
over, the operational and computational complexity of the placement opti-
mizations should be kept as low as possible in order the solution to remain
scalable when the number of managed objects increases.

Periodically (e.g., every 5 minutes), Scalia starts the optimization procedure
as depicted in Figure 6.5. At time t, a new optimization procedure ot starts:
a leader, elected among all engines from all datacenters, retrieves from the
statistics database the set A = {obji} of object keys that have been accessed
or modified after the last optimization procedure ot−1. The leader splits A
into |E| subsets of equal size, where E = {ei} is the set of all engines from
all datacenters. A subset ai of keys is assigned to each engine ei ∈ E . For
every object key in ai, an engine ei will determine whether the access history

131

6. Federation of Cloud Storage

pattern of the object has changed or not, by using the detect() function de-
scribed in the Algorithm 6.4. In order to detect a changing access pattern at
time t, a statistics window of size 3 2 is employed, more specifically st, st−1
and st−2. The algorithm also takes as input a threshold limit, the decision
period d of the object as well as several metadata computed during previ-
ous optimizations, such as the timestamp of the last placement recalculation
or the moving average values when the last trend change of a statistic was
detected.

Algorithm 6.3 Trend detection: alert() function
Require: v1, v2, limit

1: res = 0.0
2: if (v1 == 0||v2 == 0) then
3: return f alse
4: end if
5: if (v1 > v2) then
6: res = v1

v2
7: else
8: res = v2

v1
9: end if

10: if (res > limit) then
11: return true
12: else
13: return f alse
14: end if

Only if the access history pattern has changed considerably (based on limit),
the engine will recompute the placement of the object using Algorithm 6.1.
If a better provider set is found and if the cost of migration is covered by
the benefits of migrating to the new provider, it will migrate the chunks
accordingly. The placement of objects with no access or a non-varying access
pattern will not be recomputed. Figure 6.6 and 6.7 show when the object
placement is recomputed, given a real website access pattern (the website
has around 2500 visitors per day mainly coming from Europe (62%), North
America (27%) and Asia (6%)).

As an engine itself is completely stateless and independent, adding more
computing power is straightforward. Moreover, in order not to deteriorate
the reactivity and the performance for handling the clients requests, the code
performing the optimization process can easily be realized as a standalone
service and can run on distinct servers.

6.3.2 Caching Layer

In order to improve the reactivity of the read operations, Scalia maintains
a distributed (per datacenter) cache layer. Upon a data read, if the data is

2The window should be as small as possible to limit the computational complexity, while
still being long enough to detect a changing pattern.

132

6.3. Scalia: Multi-Cloud Storage

Algorithm 6.4 detect() function: detect if the access trend has changed, and
allows the recomputation of the object placement.
Require: st, st−1, st−2 /* access stats */
Require: limit /* threshold limit */
Require: Dobj /* decision period */
Require: meta /* array with the object metadata:

- last moving avg (MA) for each resource: bdwin, bdwout, storage, ops
- timestamp of last placement (PL) recalculation */

1: resources← {bdwin, bdwout, storage, ops}
2: for all r ∈ resources do
3: curMA← st [r]+st−1[r]+st−2[r]

3
4: if alert(curMA, meta[MA][r], limit) then
5: meta[MA][r]← curMA
6: if now()−meta[PL][r] > Dobj then
7: meta[PL][r]← now()
8: return {true, meta}
9: end if

10: end if
11: end for
12: return { f alse, meta}

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160

O
pe

ra
tio

ns

Sampling periods (total: 7 days)

Trend detection of a single object (ma: 3, limit: 1.1, s: 1h, d: 24h)

Read access
Trend change detected

Placement recomputation

Figure 6.6: Trend detection using a threshold limit of 1.1, a sampling period of 1 hour, a decision
period of 1 day (24 hours) and an history moving average of 3. The access statistics come from
a real website.

133

6. Federation of Cloud Storage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90

O
pe

ra
tio

ns

Sampling periods (total: 3 months)

Trend detection of a single object (ma: 3, limit: 1.1, s: 1d, d: 7d)

Read access
Trend change detected

Placement recomputation

Figure 6.7: Trend detection using a threshold limit of 1.1, a sampling period of 1 day, a decision
period of 1 week (7 days) and an history moving average of 3. The access statistics come from
a real website.

present in the cache, there is no need to fetch the chunks from the remote
providers and reassemble the data object before serving it to the client. Oth-
erwise, the data is reassembled from the chunks, served to the client and
stored in the cache. Not only this layer reduces the requests latency, but it
also reduces the interactions with the storage providers, resulting in lower
costs for the user. In a multi-datacenter setup, the cache has to be invalidated
in all datacenters in order to guarantee the consistency of the read opera-
tions. The caching layer can be combined and extended by a CDN to reach
even better read performance.

6.3.3 Database Layer

The database layer of Scalia stores the metadata (i.e., the rules set by the end
users regarding the durability, availability or vendor lock-in avoidance con-
straints of their data objects, the public provider settings, the settings of the
users’ private storage resources) as well as the access history of the data ob-
jects (i.e., the statistics). The database can be concurrently accessed by several
engines updating the same entry, in all datacenters. As clients’ requests are
routed to all datacenters indifferently, the database has to be replicated; the
classic master-slave replication scheme of traditional databases is not suitable
for our multi-master setup, as Scalia has to keep working even when a dat-
acenter is down. Moreover, not only the read but also the write operations
have to be scalable. Therefore, we consider here a NoSQL database [4], which
have a better support for multi-datacenter deployment and network/server
failures.

134

6.3. Scalia: Multi-Cloud Storage

Concurrency and Conflicts

In a distributed system, a race condition can result in catastrophic situations
where concurrent updates for the same entry can lead to data corruption or
data loss. To deal with concurrency, two approaches are imaginable in our
architecture. The first solution is to use a distributed locking mechanism,
such as Zookeeper [107], to ensure that an entry is updated only by a single
engine at a time. However, because of our multi-datacenter setup, Zookeeper
needs to be synchronized among the datacenters and results in higher write
operation latency. Even worse, in case of a network partition between the
datacenters, Zookeeper is not able to form a quorum and assign locks. To
solve this issue, a third party, monitoring all datacenters and assigning the
role of a master to one datacenter is required in case of failure. The detailed
setup of this architecture is outside the scope of the chapter, and will not be
discussed here.

Multi version concurrency control (MVCC) is an alternative approach with-
out locks, where an update operation does not delete the old data overwriting
it with the new one. Instead, the old data is marked as obsolete and the new
version is added, resulting in storing multiple versions of the data with only
one being the latest. If an entry is updated concurrently in multiple datacen-
ters, the database will detect the conflict (e.g., employing anti-entropy mech-
anisms such as vector clocks). The user will be prompted to decide which
version is the good one and Scalia will remove the other version. Alternatively,
Scalia can decide by itself to keep only the latest version without asking the
end user, however it requires that each engine is time-synchronized.

Statistics

The read and write accesses of an object are collected using a distributed
and reliable service (e.g., Flume [8] or Scribe [14]) for efficiently collecting,
aggregating, and moving large amounts of log data: a log agent residing
at each engine continuously reads the logs containing the statistics of the
requests handled by the engine, and sends them to one of the log aggregators.
The latter collect and aggregate the logs before writing them to the database.

The placement algorithm also needs statistics about the objects managed by
Scalia to take pertinent decisions when there is no access history of new ob-
jects, or when it has to predict the deletion of an object in order to optimize
its placement. Those statistics are obtained using map-reduce jobs on the
database, so as to aggregate the statistics of each individual objects.

6.3.4 Life cycle of read and write operations

Scalia relies on multi version concurrency control (MVCC) to deal with con-
current updates and requires every engine to be time-synchronized (e.g., us-
ing NTP [35]) in order to resolve conflicts.

135

6. Federation of Cloud Storage

row_key

<UUID_1>

file
metadata

stripping
metadata

value value

ts ts

timestamp

value

ts

<UUID_2>

file
metadata

stripping
metadata

value value

ts ts

timestamp

value

ts

Figure 6.8: Concurrent writes: the row key entry has been updated concurrently, resulting in
2 versions of its metadata. When the conflict is detected, the chunks corresponding to the
oldest version are removed from the storage providers, and the oldest version is removed from
the database.

Write Operation

During a write operation of an object obj, a user will provide at least the
following input through the Scalia interface: a container name obj[container],
a key obj[key] and the data obj[data]. After having decided the optimal set of
providers P(obj), Scalia splits the data object into |P(obj)| chunks, and stores
the latter at the selected storage providers using as key:

skey = MD5(obj[container] | obj[key] |UUID)

UUID is a globally unique identifier which prevents concurrent updates to
cause data corruption. The metadata of obj is written to the database with
UUID as the primary key, as depicted on Figure 6.8. As row key for writing
the metadata, Scalia uses:

row key = MD5(obj[container] | obj[key])

Table 6.5 shows an example of metadata stored for an object.

If the write operation is an update, older metadata corresponding to obj is
discarded and the corresponding chunks deleted from the providers. The
operations are logged and will be processed by the distributed log system,
in order to be written in the statistics database. When a conflict is detected
by the database in case of concurrent writes, the timestamps are compared,
and only the freshest version is kept; the deprecated version of the object is
removed from the storage providers and from the statistics database. Note
that writing the statistics never conduct to conflicts in the database thanks
to an adapted data model, where statistics are always written using globally
unique keys.

Read Operation

To read an object obj, the end user sends a request to the Scalia API with the
container name and the object key as parameters. The randomly chosen en-
gine that has received the request checks first if the data is in the cache. If so,
then the data is directly returned from the cache. Otherwise, the engine reads

136

6.3. Scalia: Multi-Cloud Storage

Table 6.5: Metadata of the file myvacation.gif

Striping metadata File metadata
chunk1: provider 2 name: myvacation.gif
chunk2: provider 5 mime: image/gif
chunk3: provider 7 checksum: ce944a11a4
chunk4: provider 1 size: 342 KB
m: 3 policy: rule 3
skey: a3e229084 container: pictures

the metadata of obj from the database, retrieves the m out of |P(obj)| chunks
from the cheapest (other criteria can be considered) providers, reassembles
the data and sends it to the client. The data is also stored in the cache. The
operations are logged and stored in the statistics database.

Error Handling

At the providers’ side It may happen that one of the storage providers is
not available. If it happens during a write operations, Scalia will choose
the best placement that does not include the faulty provider. In case of a
read operation, if |P(obj)| > m, then the data can still be retrieved from the
m storage providers available. Recall that m corresponds to the minimum
amount of chunks needed to reconstruct a data item. Finally, for a delete
operation, the deletion of the chunk residing at a faulty provider is postponed
until the provider recovers. As we employ the MVCC approach, incomplete
operations do not introduce inconsistencies.

At Scalia side Within a single datacenter, no layer has a single point of fail-
ure. In a multi-datacenter setup, where requests are routed indifferently to
each datacenter, the database layer might cause a problem. In fact, thanks to
an advanced support of multiple datacenters, the NoSQL database automat-
ically stores a replica in multiple datacenters. Therefore, read requests sent
to the Scalia API can always be served. Regarding write requests, as long as
a single database node is up and running, no operation will fail, and when
the second datacenter recovers, the replicas in the various datacenters will be
eventually consistent.

6.3.5 Private Storage Resources

An interesting property of Scalia is the ability to use private storage resources
together with commercially available public cloud storage solutions. Cor-
porate storage resources (workstations, servers, NAS, SAN, . . .) or dedi-
cated servers can be registered to Scalia with a description of their proper-
ties: amount and price of available storage, price of incoming and outgoing
bandwidth and price per operation. The placement algorithm will take into
account these new resources to minimize the costs of storing and serving the
user’s data. Thanks to Scalia and its unified interface, it is straightforward

137

6. Federation of Cloud Storage

to use local resources up to their capacities, and then use the best suited
provider(s) when demand grows.

In order for a private storage resource to be accessible from Scalia, a stan-
dalone web service needs to be deployed locally on the resource. The web
service is a lightweight and standalone web server that offers an authenti-
cated Amazon S3 compatible REST interface to store and retrieve files. The
data is stored on the local filesystem or on any distributed/parallel filesys-
tem (NFS [140], MogileFS [29], . . .) accessible directly from the web service
and will never grow beyond the limit set in the properties of the resource. A
private token generated by the private resource owner is also registered to
Scalia, so that only legitimate requests are considered by the web service. The
authentication is done by signing the request (i.e., HMAC of the requests pa-
rameters using the private token) and to prevent replay attacks, a timestamp
is also included in the request. If the data stored is sensitive, the web service
can be configured to use SSL/TLS.

6.3.6 Discussion

A primary objective of Scalia is to reduce the storage costs for end users. How-
ever, running Scalia as local appliance or using a (hosted) brokerage service
involves additional costs. The benefit from using Scalia should cover the cus-
tomer’s extra operational expenses. This is highly expected as the complexity
of our simple-by-design algorithms does not depend on the amount of man-
aged data objects, but only on the window size and on the finite number of
cloud storage providers. To this end, the Scalia service fee (or cost) could be
seen as a percentage of the storage costs saved by Scalia on behalf of the cus-
tomers, and thanks to the economies of scale (i.e., same Scalia resources can
serve a large number of customers), Scalia should be a sustainable solution.
Describing a detailed business model is outside the scope of the chapter.

A second important objective of Scalia is to avoid vendor lock-in. At first
sight, it may seem that customers become locked in a specific Scalia broker.
However, as Scalia exposes, via an authenticated API, the metadata of the
managed objects (e.g., the chunk locations for a given object), a customer can
completely bypass Scalia and access its data directly from the cloud storage
providers. To this end, stopping to use Scalia or using another Scalia broker
does not involve any switching costs.

One may argue that using Scalia as a brokerage service may add additional
network latency. In fact, Scalia could even decrease the latency for retrieving
objects, as the data chunks are fetched in parallel from the fastest providers
(i.e., from m out of n), instead of sequentially downloading data from a sin-
gle and potentially slow one. In order to further improve the read perfor-
mance, Scalia can be extended to use a CDN to deliver the content more
efficiently and with improved availability of the objects due to caching at the
edge servers of the CDN. Moreover, as most storage providers in the market
combine their storage solution with a CDN one, Scalia could also provide
the cheapest storage provider / CDN provider pair, based on the data access
patterns and the customer’s storage/access latency constraints.

138

6.4. Evaluation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100 120 140 160 180

G
B

Hours (7.5 days in total)

Total Resources

total storage
total bdw in

total bdw out

Figure 6.9: Slashdot scenario: total amount of resources from the storage providers used by
Scalia to store and serve the object

6.4 Evaluation

6.4.1 Experimental Setup

Table 6.6: Sets of providers (c.f Table 6.3 for abbreviations)

Set of Providers # Set of Providers
1 S3(h)-S3(l) 14 S3(h)-Ggl-RS
2 S3(h)-S3(l)-Azu 15 S3(h)-RS
3 S3(h)-S3(l)-Azu-Ggl 16 S3(l)-Azu
4 S3(h)-S3(l)-Azu-Ggl-RS 17 S3(l)-Azu-Ggl
5 S3(h)-S3(l)-Azu-RS 18 S3(l)-Azu-Ggl-RS
6 S3(h)-S3(l)-Ggl 19 S3(l)-Azu-RS
7 S3(h)-S3(l)-Ggl-RS 20 S3(l)-Ggl
8 S3(h)-S3(l)-RS 21 S3(l)-Ggl-RS
9 S3(h)-Azu 22 S3(l)-RS
10 S3(h)-Azu-Ggl 23 Azu-Ggl
11 S3(h)-Azu-Ggl-RS 24 Azu-Ggl-RS
12 S3(h)-Azu-RS 25 Azu-RS
13 S3(h)-Ggl 26 Ggl-RS

27 Scalia

As we mainly discuss the costs involved in several setups, we only present
here results coming from a simulator. The availability and durability guar-
antees of the five public storage providers considered in this evaluation are
described in Table 6.2. Their pricing policies regarding the costs of resources
such as storage, incoming and outgoing bandwidth are described in Table 6.4.
In the following experiments, we consider without loss of generality that
Amazon S3 with a specific high durability (i.e., S3(h)) is completely indepen-

139

6. Federation of Cloud Storage

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

%
 o

ve
r

co
st

Set of Providers

Cumulative Price

Figure 6.10: Slashdot scenario: total cost after a week of the provider sets that satisfy the
constraints of the object. The labels of the provider sets are given in Table 6.6. Scalia is number
27.

dent from Amazon S3 with a specific low durability (i.e., S3(l)), and there are
no correlated failures or any relation between them.

We compare the cost of multiple static sets of providers with the cost of the
dynamic set of providers chosen by Scalia. As a baseline, for every sam-
pling period, we compute the optimal placement, which corresponds to the
cheapest set of providers in term of resources consumed (storage, number of
operations, incoming bandwidth, outgoing bandwidth) for handling the load
during that period. Given the optimal set of providers for a period, we then
compute the corresponding optimal cost and the percentage of over cost of
the different providers’ sets.

6.4.2 Slashdot Effect Scenario

In this experiment, we simulate the behavior of the “Slashdot effect”, where
suddenly an object becomes highly popular and starts to receive a lot of
requests. After 2 days (48 hours), the number of read requests goes from 0
to 150 in only 3 hours, and then slowly decreases at the rate of 2 requests
per hour. The object stored has size 1MB, a minimum availability of 99.99%
and durability of 99.999%. The durability constraint is easily met by only
1 provider; however, the availability constraint requires at least 2 providers.
As depicted in Figure 6.10, Scalia is only 0.12% more expensive than the
optimal placement. This difference is explained by the cost of the migration
of several chunks. Scalia uses [S3(h), S3(l), Azure, RS; m:3] before the Slashdot
effect. During the requests peak, the cheapest provider set is [S3(h), S3(l);
m:1]. When the flash crowd effect is over, Scalia chooses [S3(h), S3(l), Azure,
Google, RS; m:4] as its provider set. The best static provider set is a mix
of [S3(h), S3(l); m:1] which is 0.4% more expensive, while the worst static

140

6.4. Evaluation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120 140 160 180

G
B

Hours (7.5 days in total)

Total Resources

total storage
total bdw in

total bdw out

Figure 6.11: Gallery scenario: total amount of resources from the storage providers used by Scalia
to store and serve the pictures

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

%
 o

ve
r

co
st

Set of Providers

Cumulative Price

Figure 6.12: Gallery scenario: total cost after a week of the provider sets that satisfy the
constraints of the object

provider set [S3(h), S3(l), Azure, Google, RS; m:4] is 16% more expensive
than the optimal placement.

Thanks to the adaptivity of Scalia, the best provider set for a given access
pattern is always chosen.

6.4.3 Gallery Scenario

In this scenario, 200 pictures (250 KB each) have to be stored. The pictures are
accessed following the daily pattern of a real website which has around 2500

141

6. Federation of Cloud Storage

visitors per day mainly coming from Europe (62%), North America (27%)
and Asia (6%). Moreover, the popularity of the pictures follows a Pareto
(1,50) distribution. The minimum availability per picture is set to 99.99%.

Ideally, all pictures should not be stored to the same set of providers, because
some pictures are popular and the cost of storage is negligible as compared
to the cost of outgoing bandwidth. On the other hand, unpopular pictures
should be stored to the provider set with the lowest storage cost, while still
ensuring the availability and durability constraints.

Figure 6.11 depicts the total amount of resources used by Scalia for storing
and serving the pictures from the different storage providers. In Figure 6.12,
Scalia is only 1.06% more expensive than the optimal placement and outper-
forms all the other static sets of providers. The best static set of providers is
4.14% more expensive, while the worst set is 31.58% more expensive than the
optimal placement.

The popular pictures mainly use [S3(h), S3(l); m:1], moderately popular pic-
tures use [S3(h), S3(l), Azure; m:2] and unpopular pictures use [S3(h), S3(l),
Azure, Google; m:3]. Therefore, it clearly appears that storing all pictures to
the same set of providers results in over-charging. The adaptivity of Scalia
dynamically finds the most cost-efficient placement of an object based on
its access pattern. Therefore, an end user does not need to decide a fixed
placement per data object by guessing the access pattern of the object.

6.4.4 Adding Storage Resources

Public Storage Resources

We now consider a scenario where a new object of 40 MB needs to be stored
every 5 hours. Unlike preceding scenarios where the availability constraint
was important, here the data owner wants to avoid vendor lock-in and there-
fore each object has to be stored at 2 different providers at least.

At hour 400 a new storage provider CheapStor is registered in the system and
offers an attractive storage alternative: 0.09$ per GB of storage, 0.1$ per GB of
bandwidth in, 0.15$ per GB of bandwidth out and 0.01$ for 1K of operations.

Before hour 400, Scalia stores the objects using [S3(h), S3(l), Azure, Google,
Rackspace; m:4]. After the new provider has been registered, Scalia migrates
the already stored objects and stores the new objects to [S3(h), S3(l), Azure,
CheapStor, Rackspace; m:4]. The total amount of resources used in this ex-
periment is shown in Figure 6.13.

In this scenario, Scalia dynamically adapts to the changing conditions (a new
provider has shown up) and is only 0.35% more expensive than the opti-
mal solution, as depicted in Figure 6.14. The best static placement [S3(h),
S3(l), Azure, Google, Rackspace; m:4] is not able to take into account the
new provider, and therefore costs 7.88% more than the optimal placement.
Finally, the worst static placement is 96.35% more expensive! Figure 6.14
shows clearly that having a large number of providers is really an advantage
when using erasure coding for the storage, as the storage overhead factor
1
r = n

m will tend to 1.

142

6.4. Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

G
B

Hours (4 weeks in total)

Total Resources

total storage
total bdw in

total bdw out

Figure 6.13: Adding a public storage provider: total amount of resources used by Scalia to store
the backup objects to the storage providers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

%
 o

ve
r

co
st

Set of Providers

Cumulative Price

Figure 6.14: Adding a public storage provider: total cost after a month of the provider sets that
satisfy the constraints of the object

143

6. Federation of Cloud Storage

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

G
B

Hours (7.5 days in total)

Total Resources

total storage
total bdw in

total bdw out

Figure 6.15: Adding a private storage resource: total amount of resources used by Scalia to store
the objects to the storage providers

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 20 40 60 80 100 120 140 160 180

C
os

t (
$)

Hours (7.5 days in total)

Cost per Hour

Scalia

Figure 6.16: Adding a private storage resource: total cost per hour with Scalia. After hour 90,
Scalia uses the private storage decreasing the total cost.

Private Storage Resources

In this scenario, we store 100 objects of 1
10 GB. At hour 90, the data owner reg-

isters to Scalia a private storage resource of 5 GB only with storage/bandwidth-
in/bandwidth-out costs of 0.05$/GB. The objects are accessed following a
daily pattern using a Pareto(1,50)-based popularity.

As soon as the new provider is registered, Scalia moves all objects that fit
in the available private storage, and leaves the remaining objects where they
are currently stored. Figure 6.15 shows the total amount of resources used

144

6.4. Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160 180

pr
ic

e
($

)

Hours (7.5 days in total)

Cumulative Price

Scalia
S3(h)-S3(l)-Azu-Ggl

S3(h)-S3(l)-Azu-Ggl-RS
S3(h)-S3(l)-Azu-RS

S3(l)-Azu-Ggl-RS
S3(h)-S3(l)-Ggl-RS

Figure 6.17: Adding a private storage resource: cumulative cost over a week of the cheapest
providers sets (whose total cost < 123% of optimal cost) that satisfy the constraints of the object.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

%
 o

ve
r

co
st

Set of Providers

Cumulative Price

Figure 6.18: Adding a private storage resource: total cost after a week of the providers sets that
satisfy the constraints of the object. The horizontal line is at 23% over cost.

145

6. Federation of Cloud Storage

by Scalia. At hour 90, up to 5 GB of objects are moved to the private storage
resource, and thus a peak of incoming bandwidth can be observed. Moreover,
the total amount of storage increases. Before hour 90, all objects were stored
using [S3(h), S3(l), Azure, Google, Rackspace; m:4]. The total storage space
needed to store all objects is

100 ∗ 5
4
∗ obj[size].

After hour 90, 47% of the keys use [S3(l), Private; m:1], 6% use [S3(h), S3(l),
Private; m:2], and the remaining 47% still use the initial providers set. Be-
cause more than half of the objects are now split into fewer chunks, the extra
storage needed to store the objects is now around 29% greater:

100 ∗ (47
100
∗ 5

4
+

47
100
∗ 2

1
+

6
100
∗ 3

2
) ∗ obj[size]

Figure 6.16 shows the cost per hour using Scalia: after hour 90, the cost per
hour decreased thanks to the lower price of the private resources. Figure 6.17
shows the cumulative price over time of Scalia compared to the five cheapest
sets of providers, which have an over cost less than 23% of the optimal price.
Finally, Figure 6.18 depicts the total cost of every set of providers after the
experiment.

6.4.5 Active repair

In the case of a transient failure of a cloud storage provider, Scalia may adopt
two strategies to cope with the unavailability of providers: either do nothing
and simply wait for the provider to recover, or move the chunks hosted at the
faulty provider to another provider. However, the latter procedure comes at
a relatively high cost: in order to move the chunk of the faulty provider, the
data object needs to be reconstructed from the remaining chunks and split
again into chunks. Depending on the available providers, the threshold m of
the most cost-effective providers set may be different. In that case, all chunks
need to be re-written. If m is the same, then only the faulty chunk needs to
be written, which corresponds to the cheapest case.

Like in Section 6.4.4, we consider a scenario where a new object of 40 MB
needs to be stored every 5 hours. At hour 60, one of the provider, S3(l), has a
transient failure and is not reachable anymore. At hour 120, the provider is
again up and running.

Scalia is compared to the static provider set [S3(h), S3(l), Azu; m:2]. Before
hour 60 and after hour 120, Scalia uses [S3(h), S3(l), Azu; m:2] as well. During
the unavailability of S3(l), Scalia uses another provider to store the unreach-
able chunk: [S3(h), Ggl, Azu; m:2]. However, in the static provider set, the
unreachable chunk cannot be moved to another provider, and therefore the
data needs to be split into only 2 chunks, resulting in using [S3(h), Azu; m:1]
during the failure period. Figure 6.19 shows the cost difference of active
repair between the fixed and the dynamic sets of providers.

146

6.4. Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180

pr
ic

e
($

)

Hours (7.5 days in total)

Cumulative Price

Scalia
S3(h)-S3(l)-Azu

Figure 6.19: Scalia versus a fixed set of providers during active repair.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

%
 o

ve
r

co
st

Set of Providers

Cumulative Price

Figure 6.20: At hour 60, the provider Ggl decreases its pricing. RS reacts at hour 120 by also
decreasing the price of its offer.

147

6. Federation of Cloud Storage

6.4.6 Pricing Update

When a provider changes its pricing, the best providers set for a data may
also change. Scalia will cope with it and will automatically update the place-
ment of data that will gain from the new pricing policy. In this scenario, the
provider Ggl adjusts its tariffs at hour 60, in order to be one of the cheapest
providers: the storage price decreases from 0.17 USD/GB to 0.1 USD/GB, the
bandwidth in price goes from 0.1 USD/GB to 0.08 USD/GB, the bandwidth
out price goes from 0.15 USD/GB to 0.12 USD/GB. At hour 120, the provider
RS reacts to the price change of Ggl by also reducing its owns pricing: the
storage price is now 0.09 USD/GB, the bandwidth-in is 0.07 USD/GB and
the bandwidth-out 0.11 USD/GB.

In this scenario, 100 files (500 KB each) have to be stored. The files are ac-
cessed following the daily pattern of a real website which has around 2500
visitors per day mainly coming from Europe (62%), North America (27%)
and Asia (6%). Moreover, the popularity of the files follows a Pareto (1,50)
distribution. The minimum availability per file is set to 99.99%.

Again, as depicted in Figure 6.20, Scalia adapts to the changing situation
and, based on the access pattern of the data, it chooses the best provider
set. Here, Scalia is only 0.06% more expensive than the dynamic ideally
optimal placement. This nice result is obtained, because the data was already
optimally placed before the pricing update of the providers.

6.5 Related Work

Scalia was inspired by RACS [57], which employs RAID at the cloud storage
level, making also use of erasure codes [82] instead of full replication [159].
HAIL [67] distributes redundant blocks of a file across multiple servers, while
allowing a client to make sure that the file is not corrupted even in the case
of a server compromise. RAID-like techniques have already been used by
several P2P storage systems [72, 74] to ensure durability and availability of
data. Storage providers like [52] use an hybrid model where data is split
into redundant blocks at client side (via erasure coding); the blocks are dis-
tributed to other end users following a P2P approach and also sent to the
servers managed by the provider. This approach increases durability of the
data, while decreasing the storage costs of the provider. Other commercial
providers like [6] also make use of erasure coding to disperse data blocks
to several geographical distinct regions over the world, providing very high
durability guarantees. All the aforementioned approaches do not improve
the placement of the data objects according to their access pattern.

Commercial network appliances or servers [7, 32] residing at the customer,
called cloud storage gateway, can also serve as intermediaries to multiple
cloud storage providers. While they include storage features such as caching,
backup, recovery, encryption or de-duplication, these systems do not take
into account the access pattern of the data nor its expected lifetime to contin-
uously choose the optimal providers set.

148

6.6. Conclusions

Also, several libraries [23, 24] for accessing public cloud storage and cloud
computing infrastructures with a unified interface are quickly emerging, thus
showing the increased need of avoiding vendor lock-in.

Finally, extensive previous work [56, 69] is available in the area of job schedul-
ing in computational grids, so as to minimize the cost for the end-users, while
satisfying the performance constraints. However, most of these works de-
pend on prior knowledge of the detailed computational cost of a new job
and the job placement is fixed. Several approaches on modeling job ar-
rivals [118, 124] and predicting cost amortization [109] using statistics on
query traffic have also been proposed. In Scalia, data placement is adaptive
to the various pricing and resource conditions, so as to dynamically find the
optimal data placement.

6.6 Conclusions

We have presented Scalia, a system that continuously optimizes the place-
ment of data stored at multiple cloud providers, based on their access statis-
tics. Scalia mediates data placement across multiple cloud providers and
helps the data owners to avoid vendor lock-in and satisfy certain availability
and durability constraints in a cost-effective way. We described in detail the
various layers of our approach and our scalable mechanism for adaptive data
placement. By extensive simulation experiments, we proved that our solution
finds an optimal (i.e., cheapest) data placement for dynamically changing
data access patterns and when different cloud providers or different prices
are available. The evaluation of the performance and the scalability of the
prototype is left for future work. Finally, we will study the employment of
the proposed brokering approach for computational resources.

149

Part IV

Conclusion

151

Chapter 7

Conclusion

7.1 Summary of the Work

Regarding the database layer, we have addressed the problem of highly skew-
ed popularity of data items by adapting the allocated resources, while en-
suring the geographical diversity of replicas. We described Skute, a robust,
scalable and highly-available key-value store designed to provide high and
differentiated data availability statistical guarantees to multiple applications
in a cost-efficient way. It dynamically adapts to varying query load or failures
by determining the most cost-efficient locations of replicas of data partitions
with respect to their popularity and their client locations. Moreover, it effi-
ciently and fairly utilizes cloud resources by performing load balancing in
the cloud adaptively to the query load. We experimentally proved that it con-
verges fast to equilibrium, where as predicted by a game-theoretical model
no migrations happen for steady system conditions. Our approach achieves
net benefit maximization for application providers and therefore it is highly
applicable to real business cases. A fully working prototype has been built,
which clearly demonstrates the feasibility, the effectiveness and the low com-
munication overhead of our approach in a distributed setting.

On the application layer’s side, we took advantage of the benefits offered
by the cloud computing paradigm to dynamically adapt the resources, so
as to satisfy performance guarantees. We also have addressed problems in-
herent to cloud computing environments, such as unreliable and ephemeral
resources. We proposed Scarce, an economic, lightweight approach for dy-
namic accommodation of load spikes and failures for composite web services
deployed in clouds, so as to satisfy performance and availability guarantees.
Our cost-efficient approach for dynamic and geographically-diverse replica-
tion of components in a cloud computing infrastructure effectively adapts to
load variations and offers service availability guarantees. We derived perfor-
mance constraints per component and we scale up existing virtual machines
or create new ones whenever the constraints are not met. Application com-
ponents act as individual optimizers and autonomously replicate, migrate
across virtual machines or terminate based on their economic fitness. Their
resource inter-dependencies are implicitly taken into account by means of

153

7. Conclusion

server rent prices. The requests are routed across components based on their
respective prior performance. Our approach also detects unstable cloud re-
sources and reacts accordingly by removing or replacing them, so as to mini-
mize the end-to-end application response time.

Finally, we have addressed an important problem occurring with cloud stor-
age, namely vendor lock-in, while further improving the scalability of cloud
storage by federating storage providers. We have presented Scalia, a system
that continuously optimizes the placement of data among multiple cloud
providers subject to optimization objectives, such as cost minimization or
budget keeping. Scalia mediates data placement across multiple cloud provi-
ders and helps the data owners to avoid vendor lock-in and satisfy certain
availability and durability constraints in a cost-effective way. Data placement
is adapted according to the real-time data access patterns. We described in
detail the various layers of our approach and our horizontal scalable architec-
ture for adaptive data placement. By extensive simulation experiments, we
proved that our solution finds an optimal data object placement for dynam-
ically changing data access patterns and when different cloud providers or
different prices are available.

To summarize, we have dealt with the robustness and the scalability of the
database layer by enhancing a key-value store, we have provided a frame-
work to build autonomic cloud-ready applications and we have built a clever
cloud storage broker following the best practises in terms of high-availability
and scalability.

7.2 Future Work

7.2.1 Improving the Current Work

Several aspects could be addressed by future work. Regarding Skute (see
Chapter 4), we will investigate the employment of our approach for more
complex data models, such as the one in Bigtable [71]. Second, we will look
for specific use cases where our approach could lead to large improvements
compared to actual solutions, especially in the field of large-scale caching of
static data objects.

In relation to Scarce (see Chapter 5) and the application layer, we intend to
explore our economic paradigm for autonomic resource management in the
context of multiple competitive or cooperative cloud providers. Another pos-
sible research direction is to allow the self-tuning of service components with
heavy data dependencies. A third interesting research direction is to enable
cloud applications to be deployed and executed closer to the end users, by
running replicas of components directly on edge servers (i.e., on “caching”
servers close to the end users), bringing to applications the same advantages
that CDNs provide for static content. As the proximity to end users is critical
to performance, moving not only static but also dynamic content (generated
by the components) close to the user is essential.

Finally, we plan to evaluate the performance and the scalability of the Scalia
(see Chapter 6) prototype. We will also study the employment of the pro-

154

7.2. Future Work

posed brokering approach for computational resources. Moreover, Scalia can
be extended to take into account the use of a CDN to deliver the content
and to provide the cheapest storage provider / CDN provider pair, based on
the access pattern of the content and the storage/access latency constraints
associated with it.

7.2.2 Future Directions

Challenges of Cloud Computing Our dependence towards cloud comput-
ing increases every day. In the future, our entire digital life will be mostly in
the hands of third-party service providers. Today, many users already rely
on cloud-based service providers to manage their social relations, contacts,
emails, pictures, videos and even to backup their entire computer. While
most of these providers make use of encryption to secure the data transfer
from the user to the cloud, they still have a full access to the data. Preserving
our privacy and protecting our data against any improper access is not only
a technical challenge which will require a major effort but it is also an orga-
nizational concern where every actor should cooperate in order to secure our
digital life from end to end. The data produced by a user day after day, such
as pictures, videos, articles, comments or browsing history should remain
the sole property of the user and not of any service provider. If required by
the user, a cloud provider should not be able to alter or to have access to his
data.

In addition, data should be moved as easily in the cloud as out the cloud,
which is rarely the case today where many service providers do not give a
simple way (if any) to get his own data back. Ensuring that data can be
migrated from a service provider is all the more necessary that providers
can change their terms of use or their privacy policy at any time. A stan-
dardization effort is therefore required in order to allow a safe adoption of
cloud-based services, where data can be exported from one provider and
imported to another one in a straightforward manner.

Similarly, cloud computing providers should offer greater transparency of
their services, as it is necessary to effectively monitor each layer of an ap-
plication to ensure that the price charged by a provider is in line with the
delivered performance and capacity.

Opportunities of Cloud Computing A standardized way to interact with ser-
vice providers opens interesting research areas such as federation of comput-
ing and storage resources offered by different providers. Moreover, providers
could be switched on the fly according to specific objectives, allowing to
create new services by simply combining the services offered by distinct
providers, similarly to Web Service composition.

Today, cloud computing seems to offer infinite capacity. However, as the avail-
able computing resources are not infinite and as the demand is quickly grow-
ing, a global marketplace of computing, storage and bandwidth resources
may emerge in the near future. As in other marketplaces, the price of a re-
source will vary depending on supply and demand. Creating a worldwide

155

7. Conclusion

computing marketplace undoubtedly presents interesting research opportu-
nities.

Delivering content to computers across the planet is a well addressed prob-
lem: CDNs or peer-to-peer networks already provide an efficient way to com-
municate with a vast number of users via Internet. However, with the rise
of mobile computing, new protocols or architectures better adapted to mo-
bile and wireless devices, such as smartphones or tablets, should take into
account their specific characteristics, such as wireless connectivity, smaller
screen, limited computing, storage and energy resources. While transcod-
ing (of videos for example) is a typical example of cloud computing usage
allowing to serve content adapted to mobile devices, new ways to exchange
information between users could further improve the attractiveness of mobile
computing. Due to the limited capacity of mobile devices and the growing
amount of data consumed and produced, cloud computing, as a solid and
scalable foundation, has the assets to concretize the promising future of mo-
bile computing.

156

Bibliography

[1] Amazon elastic compute cloud (amazon ec2). http://aws.amazon.

com/ec2/.

[2] Amazon simple storage service (amazon s3). http://aws.amazon.com/
s3/.

[3] Amazon.com. http://www.amazon.com.

[4] The apache cassandra project. http://cassandra.apache.org/.

[5] Berkeley db. http://www.oracle.com/technetwork/database/

berkeleydb.

[6] Cleversafe. http://www.cleversafe.com/.

[7] Cloud afs. http://www.gladinet.com/.

[8] Cloudera flume. https://github.com/cloudera/flume.

[9] Common internet file system (cifs). http://msdn.microsoft.com/

en-us/library/aa365233(VS.85).aspx.

[10] Couchdb. http://incubator.apache.org/couchdb/.

[11] dbshards. http://www.dbshards.com/dbshards/.

[12] Emc atmos. http://atmosonline.com/.

[13] The facebook. http://www.facebook.com.

[14] Facebook scribe. https://github.com/facebook/scribe.

[15] Geniedb. http://www.geniedb.com/.

[16] Google storage. http://code.google.com/apis/storage/.

[17] Hadapt. http://www.hadapt.com/.

157

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.amazon.com
http://cassandra.apache.org/
http://www.oracle.com/technetwork/database/berkeleydb
http://www.oracle.com/technetwork/database/berkeleydb
http://www.cleversafe.com/
http://www.gladinet.com/
https://github.com/cloudera/flume
http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365233(VS.85).aspx
http://incubator.apache.org/couchdb/
http://www.dbshards.com/dbshards/
http://atmosonline.com/
http://www.facebook.com
https://github.com/facebook/scribe
http://www.geniedb.com/
http://code.google.com/apis/storage/
http://www.hadapt.com/

Bibliography

[18] Hbase. http://hadoop.apache.org/hbase/.

[19] Ibm db2. http://www.ibm.com/software/data/db2/.

[20] Internet small computer systems interface (iscsi). http://tools.ietf.
org/html/rfc3720.

[21] The iotop command. http://packages.debian.org/stable/iotop.

[22] Java platform, enterprise edition. http://www.oracle.com/

technetwork/java/javaee/index.html.

[23] jclouds. http://www.jclouds.org/.

[24] libcloud. http://incubator.apache.org/libcloud/.

[25] The lsof command. http://packages.debian.org/stable/lsof.

[26] Memcached. http://memcached.org/.

[27] Microsoft azure. http://www.microsoft.com/windowsazure/.

[28] Microsoft sql server. http://www.microsoft.com/sqlserver/.

[29] Mogilefs. http://www.danga.com/mogilefs/.

[30] Mongodb. http://www.mongodb.org/.

[31] Mysql. http://mysql.com/.

[32] Nasuni filer. http://www.nasuni.com/.

[33] .net framework. http://www.microsoft.com/net.

[34] Nethogs: Net top tool grouping bandwidth per process. http://

packages.debian.org/stable/nethogs.

[35] Network time protocol version 4: Protocol and algorithms specification.
http://tools.ietf.org/html/rfc5905.

[36] Newsql. http://blogs.the451group.com/information_management/

2011/04/06/what-we-talk-about-when-we-talk-about-newsql/.

[37] Nimbusdb. http://nimbusdb.com/.

[38] Opentsdb. http://opentsdb.net/.

[39] Oracle database. http://www.oracle.com/us/products/database/

index.html.

[40] Project voldemort. http://project-voldemort.com/.

[41] Rackspace cloud servers. http://www.rackspace.com/cloud/.

158

http://hadoop.apache.org/hbase/
http://www.ibm.com/software/data/db2/
http://tools.ietf.org/html/rfc3720
http://tools.ietf.org/html/rfc3720
http://packages.debian.org/stable/iotop
http://www.oracle.com/technetwork/java/javaee/index.html
http://www.oracle.com/technetwork/java/javaee/index.html
http://www.jclouds.org/
http://incubator.apache.org/libcloud/
http://packages.debian.org/stable/lsof
http://memcached.org/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/sqlserver/
http://www.danga.com/mogilefs/
http://www.mongodb.org/
http://mysql.com/
http://www.nasuni.com/
http://www.microsoft.com/net
http://packages.debian.org/stable/nethogs
http://packages.debian.org/stable/nethogs
http://tools.ietf.org/html/rfc5905
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://nimbusdb.com/
http://opentsdb.net/
http://www.oracle.com/us/products/database/index.html
http://www.oracle.com/us/products/database/index.html
http://project-voldemort.com/
http://www.rackspace.com/cloud/

Bibliography

[42] Rackspace cloudfiles. http://www.rackspace.com/cloud/.

[43] Scalability best practices at ebay. http://www.infoq.com/articles/

ebay-scalability-best-practices.

[44] Scalebase. http://www.scalebase.com/.

[45] Schooner. http://www.schoonerinfotech.com/.

[46] Scidb. http://www.scidb.org/.

[47] Simple object access protocol (soap). http://www.w3.org/TR/soap/.

[48] sysstat: System performance tools for linux. http://packages.

debian.org/stable/sysstat.

[49] The top command. http://www.debian.org/doc/manuals/

debian-reference/ch09.en.html#_the_top_command.

[50] Twitter. http://www.twitter.com.

[51] Voltdb. http://voltdb.com/.

[52] Wuala. http://www.wuala.com/.

[53] Xeround. http://xeround.com/.

[54] D. Abadi. Problems with cap, and yahoo’s little known
nosql system, 2010. http://dbmsmusings.blogspot.com/2010/04/

problems-with-cap-and-yahoos-little.html.

[55] M. L. Abbott and M. T. Fisher. Scalability Rules: 50 Principles for Scaling
Web Sites. Pearson Education, Limited, 2011.

[56] D. Abramson, J. Giddy, and L. Kotler. High performance parametric
modeling with nimrod/g: Killer application for the global grid? In
Proc. of the IPDPS, 2000.

[57] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. Racs: A case
for cloud storage diversity. In ACM SOCC, Indianapolis, USA, 2010.

[58] M. Afergan, J. Wein, and A. LaMeyer. Experience with some principles
for building an internet-scale reliable system. In Proceedings of the 2nd
conference on Real, Large Distributed Systems - Volume 2, WORLDS’05,
pages 1–6, Berkeley, CA, USA, 2005. USENIX Association.

[59] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An efficient
approach for managing replicated data. In VLDB ’90: Proc. of the 16th In-
ternational Conference on Very Large Data Bases, pages 243–254, Brisbane,
Queensland, Australia, 1990.

[60] Y. Al-Houmaily and P. Chrysanthis. Two-phase commit in gigabit-
networked distributed database. In Proc. of the Parallel and Distributed
Computing Systems, Orlando, Florida, USA, 1995.

159

http://www.rackspace.com/cloud/
http://www.infoq.com/articles/ebay-scalability-best-practices
http://www.infoq.com/articles/ebay-scalability-best-practices
http://www.scalebase.com/
http://www.schoonerinfotech.com/
http://www.scidb.org/
http://www.w3.org/TR/soap/
http://packages.debian.org/stable/sysstat
http://packages.debian.org/stable/sysstat
http://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_the_top_command
http://www.debian.org/doc/manuals/debian-reference/ch09.en.html#_the_top_command
http://www.twitter.com
http://voltdb.com/
http://www.wuala.com/
http://xeround.com/
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

Bibliography

[61] F. attern. Virtual time and global states of distributed systems. In
Parallel and Distributed Algorithms, pages 215–226. North-Holland, 1989.

[62] L. Badger, T. Grance, R. Patt-Corner, and J. Voas. Nist’s cloud
computing synopsis and recommendations. http://csrc.nist.gov/

publications/drafts/800-146/Draft-NIST-SP800-146.pdf.

[63] P. A. Bernstein and N. Goodman. An algorithm for concurrency control
and recovery in replicated distributed databases. ACM Transactions on
Database Systems, 9(4):596–615, 1984.

[64] P. A. Bernstein and N. Goodman. A proof technique for concurrency
control and recovery algorithms for replicated databases. Distributed
Computing, pages 32–44, 1987.

[65] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[66] N. Bonvin, T. G. Papaioannou, and K. Aberer. Dynamic cost-efficient
replication in data clouds. In Proc. of the Workshop on Automated Control
for Datacenters and Clouds, Barcelona, Spain, June 2009.

[67] K. D. Bowers, A. Juels, and A. Oprea. Hail: a high-availability and
integrity layer for cloud storage. In Proc. of the 16th ACM conference on
Computer and communications security, Chicago, Illinois, USA, 2009.

[68] E. A. Brewer. Towards robust distributed systems (abstract). In Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributed
computing, PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.

[69] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. C. Parkes, M. Seltzer,
J. Shank, and S. Youssef. Egg: an extensible and economics-inspired
open grid computing platform. In Proc. of the GECON, Singapore, May
2006.

[70] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceed-
ings of the third symposium on Operating systems design and implementation,
OSDI ’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX Associa-
tion.

[71] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed
storage system for structured data. In Proc. of the Symposium on Operat-
ing Systems Design and Implementation, Seattle, Washington, 2006.

[72] B-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica maintenance
for distributed storage systems. In Proc. of the NSDI, 2006.

[73] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-
non, H. A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s
hosted data serving platform. Proc. VLDB Endow., 1(2):1277–1288, 2008.

160

http://csrc.nist.gov/publications/drafts/800-146 /Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/drafts/800-146 /Draft-NIST-SP800-146.pdf

Bibliography

[74] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. In Proc. of the SOSP, 2001.

[75] M. Dahlin, B. Baddepudi, V. Chandra, L. Gao, and A. Nayate. End-
to-end wan service availability. IEEE/ACM Transactions on Networking,
11(2):300–313, 2003.

[76] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Lud-
wig, M. Polan, M. Spreitzer, and A. Youssef. Web services on demand:
Wsla-driven automated management. IBM System Journal, 43(1):136–
158, 2004.

[77] K. Daudjee and K. Salem. Lazy database replication with snapshot
isolation. In VLDB ’06: Proc. of the 32nd international conference on Very
large data bases, pages 715–726, Seoul, Korea, 2006.

[78] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Proc. of ACM Symposium
on Operating Systems Principles, New York, NY, USA, 2007.

[79] J. Dejun, G. Pierre, and C. H. Chi. Ec2 performance analysis for
resource provisioning of service-oriented applications. In Proc. of
NFPSLAM-SOC, Stockholm, Sweden, 2009.

[80] C. Dellarocas. Goodwill hunting: An economically efficient online feed-
back mechanism for environments with variable product quality. In
Proc. of the Workshop on Agent-Mediated Electronic Commerce, July 2002.

[81] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM Sympo-
sium on Principles of distributed computing, PODC ’87, pages 1–12, New
York, NY, USA, 1987. ACM.

[82] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. In IEEE Transac-
tions on Information Theory, 2010.

[83] C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He. Transparent
symmetric active/active replication for service-level high availability.
In Proc. of the CCGrid, 2007.

[84] T. Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2007.

[85] J. Fidge. Timestamps in message passing systems that preserve the
partial ordering. In Theoretical Computer Science, 1992.

[86] R. T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, 2000. AAI9980887.

161

Bibliography

[87] B. Fitzpatrick. Livejournal’s backend: A history of scaling. In OSCON,
2005.

[88] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the
seventh ACM symposium on Operating systems principles, SOSP ’79, pages
150–162, New York, NY, USA, 1979. ACM.

[89] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. Sigact News, 33:51–
59, 2002.

[90] R. A. Golding. Weak-consistency group communication and member-
ship (ph.d. dissertation). Technical report, Santa Cruz, CA, USA, 1992.

[91] J. Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[92] J. Gray. The transaction concept: Virtues and limitations (invited pa-
per). In Very Large Data Bases, 7th International Conference, September
9-11, 1981, Cannes, France, Proceedings, pages 144–154. IEEE Computer
Society, 1981.

[93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
1992.

[94] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The
impact of dht routing geometry on resilience and proximity, 2003.

[95] R. G. Guy, J. S. Heidemann, and Jr. T. W. Page. The ficus replicated file
system. ACM SIGOPS Operating Systems Review, 26(2):26, 1992.

[96] D. Pisinger H. Kellerer, U. Pferschy. Knapsack Problems. Springer Verlag,
2004.

[97] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Comput. Surv., 15:287–317, December 1983.

[98] J. Hamilton. On designing and deploying internet-scale services. In Pro-
ceedings of the 21st conference on Large Installation System Administration
Conference, pages 18:1–18:12, Berkeley, CA, USA, 2007. USENIX Associ-
ation.

[99] J. Hamilton. One size does not fit all, 2009. http:

//perspectives.mvdirona.com/CommentView,guid,

afe46691-a293-4f9a-8900-5688a597726a.aspx.

[100] G. Heiser, F. Lam, and S. Russell. Resource management in the mungi
single-address-space operating system. In Proc. of Australasian Computer
Science Conference, Perth, Australia, February 1998.

[101] A. Helsinger and T. Wright. Cougaar: A robust configurable multi
agent platform. In Proc. of the IEEE Aerospace Conference, 2005.

162

http://perspectives.mvdirona.com/CommentView,guid,afe46691-a293-4f9a-8900-5688a597726a.aspx
http://perspectives.mvdirona.com/CommentView,guid,afe46691-a293-4f9a-8900-5688a597726a.aspx
http://perspectives.mvdirona.com/CommentView,guid,afe46691-a293-4f9a-8900-5688a597726a.aspx

Bibliography

[102] C. Henderson. Building Scalable Web Sites: Building, Scaling, and Optimiz-
ing the Next Generation of Web Applications. O’Reilly Media, Inc., 2006.

[103] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12:463–492, July
1990.

[104] M. Hofmann and L. R. Beaumont. Content Networking: Architecture, Pro-
tocols, and Practice (The Morgan Kaufmann Series in Networking). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[105] R. J. Honicky and E. L. Miller. A fast algorithm for online placement
and reorganization of replicated data. In Proc. of Int. Symposium on
Parallel and Distributed Processing, Nice, France, April 2003.

[106] S. Hopkins and B. Coile. Aoe (ata over ethernet), 2009. http:

//support.coraid.com/documents/AoEr11.txt.

[107] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free co-
ordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, USENIXATC’10, pages
11–11, Berkeley, CA, USA, 2010. USENIX Association.

[108] k. Birman. The promise, and limitations, of gossip protocols. SIGOPS
Oper. Syst. Rev., 41:8–13, October 2007.

[109] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki. Predicting cost
amortization for query services. In Proceedings of the 2011 international
conference on Management of data, SIGMOD ’11, pages 325–336, New
York, NY, USA, 2011. ACM.

[110] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pani-
grahy. Consistent hashing and random trees: Distributed caching pro-
tocols for relieving hot spots on the world wide web. In Proc. of ACM
Symposium on Theory of Computing, pages 654–663, May 1997.

[111] B. Keating. Challenges involved in multimaster replication,
2001. http://www.dbspecialists.com/files/presentations/mm_

replication.html.

[112] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, pages 45–
58, New York, NY, USA, 2007. ACM.

[113] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: an architecture for global-scale persistent storage.
SIGPLAN Not., 35(11):190–201, 2000.

[114] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

163

http://support.coraid.com/documents/AoEr11.txt
http://support.coraid.com/documents/AoEr11.txt
http://www.dbspecialists.com/files/presentations/mm_replication.html
http://www.dbspecialists.com/files/presentations/mm_replication.html

Bibliography

[115] L. Lamport. Future directions in distributed computing. chapter
Lower bounds for asynchronous consensus, pages 22–23. Springer-
Verlag, Berlin, Heidelberg, 2003.

[116] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4:382–401, July 1982.

[117] N. Laranjeiro and M. Vieira. Towards fault tolerance in web services
compositions. In Proc. of the workshop on engineering fault tolerant systems,
New York, NY, USA, 2007.

[118] H. Li, M. Muskulus, and L. Wolters. Modeling job arrivals in a data-
intensive grid. In Proc.12 th Workshop on Job Scheduling Strategies for
Parallel Processing, pages 210–231. Springer, 2006.

[119] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini. Sla-driven clustering of
qos-aware application servers. In IEEE Trans. Softw. Eng, 2007.

[120] S. K. Madria and B. Bhargava. A transaction model for mobile comput-
ing. In Proceedings of the 1998 International Symposium on Database En-
gineering & Applications, pages 92–, Washington, DC, USA, 1998. IEEE
Computer Society.

[121] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani. Demysti-
fying data deduplication. In Proceedings of the ACM/IFIP/USENIX Mid-
dleware ’08 Conference Companion, Companion ’08, pages 12–17, New
York, NY, USA, 2008. ACM.

[122] P. Mell and T. Grance. Nist’s cloud computing definition. http://

csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc.

[123] R. C. Merkle. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, CRYPTO ’87, pages 369–378, Lon-
don, UK, 1988. Springer-Verlag.

[124] T. N. Minh and L. Wolters. Modeling job arrival process with long
range dependence and burstiness characteristics. In Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, CCGRID ’09, pages 324–330, Washington, DC, USA, 2009.
IEEE Computer Society.

[125] J. Norris, K. Coleman, A. Fox, and G. Candea. Oncall: Defeating spikes
with a free-market application cluster. In Proc. of the International Con-
ference on Autonomic Computing, New York, NY, USA, May 2004.

[126] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform
for high-performance internet applications. SIGOPS Oper. Syst. Rev.,
44:2–19, August 2010.

[127] C. Pautasso, T. Heinis, and G. Alonso. Autonomic resource provision-
ing for software business processes. Information and Software Technology,
49:65–80, 2007.

164

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

Bibliography

[128] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou: replicated
database services for world-wide applications. In Proc. of the 7th work-
shop on ACM SIGOPS European workshop, Connemara, Ireland, 1996.

[129] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
mers. Flexible update propagation for weakly consistent replication. In
Proceedings of the sixteenth ACM symposium on Operating systems princi-
ples, SOSP ’97, pages 288–301, New York, NY, USA, 1997. ACM.

[130] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of 5th USENIX Conference on File and
Storage Technologies (FAST’07), San Jose, CA, USA, February 2007.

[131] E. Pitoura and B. Bhargava. Data consistency in intermittently con-
nected distributed systems. IEEE Trans. on Knowl. and Data Eng., 11:896–
915, November 1999.

[132] O. Regev and N. Nisan. The popcorn market. online markets for com-
putational resources. Decision Support Systems, 28(1-2):177–198, 2000.

[133] C. Reich, K. Bubendorfer, M. Banholzer, and R. Buyya. A sla-oriented
management of containers for hosting stateful web services. In Proc.
of the IEEE Conference on e-Science and Grid Computing, Washington, DC,
USA, 2007.

[134] R. Rivest. The md5 message-digest algorithm, 1992.

[135] H. Robinson. Cap confusion: Problems with ‘partition tol-
erance’, 2010. http://www.cloudera.com/blog/2010/04/

cap-confusion-problems-with-partition-tolerance/.

[136] R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding
vs. replication. In International Workshop IPTPS, 2005.

[137] A. Rowstron and P. Druschel. Storage management and caching in
past, a large-scale, persistent peer-to-peer storage utility. In Proc. of
ACM Symposium on Operating Systems Principles, Banff, Alberta, Canada,
2001.

[138] M. Rys. How do large-scale sites and applications remain sql-based?,
2011. http://queue.acm.org/detail.cfm?id=1971597.

[139] J. Salas, F. Perez-Sorrosal, N.-M. M. Pati, and R. Jiménez-Peris. Ws-
replication: a framework for highly available web services. In Proc. of
the WWW, pages 357–366, New York, NY, USA, 2006.

[140] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation or the sun network filesystem. 1985.

[141] G. Sanders and S. Shin. Denormalization effects on performance of
rdbms. Hawaii International Conference on System Sciences, 3:3013, 2001.

165

http://www.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://www.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://queue.acm.org/detail.cfm?id=1971597

Bibliography

[142] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,
and D. C. Steere. Coda: a highly available file system for a dis-
tributed workstation environment. Transactions on Computers, 39(4):447–
459, 1990.

[143] T. Schlossnagle. Scalable Internet Architectures. 2006.

[144] M. Shapiro, P. Dickman, and D. Plainfossè. Robust, distributed ref-
erences and acyclic garbage collection. In Proc. of the Symposium on
Principles of Distributed Computing, Vancouver, Canada, August 1992.

[145] S. K. Shin and G. L. Sanders. Denormalization strategies for data re-
trieval from data warehouses. Decis. Support Syst., 42:267–282, October
2006.

[146] D. Skeen and M. Stonebraker. A formal model of crash recovery in a
distributed systems. IEEE Transactions on Software Engineering, pages
219–228, 1983.

[147] H. Stockinger, K. Stockinger, E. Schikuta, and I. Willers. Towards a cost
model for distributed and replicated data stores. In Proc. of Euromicro
Workshop on Parallel and Distributed Processing, Italy, February 2001.

[148] M. Stonebraker. The case for shared nothing. IEEE Database Eng. Bull.,
9(1):4–9, 1986.

[149] M. Stonebraker. In search of database consistency. Commun. ACM, 53:8–
9, October 2010.

[150] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah,
and C. Staelin. An economic paradigm for query processing and data
migration in mariposa. In Proc. of Parallel and Distributed Information
Systems, Austin, TX, USA, September 1994.

[151] C. Strauch. Nosql databases. pages 1–149, 2010.

[152] N. Ntarmos T. Pitoura and P. Triantafillou. Replication, load balancing
and efficient range query processing in dhts. In Proc. of Int. Conference
on Extending Database Technology, Munich, Germany, March 2006.

[153] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Trans. Database Syst., 4:180–209, June
1979.

[154] Jinesh Varia. Architecting for the cloud: Best practice. 2010.

[155] W. Vogels. Eventually consistent, December 2008.

[156] M. N. Dailey W. Iqbal and D. Carrera. Sla-driven dynamic resource
management for multi-tier web applications in a cloud. In Proc. of the
CCGrid, Melbourne, Australia, 2010.

166

Bibliography

[157] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta. Spawn: A distributed computational economy. IEEE Transac-
tions on Software Engineering, 18:103–117, 1992.

[158] M. Wang and T. Suda. The bio-networking architecture: a biologi-
cally inspired approach to the design of scalable, adaptive, and sur-
vivable/available network applications. In Proc. of the IEEE Symposium
on Applications and the Internet, 2001.

[159] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication:
A quantitative comparison. In Revised Papers from IPTPS’01, 2002.

[160] Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. Van Steen. Service-
oriented data denormalization for scalable web applications. In Proceed-
ings of the 17th International World Wide Web Conference, Beijing, China,
April 2008.

[161] G. Weikum and G. Vossen. Transactional information systems: theory, algo-
rithms, and the practice of concurrency control and recovery. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2001.

[162] D. Weinreb. What does the proof of the “cap the-
orem” mean?, 2010. http://danweinreb.org/blog/

what-does-the-proof-of-the-cap-theorem-mean.

[163] D. Weinreb. Improving the pacelc taxonomy, 2011. http://

danweinreb.org/blog/improving-the-pacelc-taxonomy.

167

http://danweinreb.org/blog/what-does-the-proof-of-the-cap-theorem-mean
http://danweinreb.org/blog/what-does-the-proof-of-the-cap-theorem-mean
http://danweinreb.org/blog/improving-the-pacelc-taxonomy
http://danweinreb.org/blog/improving-the-pacelc-taxonomy

Curriculum Vitae

Nicolas Bonvin
Contact information

Birthdate 01 april 1980
Nationality swiss
email nbonvin @ niin.org

Work Experience

LSIR, IC, EPFL, Lausanne, Switzerland 2007 – 2011

PhD Candidate

· Research area : cloud computing, NoSQL databases, scalability and
high-availability of distributed systems, large-scale systems, web of en-
tities, P2P

· Development of P-Grid, a fully decentralized P2P network

· Participation in European projects (NEPOMUK, OKKAM)

CTP (a Novell business), Geneva, Switzerland 2005 – 2007

Consultant, Novell Linux engineer

· Secure email communication, IncaMail, Swiss Post, Switzerland

· Technical Support at Nestle, Vevey, Switzerland

· Document Management at State of Vaud, Lausanne, Switzerland

· Identity Management at IMD, Lausanne, Switzerland

· Business Process Management at SITA, Geneva, Switzerland

169

Curriculum Vitae

· Infrastructure deployment and management

ProLibre Sarl, Geneva, Switzerland 2004 – 2005

Developer, System adiministrator

· Development of a secure e-voting system

· Administration of Linux servers

Skutale Technologies, Fribourg, Switzerland 2003 – 2010

Co-Founder, CTO

· Multi-Datacenter Managed Hosting (Web, Email, DNS, Applications)

· Web Development

Education

EPFL, Lausanne, Switzerland 2005

Master of Science in Computer Science

· Ing. inf. dipl. EPF
Thesis : “E-Voting System”
Advisor : Prof. Serge Vaudenay

Kollegium Spiritus Sanctus, Brig, Switzerland 1999

College degree

· Maturite Cantonale Type B (Latin-Anglais)

Selected Publications

N. Bonvin, T. G. Papaioannou, and K. Aberer. “Autonomic SLA-driven Provi-
sioning for Cloud Applications”. In 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2011.

N. Bonvin, T. G. Papaioannou, and K. Aberer. “An economic approach for
scalable and highly-available distributed applications”. In Proc. of the 3rd
IEEE International Conference on Cloud Computing (CLOUD), 2010.

Z. Miklos, N. Bonvin, P. Bouquet, M. Catasta, D. Cordioli, P. Fankhauser, J.
Gaugaz, E. Ioannou, H. Koshutanski, A. Mana, C. Niederee, T. Palpanas, and
H. Stoermer. “From Web Data to Entities and Back”. In 22nd International
Conference on Advanced Information Systems Engineering (CAISE), 2010.

170

N. Bonvin, T. G. Papaioannou, and K. Aberer. “A self-organized, fault-
tolerant and scalable replication scheme for cloud storage”. In Proc. of the
ACM Symposium on Cloud Computing 2010 (SOCC), 2010.

N. Bonvin, T. G. Papaioannou, and K. Aberer. “Cost-efficient and Differ-
entiated Data Availability Guarantees in Data Clouds”. In the 26th IEEE
International Conference on Data Engineering (ICDE), 2010.

E. Ioannou, S. Sathe, N. Bonvin, A. Jain, S. Bondalapati, G. Skobeltsyn, C.
Niederée, and Z. Miklos. “Entity Search with NECESSITY”. In Proceedings
of the 12th International Workshop on the Web and Databases, 2009.

N. Bonvin, T. G. Papaioannou, and K. Aberer. “Dynamic Cost-Efficient Repli-
cation in Data Clouds”. In First ACM Workshop on Automated Control for Data-
centers and Clouds (ACDC), 2009.

Technical Skills

Database

· MySQL · BDB · Oracle · NoSQL (Cassandra, Voldemort, Redis, Mon-
goDB, HBase, Memcached) · Hadoop

Programming

· Java · C++ · PHP · Perl · SQL · Scala · JavaScript · HTML · Shell

Operating Systems

· Linux · Unix (*BSD, Solaris) · Windows

Miscellaneous

· Security · Cryptography · High-Availability · Scalability · Distributed
Systems · Large-Scale Systems · P2P · Cloud Computing

Additional Information

Languages

· English : fluent

· German : good knowledge

· Swiss German : good knowledge

· French : mother tongue

Interests

· Paragliding · Ski Freeride · Mountain · Krav Maga

171

	Title
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Introduction
	Distributed Applications
	Service-Orientation
	Cloud Computing

	Scalability
	A Motivating Example

	Contribution of the Work
	Scope and Limitations
	Structure of the Thesis
	Selected Publications

	State of the Art
	Distributed Application Scalability
	Introduction
	Scalability Best Practises
	Cloud Computing
	Definition
	Benefits
	Cloud Storage

	Conclusion

	Database Scalability
	Introduction
	Relational Databases
	Replication
	Database Sharding

	NoSQL Databases
	NewSQL Databases
	Consistency Models
	Strong Consistency
	Eventual Consistency

	Conclusion

	Contributions
	Building Highly-Available and Scalable Cloud Storage
	Introduction
	Skute: Scattered Key-Value Store
	Physical Node
	Virtual Node
	Virtual Ring
	Routing
	Data Consistency

	Problem Definition
	Maximize Data Availability
	Minimize Communication Cost
	Maximize Net Benefit

	The Individual Optimization
	Board
	Physical Node
	Maintaining Availability
	Virtual Node Decision Tree

	Equilibrium Analysis
	Rational Strategies
	Simulation Results
	The Simulation Model
	Convergence to Equilibrium and Optimal Solution
	Fault Tolerance against Correlated Failures and Adaptation to New Resources
	Adaptation to the Query Load
	Scalability of the Approach

	Implementation and Experimental Results in a Real Testbed
	Verification of Simulation Results
	Scalable Performance
	Adaptivity to Varying Load
	Adaptivity to Failure

	Potential Applications
	Related Work
	Conclusion

	Building Highly-Available and Scalable Cloud Applications
	Introduction
	Motivation
	Running Example

	Scarce: the Quest of Autonomic Applications
	The Approach
	Server Agent
	Routing Table
	Economic Model

	Maintaining High-Availability
	Meeting SLA Performance Guarantees
	Cascading Performance Constraints

	Automatic Provisioning of Cloud Resources
	Adaptivity to Slow Servers

	Evaluation
	Scalability, High-Availability and Load-Balancing
	SLA Performance Guarantees

	Related Work
	Conclusion

	Federation of Cloud Storage
	Introduction
	Motivation
	Avoiding Vendor Lock-in
	Paying a Fair Price

	Scalia: Multi-Cloud Storage
	Engine Layer
	Caching Layer
	Database Layer
	Life cycle of read and write operations
	Private Storage Resources
	Discussion

	Evaluation
	Experimental Setup
	Slashdot Effect Scenario
	Gallery Scenario
	Adding Storage Resources
	Active repair
	Pricing Update

	Related Work
	Conclusions

	Conclusion
	Conclusion
	Summary of the Work
	Future Work
	Improving the Current Work
	Future Directions

	Bibliography
	Curriculum Vitae

