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Abstract—Interference is usually viewed as an obstacle to by exploiting the broadcast and multiple-access properife
communication in wireless networks. This paper proposes a the wireless medium; properties that are usually viewed as a

new strategy, compute-and-forward, that exploits interfeence to
obtain significantly higher rates between users in a network
The key idea is that relays should decode linear functions

hindrance and are not captured by a bit pipe interface. T®, dat
most proposed cooperative schemes have relied on one of the

of transmitted messages according to their observed chanhe following three core relaying strategies:

coefficients rather than ignoring the interference as noiseAfter
decoding these linear equations, the relays simply send the
towards the destinations, which given enough equations, na
recover their desired messages. The underlying codes are $&d
on nested lattices whose algebraic structure ensures thatteger
combinations of codewords can be decoded reliably. Encoder
map messages from a finite field to a lattice and decoders
recover equations of lattice points which are then mapped bek
to equations over the finite field. This scheme is applicableven

if the transmitters lack channel state information.

Index Terms—Relaying, cooperative communication, struc-
tured codes, nested lattice codes, reliable computation,WAGN
networks, interference.

|I. INTRODUCTION

Decode-and-ForwardThe relay decodes at least some
part of the transmitted messages. The recovered bits are
then re-encoded for collaborative transmission to the next
relay. Although this strategy offers significant advantgge
the relay is ultimately interference-limited as the number
of transmitted messages increases [1]-{4].
Compress-and-Forwardfhe signal observed at the relay

is vector quantized and this information is passed towards
the destination. If the destination receives information
from multiple relays, it can treat the network as a
multiple-input multiple-output (MIMO) channel. Unfor-
tunately, since no decoding is performed at intermediate
nodes, noise builds up as messages traverse the network

(1], [3], [5]-[8].

In a wireless network, a transmission from a single node ise Amplify-and-ForwardThe relay simply acts as a repeater
heard not only by the intended receiver, but also by all other and transmits a scaled version of its observation. Like
nearby nodes; by analogy, any receiver not only captures the compress-and-forward, this strategy converts the network

signal from its designated transmitter, but from all otheary
transmitters. The resulting interference is usually vigves
highly undesirable and clever algorithms and protocolsshav

into a large MIMO channel with the added possibility of
a beamforming gain. However, noise also builds up with
each retransmission. [2], [4], [9]-[12].

been devised to avoid interference between transmitters. C | 4 ic paper, we propose a new strateggmpute-and-

lectively, these strategies transform the physical layera set forward, that enables relays to decode linear equations of

of reliable bit pipesi.e. each link can accommodate a certaiﬂﬁ transmitted messages using the noisy linear combivsatio

number of bits per time unit. '_I'hese bit pipes can then be USEfbvided by the channel. A destination, given sufficientiyny

Seam|835|¥ by higher I_ayers in the protocol stack. _linear combinations, can solve for its desired messages. Ou
Since wireless terr_nmals must compete for the S"’?me_f'xggategy relies on codes with a linear structure, spedyical

chunk of spectrum, interference avoidance results in G“m'ﬂested lattice codes. The linearity of the codebook ensures

ishing ra.tes as the netvyork SIZ€ INCreases. _Recent work A8t integer combinations of codewords are themselves-code
cooperative communication has shown that this penalty ean\j, s A relay is free to determine which linear equation to

overcome by adopting new strategies at the physical lay&. Trocover, but those closer to the channel's fading coeffisien

key idea is that users should help relay each other’s message. available at higher rates

This strategy simultaneously affords protection againgen
and the opportunity to exploit interference for coopemativ
gains. One could interpret compress-and-forward and d&ynpli
and-forward as converting a network into a set of noisy linea
equations; in this sense, compute-and-forward conveitsgat
a set ofreliable linear equationsThese equations can in turn
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However, this would negate many of the advantages ofcading. To the best of our knowledge, the idea of using
modular design [13]. Compute-and-forward provides a r@dtumwireless interference for network coding was indepengentl
solution to this problem by permitting a slight revision bkt and concurrently proposed by several groups. Zhang, Liew,
interface from bits teequations of bits and Lam developed modulation strategies for bi-directiona

We will develop a general framework for compute-andsommunication and coined the phrase "physical layer net-
forward that can be used in any relay network with lineawork coding” [28]. Popovski and Yomo suggested the use of
channels and additive white Gaussian noise (AWGN). Trarsmplify-and-forward for the two-way relay channel [29].rFo
mitters send out messages taking values in a prime-sizéd firthis network, Rankov and Wittneben suggested both amplify-
field and relays recover linear equations of the messageas oard-forward and compress-and-forward [30]. We suggebeed t
the same field, making this an ideal physical layer interfacese of structured codes for the closely related wirelese iyt
for network coding. We will compare compute-and-forward taetwork [31]. Subsequently, we developed lattice stratetor
classical relaying strategies in a case study based ofbdistd Gaussian multiple-access networks (without fading) [3%] a
MIMO. Classical relaying strategies perform well in eitheNarayanan, Wilson, and Sprintson developed a nesteddattic
low or high signal-to-noise ratio (SNR) regimes. As we wilktrategy for the two-way relay channel [33], [34]. Nam, Chun
see, compute-and-forward offers advantages in modera®e Sahd Lee generalized this strategy to include asymmetricepow
regimes where both interference and noise are significananstraints [35], found the capacity to within half a bit
factors. [36], and extended their scheme to Gaussian multiple-acces
networks [37]. Owing to space constraints, we point to sysve
by Liew, Zhang, and Lu [38] and ourselves [39] for a broader
A. Related Work view of the rest of the physical layer network coding literat

There is a large body of work on lattice codes and their Work on interference alignment by Maddah-Ali, Motahari,
applications in communications. We cannot do justice to alhd Khandani [40] and Cadambe and Jafar [41] has shown
of this work here and point the interested reader to an exteell that large gains are possible for interference channelsgat h
survey by Zamir [14]. The basic insight is that, for mangignal-to-noise ratio (SNR). The key is to have users tritnsm
AWGN networks of interest, nested lattice codes can apiroaglong subspaces chosen such that all interference stacks up
the performance of standard random coding arguments. Qnethe same dimensions at the receivers. Lattice codes can
key result by Erez and Zamir showed that nested lattice codss used to realize these gains at finite SNR. Bresler, Parekh,
(combined with lattice decoding) can achieve the capadity and Tse used lattice codes to approximate the capacity of the
the point-to-point AWGN channel [15]. More generally, Zami many-to-one and one-to-many interference channels tdrwith
Shamai, and Erez demonstrated how to use nested lattice cagl€onstant number of bits [42]. This scheme was employed
for many classical AWGN multi-terminal problems in [16]for bursty interference channels in [43]. For symmetrieint
Subsequent work by El Gamal, Caire, and Damen showed th@ence channels, Sridharah al. developed a layered lattice
nested lattice codes achieve the diversity-multiplexiageoff strategy in [44]. Structured codes are also useful for eémod
of MIMO channels [17]. Note that, in general, structurede®d alignment over fast fading interference channels [45] and
are not sufficient to prove capacity results. For instanoeyy  multi-hop networks [46] as well as decentralized procegsin
codes cannot approach the capacity of asymmetric discrgtecellular networks [47], [48].
memoryless channels [18]. Distributed source coding can also benefit from the use

It is tempting to assume that requiring codes to hawsf structured codes. Krithivasan and Pradhan have employed
a certain algebraic structure diminishes their usefulrfess nested lattice codes for the distributed compression @falin
proving capacity theorems. However, it has become cledr thanctions of jointly Gaussian sources [49] as well as nested
for certain network communication scenarios, structuktbes group codes for discrete memoryless sources [50]. Wagner
can actually outperform standard random coding argumeirgproved the performance of this lattice scheme in the Ide ra
[19]. The first example of such behavior was found by Korneegime via binning and developed novel outer bounds [51].
and Marton in [20]. They considered a decoder that wantsLarge gains are possible in multi-user source-channehgodi
to reconstruct the parity of two dependent binary sourcgs2]-[54]. For Gaussian settings, the modulo-lattice niadu
observed by separate encoders. They found the rate region scheme of Kochman and Zamir is particularly useful [55]
by using the same linear code at each encoder. More recergipally, recent work by He and Yener has shown that lattices
we showed that structured codes offer large gains for feliakire useful for physical layer secrecy [56]. See also [57].
computation over multiple-access channels [21]. Philagtof  Finally, we mention several recent papers that have devel-
al. demonstrated that structured codes enable distributéd disped practical codes for compute-and-forward [58]-[60].
paper coding for multiple-access channels [22], [23].

The celebrated paper of Ahlswedeal. on network coding
showed that for wired networks, relays must send out funstio
of received data, rather than just routing it [24]. Subsetue Our basic strategy is to take messages from a finite field,
work has shown that linear codes [25], [26] and linear codesap them onto lattice points, and transmit these across the
with random coefficients [27] are sufficient for multicagtin channel. Each relay observes a linear combination of these
There has recently been a great deal of interest in expldattice points and attempts to decode an integer combimatio
ing the physical layer of the wireless medium for networkf them. This equation of lattice points is finally mappedkbac

B. Summary of Paper Results
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to a linear equation over a finite field. Our main theorems aoé h. Finally, let0 denote the zero vectof, denote the unit
summarized below: vector with 1 in the /" entry and O elsewhere, arid’*M

« Theorems 1 and 2 give our achievable rates for sendiflgnote the identity matrix of siz&/.
equations over a finite field from transmitters to relays Definition 1 (Messages)Each transmitter (indexed bfy=
over real-valued channel models. The strategy relids2;...,L) has a length:, message vectothat is drawn
on a nested lattice coding strategy which is developéd@dependently and uniformly over a prime-size finite field,
in Theorem 5. The corresponding results for complesve € Fj¢. Without loss of generality, we assume that the
valued channel models are stated in Theorems 3, 4, dfgnsmitters are indexed by increasing message lengthe Sin
6. we are interested in functions of these message vectors, we
« Theorems 7 through 11 give sufficient conditions on thgero-pad them to a common length?® max; k.
equation coefficients so that a destination can recover one

or more of the original messages. zll
o Theorems 12 and 13 generalize the compute-and-forward y1 N
scheme to include successive cancellation and superposi- X1 ® Di=tu
tion coding. Wi & Zo
e Theorem 14 is a simple upper bound on the rates for 1 Yo R
sending equations. wa—] &, X2 q Dy — 112
We extend our framework to the slow fading setting in
Section IX. We then compare the performance of compute-
and-forward to that of classical relaying strategies via a w c XL ZM
distributed MIMO case study in Section X. o Ol yM Dt iy
Il. PROBLEM STATEMENT Fig. 1. L transmitters reliably communicate linear functions, =

Our relaying strategy is applicable to any configuratiofP=1 dmewe to M relays over a real-valued AWGN network.
of sources, relays, and destinations that are linked throug
linear* channels with additive white Gaussfamise (AWGN).  Definition 2 (Encoders)Each transmitter is equipped with
We will refer to such configurations as AWGN networks. T@nencoder & : Ff — R”, that maps lengtti-messages over
simplify the description of the scheme, we will first focus othe finite field to lengths real-valued codewords, = &(w).
how to deliver equations to a single set of relays. We wilntheEach codeword is subject to the uspalver constraint
show how a destination, given sufficiently many equations, xe||? < nP . 1
can recover the intended messages. These two components are -
sufficient to completely describe an achievable rate refpon  Remark 1:Note that asymmetric power constraints can be
any AWGN network. We will begin with definitions for real-incorporated by scaling the channel coefficients apprtgyia
valued channel models and then modify these to fit complex-Definition 3 (Message Rate)fhe message ratdéz, of each

valued channel models. transmitter is the length of its message (measured in bits)
normalized by the number of channel uses,
A. Real-Valued Channels ke
o Ry=—logp . (2)
Let R denote the reals anH, denote the finite field of n

sizep wherep is always assumed to be prime. Letdenote Note that with our choice of indexing, the rates are in
addition over the reals an@ addition over the finite field. decreasing orde?; > Ry > --- > Ry.

Furthermore, lef " denote summation over the reals @l o ]

denote summation over the finite field. It will be useful to map Definition 4 (Channel Model)Each relay (indexed by
between the prime-sized finite fiek}, and the corresponding”” = 1:2;- -, M) observes a noisy linear combination of the
subset of the integerg0,1,2,...,p — 1}. We will use the transmitted signals through tfehanne)

functiong(-) to denote this map. This is essentially an identity L
map except for the change of alphabety Iér its inverseg—! Ym = Z homeXe + Zp, 3)
are applied to a vector we assume they operate element-wise. =1

We assume that thieg operation is with respect to bage  \yhere p,,, € R are the channel coefficients amdis i.i.d.

We will use boldface lowercase letters to denote columyyssian noisez ~ N'(0,1""). Let hy, = (A1 -+ - Aonp] T
vectors and boldface uppercase letters to denote matFoes. jenote the vector of channel coefficients to relayand let
exampleh € RY andH € RM*L, Let|h| 2 \/>2%, |h[i]2 H = {hn} denote the entire channel matrix. Note that by
denote the/2-norm of h. Also, let h” denote the transposethis convention then™ row of H is hY,.

Remark 2:For our initial analysis, we will assume that the

'Erez and Zamir have recently investigated applying thisnéaork to  channel coefficients are fixed for all time. However, these
non-linear scenarios [61]. results can easily be extended to the slow fading case under

2|n fact, our strategy is applicable to a much broader classiditive noise . . . .
statistics since we employ a minimum-distance decoder. an outage formulation which we develop in Section IX.
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Remark 3:Our coding scheme only requires that each Although our scheme can be employed in any AWGN
relay knows the channel coefficients from each transmitter network, we will omit formal definitions for such networks
itself. Specifically, relaym only needs to knowh,,. Each and simply give recoverability conditions for equations of
transmitter only needs to know the desired message rate, massages collected by a destination. This may occur via a

the realization of the channel. single layer of relays as described above or through maltipl
Definition 5 (Desired Equations)The goal of each relay is layers.
to reliably recover dinear combinationof the messages Definition 9 (Recovery)We say that message, < F’;e
I can berecoveredat rate R, from the equationai,, with
u, = @qsze . (4) coefficient vectorsay, ..., ay € Z* if for any e > 0 andn
1 large enough, there exists a decoder {F;}* — Fk¢ such
that

where ¢,,,¢ are coefficients taking values if,. Each relay
is equipped with adecoder D,, : R* — IF’; that maps the .
observed channel outpyt,, to an estimatéi,, = D, (y.m) W=D (uy, ..., un) (8)
of the equationu,,,. Pr (W, # wy) < €. 9)
Although our desired equations are evaluated over the finite
field I, the channel operates over the reRlsOur coding
scheme will allow us to efficiently exploit the channel folB. Complex-Valued Channels
reliable computation if the desired equation coefficients a ] N
close to the channel coefficients in an appropriate sense. ThLet C denote the complex field anld” the Hermitian (or
definition below provides an embedding from the finite fiel§onjugate) transpose of a complex vector CL- We also
to the reals that will be useful in quantifying this closenes definej = V=1 We are primarily interested in narrowband
Definition 6 (Coefficient Vector)The equation with coeffi- Wireless channel models so we will specify our encoding
cient vectora, = [ami ams - amL]T c 7L is the linear and decodlng schemes for complex baseband. Specifically,
combination of the transmitted messages with coefficients €ach transmitter sends a lengtheomplex vectorx, € C*,
given by which must obey the power constra|t||_k_||2 < nP. Each
relay observes a noisy linear superposition of the codesyord
Gme =g~ " ([am¢] mod p) . ) ym =, hmexe + 2m, Whereh,,, € C are complex-valued
channel coefficients ana,, is i.i.d. circularly symmetric
complex Gaussian noise,, ~ CN (0, TM>),
One simple possibility is to directly employ the framework
developed above using the real-valued representatiorofar ¢
plex vectors,

Recall thatg~* maps elements 0f0,1,2,...,p — 1} to the
corresponding element if,.

Definition 7 (Probability of Error): We say that the equa-
tions with coefficient vectorsy, as,...,ay € ZY are de-
coded withaverage probability of errof if

M L
Pr < L_Jl{ﬁm # um}> <e€. (6) Re(ym)= Z (Re(hme)Re(x¢) — Im(hpme)lm(xg)) + Re(z,)

=1

We would like to design a coding scheme that allows the
transmitters to be oblivious of the channel coefficients aﬂﬂ‘(ym)
enables the relays to use their channel state information to
select which equation to decode. Intuitively, equation®seh
coefficient vectors closely approximate the channel caefits
will be available at the highest rates.

M=

(Im(hme)Re(xe) + Re(hme)Ilm(xe)) + Im(z,)

~
Il

1

From here, we can treat a complex-valued network with
transmitters andM relays as a real-valued network with
- ; 2L transmitters an®2M relays. However, there is a more
Definition 8 (Computation Rate)Ve say that theompu- gegant solution that takes advantage of the special ateict

tation rate regionR(hy,,a) is achievable if for any > ¢ complex symbols. Below, we modify definitions to fit the
0 and n large enough, there exist encoders and decode(ggmp|ex case.

&1,...,€L, D1, ..., Dy, such that all relays can recover their
desired equations with average probability of errao long
as the underlying message raies, . . ., R;, satisfy

Definition 10 (Complex Messagedyach transmitter has
two length%, vectors that are drawn independently and uni-
formly over a prime-size finite fieldw;,w{ € Fk:. The
Ry < min R(hp,a,) . (7) superscript denotes whether the vector is intended for the
miameF real part or the imaginary part of the channel. Togetherehes
In other words, a relay can decode an equation if tiwectors are thenessagef transmitter(, w, = (wlt, wl). As
involved messages (i.e. those with non-zero coefficierasgh before, we assume that the transmitters are indexed byaisicre
message rates less than the computation rate between ifigemessage length and zero-pad them to a common length
channel and equation coefficient vectors. In fact, a reldy wk = max, k, prior to encoding. Thenessage ratof each
often be able to decode more than one equation and will hav@nsmitter is double the prior definitioR, = (2k,/n)log p.
to decide which to forward into the network based on the Definition 11 (Desired Complex Equationsjhe goal of
requirements of the destinations. each relay is to reliably recoverlmear combinationof the
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messages, which results in a computation rate region of
L 1
1 P (hla,,)?
= B owh I Yw! = Zlogt 2__ VomTm)
u,, = g_? ((szwe @ (—qme)wz) (10) R, am) = 2 log <(||am| 1+ P|lhy, |2
s L r R R I The proof is nearly identical to that of Theorem 4.
u,, = @ (qmewe @qmewe) 3 (11) The computation rate expression for the complex-valued
=1 case is simply twice the expression for the real-valued.case
where they,,¢ are coefficients taking values i), and(—g;¢) Theorem 3:For complex-valued AWGN networks with
denotes the additive inverse gf,,. The equation with coef- channel coefficient vectods,, € R” and equation coefficient
ficient vectora,, = [am1 Gmz2 - amL]T € {Z + jZ}* are vectorsa,, € {Z + jZ}, the following computation rate
the linear combinations with coefficients given by region is achievable:
Gy = 9~ " ([Re(ame)] mod p) (12) R(hy,,a,,) = max log™ ( 2 " 2> .
q7In€ = g_l([lm(amé)] mod p) (13) ameC |am| + P”amhm - aWLH
A detailed proof is given in Section V-B.
Ztl Theorem 4:The computation rate given in Theorem 3 is
y . L ; .
y 1 (ﬁ{gyﬁ{) ]En_lquely maximized by choosing,,, to be the MMSE coef
R T icient
(wi', wi) 2 Ph
mam

which results in a computation rate region of

y2 R . Oyuse = — 51115 (15)
whaEP g [T e = TP b P

: ZMN : P |h* a |2 -1
R I _). XL — oot 2 _ mam
(WL7WL) i Ym -DM ( R I R(hmaam) 1Og <(||am| 1+P|hml|2> (16)

_ _ _ _ _ _ Proof: Let f(a.,) denote the denominator of the compu-
Fig. 2. L transmitters reliably communicate linear functiong? = tation rate in Theorem 3. Since it is quadraticdnl, it can

L R R (] I I _ mL I R R ol . L. L S
Dy gqméwf & ( qml)wl> andu,,, = @y (quwé ®%.We)  be uniquely minimized by setting its first derivative to zero
to M relays over a complex-valued AWGN network.

o ) ) ) flam) = ) am + Plambhy — an) (b, — an)
Note that the coefficient choices for the real and imaginary

part are coupled, which means that each relay only needs to T = 20, + P(2a,h) by, — 20 a,,) =0 a7)
decide o2 coefficients instead of théL needed for a real- m 5 .
valued system witl2L transmitters. The definitions for the an(2+ 2P|y %) = 2P hyan (18)

probability of error, the computation rate region, and k&g \We solve this to gety,, .. and plug back intof ().
are identical to Definitions 7, 8, and 9 except with and

{Z + jZ} taking the place oR andZ, respectively. flopee) = Phy, an|” S+ PthmH2|h:"am2|2
(1+ PII?mH?) ) (1+ Pllhy,?)
_ _III. M AIN RESULTS _ P |hmam|2 + Pllan? (19)
Our main result is that relays can often recover an equation 1+ P|hy,||
of messages at a higher rate than any individual message (or P?h} a,|? 9
subset of messages). The rates are highest when the equation T 14 P|hy|? + Pllam| (20)

coefficients closely approximate the channel coefficieBés.

low, we give a formal statement of this result for real-valueSubstituting this intdog™ (f(af:MSE)) yields the desired com-

channels. Letog™ () £ max (log(x),0). putation rate. |
Theorem 1:For real-valued AWGN networks with channel The main interpretation of Theorems 1 and 3 is that all

coefficient vectordr,, € R” and equation coefficient vectorsrelays can simultaneously decode equations with coefficien

a,, € Z", the following computation rate region is achievablezectorsa,,, so long as the involved messages’ rates are within

1 P the computation rate region
R(hy,,a;,) = max — log™
am€R 2 a2, + Pllanh,, — an||? Ry < minOR(hm, an) . (21)
Ame
A detailed proof is given in Section V-A. In other words, exactly which equation to decode is left up

Theorem 2:The computation rate given in Theorem 1 ido the relays. The scalar parametey, is used to move the
uniguely maximized by choosing,, to be the MMSE coef- channel coefficients closer to the desired integer coefiisie
ficient For instance, ifv,, = 1, then the effective signal-to-noise ratio

PhZla,, is
=17 P (14) SNR = P
1+ Pllhy, — a2’

Xymse 14+ P||hm||2
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meaning that the non-integer part of the channel coeffisient Remark 5:The setup in Example 2 is exactly that of &fr
acts as additional noise. More generally, the scaled chianoser Gaussian interference channel. Higher rates arebpessi
output .y, Ym = Y mhmexe + amz, can be equivalently by incorporating techniques such as the superpositionkiigu

written as a channel outp$it, = > hpexe+2z,, Whereh,,, = and private messages [62], [63] and interference alignment
Qmhme and z,, is i.i.d. according toCN (0, |a,,|?). In this [40], [41]. Note that these can be implemented in concert
case, the effective signal-to-noise ratio is with compute-and-forward. For instance, in Section Vile w
P describe a superposition compute-and-forward strategy.
SNR = . In general, the choice of the coefficient vectgy, at each

2 2
_ _ [ml* + Pllembn _ém” ~relay will depend both on the channel coefficients and the
Since there is a rate penalty both for noise and for non-ertegnessage demands at the destinations. Relays should make use
channel coefficients, then.,,, should be used to optimally of their available channel state information (CS) to detiee
balance between the two as in Theorems 2 and 4. This is qyf{@ most valuable equation to forward. One simple greedy

similar to the role of the MMSE scaling coefficient used bypproach is to choose coefficient vectors with the highest
Erez and Zamir to achieve the capacity of the point-to-poighmputation rate

AWGN channel in [15].
Example 1:Let the channel matrix take values on the ap = argmax R(hy,,a) . (26)
complex integersH € {Z + jZ}>*E, and assume that each 8

relay wants a linear equation with a coefficient vector thdthis is a compelling strategy for scenarios where only local
corresponds exactly to the channel coefficiemts, = h,,. CSl is available. It resembles random linear network coding

Using Theorem 4, the relays can decode so long as [27] except here the randomness stems entirely from the
W -1 channel coefficients. In the next lemma, we demonstrate that
Ry < min logt (||hm||2 __ Plhy| 2) this maximization does not require a search over all integer
P 070 1+ Pllhy,|| vectors.
. 1+ P|h,|? Lemma 1:For a given channel vectds, the computation
= min lo i
mapn 108 (||hm||2+P|hm|4_P”hm|4) rate R(h,,,a,,) from Theorems 2 and 4 are zero if the

coefficient vector satisfies:
= min log"t —i—P) 22
i log (||hm||2 (€9 Jaml? > 1+ [y 2P (27)

Remark 4:One interesting special case of Example 1 is  proof: Note that |h* am|> < [[hw|?[am/? by the
. . m —
computing the modulo sum of codeworsis, © w» Over a cauchy-Schwarz inequality. Using this, we can upper bound
two-user Gaussian multiple-access channet x, +x; +z.  the computation rate:
To date, the best known achievable computation rate for this

scenario idog™* (3 + P). Several papers (including our own) log+ o P |hyan|? - 28

have studied this special case and it is an open problem as to i) 2ol 1+ P|h,,|? (28)

whether the best known outer boulg (1 + P) is achievable 1+ Py,

[32], [34], [35]. Clearly, one can do better in the low SNR = log™ < 5 ST - 2>

regime using standard multiple-access codes to recovérall [2ml? + Pllhm[*llan | — P |hyam)|

messages then compute the sum to Jitg (1 + 2P). < log* (1 + P|hm||2) _ (29)
Example 2: Assume there ar&/ transmitters and/ relays. - [l |2

Relay m wants to recover the message from transmitter The result follows immediately. -

This corresponds to setting the desired coefficient vectlet |, Figure 3, we have plotted how the computation rate

a unit vectora,, = d,. Substituting this choice into Theoremy oy Thegrem 2 varies as the channel coefficients change
4, we get that the messages can be decoded if their ratey safi§; several possible coefficients vectors. In this examipie,
Pl |? -1 message rates are symmetfi¢ = R, = R and the power is
R, <log® (1 - m) (23) 10dB. The channel vectoh = [h 1] is parametrized by,
" which is varied betweefi and 2. The coefficient vectors are
. (1 +P Y, |hml|2>1 a=[10]T, [11)7, and[2 1]T. Each of these vectors attain
= log 1 3 (24) its maximum computation rate when the channel vector is an
+ Phy,||
exact match.
Pl |? Remark 6:As the power increases, more coefficient vec-
=log |1+ T3PS, il ) (25)  tors should be used to approximate the channel more finely.
etm [Tme However, in the high SNR limit, it has recently been shown by
This is exactly the rate achievable with standard multipl&iesen and Whiting that the degrees-of-freedom (DoF) of our
access techniques if the relays ignore all other messageséeaseme becomes discontinuous [64]. Specifically, at ration
noise. In Section VII, we will use successive cancellatiochannel vectors, our scheme attains the maximum DoF but,
of lattice equations to show that if a relay wants all ot irrational vectors, the DoF is upper bounded by a constant
the messages, any point in the Gaussian multiple-access est the number of users increases. Under the assumption that
region is achievable with compute-and-forward. the transmitters know the channel realization, they caamiratt
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e A. Lattice Definitions

s . Definition 12 (Lattice): An n-dimensionallattice, A, is a
Yo ,+ | setof points inR™ such that ifs, t € A, thens+t € A, and
14l “ o . x ifse A then—s € A. A lattice can always be written in
, x & terms of a lattice generator matr& € R™*™:
1.2f ., x s ,
g * xx"x S/ A={s=Bc:ceZ"}. (31)
S 1 ANV AE Pt ]
% A Re Definition 13 (Nested Lattices)A lattice A is said to be
g‘”” AR /' ] nestedin a lattice A; if A C A;. We will sometimes refer
=l y s S | to A as the coarse lattice antl; as the fine lattice. More
% “‘\\ i b generally, a sequence of latticds A,..., Ay is nested if
04l e T a=[1o ACA C---CAf
‘. S =1’ = . - ’ . . . .
02l K . Z_E ﬂT Definition 14 (Quantizer):A lattice quantizeris a map,
'/' x  Multiple-Access QA_ : R" — _A, that_sends a point, to the nearest lattice
0 0z 04 06 0o 1 12 14 16 1is 2 point in Euclidean distance:
Channel coefficient h . \ 32
Qa(s) = argmin|ls —Al| . (32)
Fig. 3. Recovering equations with coefficient vectors = it ; PR ;
[1 07,1 1J7,[2 1]T over a multiple-access channel with channel vector Definition 15 (Voronoi Region)The fundamental Voronoi

h = [h 1] whereh varies betweer and2. The message rates are symmetridegion V, of a lattice, is the set of all points iR" that are
Ri = Ry = R and the power is” = 10dB. For comparison, we have also closest to the zero vectol = {s : QA (s) = 0}. Let Vol(V)
plotted the symmetric multiple-access capacity. denote the volume of

Definition 16 (Modulus):Let [s] mod A denote the quanti-
the maximum DoF (up to a set of measure zero) by couplifgtion error ofs € R™ with respect to the lattic,
compute-and-forward with the interference alignment suhe [s] mod A = s — Qa(s) . (33)

of Motahariet al. for fixed channels [65]. _ o
Remark 7:Note that each relay is free to decode more thdrPr all s,t € R™ andA C A4, themod A operation satisfies:

one qua_tion, so long as all th(_a appropriate cor_nputati@s rat s+ ] mod A = “S] mod A + t} mod A (34)
are satisfied. In some cases, it may be beneficial to recoveg@

a desired equation by first decoding equations of subsets of<: (s)] mod A = [Qa, ([s] mod A)] mod A (35)
messages and then combining them. [as] mod A = [a[s] mod A] mod A Va € Z (36)

[
The following example shows that it is useful to allow for B[s] mod A = [Bs] mod SA VB eR (37)
a different rate at each transmitter. _ . .
Example 3:Consider a complex-valued AWGN network Definition 17 (Nested Lattice Codesk  nested lattice
with L = 4 transmitters andV/ = 2 relays. The channel code £ is the set of all points of a fine lattica, that are
vectorsareh; =[4 —4 1 —1]T andhy =[1 1 2 2|T. The within the fundamental Voronoi regiolf of a coarse lattice

desired coefficient vectors asg = h; anda; = [0 0 1 1]7. A,

These equations can be reliably recovered so long as the L=ANV={t:t=Amod A,A€A}. (38)

message rates satisfy:
The rate of a nested lattice code is

1
log™ | — + P> (=1,2 1 1. Vol(V)
34 — ==
Re < oot (L, 4PN, (30) r=loslll = Dles oy - (39)
— 4_ _— = y . . .
% 271+ 2P> Let B(r) denote am-dimensional ball of radius,
IV. NESTEDLATTICE CODES B(r) 2 {s:|s]| <r, s€R"} (40)

In order to allow relays to decode integer combinations, et VolB(r)) denote its volume
of cqqewords, we need codebook_s with a linear structure.pgfinition 18 (Covering Radius)The covering radiusof
Specifically, we will use nested lattice codes that have boéh lattice A is the smallest real number such that
good statistical and good algebraic properties. Erez amdiZapn — 5 B(r.,) cov
cov/*

developed a class of nested lattice codes that can approachefinition 19 (Effective Radius)The effective radiusof a
the capacity of point-to-point AWGN channels in [15]. TheSgyyice with Voronoi regionV is the real number.,,.. that
codes operate under a modulo arithmetic that is well-stided satisfiesVol(B(r...)) = Vol (V)

EFFEC. "

mapping operations over a finite field to the complex field.  pafinition 20 (Moments)The second momentf a lattice

First, we will provide some necessary definitions from [15} g jefined as the second moment per dimension of a uniform
on nested lattice codes. Note that all of these definitiors Aistribution over the fundamental Voronoi regioh

given overR"™. For complex-valued channels, our scheme will

use the same lattice code over the real and imaginary parts of o2 _ b || x||2dx (41)
i it with di A7 nVol(V) ‘

the channel input (albeit with different messages). nvo

EFFEC



IEEE TRANS INFO THEORY, TO APPEAR 8

'050%05 B. Lattice Constructions

o‘ Our nested lattice codes are a slight variant of those used
by Erez and Zamir to approach the capacity of a point-to-
point AWGN channel [15]. As in their considerations, we will
have a coarse lattice that is good for covering, quantinatio
and AWGN and a fine lattice that is good for AWGN. We
generalize this construction to include multiple nestec fin
lattices all of which are good for AWGN. This will allow
each transmitter to operate at a different rate.

Lemma 2 (Erez-Litsyn-Zamir)There exists a sequence of
latticesA("™) that is simultaneously good for covering, quanti-
Fig. 4. Part of a nested lattick C A; C R2. Black points are elements of zation, and AWGN.

the fine latticeA; and gray circles are elements of the coarse laticdhe .. . . . .
Voronoi regions for the fine and coarse lattice are drawn aclbland gray Thisis a COfo"?'ry of their main result which develops tzt .
respectively. A nested lattice code is the set of all findcatpoints within that are good in all the above senses as well as for packing
the Voronoi region of the coarse lattice centered on theirorig [69, Theorem 5]. Note that these lattices are built using

Construction A which is described below.
We will use a coarse lattica of dimensionn from Lemma
The normalized second momeat a lattice is given by 2 scaled such that its second moment is equalPtoLet
B € R™*™ denote the generator matrix of this lattice. Our
fine lattices are defined using the following procedure (the
first three steps of which are often referred to as Constracti
A [69], [70]):
The following thrge definitions are the basis for. proving 1) Draw a matrixG, € F"<k with every element
AWGN channel coding theorems using nested lattice codes. h iid di Ph it distributi
Let A(™ denote a sequence of lattices indexed by their chosen 1.1.d. according to the unirorm Istribution over
) . {0,1,2,...,p— 1}. Recall thatp is prime.
dimension. . )
L . . ) Define the codebook;, as follows:
Definition 21 (Covering Goodnessi sequence of lattices
A c R” is good for coveringf

o3

(VoI (V)27 42)

G(A) =

Co={c=Grw:weF"}. (47)
)
i RO L. (43) Al operations in this step are ovét,.
FrEe 3) Form the lattice ;, by projecting the codebook into the
Such lattices were shown to exist by Rogers [66]. reals byg(-), scaling down by a factor gf, and placing
Definition 22 (Quantization Goodnessk sequence of lat- a copy at every integer vector. This tiles the codebook
tices A C R” is good for mean-squared error (MSE) overR",
guantizationif
. Ap=p~lg(Cr) + 2" . (48)
lim G(AM™) = —— . (44)
n—r00 2me

4) RotateA;, by the generator matrix of the coarse nested
Zamir, Feder, and Poltyrev showed that sequences of such lattice to get the fine lattice for transmittér,
lattices exist in [67].

Definition 23 (AWGN Goodnesslet z be a lengths i.i.d. Ar =BA; . (49)
Gaussian vectorz ~ N(0,0%I"*™). The volume-to-noise

ratio of a lattice is given by 5) Repeat steps 1) - 4) for each transmittér =

(Vol(V))2/n 1,2,...,L — 1 by replacing G, with G, which is
(A, €) = —— (45) defined to be the first, columns ofGy .
Oz
Recall thatk; > --- > kr. Any pair of fine lattices
whereo?, is chosen such th@r{z ¢ V} = €. A sequence of Ay, Ay, 1 < {1 < 3 < L are nested since all elements of
lattices A(™) is good for AWGNif Cq, can be found fronG,, by multiplying by allw € F™*ke:

with zeros in the last; — ¢; elements. Also observe that
lim_ w(A™ €) =2re Vee (0,1) (46) A = BZ" is nested within each fine lattice by construc-
tion. Therefore, the lattices are nested in the desiredrorde
and, for fixed volume-to-noise ratio greater thare, Pr{z ¢ A C AL C--- C Ay
V(™1 decays exponentially im. In [68], Poltyrev demon-  We now enforce that all the underlying generator matrices
strated the existence of such lattices. G, are full rank. By the union bound, we get that:
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Lemma 4:Any lattice A that results from Construction A

L L has a full-rank generator matriz.
Pr (U {rank(Gy) < k€}> < Z Z Pr{G,w = 0} Proof: Note thatZ"” c A so thatA contains all of the
=1 =1 werke unit vectors by default. Thu®® spansR™ and is full rank. m
w#0

Since our nested lattice codes are built using nested finite
I ke 1 50y field codes, itis possible to map messages to lattice pomtts a
=p (p ) (50) . S

back while preserving linearity. The next two lemmas make

this notion precise.
Thus, by choosing and k, ..., ky to grow appropriately ! 'on preci

with n, all matricesG1, . .., G, are full rank with probability ~ Leémma 5:Let w, be a message if,;* that is zero-padded
that goes tal with n. Note that ifG, has full rank, then the 0 lengthk. The function

number of fine lattice points in the fundamental Voronoi oegi

V of the coarse lattice is given by, N V| = p*¢ so that the

_ —1
rate of the/" nested lattice cod€, = A, NV is ¢(we) = [Lp~'g(Gw,)] mod A (53)
1 k
T = E10g|AgﬁV|: flogp:Rg (51)

is a one-to-one map between the set of such messages and the
as desired. (In the complex-valued case, werset R,/2.) In elements of the nested lattice code= A, N V.
Appendix B, we show that the fine lattices are AWNGN good  proof: Since the lastt — k, elements ofw, are zero,

so long asi — 0 asn grows. There are many choices of itiplying the message b is the same as multiplying the
andky, ...,k that will ensure that the fine lattices have theg; 1., ‘elements byG,. SinceGy is assumed to be full rank,
desired properties. One possibility is to fegrow like nlogn takesw, to a unique point in the finite field codebodk.

and setk, = L”Rf(logl_’)_lJ- . . The functiong simply maps finite field elements to integers
Remark 8:We require that the fine lattices are generateoqndp—1 is a rescaling s@p—'g(Gw,) mapswy to a unique

from full-rank submatrices of the same finite field codebo%int in[0,1)". Lemma 4 shows tha is full rank so we just
so that it is possible to compute linear equations over ng&ssaeed show that thewod A operation is a bijection between
with different rates. The full rank condition on the coarae | B[0,1)" and V. Assume, for the sake of a contradiction

tice allows us to move between lattice equations and equatiay,. y € B[0,1)", 2 # y such thatlz] mod A = [y] mod A.

of finite field messages. This implies that: — Qx (z) = y — Q4 (y). Now multiply both

In [69], [71], some useful properties of nested latticegijeg byB~! and then take the modulus with respectzto,
derived from Construction A are established. These apply to

our construction as well and we repeat them below.
Lemma 3:Let A,(i) denote thei” point in the¢" nested  [B~1(; — ) (z))] mod Z" =

lattice codel, = A,NV fori=0,1,2,...,p" — 1 from the

random lattice construction above. We have that:

« Ag(i) is uniformly distributed ovep='A N V.

B~ (y — Qa(y))] mod Z"
[B~'2] mod Z™ = [B~'y] mod Z"
Y

T

o For anyi; # ia, [Ae(i1) — Ae(i2)] mod A is uniformly

distributed over{p~*A} N V. where the second line follows since for ahye A, B7'\ €
Thus, each fine lattice can be interpreted as a diluted versi"- A contradiction has been reached which showsithat A
of a scaled down coarse lattige 1 A. is a bijection. Combining this with the fact that the finiteldie

and the nested lattice code have the same number of elements,
[Fe| = [A;NV| = p**, shows thaty, is a one-to-one mapm

¢emma 6:Let u = @, qw, be the desired equation

Our scheme relies on mapping messages from a finite fi? some coefficients € F, and messagesw, ¢
to codewords from a nested lattice code. The relay will first, zero-padded to Iglngtﬁc Agsume the messaées are

decode an integer combination of lattice codewords and thl%fépped to nested lattice codewords, — ¢(w), and let

COBV?.rt.:.h'S 'Znio Elnttequaétlon t(')f th}i Pg_ssages. fon i v =[> asty] mod A denote the lattice equation for some
efinition 24 (Lattice Equation)A lattice equationv is an a¢ € Z such thatgy = g='(Jas] mod p). Then the desired

integer cor_nbmatlon of lattice codewords < £, modulo the equation can be obtained using= ¢~ (v) where
coarse lattice,

C. Integer Combinations of Lattice Points

L
V= [Z azte] mod A (52) ¢~ (v)=(G"G)'GTg ! (p[B~'v] mod Z").  (54)
(=1
for some coefficienta, € Z.

Note that the lattice equation takes values on the finestédatt Proof: Recall that sincéB is the generator matrix af,

in the.SUmmation. That is, iiil, e, Q1 = 0 then the lattice B-1A = 7Z". Also note that SinC@Vg is Zero-padded to |ength
equationv only takes values o, = A, N V. k, then multiplying byG has the same effect as multiplying
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the original message bg,. We have that is simply the channel noise. The other is due to the fact
1 n that the channel coefficients that are often not exactly leigua
[B™"v] mod Z (55) " the desired equation coefficients. As a result, part of thiseno
. L . L . stems from the codewords themselves (sometimes referred to
B Zaftf —B7 @ Zaltf mod Z (56)  as “self-noise”). To overcome this issue, the transmitteitls
=1 =1 dither their lattice points using common randomness that is
also known to the relays. This dithering makes the transuhitt
codewords independent from the underlying lattice points.
I Since our scheme works with respect to expectation oveethes
(b) lza < “14(Gwy) dither vectors, then it can be shown that (at least) one set of
e\ D glawy

—

a

=

L
B! Zam] mod Z" (57)
=1

good fixed dither vectors exists (which means that no common

{=1

randomness is actually necessary). We defer the proof of thi
— B'Qa (Bplg(gwn))] mod Z" (58) factto Appendix C. The following lemma from [15] captures
a key property of dithered nested lattice codes.
© L Lemma 7 (Erez-Zamir)Let t be a random vector with an
= lz azplg(Gwz)] mod Z" (59) arbitrary distribution ovefR™. If d is independent ot and
=1 uniformly distributed overV, then [t — d] mod A is also

where (a) and (c) follow sinc&,(-) is an element of\ so independent ot and uniformly distributed ovey.

B~1Q4(-) is an element ofz™ and (b) follows using (53). We now set out to prove that the relays can reliably recover
Multiplying by p and applying (37) yields integer combinations of transmitted lattice points.

Theorem 5:For anye > 0 and n large enough, there

L . . .
p[Bflv] mod 7 — [Z agg(Gwz)] mod pZ" (60) exist nested lattice codes C A;, C --- C A; with rates
=1

r1,...,rr, such that for all channel vectals, ..., hy; € RY
L and coefficient vectors,, . ..,ay € Z”, relaym can decode
@ lg (@ ngWgﬂ mod pZ"  (61) the lattice equation
=1

L
L Vi = amete| mod A (64)
=9 <§_91 ngwe) (62) Lz_; ‘ E]

of transmitted lattice points, € £, with average probability

where (d) follows sincg maps betweeq0, 1,...,p—1} and of error e so long as

F, andg, = g~ '([a] mod p).

Applying g—! to move back to the finite field we get - o1 log™ P
L "t mg}gl?go 2 Og agn + P”amhm - amH2
g~ (PIB™'v] mod 2") = Gg?%Wz 63)  for some choice ofv,...,an €R.

Proof: Each encoder is given a dither vectdy which is
Finally, note that(GTG)_1 GT is the left-inverse ofs which generated independently according to a uniform distriouti

implies thaty ! (v) = u. m over V. All dither vectors are made available to each relay.
Encoder? dithers its lattice point, takesod A, and transmits
V. COMPUTE-AND-FORWARD the result:

In this section, we provide a detailed description of our x; = [ty — d¢] mod A . (65)
coding scheme. See Figure 5 for a block diagram. The
following four steps are a basic outline: By Lemma 7,x, is uniform overV so E[|x¢||?] = nP,

1) Each transmitter maps its message from the finite fielghere the expectation is taken over the dithers. In Appendix

onto an element of a nested lattice code. C, we argue that there exist fixed dithers that meet the power

2) The lattice codewords are transmitted over the channe@nstraint set forth in (1).
3) Each relay decodes a linear equation of the lattice The channel output at relay. is

codewords. I
4) These lattice equations are mapped back to the finite _ h 66
field to get the desired linear combination of messages. ym ; meXe T+ Zm (66)

We begin with the proof for the real-valued case and then ) )
move on to the complex-valued case. Recall that the transmitters are ordered by decreasingapess

rates. Letlyax (m) = max{¢: an¢ # 0} denote the highest
index value of the non-zero coefficients ar,. Also, letQ,,
A. Real-Valued Channel Models denote the lattice quantizer for the corresponding finéckatt
When a relay attempts to decode an integer combination®f,,, (.,)- Note that this is the highest rate message in the
the lattice points, it must overcome two sources of noisee Orquation and thus the rate of the equation itself. Each relay
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—d; Z ar Y aiedy

Wi1— ¢ Lé—) mod A X1 —>l M é—{j}L @1 —={ mod A Vi [ i B
—d» 79 az Y azedy

Wo— ¢ L(}D—» mod A X2 u —{%ﬁ{i)—{i)i @2 —>{ mod A vz ¢! >
—dy, : zy an oy anede

WL — ¢ L(}D—» mod A 2L —>@—>l yu (:l)—>6-)—>l il Qr | mod A iy = 1§V

Fig. 5. System diagram of the nested lattice encoding anddileg operations employed as part of the compute-and-fonframework (for real-valued
channel models). Each message is mapped to a lattice codewortd, dithered, and transmitted as. Each relay observeg,, which it scales byo,, .
It then removes the dithers, quantizes the result onto tleeldittice using@.,, and maps it onto the fundamental Voronoi region of the éattice using
mod A. Finally, the relay maps its estimats,, of the lattice equationv,, = [ am¢te] mod A back to the finite field using~! to get an estimatdi,,
of a linear equation of the messages, = & ¢,new, Whereg,, = g~ ' ([ame] mod p) are the finite field representations of the coefficients.

computes where eachl, is drawn independently according to a uniform
L distribution overV. See Figure 6 for a block diagram of
Sm = mYm + Zam‘v’df , (67) the equivalent channel. The probability of erBr(v,, #
= vy,) is thus equal to the probability that the equivalent
To get an estimate of the lattice equatiop,, this vector is noise leaves the Voronoi region surrounding the codeword,
quantized onta\y,,,, () modulo the coarse lattica: Pr (Zm.cq & Vi (m)) -
Vo = [Qm(sm)} mod A . (68)
Using (35), we get that Zeq1 _
tl l Vi 1 “
[Qun(sm)] mod A = [Qu([sm) mod A)] mod A . (69) Wi~ ¢ ~®—> Q1 [>{mod A Ol |
We now show thajs,,,] mod A is equivalent tov,, plus some Ziqﬂ
noise terms. Leb,,,s = o, hume — Qe wao| 6 to @] Qs [ mod A Vo o1y
[Sm] mod A (70) A
. :
= Z (Oémhmng + amgdg) + amzm‘| mod A (72) ' Zeq,M
Le=1 t v .
- wr| ¢ =& ~®— Q= mod A M el = B Y

I
] =

(amg (x¢ +ds) + Gmng) + amzm] mod A (72)
¢

I
-

Fig. 6. Equivalent channel induced by the moddldransformation. In this
“virtual” channel model, each encoder maps its messagé¢o a lattice point

Qe ([tg - dg] mod A + dg) t,. Each relay observes an integer combinafforu,,,,t, of the lattice points
corrupted by effective noise.q, . It then quantizes onto the fine lattice using

[
M=

=1 L Qm and takesmod A to get an estimat&,, of the lattice equation,, =
3~ amete]mod A. Finally, the relay maps the recovered lattice equatiomto a
+ Z Omexe + QmZy, | mod A (73) estimatei,,, of its desired linear equation of the messages = @ gmewe
=1 where g,e = g~ ([ame] mod p) are the finite field representations of the
L L coefficients.
- l; Amete + ; OmexXe + m2Zm | mod A (74) Using Lemma 8 from Appendix A, the density ®f, ,,, can
B I B be upper bounded (times a constant) by the density of an i.i.d
. ; 5
= |v, + Z 0, 1% + Oémzm‘| mod A (75) zero-mean Gaussian vectgy, whose variance_, approaches
=1 L
where the last two steps are due to (34). From Lemma 7, Negm = o2, +P2972nl (78)
the pair of random variable§v,,, v,,) has the same joint =1
distribution as the paitv,,, v,,,) defined by the following: =a?, + P|lamh, —a,|? (79)
Vin = [Qm(Vm + Zegm)] mod A (76) asn — co. We also show in Appendix B that;, Ay, ..., Ay
L B are good for AWGN. From Definition 23, this means that
Zeg,m = QmZm + Z Ormede (77)  €em = Pr(z},, & Vouux(m)) 90€S to zero exponentially in so

=1 long as the volume-to-noise ratio satisfi@S\ . (m), €m) >
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2me. If this occurs, therPr(zeq. ¢ VgMAx(m)) goes to zero for someay,...,ay € R. Finally, usingg—' from Lemma
exponentially inn as well. Note that, by the union bound, theés, each relay can produce estimates of the desired lin-
average probability of errar is upper bounded by the sum ear combination of messages,, = ¢ !(¥,,), such that

v Pr (U {@y, # unm}) < € where
€< Z PI‘(Zeq_’m ¢ V@MAX (m)) : (80) L
m=1 Um = @ dmeWy (87)
To ensure that the probability of error goes to zero for all =1
desired equatiodswe get that the volume of,,,,, (,,) Must Gme = 9 ([ame] mod p) . (88)
satisfy
(Vol (Vpypu () ) 2™ B. Complex-Valued Channel Models

2me < p(Agyu (m)> €m) = (81)

We now show how to use nested lattice codes over complex-
for all relays witha,.e # 0. If we set the volume of each valued channel models.

Voronoi region) as follows, the constraints are always met; |1€orem 6:For anye > 0 and n large enough, there
exist nested lattice codes C A; C --- C A with rates

2
Om

n/2
Ri,..., R, such that for all channel vectots;, ..., hy €
2 1, s AV, ’ s LM
Vol(Ve) > (Qﬁe i Um) (82) R% and coefficient vectoray,...,ay € {Z + jZ}*, each
; i I
Recall that the rate of a nested lattice code is relay can decode lattice equationg, v, where
1 Vol(V) L
=—1 . 83 R _ R 1
re = —log <Vo|(Vg)> (83) v l; Re(ame)ty Im(amg)tgl mod A (89)
Using (42), we can solve for the volume of the fundamental L
\Voronoi region of the coarse lattice: vl = [Z Im(ame)t¢ + Re(amz)tjf] mod A (90)
P n/2 (=1
Vol(V) = <m) (84) of transmitted lattice pointsZ,t] € A, NV with average

_ probability of errore so long as
It follows that we can achieve any rate less than

1 P
1 P re < = log™ ( (91)
in —log" | =——s- 85 2 am|? + Pllamhy, — an||?
s mig}i?io 908 (G(A)27Tecr72n) (85) _ || I I
for some choice ok, ...,an € C.

Choosed > 0. SinceA is good for quantization, fon large
enough, we have that’(A)2re < (1 + J). We also know
that o2, converges taV,, ., so forn large enough we have
02, < (1 + 0)Neg.m- Finally, we get that the rate,
nested lattice code is at least

Proof: First, we scale our nested lattice ensemble so that
the coarse latticd has second momemt/2. Each encoder is
given two dither vectorsi* andd/, which are independently
of ach  grawn according to a uniform distribution over Al dither
vectors are made available to each relay. Encédggnerates

1 P ; .
min#0§10g+ ( o |2) log(1+6) @channelinput
A, a amhm — am .
e o x¢ = [t —dff] mod A+ j[t; —df] mod A.  (92)

Thus, by choosingd small enough, we can approach the

computation rates as closely as desired. m Bylemma7, the real and imaginary partsxof are indepen-
We now put all of these ingredients together to provéent and uniform ovey so E[|[x,||*] = nP, with expectation

Theorem 1. See Figures 7 and 8 for block diagrams of tk@ken over the dithers.

encoding and decoding process. Let fuax (m) = max {{: ame # 0} and letQ,,, denote the
Proof of Theorem 1:See Figure 5 for a block diagram.lattice quantizer for\,,,,, (). Each relay computes
Choosec > 0. Encoder? maps its finite field message vector L
wy to a lattice pointt; € A, NV, using¢ from Lemma 5, s = Re(amym) + Z Re(ame)dE — Im(ame)d!  (93)
tg = (b(Wg) . (86) Zzl
Using Theorem 5, these lattice points can be transmittembacr s, = Im(a,,y.) + Z IM(ame)dE + Re(ame)dr.  (94)
the channel so that the relays can make estimatesf lattice =1
equationsv,,, with coefficient vectorsa,, & Z* such that Tq get estimates of the lattice equations, these vectors are
Pr(Up{¥m # vin}) < € for n large enough so long as quantized onta\y,,,, () Modulo the coarse latticA:
. 1 P ~R R
R —log™ VE = [Qm(sk)] mod A 95
‘ <mglnll?¢0 2 % (agn + Plloun by, _am|2) o1 [Q ( I )] o)
Vi, = [Qm(s,)] mod A. (96)

3Note that by Lemma 1 the number of available coefficient wscg, at
each relay is finite if|h,,, || and P are finite. Therefore, it can be shown via “In Appendix C, we argue that there exist fixed dithers thattrthepower
a union bound that each relay can decode more than one eguatio constraint||x||2 < nP.
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zero-mean Gaussian vectgy, whose variance?, approaches

0=
6888‘6 laml®> P, m 2 I \2
R ‘“20’ Negm = 9 +§((9mz) +(9m£) ) (106)
w [
‘ Lomert— amf? P :
O=0 = + §||amhm — ay| (107)
)o’o‘ j ®— Xy .
Qggg? l asn — oo. Note that the effectivesNR for both real and
. : . 5 on
wl _, Dither imaginary components iB/(|au, |* + P||am by, —as, ||?) since
¢ . the second moment ot is P/2. This is the same effective

SNR encountered in the proof of Theorem 5 and the rest of
Fig. 7. Block diagram of the complex-valued compute-amavéod encoder the proof follows identically from (79) onwards. ]
at transmitter?, £,. Messages from a finite field are mapped onto a nested . .
lattice code, dithered, and transmitted across the channel Proof of Thgorem 3See F|ggres 7 and 8 for block diagrams
of the encoding and decoding processes. Choose 0.
Encoder? maps its finite field message vectosd® and w/
to a lattice pointsf, t/ € A, NV, using¢ from Lemma 5,

/5520
03030 R R I I
Removd NS R tf=o(wy),  tp=o(wy) . (108)
; [Qrm ()]mod A ¢~ i, . , : :
Dithers Using Theorem 5, these lattice points can be transmit-
Jogo¥ ted across the channel so that the relays can make es-
Qgggy timates v and ¥ of lattice equationsv?® and v
Remove] = = . with coefficient vectorsa,, € {Z + jZ}* such that
= [Qm( )]mod A o 1|
Dithers ™ Pr(Un{{¥E AvEYU R £VvLY}) < € for n large

enough so long as

Fig. 8. Block diagram of the complex-valued compute-amivéod decoder P

for relay m, D,,. The channel observation is scaled and decomposed into Ry, < min 10g+

its real and imaginary components. The decoder then remiteeslithers, Ml £0 |t |2 + Pllamby, — am?

quantizes onto the appropriate fine lattice, and takes théuls over the

coarse lattice. This results in an equation of lattice cante which is then for someas, ..., anr € R. Finally, usingg—' from Lemma
mapped into an equation of messages over the finite field. 6, each relay can produce estimates of the desired linear com

binations of message§? = ¢~ 1(v2) andil, = ¢~ 1(¥]),
suchPr (U, {{aff #uf}u{al, #ul }}) < e where
Note that by (35) we have

L
uy =P (amewt’ © (—amo)wi (109)
@ (s5)] mod A = [Q@un([sf2] mod A)] mod A (97) z@( ewof & ani)
L
u, =P (qéve @ qrﬁewg) (110)
Define 8%, = Re(amime — ame) and L, = Im (o hone — =t
ame). We now show thafs] mod A is equivalent tov? plus g = 9_1([Re(amé)] mod P) (111)
some noise terms in (98)-(101). Using similar manipulatjon I 1
it can be shown thafs’ | mod A is equivalent tov’, plus Ime =9 ([Im(amf)] mod p) : (112)

some noise terms as well. From Lemma 7, the pairs of
random variable$v® vZ) and(vl ¢! ) have the same joint C. Multi-Stage Networks

distributions as the paifs/%, ¥) and(v/,, v;,,), respectively,  The framework developed in this section can easily be

where applied to AWGN networks with more than one layer of relays.
Once the first layer has recovered its equations, it can just
VR = [Qm(vE +z£7m)} mod A (102) treat them as a set of messages for the second layer. The
vl = [Qm(V# + Zéqm)} mod A (103) second layer simply decodes_ (_equationg with coefficien.ts tha
T are close to the channel coefficients. This process repatits u
fo; = Re(amzm) + Z fomaf _ angaﬁ (104) the equz_:\tlons reach a destination. Since th_ese Iayered_cmma
' — are all linear, they can be expressed as linear equations ove

the original messages.

L
zéqym = Im(amzm) + Z ol ,dl + 0% ,d! (105)
=1 VI. RECOVERINGMESSAGES
The primary goal of compute-and-forward is to enable
where eactﬂf andflﬁ is drawn independently according to ehigher achievable rates across an AWGN network. Relays
uniform distribution ove®y. Using Lemma 8 from Appendix decode linear equations of transmitted messages and fgass th
A, we have that the densities of boﬂfq_m and z/ are towards the destination nodes which, upon receiving enough

eq,m

upper bounded (times a constant) by the density of an i.iequations, attempt to solve for their desired messagesidn t
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L
[s%] mod A = [Z (Re(amhmg)Re(Xg) — Im(amhme)lm(x¢) + Re(ame)dg — Im(amg)dé) + Re(amzm)l mod A (98)

{=1
L

M=

(Re(amg)(Re(Xg) +dB) — Im(ame)(Im(xe) + dl) + 6F Re(xc) — 9{ng|m(x@)) n Re(amzm)] mod A (99)

I
=

L
@ [Z (Re(amg)tf — Im(ame)t] + 65 Re(x,) — G,Inglm(Xg)) + Re(amzm)] mod A (100)
/=1
b L
® vl 4 Z (HQZRe(Xg) - H,Inglm(Xg)) + Re(amzm)] mod A (101)
(=1
section, we give sufficient conditions for recovering mgssa Proof: Clearly, the vectotr can be applied to the received
from a given set of equations. equationsfuf® --- uf, ul ... uf,]T to recoverwl*. Let
It will be useful to represent the equations in matrix formc? denote the firstd/ elements ofc, ¢! denote the lasi\/
For real-valued channels leQ = {g,/} be the matrix elements, and le€ = [—c! cf]. By symmetry, replacing:

of equation coefficients. For complex-valued channels, lafith ¢ in (113) will yield the unit vectoréaL instead ofs; .
Qf = {¢%,} and Q! = {¢l,,} be the real and imaginary Thus,¢ can be used to extrast! from the equations. m
coefficient matrices. Using this representation, we cartewri Remark 9: These conditions can also be stated directly in
out the received equations for real-valued channels inimatferms of the coefficient vectors,, ..., ax. For real-valued
form, channels, seA = [a; --- ay/]7. Now, we can substitut&
T T with A in Theorems 7 and 9 so long as all operations are taken
[U-l UM} = Q[Wl WL}

modulop. For complex-valued channels, the same holds true
. . 7
Similarly, for complex-valued channels, we can write for Theorems 8 and 10 if we repla€@” with Re(A) andQ

with Im(A).
[uf oul ol ugwr It may be more convenient to evaluate the rank of the
R s " cpefﬁcients directly on th_e complex field. This is pqssible,
= { %1 _Q% } {Wf ceowlwl o Wﬂ i given some mild assumptions on the equation coefficients.

Theorem 11:Assume that, in an AWGN network, the mag-
These matrix formulations immediately yield sufficient den nitude of each equation coefficient is upper bounded by a
tions for recovery. constantamax . Then, for sufficiently large blocklength and

Theorem 7:For real-valued channels, a destination, givefield sizep, there exists a set of nested lattice codes such that
M linear combinations of messages with coefficient matrix destination can recover dll messages froni. equations if
Q € F)'*E, can recover all messages if and onlyQf has their coefficient matrixA = [a; --- az]” is full rank over
rank L. the complex field.

Theorem 8:For complex-valued channels, a destination, Proof: A is full rank over the complex field if and only
given M linear combinations of messages with real angits real-valued representatio is full rank over the reals.
imaginary coefficient matriceQ”, Q' € F)'*", can recover Recall that a matrix is full rank only if its determinant ismo
all messages if and only if bot®" andQ’ have rankL. zero. We will now show that for sufficiently large, if the

In many cases, a destination may only be interested d@terminant ofA is non-zero over the reals it is non-zero

a subset of the transmitted messages. Depending on ghédulop. The determinant oveR can be written as
coefficients, it may be able to reduce the number of required

equations. Recall thaf, is the unit vector withl in the /" oL

entry and O elsewhere. det(A) = Z sgno) H G (m) (114)
Theorem 9:For real-valued channels, a destination, given s me—1

M linear combinations of messages with coefficient matrix

MXxL i i . .
Qe -  San recovet the message: if there exists @ \yheres is the set of all permutations é1., 2, . .., 2L}, sgr(o)
vectore € IF,,” such thaic” Q = o . ~ isthe signature of the permutation which is equal for even
Theorem 10:For complex-valued channels, a des“”at'orbermutations and-1 for odd permutations, and,,, are the

given M linear -combinat.ionsRof messages with real angntries ofA. Using the upper bound on the magnitudes of the
imaginary coefficient matriceQ™, Q" € I, L, AN TECcOVer 4, and the fact thatS| = (2L)!, the determinant is lower
the messagev, if there exists a vectoe € F,;™* such that  gpqg upper bounded as follows:

cT [ Q" -Qf ] _ 5T (113)

Q' Qf —(2L)!(amax )*" < det(A) < (2L)!(amax)*" . (115)
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The determinant under modujoarithmetic can be written as bits per channel use per user. Compute-and-forward is the
. dominant strategy except at very low power and it rapidly
s - dv . 116 approgches the upper bouRy,.., = log (1 + P) asP — oo.
Z gne) H meo(m) | O P (116) As M increases the rates of decode-and-forward, amplify-and-

geS m=1
forward, and compress-and-forward go(to

Since the underlying field size — oo asn — oo, for large
enough blocklengt:, we can use the bounds @let(A) to
show that the determinant modufodoes not wrap around
zero. This immediately implies that it is zero if and only the Once a relay has recovered an equation of messages, it can
determinant is zero over the reals. m Subtract its contribution from the channel observationisTh
Remark 10:Theorem 11 can also be stated in terms dgsults in a residual channel output from which it can extrac
bounds on the channel coefficients. For instanc¢h7n€| < a different equation, pOtentia"y with ahigher rate thaBSp'ble
hwax, then we can use the bound in Lemma 1, to show th@yer the original channel. One key difference from standard
lam¢| is bounded as well. More generally, the result holds fPplications of successive cancellation is that the reémnot
the channel coefficients are drawn from a distribution su@®mpletely cancel out all channel inputs associated wién th
that Pr (Upme{|hme| > hmax }) — 0 as huax — oo. In this decoded equation. This is because in the first step, it only
case, we chooskuax such that this probability is very smalldecodes an integer combination of the messages, which is
and can be absorbed into the total probability of error far o@ften not the same as the linear combination taken by the

scheme. The result follows by taking an appropriate inéngas channel.
sequence Ofiax - We demonstrate an achievable region for decoding two

different equations using successive cancellation at ezlaly.
This can be easily generalized to more than two equations. Fo
succinctness, we only state this result for real-valuedhobh

VIlI. SUCCESSIVECANCELLATION

a
Z1 z

{ oy yg
z0 22 Theorem 12:Let hy,...,hy; € RY denote the channel
X2 V oy x¢ ¥ y¢ w1 vectors andR, denote the message rates. Each relay can first
WQ" H ~® @ R > 2 decode an equation with coefficient vectgy, € Z* and then
K one with coefficient vectorb,,, € Z" if
: . W

Z ) ’ Zng M

y e yys Ry < mi in Ri(hn,,a,), min Ra(h,,,a,,b
W] oS Ra M= esmin i R (B an), i, Re(m, am, o)

1, 4 P

Fig. 9. A linear relay network where compute-and-forwardéneficial. Ri(hm, am) = 9 log (agn + Pllamh,, — am||2)

Example 4:Consider the AWGN network in Figure 9.R2(hm’am’bm)
Transmitters 1 through M send messagesvy,...,wy llOng P A — &

. 2 2 b) m (2]

through a channél to M relays. Each relay has a point-to-_ J 2 B+ P>y si |Bmbime — bl
point AWGN channel to the receiver which wants to recover P
all of the messages at the highest possible symmetric rate.
Each channel input has powé&rand all noise terms are i.i.d.
circularly symmetric Gaussian with varianteLet H be an
M x M Hadamard matrix. (We assume th&f is chosen .
such that a Hadamard matrix of that size exists. ) Recall t

1
5 log™ ) , otherwise.

Bz, + Pl|Bmhm — Tmam — b2

for some choice oty,,, 5,, € R andr,, € Z.
Proof: All messages are mapped onto lattice points,

[hered, and transmitted across the channel as in the proof

a Hadamard matrix has1 entires such thalH? — M1 of Theorem 3. The first set of equations can be reliably

Using Theorems 4 and 11 and setting the coefficient vectcsjr%COde?j.tl.Jsmg th;ehprocedtjrt(ra] f:om 'I;]heolreth as well. Nf0\|/;/,
equal to the channel vectoes,, = h,,, compute-and-forward we condition on the event that each relay has successiully
can achieve recovered the equation with coefficient vectars.

Consider the case where the first coefficient vector at relay
Ry = log* <_ +P> 117) ™ is a unit vectora,, = ;. This means that relgm can
M successfully decode the message from encoderi. It can
then replicate the encoding process to getNow, the relay

bits per channel use per user sinkeis full rank. It can
removesx; fromy,,,

be shown that decode-and-forward, amplify-and-forwand, a

compress-and-forward (with i.i.d. Gaussian codebooks) ca Vi — hmiXi = thm 7 (120)
achieve i
— i[ log (1 + MP) (118) and uses this as a channel output for Theorem 1 to get the

R -
*M equation with coefficient vectob,, which is equal tob,,
R, = R, =log <1 +P (L)) (119) except that it ha$ in the i" position. It then add$,,;w; to
MP+1 the recovered equation to get,,.



IEEE TRANS INFO THEORY, TO APPEAR

If a,, is not a unit vector, the decoder has access to t

lattice equation

L
Vi, = [Z amgtg] mod A (121)
=1
from which it computes
r L L
Vi = | Vin — Z amgdg] mod A = lz amng] mod A
L =1 =1
Ym = [ﬁmym - Tm‘_’m} mod A

L

(ﬂmhml - Tmamf)xf + Zm,
1

mod A .

L{=

16

heessage can be decoded (while treating the others as noise)

:

Using successive cancellation, the relay remave$rom the
channel observation to g@fzg h1ex¢ + z1. It then repeats
the above procedure for each message in ascending order to

get

The resulting rate tuple is a corner point of the multipleess

b 2P
L
L+ Pl |hil?

1
R < 3 log <1 + (123)

|h1e|? P
L
1+ Pzz':lﬂ |h1i|2

Ry < %1og (1 + (124)

Now we can follow the steps in the proof of Theorem J:apacity region. By changing the decoding order, any corner

In (67), replacea.,y,, with ¥,,. In all steps of the proof,
substitutea, ., With b,,,¢, o lme With B hine — T Gme, @and,
if it has not already been replaced,, with j,,.

Remark 11:Given a,,, b,,, and 7,,,, we can solve for
the optimal«,, and j3,, following the steps of the proof of
Theorem 2.

Remark 12:The restriction ofr, to the integers stems from
the fact that (36) only holds for integer coefficients.

Example 5:There areL = 4 transmitters andM = 1
relay and the channel vector Is [10 10 8 8]T. The
relay wants to first decode the equation with coefficie
vector a; [1 11 1]7 and then with coefficient vector

b; =[1 1 —1 —1]*. Using Theorem 12, this is possible if

the message rates satisfy

< (S (14 20 gt (7))

by using;, = 9 so thath; — mma; = by. Note that if we
applied Theorem 1 directly to decods, we would not be
able to get a positive rate.

Remark 13:As noted in Remark 7, it may be more efficien
to recover an equation piecewise by recovering equations

-
4

81P
1+4P

1
"2

1
— +P
328+

point is achievable. Note that any point on the boundary ef th
capacity region is achievable by time-sharing corner goint
Remark 14:One interesting open problem is to develop
joint decodingfor the compute-and-forward framework. Of
course, within the context of multiple-access, this is faes
with nested lattice codewords as they have good statistical
properties. Extending joint decoding to recovering equrei
of messages may enlarge the computation rate region.

nt VIIl. SUPERPOSITION
In the previous section, we considered the scenario where
each relay decodes several equations, but the transnatels
use a single codebook (as in Theorem 1). However, when
decoding multiple equations, it is sometimes useful to supe
impose multiple codebooks. We investigate this possybifit
this section for real-valued channels. As before, the cempl
case follows naturally.

We will assume that there are two levedsand B and that
gach relay wants to a recover an equation from both levels.
(s it is not interested in a level, it can just set its desired

subsets of messages and taking an appropriate linear corfBgfficients to zero.)

nation of these equations. Theorem 12 is strictly bettetHisr
process than Theorem 1.

A. Multiple-Access

Assume there is only one relay and that it wants to r
cover all transmitted messages. This is the standard Gawus
multiple-access problem whose capacity region is wellwkmo
to be the set of all rate tupld®, ..., R;,) satisfying

Y R < %10g< ) (122)

Les

for all subsetsS C {1,2,...,L} [72, Theorem 14.3.5]. We
now show that compute-and-forward includes the multipl
access capacity region as a special case. First, we cotisale
corner point of the capacity region associated with deapdi

1+ P> |hyl?

Les

the messages in ascending order. From Example 2, the first

Each encoder has two messages; and wyp with rates
Ry and Ry respectively. Relayn wants to decode equations
u,,4 andu,,p with coefficient vectorsa,, andb,,, respec-
tively, for m = 1,2,..., M. In the theorem below, we give
achievable rates for this scenario by combining superiposit
and successive cancellation. The basic idea is to supesgnpo
?wo lattice codes at each receiver scaled~hy and~,p to

Si ST
ensure that the power constraint is met.

Theorem 13:Choosey, 4, v,p such thaty?, ++75 = 1. For
channel vectord,, ..., h,, € R, the relays can first decode
any set of linear equations over,4 with coefficient vectors
a,...,ay € Z" and then any set of linear equations over
wp With coefficient vectord, ..., by € ZL if

1 P
; R in =log"
re ZA<m:I¢Bi?;£O2 8 (NmA>
1 P
n R in - logt
B 02 8 (NmB>
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where equation with coefficient vectds; = [1 1 1] from level B.
. Using Theorem 13, this is possible if the message ratedysatis
hoa = [v1iahm1 -+ yoAhmL] 1 p
W, = [Y18hm1 -+ YeBhmo]T R3a < Elog <1+ 1+3P> (127)
Nm31: ZB<§Og g — Ly 4y I
B *(1 4+ P> [veahmel?) + Pl Bmbmp — b ? Remark 17:1t can be shown that nested lattice codes can
L approach the capacity region of the standard Gaussian broad
Nygo = cast problem. See [16] for more details.
B |2 + Pl Bmhyma — Tmam||? + PllBmhms — b2 Remark 18:For an application of this superposition scheme

to a backhaul-limited cellular uplink network, see [48].
N {NmBl, a,, = 0; for somes,
mB =

N,,g2, oOtherwise. IX. OUTAGE FORMULATION

So far, we have considered fixed channel coefficients. Now,
we demonstrate that our scheme can be applied to the slow
fading scenario. This further emphasizes the fact that our
compute-and-forward scheme doest require channel state
information at the transmitters. Under a slow fading model,
S channel matriH is chosen according to some probability
&istribution and then remains fixed for all time. As a result,
we must accept some probability that the rate used by the
transmitters is above the maximum rate permitted for those
channel coefficients. For an achievable strategy with rate
Rscreme(H) for fixed H, this outage probabilityis given by

for some choice oty,,, 5,, € R andr,, € Z.
Proof: Choose two sets of nested latticAsC A4 C

- C MAa, A C App C -+ C Aip with appropriate
rates whereA is the coarse lattice with second momédnt
Each encoder maps its messages onto lattice points u
¢ from Lemma 5 and dithers them witl,;4,d,p drawn
independently and uniformly over the fundamental Voron
regionV of A,

tea = ¢a(wea) tep = ¢p(WeB)
XpA = [tgA — dgA] mod A XyB = [th — ng] mod A

. ) . POUT(R) =Pr (RSCHEME(H) < R) . (129)
It then combinex,4 andx,g according toy,4 andy,g which ) )
guarantees the power constraint is met: We_ can also characterize the performance of a given strategy
by its outage rate
X¢ = YeAXeA + VeBXeB (125) Rout(p) = sup{R : pour(R) < p}. (130)

Blllx¢|*) = v{anP +1ignP = nP (126)

At each receiver, we can just treat the channel output as i
came from2L transmitters labelledA, ..., LA, 1B,...,LB.
We can write the channel to receiver and the desired
coefficient vectors as

T hmA = am T
el ws ] B

[N

14
©
T

10dB |

4
©
T

—
=)
—
o
~
T

b,

4
o
T

We can now directly apply Theorem 12 with,, &,,,, andb,,,
to get the desired result. ]

Remark 15:As before, givem,,,, b,,, 7., andy,4 we can
solve for the optimakv,,, and j,,, following the steps of the
proof of Theorem 2.

Remark 16:In order to keep the notation manageable, w —— Decode an Equation
have chosen to present the superposition strategy in Timeot - - - Decode a Message
13 only for two levels. There are several immediate exterssio 0 ‘ : ‘ ‘

: / 4.5 4 35 3 2.‘5 2 15 i 05 0
including: Message Rate

o
wn
T

Outage Probability
o ¢

o
w
T

o
N}
T

o
o
T

« More than two levels.

« Allowing a different decoding order at each relay. Fig. 10. Outage probability for a relay that receiyes= h1x1 + hoxa +
E fi . diff t | hsx3 + z where theh, are i.i.d. according to\'(0,1). The “Decode a
 Equaunons spanning diiierent levels. Message” strategy uses standard random codes and jointlijpidecoding

Example 6: There arel, = 3 transmitters and/ = 1 re|ay to recover at least one of the messages, wo, or ws. The “Decode an
) T . Equation” strategy uses compute-and-forward to recoveresiimear equation
and 'Fh_e channel vector l; = [1 1 v/2]|7. Set the scaling , v, & aywa © asws,
coefficientsto be; 4 = v94 =0, 718 = Y2 = 1, andysa =
v3p = 1/4/2. The relay wants to first decode the equation with Example 7: There are three transmitters that communicate
coefficient vectora; = [0 0 1] from level A and then the to a single relay over a real-valued AWGN multiple-access
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channel. The channel coefficients are i.i.d. according to

N(0,1) and are only known to the relay. Each transmitter .

has a single message, of rate R. Usually, the relay would T o P |hla,l?
Ryax m = max log™ | | [lam|” — ———F—3

only have the choice of decoding one message, two messages’ 1+ P||hy, |2

or all three messages with the rates given by the multiple-

N -1
access rate regiohThe resulting outage probabilities for this Rnzom = max log* ((Ilam|2 _ M) )
strategy are plotted in Figure 10 fér= 10, 20, and30dB. We a0 1+ Pl |2
also plot the performance of the compute- and -forwardesgsat ) .
from Theorem 1, which permits the relay to decode any linea.qo(FH) = {mm ((m%n RMAva)’RO) rank(A) =2,
equation of the messages,= @, a,w, so long as at least 0 otherwise.

min ((min Rnzom), Ro ) rank(A) =2,

The example above demonstrates that decoding an equati%Nz(H) -
0 otherwise.

is often easier than decoding a message. In order to use
compute-and-forward for network communication, we also

need that the end-to-end linear transformation of the ddsir For decode-and-forward, we require that each relay is
messages is full rank. The next section explores this isswgsponsible for a single message. It attempts to recovsr thi

one of the coefficients is not equal to zero. {

through a case study. message either by treating the other message as noise or
decoding both messages. The rate for this strategy is d¢edlua
X. CASE STUDY: DISTRIBUTED MIMO below and plotted in Figure 12. For more details on decode-

and-forward for multiple relays (as well as compress-and-

We will now compare the outage performance of Compm?drward and cut-set upper bounds), see [3]

and-forward to the performance of classical relaying sgiats
over a simple network. Consider the two user distributed

MIMO network in Figure 11. There are two sources, two \h11|2P
relays, and one destination. The relays see the transsitter  Fignore1 = log (1 + W) (131)
throughH whose entries are i.i.d. Rayleigh,,, ~ CN(0, 1). \haa[2P
We assume that relay. only knows the channel vectdr,, Rignore2 = log (1 + %) (132)
to itself. Each relay is given a bit pipe with rat, bits L+ |hor [P
per channel use to the destination. The destination wokkd li Riecodem = mmin <1Og (1 + |hm|*P)
to recover both message; and wy at the highest possible e ’
symmetric outage rate. Recall that for a symmetric ratetgoin log (1 + |hm2|2p) ,
be achievable, both transmitters must be able to communicat 1 )
their messages with at least that rate. 3 log (14 [hy,||*P) ) (133)
Z R Ry = min(Rignorela Rignore2) (134)
Tx 1 X1 _,(_B¢ Y1 Relay 1 50 Riq = Inin(Rignore,la RdecodeQ) (135)
H Zf . Rx _)g; }]:di = m%nggdecodeh ﬁignore,Q)) 82?;
X2 Yo 0 dd = MIN{ fidecodel ; {ldecode2
w2 _) [~ RDF(H) = min ( Inax(Rii y Rid, Rdi, Rdd), RO) (138)

Fig. 11. Two transmitters communicate to a distributed MIk&eiver with
two antennas. Each antenna has a fagebit pipe to the receiver. For our upper bound, we use a cut-set bound that either

oups the relays with the sources or with the destination.

The basic compute-and-forward strategy has each re‘%%s yields the following bound on the symmetric rate:
decode the equation with the highest rate and pass that to the

destination. If the equations received by the destinatien a

full rank, decoding is successful. However, at low SNR, the Rmimo (H) = min (10g (1 + ([hu* + |haa | )P)
probability that the equations are not full rank is quitethas
shown in Figure 13. One simple solution is to force each relay log (1 + (Inaf* + [h22l)P)
to choose an equation with,,,,, # 0. This results in equations 1 log det (I + HH*P) > (139)
that are far more likely to be solvable at the expense of gligh 2

lower computation ratesThe achievable rates for these two RuppeR H) = min (RM|MO (H), R
strategies are given below and are plotted in Figure 12 for

0) - (140)

Ry = 2 and outage probability = 1/4. Finally, we consider the performance of compress-and-
forward with i.i.d. Gaussian codebooks. The variance of the
5Those messages that are not decoded are treated as noise. channel observation at rekm is 14+ Hh ||2P and we have
m

6More work is needed to develop distributed coefficient siglacstrategies hi . bi At the desti .
that operate on the optimal tradeoff between computatide@ aad matrix to compress this using, bits. At the destination, one can

rank. equivalently write this as a MIMO channel with channel matri
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Fig. 13. Probability of rank failure for the-user distributed MIMO multiple-
access channel by having each relay decode the best eqaaiibthe best

non-zero equation.

Hcr,
P(2fo —1)
SNRetm = 5Re + Pl 2 (141)
\/SNRcr.1 /P 0
Hcr = , H (142
F 0 V/SNRcr.2/P (142)
Rcr(H) = Rvivo (Her) - (143)

From Figure 12, we can see that compute-and-forward (with
the best equation) outperforms all other strategies staat

Transmitter Power in dB
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additional noise. Despite this penalty, compute-and-&vdwv

is the best strategy in the moderate transmit power regime.
Compress-and-forward is a good strategy at low transmit
power since, in this regime, the rate of the bit pipes exceeds
the MIMO capacity between the transmitters and the relays.
Therefore, the effective noise introduced by vector quanti
tion at the relays does not significantly degrade the effecti
end-to-end SNR. At high transmit power, this effective rois
becomes a significant factor. Decode-and-forward is not as
efficient as compute-and-forward at high transmit power as
the relays must either treat one of the messages as noise or
decode both. However, it outperforms compute-and-forward
the low transmit power regime since it is able to performfoin
decoding’

Remark 19:Note that the encoding strategy for compute-
and-forward does not depend on the choice of equation coeffi-
cients at the relay. Therefore, one can obtain the maximum of
the best equation rate and the best non-zero equation riite wi
the same strategy simply by disallowing certain coefficeatt
the relays past an appropriate

Remark 20:Since the channel from the transmitters to the
relays is essentially &-user interference channel, it may
be useful to have each transmitter send out a public and a
private message as in the Han-Kobayashi scheme [62]. Such
a scheme might improve the performance of both the decode-
and-forward strategy and the compute-and-forward styateg
(by employing superposition as in Section VIII).

XI. UPPERBOUND

In this section, we give a simple upper bound on the
computation rate through a genie-aided argument. Thisdoun
does not match our achievable strategy in general and it may
be possible to construct tighter outer bounds by taking into
account the mismatch between the desired function and the
function naturally provided by the channel.

Theorem 14:Assume the channel between the transmitters
and the relays ig(y1, - - ., yam|z1, - - ., ). If the relays, want
equations with coefficient vectora,,...,ay, € Z”, the
message rates are upper bounded as follows:

Ry < min (Xe; Y| X1,y Xo—1, Xog1, - -

1
My e 70

For the real-valued Gaussian channel model consideredksin th
paper, with channel vectots, . .., h;; € R”, this specializes
to

7XL)

Ry < min (144)

My e 70

Similarly, for the complex-valued Gaussian channel model
considered in this paper, with coefficient vectays. . .,ay; €
{Z + jZ}* channel vectord, ... hy, € CF, we have that

(145)

1
5 log (1+ h2,.P) .

Ry < min log (1 + |hmz|2P) )
My, 70

Proof: To each relaym for which a,,, # 0, we provide

approximately8dB. It also saturates the bit pipes to the destill messages except that from encodexrs genie-aided side-
nation using 5dB less power per transmitter than required fieformation. Now, we are left with a multicasting problem
decode-and-forward. However, the gains are not as dramatig . o

We do not know how to naturally fit joint decoding into the cartgzand-

as observed in Example 4. F(_)r npn-lnteger Coeﬁ'c_'ents’ \ne ci’@rward framework so we have excluded it (even in the contéxnultiple-
only decode an integer combination and the remainder &ets laccess) to emphasize this fact.
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from encoder? to all relays witha,,, # 0. Clearly, the wherea,, € R. There exists an i.i.d. Gaussian vector
multicast rate is upper bounded by the lowest rate link. Rer t I

Gaussian case, it is easy to show that the mutual information ¥ = az + Z@EZ; (147)
expressions are maximized by the Gaussian distributiom. —

. . O i g
XIl. CONCLUSIONS with variances* satisfying

. . L
In this paper, we have developed a new coding scheme 9 9 Teov 2 9
that enables relays to reliably recover equations of thg- ori ot St r P;% (148)

EFFEC
inal messages by exploiting the interference structure of ) _
the wireless channel. As we have seen, this framework cei#¢h that the density of., is upper bounded as follows:

achieve end-to-end rates across an AWGN network thatare not () < cLe(ming, () (149)

accessible with classical relaying strategies. More galyer T , 1 1

the techniques in this paper can be used as building blocks c¢(n) =1In (ﬂ) + 5ln 271'6ng) + — (150)
T‘EFFEC n

for developing new cooperative communication schemes that

exploit both the algebraic and statistical properties oBl@isS \here In is the natural IogarithmGg‘) is the normalized
networks. Here, we presented an application to distributgdcond moment of an n-dimensional ball, and__ is the
MIMO and we believe there are many other scenarios wheregkective radius ofA.

will be useful. For instance, it can reduce energy conswnpti Proof: First, we will show that the density af., is upper

for gossiping over a sensor network [73] and improve thgsunded as desired. From Lemma 11 in [15], we have that
performance of low-complexity MIMO receiver architectsire (n)
[74]. fa,(z) < e foe(2) . (151)

Compute-and-forward also adds to the growing pile a&nce, d,, ... d; are independent, we can write the density
evidence that structured codes are a powerful tool for tagkl ¢ 7., as ann-dimensional convolution of the densities of its
problems in multi-user information theory. Recently, man¥smponents,
new inner bounds have emerged that take advantage of the
algebraic structure of multi-user problems. The behavier o fa.,(2) = faz(2) * fo,a,(2) * -+ x fo,a,(z) . (152)
served in these strategies is not well-captured by the us%ilarly,
cut-set outer bounds. Therefore, new outer bounds thatiatco
for algebraic as well as statistical structure will be nebte f2(2) = foz(2) * fo,2;(2) * - * fo,2; (2) . (153)
better characterize the capacity regions of multi-usewvoeks
[75]. An interesting direction for future study, inspireg the
work of Avestimehr, Diggavi, and Tse on deterministic made
[76], is whether compute-and-forward can be used to closely  foz(2) * fo,d,(2) < faz(z) * €M™ fo,a; (2) - (154)
approximate the capacity of an AWGN network.

we can write the density of* as

Since probability densities are non-negative, we can use th
Iupper bound in (151) to get

Applying this ideaL times to f,, (z) yields

ACKNOWLEDGMENT fauy(z) < LS g, (2) (155)
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APPENDIXA P =—E[||d|] (156)
UPPERBOUND ON NOISE DENSITIES n ) )

In this appendix, we demonstrate that the densities of the > lE Terrecy, ] — (@) oy . (157)
noise terms in Theorem 5 and 6 are upper bounded by the n Tcov Tcov
density of an i.i.d. Gaussian vector. The proof follows tbht Finally, we get
Lemmas 6 and 11 from [15]. .

Lemma 8:Letz ~ A (0,I"*™) and letd, be independently s 1 9 1 w12
generated according to a uniform distribution oweér the 7= EE [Haz” ]+ EZE [Hele” ] (158)

fundamental Voronoi region of\. Also, let 0% denote the L
second moment of an n-dimensional ball whose radius is equal _ 2 2 Z 02 (159)
to the covering radius.,, of A and letz; be independently
generated according t8(0, o3I"*™). Now, let

2 L
L <a?+ (L) P> 7. (160)
Zeq = QZ + Z 0,d, (146)

(=1 [ |
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Since the coarse lattice is good for covering and for The effective radius-.... is chosen such thatol(V) =
quantization, == — 1 and GY’ — L asn — oco. Vol(B(rge))- Recall that, for evem, the volume of am-

TEFFEC 2me

Therefore,c(n) — 0 asn — oo. As we will show in the dimensional ball of radius is
next appendix, the fine lattices are good for AWGN, which /2
means that they can attain a positive error exponent fo. i.i. Vol(B(1)) = 5 (162)

(n/2)!
Gaussian noise whose variance is smaller than their régp GCE Stirling’ imation. f 0 andn | h
second moments. y Stirling’s approximation, for any > 0 andn large enough,

this is lower bounded by

2me

n/2
APPENDIX B Vol(B(1)) > <7> : (163)
FINE LATTICES ARE GOOD FORAWGN n(1+4)

) . . Thus, for any andn large enough, the volume dbl satisfies
We now show that the fine lattices from Section IV-B can ¥ niarg 9

recover from i.i.d. Gaussian noise. T "
Vol(V) = Vol(B = =) Vol(B
Lemma 9:Aq, A, ..., A are good for AWGN with prob- V) (Brerrec) ( Teov ) (Brea))
ability that goes tal asn — oo so long as% — 0. r norore 12\ 2
Proof: Recall that the coarse latticeis good for AWGN. > | == X
TCOV n(l + 5)

Let C, be a codebook consisting of lengih codewords N /2
randomly and independently generated according to a umifor _ <TEFFEC> ( 2me P )
distribution overV, the fundamental Voronoi region af. Let Teov (1+49)

Z, denote an i.i.d. Gaussian vector with zero-mean and agj,ce A is also good for covering, we can chooselarge

variancz?gf such that the volume-to-noise ratigAr.€) = enough such that? /r2__ > 1/(1 + 6). Finally, we have
% is greater thawe. Consider the following channel that

£ ~
fromx, €C, toy, € V: 2me P )"/2

Vol(V) > <(1 o

Substituting this bound into (84), we can see that this only
and lete, the probability thatx, is incorrectly decoded from reduces the rate by an additioral(1 + §) bits, which can
¥¢. As part of the proof of Theorem 5 in [15], it is shown thabe made arbitrarily small through our choice ®of
the random coding error exponent for this channel is equalNote that the probability of error decays exponentially in
to the Poltyrev exponent (see Equation (56) in [15]). This averaged over the randomness in the dither vectors and the
means that, decreases exponentially with for volume-to- noise. Therefore, for large enough, there is at least one good
noise ratio greater tha2re. Appendix C of [15] shows that fixed set of dither vectors that attains the desired prolgbil
the same performance is possible via Euclidean decodikg if of errore.
is drawn according to a uniform distribution ovgr—tA} NV
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