
On the Liveness of Transactional Memory

Victor Bushkov Rachid Guerraoui Michał Kapałka
EPFL, IC, LPD

victor.bushkov@epfl.ch rachid.guerraoui@epfl.ch michal.kapalka@epfl.ch

Abstract
Despite the large amount of work on Transactional Memory (TM),
little is known about how much liveness it could provide. This pa-
per presents the first formal treatment of the question. We prove
that no TM implementation can ensure local progress, the analo-
gous of wait-freedom in the TM context, and we highlight different
ways to circumvent the impossibility.

1. Introduction
Transactional memory (TM) [3–5] is a concurrency control paradigm
that aims at simplifying concurrent programming. Each thread of
an application performs operations on shared data within a trans-
action and then either commits or aborts the transaction. If the
transaction is committed, then the effects of its operations become
visible to subsequent transactions; if it is aborted, then the effects
are discarded. Transactions are viewed as a simple way to write
concurrent programs and hence leverage multicore architectures.
Not surprisingly, a large body of work has been dedicated to im-
plementing the paradigm and reducing its overheads.

To a large extent, however, setting the theoretical foundations of
the TM concept has been neglected. Indeed, correctness conditions
for TMs have been proposed in [1, 2, 18] and programming lan-
guage level semantics of specific classes of TM implementations
have been determined, e.g., in [6–9]. All those efforts, however, fo-
cused solely on safety, i.e., on what TMs should not do. Clearly,
a TM that ensures only a safety property can trivially be imple-
mented by permanently blocking all operations. To be meaningful,
a TM has to ensure some liveness property [10], i.e., a guarantee
about what should be done.

1.1 Liveness of a TM
In classical shared-memory systems, a liveness property describes
when a process that invokes an operation on a shared object is guar-
anteed to return from this operation [20]. A widely studied such
property is wait-freedom [11]. It ensures, intuitively, that every pro-
cess invoking an operation eventually returns from this operation,
even if other processes crash. It is the ultimate liveness property
in concurrent computing as it ensures that every process makes
progress.

In a transactional context, requiring such a property alone would
however not be enough to ensure any meaningful progress: pro-
cesses of which all transactions are aborted might be satisfying

[Copyright notice will appear here once ’preprint’ option is removed.]

wait-freedom but would not be making real progress. To be mean-
ingful, a TM liveness property should ensure transaction commit-
ment, beyond operation termination.

One would expect from a TM that every process that keeps
executing a transaction (say keeps retrying it in case it aborts)
eventually commits it—a property that we call local progress and
that is similar in spirit to wait-freedom [11]. Not satisfying this
property means that some transaction, even when retried forever,
might never commit.

In fact, a TM implementation that protects transactions using
a single fair global lock could ensure local progress: such a TM
would execute all transactions sequentially, thus avoiding trans-
action conflicts. Yet, such a TM would force processes to wait
for each other, preventing them from progressing independently.
A process that acquires a global lock and gets suspended for a long
time (e.g., due to preemption, page faults, or I/O), or that enters an
infinite loop and keeps running forever without releasing the lock,
would prevent all other processes from making any progress. This
would go against the very essence of wait-freedom. 1 Hence, to
be really meaningful a TM liveness property should enforce some
”independent” progress.

1.2 Transaction Failures
The classical way of modeling shared-memory systems in which
processes can make progress independently, i.e., without waiting
for each other, is to consider asynchronous systems in which pro-
cesses can be arbitrarily slow, including failing by crashing. (This
typically models behaviors such as paging to disk.) A TM imple-
mentation that is resilient to crashes enables the progress of a pro-
cess even if other processes are suspended for a long time. In the
same vein, one should also ensure progress in the face of para-
sitic processes—those that keep executing transactional operations
without ever attempting to commit. These model long-running pro-
cesses whose duration cannot be anticipated by the system, e.g.,
because of an infinite loop.

To illustrate the underlying challenges, consider the following
example, depicted in Figure 1. Two processes, p1 and p2, execute
transactions T1 and T2, respectively. Process p1 reads value 0 from
a shared variable x and then gets suspended for a long time. Then,
process p2 also reads value 0 from x, and attempts to write value 1
to x and commit. Because of asynchrony, the processes can be
arbitrarily delayed. Hence, the TM does not know whether p1 has
crashed or is just very slow, and so, in order to ensure the progress
of process p2, the TM might eventually allow process p2 to commit

1 Amdahl’s Law, recommending to reduce the sequential parts of the pro-
grams indirectly stipulates that transactions should not wait for each other.
Resilient TM implementations, which allow transactions to make progress
independently, may provide better performance on future hardware with
a big number of computing cores. Resilient (lock-free) implementations of
concurrent data structures, which could be considered inefficient when com-
pared to lock-based ones on single-processor systems, have already entered
the mainstream because of their better scalability on modern hardware.

1 2011/12/5

p1 T1

x.read→ 0

p2 T2

x.read→ 0

x.write(1)
commit

x.write(1)
abort

Figure 1. An illustration of the difficulty of ensuring local progress. The
scenario can repeat infinitely many times preventing transaction T1 from
ever committing.

transaction T2. But then, if process p1 writes value 1 to x and
attempts to commit transaction T1, the TM cannot allow process p1
to commit, as this would violate safety. A similar situation can
occur in the case of parasitic processes, say if p1 keeps repeatedly
reading from variable x. If the maximum length of a transaction is
not known, the TM cannot say whether p1 is parasitic or not, and
thus may eventually allow process p2 to commit transaction T2,
forcing process p1 to abort T1 later.

1.3 Contributions
This paper first introduces the notion of a TM-liveness property
which specifies for each infinite executions which processes should
make progress, i.e. which processes commit transactions infinitely
often. We formalize this notion by modeling TM implementations
as I/O automata and focusing on infinite histories of such automata.

We prove an impossibility result which states that no TM im-
plementation can ensure both local progress and opacity in a fault-
prone system, i.e. in a system in which any number of processes
can crash or be parasitic. Opacity is the safety property ensured by
most TM implementations. It states that every transaction observes
a consistent state of the system. Local progress is a TM-liveness
property, highlighted above, which states that every correct pro-
cess, i.e. a process which is not parasitic and does not crash, makes
progress. We actually prove a more general result stating that no
TM implementation can ensure, besides any safety property that is
at least as strong as serializability, the progress (I) of at least two
correct processes in the system, as well as of (II) any correct pro-
cess that runs alone.

There are at least two ways to circumvent our impossibility
result. One way is to weaken local progress and require only global
progress, a TM-liveness property that guarantees progress for at
least one correct process. There are implementations that ensure
opacity and global progress, e.g., OSTM [13]. We present a simple
TM implementation that ensures opacity and global progress. We
give a simple formal description of it and prove it is correct. A
second way is to assume that a TM entirely controls the user
application, i.e. that it can re-execute portions of a program that
uses the TM or simulate an execution of a given transaction [12].

2. Preliminaries
2.1 Processes and Shared Memory
We assume a classical (see, e.g., [11]) asynchronous, shared mem-
ory system of n processes p1, . . . , pn that communicate by execut-
ing operations on base objects (which represent the shared memory,
e.g., provided in hardware). A shared object is a higher-level ab-
straction provided to processes, and implemented typically in soft-
ware using base objects.

For instance, if base objects are memory locations with basic
operations such as read, write, and compare-and-swap, then shared
objects could be shared data structures such as linked lists or hash
tables. If a process pi invokes an operation op on a shared object O,
then pi follows the implementation of O, possibly accessing any
number of base objects and executing local computations, until pi

is returned a result of op. We assume that processes are sequential;
that is, whenever a process pi invokes an operation op on any
shared object, pi does not invoke another operation on any shared
object until pi returns from op. Invocations and responses of shared
objects operations are called (invocation and response) events.

2.2 Transactional Memory
Let K be a set of process identifiers, P = {pk|k ∈ K} be a
set of processes, and X be a set of base objects called t-variables
(“t-variable” stands for “transactional variable”). For presentation
simplicity, we focus on t-variables that support wait-free read and
write operations. Each t-variable can have values from set V . Let
Invk = {x.writek(v)|x ∈ X and v ∈ V } ∪ {x.readk|x ∈
X} ∪ {tryCk} be the set of invocation events of process pk and
Resk = {vk|v ∈ V }∪{okk, Ak, Ck} be the set of response events
of process pk, Ck is a commit event and Ak is an abort event. Also,
let Inv = ∪k∈KInvk and Res = ∪k∈KResk.

Since a TM is a discrete event system that receives inputs
from processes and returns corresponding responses we model the
behavior of TM implementations using I/O automata. Formally, an
I/O automaton F is a quintuple (St, I, O, s0, R), where:

• St is a (possibly infinite) set of states.
• I is a set of input events.
• O is a set of output events.
• s0 is the initial state.
• R ⊆ St× (I ∪O)× St is a transition relation.

The sets I and O are disjoint. A history H of automaton F =
(St, I, O, s0, T) is a (finite or infinite) sequence of events H =
e1 · e2 · . . . over alphabet (I ∪ O) for which there exists a finite
or infinite sequence of states s0 · s1 · . . ., where each si ∈ St
and s0 is the initial state, such that for any i ∈ {1, 2, . . .} we
have (si−1, ei, si) ∈ T . The set of all histories of F is denoted
by H(F).

Let Σk be an alphabet elements of which are words derived
by concatenating invocation and response events associated with
process pk such that Σk = {x.writek(v) · okk|x.writek(v) ∈
Invk} ∪ {x.readk() · vk|x.readk() ∈ Invk and vk ∈ Resk} ∪
{tryCk · Ck} ∪ {e · Ak|e ∈ Invk}. Also, let Σ∞k be a set of all
finite and infinite sequences over alphabet Σk. Let H be a history
over alphabet Inv ∪ Res, we define a projection H|pk of H on
process pk as the longest subsequence of H consisting of events
from Invk ∪Resk.

A TM implementation M is an I/O automaton F = (St, I, O, s0, R)
such that I = Inv, O = Res and for every history H of F and
every pk ∈ P we have H|pk ∈ Σ∞k .

Given projection H|pk of history H of some TM implementa-
tion, a transaction of pk in H is a subsequence T = e1 · . . . · en of
H|pk such that:

• e1 is the first event in H|pk or the previous event e0 in H|pk is
either Ak or Ck, and
• en is either Ak or Ck or the last event in H|pk, and

• No event in T , except en, is Ak or Ck.

Transaction T is committed (aborted) if the last event in T is a
commit (abort) event. Given transactions T1 and T2 in history H ,
we say that T1 precedes T2 in H , denoted by T1 <H T2, if T1 is
committing or aborting and the last event of T1 occurs in H before
the first event of T2; otherwise T1 is concurrent to T2. History H is
sequential if no two transactions in H are concurrent to each other.

Processes communicate with each other only through a TM
implementation M by invoking concurrently requests (read, write,

2 2011/12/5

crashed

parasitic

starving

not-pending

pending

not-crashed

faulty

correct

Figure 2. Classes of processes. An arrow from class c1 to class c2 means
that every process which belongs to c1 also belongs to c2.

and commit requests) and receiving corresponding responses from
M within transactions. All events within a transaction appear to
other transactions as if they occur instantaneously. If a transaction
is committed, then all the changes made by write operations within
the transaction are made visible to other transactions; otherwise
all the changes are rolled back. Processes send commit requests
tryCk to the TM implementation that decides which transactions
should be committed or aborted. To reduce contention between
transactions, a TM implementation may use a logically separate
module called a contention manager. A contention manager can
delay or force TM to abort some of the transactions. In this work
we consider a contention manager as an integral part of a TM
implementation. That is, all the results of the paper apply to the
entire TM, including the contention manager.

The order in which processes invoke events is determined by a
scheduler. Processes and TM implementations have no control over
a scheduler. At any point in time the scheduler decides invocation
event of which process is going to be given to the TM implementa-
tion. These decisions form a schedule which is a finite or an infinite
sequence of process identifiers.

2.3 Process Failures
We say that process pk is pending in infinite history H if H has
only a finite number of commit events Ck. Process pk crashes in
infinite history H if H|pk is a finite non-empty sequence. That is,
from some point in time pk does not execute any events.

Intuitively, a parasitic process is a process that keeps executing
operations but, from some point in time, never attempts to commit
(by invoking operation tryC) when given a chance to do so. Con-
sider any infinite history H , and process pk in H . If process pk
from some point in time executes infinitely many operations with-
out being aborted and without attempting to commit, then pk is par-
asitic. On the contrary, if pk invokes operation tryCk or is aborted
infinitely many times, then pk is not parasitic. Formally, we say that
process pk is parasitic in infinite history H if H|pk is infinite and in
history H|pk there are only a finite number of invocations tryCk

and abort events Ak. If a process does not crash, is not parasitic,
and is pending in infinite history H , then it is starving in H .

We say that process pk is correct in infinite history H if pk is not
parasitic in H and does not crash in H . If a process is not correct
in H , then it is faulty in H . Figure 2 depicts the relations between
different classes of processes.

We define a fault-prone system Sys to be any of the following:

• a system in which any number of processes can crash or be
parasitic, or
• a system in which any number of processes can crash, but no

process is parasitic (we call such system parasitic-free), or
• a system in which any number of processes can be parasitic, but

no process crashes (we call such system crash-free).

p1
x.read→ 0

p2
x.read→ 0

x.write(1)
C

x.write(1)
C

Figure 3. A history which is not opaque and not strictly serializable.
Process identifiers are omitted for simplicity.

p1
x.read→ 0

p2
x.write(1)

C

x.read→ 1
A

Figure 4. A history which is strictly serializable but not opaque.

2.4 Safety properties of TM
Intuitively a safety property S states that some events should never
happen. We consider two safety properties of TM implementations:
strict serializability Ss and opacity So. Intuitively, strict serializ-
ability requires every committed transaction to observe a consistent
state of the system [19], while opacity requires every transaction
(even aborted) to observe a consistent state of the system [18].

We say that history H is equivalent to history H ′ if for every
process pk ∈ P we have H|pk = H ′|pk. We obtain the completion
com(H) of finite history H by aborting every transaction which
is neither committed nor aborted, i.e. by adding to the end of the
history corresponding abort events. If com(H) = H , then history
H is complete. We say that finite history H ′ preserves the real time
order of finite history H if for any two transactions T1 and T2 in
H if T1 <H T2, then T1 <H′ T2. Let Hs be a complete sequential
history and Tj be a transaction in H . Denote by visible(Tj) the
longest subsequence of Hs such that for every transaction T ′j in the
subsequence, either j′ = j or T ′j <Hs Tj . Transaction Tj is legal
in Hs if for every t-variable x ∈ X history visible(Tj) respects
the semantics of x, i.e. for every transaction T ′j in visible(Tj) and
every response event vk, k ∈ K, v is the value of the previous write
to x invocation event in T ′j or v is the value of x when T ′j starts if
there are no write to x invocation events in T ′j before vk.

A finite history H is strictly serializable if there exists a sequen-
tial history Hs equivalent to Hcom, where Hcom is the longest sub-
sequence of H containing only committed transactions, such that
Hs preserves the real-time order of H , and every transaction in Hs

is legal. A finite history H is opaque if there exists a sequential
history Hs equivalent to com(H), such that Hs preserves the real-
time order of com(H), and every transaction in Hs is legal. Let M
be a TM implementation represented by I/O automaton F . We say
that M ensures strict serializability (respectively opacity) iff every
finite history H of F is strictly serializable (respectively opaque).

For example, the history in Figure 1 is opaque, while the his-
tories in Figure 3 and Figure 4 are not opaque. The histories in
Figure 1 and Figure 4 are strictly serializable, while the history in
Figure 3 is not strictly serializable.

3. Liveness of a TM
We introduce in this section the concept of a TM-liveness property
and we give examples of such properties.

3.1 TM-liveness Properties
Basically, a TM-liveness property states whether some process pk
should make progress in some infinite history H . Clearly, progress

3 2011/12/5

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A
r→ 1

w(0)
C

r→ 1

w(0)
A
r→ 0

w(1)
C

r→ 0

w(1)
A
r→ 1

w(0)
C

r→ 1

w(0)
A

Figure 5. An infinite history with two processes and one t-variable. Each
process executes an infinite number of transactions which read value 0 (read
value 1) and write value 1 (write value 0). For simplicity process identifiers
in the operations are omitted, r → v means that a process reads value v
from the t-variable and w(v) means that a process writes value v to the
t-variable.

cannot be required for crashed or parasitic processes: these pro-
cesses have executions with a finite number of tryC operation in-
vocations. We define a TM-liveness property as a weakening of the
strongest TM-liveness property. The strongest TM-liveness prop-
erty guarantees that in every infinite history of a TM implementa-
tion every correct process makes progress.

Formally, a correct process pk in infinite history H makes
progress in H iff pk is not pending H . Let HTM be the set of
all infinite histories H for which there exists a TM implementation
represented by automaton F such that H ∈ H(F).

We define local progress, which is analogous to wait-freedom in
shared memory, as a set Llocal of infinite histories from HTM such
that infinite history H ∈ HTM belongs to Llocal iff the following
holds:

• Every correct process in H makes progress in H , or
• H does not have any correct process.

Definition 1. A TM-liveness property L is a set of infinite histories
such that Llocal ⊆ L ⊆ HTM .

Definition 2. An infinite history H ensures TM-liveness property
L iff H ∈ L.

Let M be a TM shared object represented by I/O automaton F .

Definition 3. A TM shared object M ensures TM-liveness property
L iff every infinite history H ∈ H(F) ensures L.

3.2 Examples of TM-liveness Properties
3.2.1 Local Progress
A TM shared object M ensures local progress if M guarantees that
every correct process makes progress.

For example, Figure 5 shows an infinite history which ensures
local progress in a system with two processes and one t-variable.
Both processes make progress (are not pending) in the history.

As we prove in this paper, implementing a TM that ensures
opacity and local progress in any fault-prone system is impossible.
That is, local progress inherently requires some form of indefinite
blocking of transactions. Ensuring local progress in a system that
is both crash-free and parasitic-free is possible. It suffices to use a
simple TM that synchronizes all transactions using a single global
lock, and thus never aborts any transaction.

3.2.2 Global Progress
A TM shared object M ensures global progress if M guaran-
tees that some correct process makes progress. We define global
progress, as a TM-liveness property Lglobal such that infinite his-
tory H ∈ HTM belongs to Lglobal iff the following holds:

• At least one correct process in H makes progress in H , or
• H does not have correct processes.

p1
r→ 0

w(1)
C

p2
r→ 0

w(1)
A

r→ 1

w(0)
C

r→ 1

w(0)
A

r→ 0

w(1)
C

r→ 0

w(1)
A

Figure 6. An infinite history with two processes and one t-variable. Pro-
cesses execute an infinite number of transactions which read value 0 (read
value 1) and write value 1 (write value 0).

p1
r→ 0

p2
w(1)

C
r→ 1

w(0)

r→ 0

w(1)

r→ 1

w(0)

p3
r→ 1

w(0)
C

r→ 0

w(1)
C

r→ 1

w(0)
C

Figure 7. An infinite history with three processes and one t-variable. Pro-
cess p1 starts a transaction by invoking a read operations, but then it crashes.
Process p2 executes two transactions, but it becomes parasitic in the second
transaction. Process p3 executes an infinite number of transactions which
read value 0 (read value 1) and write value 1 (write value 0).

Figure 6 depicts an infinite history which ensures global progress
in a system two processes and one t-variable. Both of the processes
are correct in the history. However, only process p1 makes progress
in the history.

3.2.3 Solo Progress
A TM shared object M ensures solo progress if M guarantees that
every correct process which eventually runs alone makes progress.
A process runs alone if starting from some point in time it is
concurrent only to processes which are faulty.

Formally, a process pk runs alone in infinite history H iff pk is
correct in H and no other process is correct in H . We define solo
progress, as a TM-liveness property Lsolo such that infinite history
H ∈ HTM belongs to Lsolo iff the following holds:

• A process that runs alone in H makes progress in H , or
• H does not have a process that runs alone in H .

Figure 7 depicts an infinite history Hsolo which ensures solo
progress in a system with three processes and one t-variable. Pro-
cess p1 crashes, p2 is parasitic, and p3 runs alone and makes
progress (is not pending).

Obstruction-free TM implementations [14, 18] ensure solo
progress in parasitic-free systems. Lock-based TM implemen-
tations, such as TinySTM [17] and SwissTM [16], ensure solo
progress in systems that are both parasitic-free and crash-free.
Those lock-based TMs that use deferred updates, however, such
as TL2 [15], ensure solo progress in crash-free systems.

4. Impossibility of Local Progress
Like in any distributed problem, each history of a TM implemen-
tation can be thought of as a game between the environment and
the implementation. The environment consisting of processes and
a scheduler decides on inputs (operation invocations) given to the
implementation and the implementation decides on outputs (re-
sponses) returned to the environment. To prove that there is no TM
implementation that ensures both opacity and local progress in a
fault prone system we use the environment as an adversary that acts

4 2011/12/5

p1
r→ v

p2
r→ v

w(v + 1)
C

w(v + 1)
C

Figure 8. A suffix of a finite history corresponding to an execution of
Algorithm 1 when it terminates. For simplicity, r → v means that a process
reads value v from x and w(v+1) means that a process writes value v+1
to x, process identifiers are omitted.

against the implementation. The environment wins if the resulting
infinite history violates local progress.

Theorem 1. No TM shared object ensures both local progress and
opacity in any fault-prone system.

Proof. Assume otherwise, i.e. that there exists a TM shared object
M represented by I/O automaton F that ensures local progress
and opacity in any fault-prone system. To find a contradiction,
we exhibit a winning strategy (Algorithms 1 and 2 below) for the
environment resulting in an infinite history of F which does not
ensure local progress.

By definition, a fault-prone system Sys is either a system, in
which any number of processes can crash or be parasitic, a crash-
free system with a parasitic processes, or a parasitic-free system
with crashes. We thus consider three different cases:

Sys is parasitic-free. We exhibit a history which violates local
progress even when no process is parasitic.

Consider two processes p1 and p2 and the environment that
interacts with M using the strategy defined by the following algo-
rithm:

Algorithm 1.

1. Step 1. Process p1 invokes a read operation on t-variable x and
receives as a response v1 or A1. The algorithm goes to Step 2.

2. Step 2. Process p2 invokes a read operation on t-variable x and
receives as a response v2 or A2. If M returns A2, then the al-
gorithm repeats Step 2, otherwise p2 invokes an operation on x,
which writes value v + 1 to x, and receives as a response ok2

or A2. If the response is A2, then the algorithm repeats Step 2,
otherwise p2 invokes tryC2 operation and receives a response
from M . If M returns C2, then the algorithm goes to Step 3,
otherwise it repeats Step 2.

3. Step 3. If the last response that p1 received at Step 1 is A1, then
the algorithm goes to Step 1. Otherwise, process p1 invokes a
write operation on t-variable x which writes value v + 1 to x,
and then receives a response from M . If the response is A1,
then the algorithm goes to Step 1, otherwise p1 invokes tryC1

operation and receives a response from M . If M returns C1,
then the algorithm stops, otherwise the algorithm goes to Step
1.

We first show that there exists an infinite history of M corre-
sponding to an execution of Algorithm 1. To do so, we prove that
Algorithm 1 never terminates, i.e. that at Step 3 process p1 is never
returned C1 by M in any history of M corresponding to an execu-
tion of the algorithm. Assume some finite history Hf of F corre-
sponding to an execution of Algorithm 1 such that the last event in
Hf is C1. A suffix of history Hf is shown in Figure 8.

p1
r→ v

p2 A A

Figure 9. A suffix of an infinite history corresponding to an execution of
Algorithm 1 when process p1 crashes.

Since M ensures opacity, there exists a sequential finite history
Hs which is equivalent to com(Hf), preserves the real-time order
of com(Hf), and every transaction in Hs is legal. Since history Hf

has no transactions which are neither committed nor aborted, then
com(Hf) = Hf . Hence Hs is equivalent to Hf and preserves
the real-time order of Hf . Since Hs is a sequential history and
preserves the real-time order of Hf , then Hs could only have one
of the following forms, where H ′s is a prefix of Hs:

1. Hs = H ′s ·x.read1() ·v1 ·x.write1(v+ 1) ·ok1 · tryC1 ·C1 ·
x.read2() · v2 · x.write2(v + 1) · ok2 · tryC2 · C2

2. Hs = H ′s ·x.read2() ·v2 ·x.write2(v+ 1) ·ok2 · tryC2 ·C2 ·
x.read1() · v1 · x.write1(v + 1) · ok1 · tryC1 · C1.

In the first case, the last transaction executed by process p2 is not
legal in Hs, because p2 reads value v from t-variable x the value of
which is v + 1 and this violates the semantics of x. In the second
case, the last transaction executed by process p1 is not legal in Hs,
because p1 reads value v from t-variable x the value of which is
v + 1, this leads to violation of the specification of x. Thus, Hf is
not opaque. Since every history Hf of M that ends with commit
event C1 is not opaque and M ensures opacity, then Hf is not a
history of M corresponding to the execution of the algorithm. In
other words, every history of M corresponding to the execution of
Algorithm 1 is infinite.

Consider some infinite history H of M corresponding to the
execution of the above algorithm. Since process p1 never receives
commit event C1 from F , then p1 is pending in H . Since Sys is
parasitic-free, then process p1 can crash in history H . Therefore,
we focus on the following two cases:

• Process p1 crashes in history H . A suffix of such history H
is depicted in Figure 9. According to the algorithm, process
p1 can crash in infinite history H iff process p2 is pending
and invokes infinitely many operations. Process p2 can invoke
infinitely many operations iff the algorithm executes infinitely
many iterations of Step 2. At each iteration of Step 2 process
p2 invokes operation tryC2, thus p2 is correct in H . Since M
ensures local progress and p2 is correct in H , then process p2
is not pending: a contradiction. Thus, H does not ensure local
progress.

• Process p1 does not crash in history H . A suffix of such
history H is depicted in Figure 10. Since H is infinite and
p1 does not crash in H , then according to the algorithm p1
invokes infinitely many operations and receives infinitely many
abort events at Step 3. Thus, p1 is a correct process in H .
Since M ensures local progress, then p1 makes progress in
H , which means that eventually p1 is returned commit event
C1and history H is not infinite: a contradiction. Thus, H does
not ensure local progress.

Thus, in a parasitic-free system Sys , TM object M cannot en-
sure both local progress and opacity.

Sys is crash-free. We exhibit a history which violates local
progress even when no process crashes.

5 2011/12/5

p1

p2 C C

A A

Figure 10. A suffix of an infinite history corresponding to an execution
of Algorithm 1 when process p1 does not crash.

p1
r→ v

p2
r→ v

w(v + 1)
C

w(v + 1)
C

Figure 11. A suffix of a finite history corresponding to an execution of
Algorithm 2 when it terminates.

Consider two processes p1 and p2 and the environment that
interacts with M using the strategy defined by the following algo-
rithm:

Algorithm 2.

1. Step 1. Process p1 invokes a read operation on t-variable x and
receives as a response v1 or A1. Process p2 invokes a read op-
eration on t-variable x and receives as a response v2 or A2. If
the response is A2, then the algorithm repeats Step 1, otherwise
p2 invokes a write operation which writes value v + 1 to x, and
then p2 receives a response ok2 or A2. If the response is A2,
then the algorithm repeats Step 1, otherwise p2 invokes tryC2

operation and receives a response from M . If M returns C2,
then the algorithm goes to Step 2, otherwise it repeats Step 1.

2. Step 2. If the last response that p1 received from M is A1, then
the algorithm goes to Step 1. Otherwise, process p1 invokes a
write operation on t-variable x which writes value v + 1 to x,
and then p1 receives a response from M . If the response is A1,
then the algorithm goes to Step 1, otherwise p1 invokes tryC1

operation and receives a response from M . If M returns C1,
then the algorithm stops, otherwise the algorithm goes to Step
1.

First, we prove that Algorithm 2 never terminates, i.e. that at
Step 2 process p1 is never returned C1 by M in any history of M
corresponding to an execution of the algorithm. Assume some finite
history Hf of F corresponding to an execution of Algorithm 2 such
that the last event in Hf is C1. A suffix of history Hf is shown in
Figure 11.

Since M ensures opacity, there exists a sequential finite history
Hs which is equivalent to com(Hf), preserves the real-time order
of com(Hf), and every transaction in Hs is legal. Since history Hf

has no transaction which are neither committed nor aborted, then
com(Hf) = Hf . Hence Hs is equivalent to Hf and preserves
the real-time order of Hf . Since Hs is a sequential history and
preserves the real-time order of Hf , then Hs could only have one
of the following forms, where H ′s is a prefix of Hs:

1. Hs = H ′s ·x.read1() ·v1 ·x.write1(v+ 1) ·ok1 · tryC1 ·C1 ·
x.read2() · v2 · x.write2(v + 1) · ok2 · tryC2 · C2

2. Hs = H ′s ·x.read2() ·v2 ·x.write2(v+ 1) ·ok2 · tryC2 ·C2 ·
x.read1() · v1 · x.write1(v + 1) · ok1 · tryC1 · C1.

In the first case, the last transaction executed by process p2 is not
legal in Hs, because p2 reads value v from t-variable x the value of
which is v + 1 and this violates the semantics of x. In the second

p1
r→ v r→ v r→ v

p2 A A

Figure 12. A suffix of an infinite history corresponding to an execution
of Algorithm 2 when process p1 is parasitic.

p1

p2 C C

A A

Figure 13. A suffix of an infinite history corresponding to an execution
of Algorithm 2 when process p1 is not parasitic.

case, the last transaction executed by process p1 is not legal in Hs,
because p1 reads value v from t-variable x the value of which is
v + 1, this leads to violation of the specification of x. Thus, Hf is
not opaque. Since every history Hf of M that ends with commit
event C1 is not opaque and M ensures opacity, then Hf is not a
history of M corresponding to the execution of the algorithm. In
other words, every history of M corresponding to the execution of
Algorithm 2 is infinite.

Consider now some infinite history H of M corresponding
to the execution of the above algorithm. Since process p1 never
receives commit event C1 from F , then p1 is pending in H . Since
S is crash-free, then process p1 can be parasitic in history H .
Therefore, we focus on the following two cases:

• Process p1 is parasitic in history H . A suffix of such history
H is shown in Figure 12. According to the algorithm, process
p1 can be parasitic in infinite history H iff process p2 is pending
and invokes infinitely many operations at Step 1 without receiv-
ing a commit event C2. Process p2 can invoke infinitely many
operations iff the algorithm executes infinitely many iterations
of Step 1. At each iteration of Step 1 process p2 either receives
abort event Ak or invokes operation tryC2, thus p2 is correct
in H . Since M ensures local progress, then p2 makes progress
in H , i.e. process p2 is not pending: a contradiction. Thus, H
does not ensure local progress.

• Process p1 is not parasitic in history H . A suffix of such
history H is shown in Figure 13. According to Algorithm 2 H
can be infinite iff the algorithm executes Step 1 infinitely often,
the algorithm executes Step 1 infinitely often iff process p1
invokes infinitely many operations. Since p1 invokes infinitely
many operations and p1 is pending in H , then p1 receives
infinitely many abort events in H . Thus, history p1 is correct
in H . Since M ensures local progress, then p1 makes progress
in H , which means that eventually p1 is returned commit event
Ck and H is finite: a contradiction. Thus, H does not ensure
local progress.

Hence, we proved that in a crash-free system Sys TM object M
cannot ensure both local progress and opacity.

Sys is not crash-free or parasitic free. Since in Sys any number of
processes can crash or be parasitic, there are no restrictions on the
inputs provided by the environment. Thus, we can use Algorithm 1
(or Algorithm 2) to exhibit an infinite history that does not ensure
local progress.

6 2011/12/5

p1
r→ 0

p2
w(1)

C
r→ 1

w(0)

r→ 0

w(1)

r→ 1

w(0)

p3
r→ 1

w(0)
A

r→ 0

w(1)
A

r→ 1

w(0)
A

Figure 14. An infinite history with three processes and one t-variable.
Process p1 starts a transaction by invoking a read operations, but then it
crashes. Process p2 executes two transactions, but it becomes parasitic in
the second transaction. Process p3 executes an infinite number of aborting
transactions which read value 0 (read value 1) and write value 1 (write value
0).

5. Generalizing the Impossibility
We generalize here the result of the previous section; namely, we
determine a larger class of TM-liveness properties and a larger
class of safety properties that are impossible to implement in a
fault-prone system. In short, we show that a TM cannot ensure the
progress of at least two correct processes as well as the progress of
any process that runs alone.

5.1 Classes of properties
Nonblocking TM-liveness properties. Intuitively, we say that a
TM-liveness property is nonblocking if it guarantees progress for
every correct process that eventually runs alone. More precisely:

Definition 4. A TM-liveness property L is nonblocking iff for every
H ∈ L if some process runs alone in H , then the process makes
progress in H .

For example, Figure 5, Figure 6, and Figure 7 show infinite
histories which ensure nonblocking TM-liveness properties while
Figure 14 shows an infinite history which does not ensure any non-
blocking TM-liveness property. TM-liveness properties that are not
nonblocking are called blocking. Local progress and solo progress
are nonblocking. Note that solo progress is weaker than every non-
blocking property while local progress is the strongest among non-
blocking properties.

Biprogressing TM-liveness properties. Intuitively, we say that a
TM-liveness property L is a biprogressing property if for every
infinite history it guarantees that at least two correct processes make
progress. More precisely:

Definition 5. A TM-liveness property L = {L1, . . . , Ln} is bipro-
gressing iff for every H ∈ L if at least two processes are correct in
H , then at least two processes make progress in H .

For example, Figure 5 and Figure 7 show infinite histories which
ensure a biprogressing property while Figure 6 shows an infinite
history which does not ensure any biprogressing property. Local
progress is a biprogressing property while global progress and solo
progress are not biprogressing.

Strictly serializable safety properties. We say that that a safety
property S is strictly serializable if it is stronger (or equal) then
strict serializability Ss. Formally, a safety property S is strictly
serializable iff for every TM implementation M if M ensures S,
then M ensures strict serializability. Both strict serializability and
opacity are strictly serializable safety properties.

5.2 Generalized Result
We show that TM-liveness properties that are nonblocking and
biprogressing are impossible to implement together with a strictly

serializable safety property in any fault-prone system. We start by
stating the following lemma, which says, intuitively, that a process
executing infinitely many transactions can block the progress of
all other processes if the TM ensures any nonblocking TM-liveness
property. The proof of the lemma follows the same line of reasoning
as in Theorem 1. The main difference is that to prove the lemma we
need to exhibit a history in which process executing infinitely many
transactions blocks the progress of other processes for an arbitrary
number of processes n, while in Theorem 1 we exhibit such history
for two processes.

Lemma 1. For every TM implementation represented by I/O au-
tomaton F that ensures a strictly serializable safety property and a
nonblocking TM-liveness property in any fault-prone system, there
exists an infinite history H of F such that at least two processes
are correct in H and at most one process makes progress in H .

Proof. Let M be a TM implementation ensuring a nonblocking
TM-liveness property in a fault-prone system Sys and F be its I/O
automaton representation. To exhibit a history in which at least two
processes are correct and at most one process makes progress we
consider a game between the environment and the implementation.
The environment acts against the implementation and wins the
game if the resulting history satisfies the requirements above.

By definition, a fault-prone system Sys is either a system in
which any number of processes may crash or be parasitic, a crash-
free system, or a parasitic-free system. We thus consider three
different cases:

Sys is parasitic-free. Consider two processes p1 and p2 that in-
teract with M . The strategy that the environment uses to win the
game is described by the Algorithm 1. We proved in Theorem 1
that there is no history that corresponds to a terminating execution
of the algorithm. The algorithm never terminates and all histories
corresponding to an execution of the algorithm are infinite.

Consider some infinite history H corresponding to an execu-
tion of the algorithm. Since Sys is parasitic-free, process p1 either
crashes in history H or does not crash in H . Assume that process
p1 crashes in history H . According to the algorithm, process p1
can crash in infinite history H only if process p2 is pending and
invokes infinitely many operations, i.e. only if p2 is returned an
infinite number of abort events at Step 2. Since p2 is returned an
infinite number of abort events, pn is correct in H . Because af-
ter some time only process p2 executes operations in H (i.e. p2
runs alone in H) and M ensures a TM-liveness property which is
nonblocking, then p2 makes progress in H , i.e. process pn is not
pending: a contradiction. Thus, p1 cannot crash in H . According
to the algorithm, p2 cannot crash in H since Step 2 is repeated
infinitely often; p1 and p2 cannot be parasitic since p2 is always
eventually returned C2 and p1 is returned A1 at Step 1 or Step 3.
Thus, in history H both of the processes are correct and at most
one process makes progress (since p1 is never returned C1).

Sys is crash-free. Consider two processes p1 and p2 that interact
with M . The strategy that the environment uses to win the game
is described by the Algorithm 2. We proved in Theorem 1 that
there is no history that corresponds to a terminating execution of
the algorithm. The algorithm never terminates and all histories
corresponding to an execution of the algorithm are infinite.

Consider some infinite history H corresponding to an execution
of the algorithm. Since Sys is crash-free, process p1 is either par-
asitic or not in H . Assume that p1 is parasitic in H . According to
the algorithm, p1 can be parasitic only if p2 is pending in H and
returned A2 infinitely often (i.e. correct). Since a correct process
p2 runs alone in H and M ensures a nonblocking TM-liveness
property, then p2 makes progress in H: a contradiction. Thus, p1

7 2011/12/5

cannot be parasitic in H . According to the algorithm, p2 cannot
be parasitic in H since p2 either invokes tryC2 or is returned A2

infinitely often at Step 1; p1 and p2 cannot crash in H since the
algorithm repeats Step 1 infinitely often.

Sys is not crash-free or parasitic free. Since in Sys any number
of processes can crash or be parasitic there are no restrictions on the
inputs provided by the environment. Thus, we can use Algorithm 1
(or Algorithm 2) to exhibit an infinite history that does not ensure
local progress.

By definition, a biprogressing TM-liveness property should en-
sure progress for at least two correct processes in every infinite his-
tory. While, by the above lemma, if the property is also nonblock-
ing, then we can find an infinite history of any TM implementation
in a fault prone system in at least two processes are correct and at
most one process makes progress: a contradiction. Thus, we end up
with the following theorem.

Theorem 2. For every TM-liveness property L which is nonblock-
ing and biprogressing there is no TM implementation that ensures
serializable safety property and L in any fault-prone system.

6. Ensuring Global Progress
In this section we show that there exists a TM implementation that
ensures both opacity and global progress in a fault-prone system.
We thus show that every TM-liveness property which is weaker
than global progress can be ensured in any fault-prone system. The
purpose of the TM implementation given in this section is only
to formally prove the possibility of global progress in any fault-
prone system—the TM is not meant to be practical or efficient.
Note that there are TM implementations that ensure opacity and
global progress, e.g., OSTM [13]. However it is not know to us if it
has been formally proven.

We build an automaton Fgp of the implementation that ensures
global progress and opacity in any fault prone system. The main
idea of the automaton is the following. A process in a group of con-
current processes, which invokes a commit request first, receives a
commit event, and after the process receives it other processes from
the concurrent group can receive only an abort event. At each state
we keep the set of processes which are concurrent to each other
and can receive a commit event at this state. The automaton never
returns an abort event to processes before some process from the
set of concurrent processes invokes a commit request for which the
automaton returns a commit event.

After the automaton sends to some process pk a commit event,
all other processes that were in the concurrent set at the time when
the commit event was sent receive only abort events for every
operation invocation and are removed from the set of concurrent
processes. The process which receives a commit event is also re-
moved from the set of concurrent processes. Then a new concur-
rent group is formed—every process that starts a new transaction
is added to the group. Each state s of the automaton Fgp is a tuple
s = (Status, CP, V al, f). Where:

• Array Status is a status array which specifies for each process
pk its status Status[k] = stk ∈ {c, a} at state s; if stk = c,
then none of the processes from the concurrent group at state s
has committed and upon operation invocation from pk at state
s, automaton Fgp sends to pk corresponding response which
is not an abort event Ak; if stk = a, then some process has
committed before pk and the automaton sends an abort event
to pk when pk invokes some operation. This means that some
processes has committed while being in the same concurrent
group as pk and Fgp has not sent an abort event to pk yet.

Therefore if pk invokes an operation at state s and stk = a, then
Fgp sends abort event Ak as a response. Initially every stk has
value c, when automaton Fgp sends commit event Ck to some
process pk, then the automaton changes the value of stk′ to a
for every process pk′ from the set CP except pk. When process
pk′ receives abort event Ak′

, then the automaton changes stk′

to c.
• Subset CP ⊆ P is the set of processes such that all processes

from CP are concurrent to each other at state s and none of
them has committed, i.e. for every process pk ∈ CP its status
stk is c. Initially CP = ∅. When process pk with stk = c
invokes a read or write operation, process pk is added to CP (if
pk is already in CP , then CP does not change). When some
process pk ∈ CP commits, then the automaton empties set
CP , i.e. CP = ∅. Note that there could be other processes
which are concurrent to processes from the set CP at state s,
but which do not belong to CP since their statuses are a.
• Array V al is a two-dimensional array of current variables, each

element V al[i][j] is a variable vi,j that corresponds to process
pi and t-variable xj , when process pi reads from t-variable xj

at state s, then the automaton returns to pi value vi,j , when
process pi writes value v to xj , then the automaton makes a
transition to the state with vi,j equal to v. If some process pi
commits, then for every other process pk and every t-variable
xj the automaton changes vk,j to vi,j .
• Function f : P → Inv ∪ {⊥} is a pending function which

specifies for each process if the process was returned a response
after its last invocation. Namely, if f(pk) =⊥ then process pk
was returned a response and pk can send an invocation event at
state s; if f(pk) = e, where e ∈ Invk, then process pk was not
returned a response from e and pk cannot send an invocation
event at state s. Initially, f(pk) =⊥ for every process pk ∈ P .

Formally, we construct I/O automaton Fgp = (St, I, O, s0, R)
using the following rules:

• S = {s|s = (Status, CP, V al, f)}, where:

∀k ∈ K,Status[k] ∈ {c, a}
CP ⊆ P

∀k ∈ K, ∀j ∈ J, V al[k][j] ∈ V , where J is the set of
t-variable identifiers

f : P → Inv ∪ {⊥}
• I = {xj .writek(v)|xj ∈ X, k ∈ K, v ∈ V }∪{xj .read

k()|xj ∈
X, k ∈ K} ∪ {tryCk|k ∈ K}
• O = {vk|v ∈ V, k ∈ K} ∪ {okk|k ∈ K} ∪ {Ck|k ∈
K} ∪ {Ak|k ∈ K}.
• s0 = (Status, CP, V al, f) such that ∀k ∈ K,Status[k] =
c; CP = ∅; ∀k ∈ K,∀j ∈ J, V al[k][j] = 0; and ∀pk ∈
P, f(pk) = 0.

Transition relation T ⊆ S × I × O × S is defined by the
following rules:

• ∀k ∈ K, ∀xj ∈ X, ∀v ∈ V , (s, xj .writek(v), s′) ∈ T iff all
of the following hold:

s = (Status, CP, V al, f), f(pk) =⊥
s′ = (Status′, CP ′, V al′, f ′), Status′ = Status,
CP ′ = CP∪{pk}, f ′(pk) = xj .writek(v) and f ′(pk′) =
f(pk′) for every pk′ ∈ P \ {pk}
V al′ is derived from V al by updating the value of V al[k][j]
to v

8 2011/12/5

• ∀k ∈ K, (s, okk, s′) ∈ T iff all of the following hold:

s = (Status, CP, V al, f), Status[k] = c and f(pk) =
xj .writek(v) for some xj ∈ X

s′ = (Status′, CP ′, V al′, f ′), Status′ = Status,
CP ′ = CP , f ′(pk) =⊥ and f ′(pk′) = f(pk′) for ev-
ery pk′ ∈ P \ {pk}
V al′ = V al

• ∀k ∈ K,∀xj ∈ X , (s, xj .read
k, s′) ∈ T iff all of the

following hold:

s = (Status, CP, V al, f), f(pk) =⊥
s′ = (Status′, CP ′, V al′, f ′), Status′ = Status,
CP ′ = CP ∪ {pk}, f ′(pk) = xj .read

k and f ′(pk′) =
f(pk′) for every pk′ ∈ P \ {pk}
V al′ = V al

• ∀k ∈ K, v ∈ V , (s, vk, s′) ∈ T iff all of the following hold:

s = (Status, CP, V al, f), Status[k] = c and f(pk) =
xj .read

k for some xj ∈ X

s′ = (Status′, CP ′, V al′, f ′), Status′ = Status,
CP ′ = CP , f ′(pk) =⊥ and f ′(pk′) = f(pk′) for ev-
ery pk′ ∈ P \ {pk}
V al′ = V al and v = V al[k][j]

• ∀k ∈ K, (s, tryCk, s′) ∈ T iff all of the following hold:

s = (Status, CP, V al, f), f(pk) =⊥
s′ = (Status′, CP ′, V al′, f ′), Status′ = Status,
CP ′ = CP ∪ {pk}, f ′(pk) = tryCk and f ′(pk′) =
f(pk′) for every pk′ ∈ P \ {pk}
V al′ = V al

• ∀k ∈ K, v ∈ V , (s, Ck, s′) ∈ T iff all of the following hold:

s = (Status, CP, V al, f), Status[k] = c and f(pk) =
tryCk

s′ = (Status′, CP ′, V al′, f ′), Status′[k] = c and
Status′[k′] = a for every k′ ∈ K \ {k}, CP ′ = ∅,
f ′(pk) =⊥ and f ′(pk′) = f(pk′) for every pk′ ∈ P \{pk}
V al′[k′][j] = V al[k][j] for every k′ ∈ K and every j ∈ J

• ∀k ∈ K, v ∈ V , (s,Ak, s′) ∈ T iff all of the following hold:

s = (Status, CP, V al, f), Status[k] = a and f(pk) 6=⊥
s′ = (Status′, CP ′, V al′, f ′), Status′[k] = c and
Status′[k′] = Status[k′] for every k′ ∈ K \ {k},
CP ′ = CP , f ′(pk) =⊥ and f ′(pk′) = f(pk′) for ev-
ery pk′ ∈ P \ {pk}
V al′ = V al

For illustration, Figure 15 depicts the states of automaton Fgp

when P = {p1}, X = {x}, and V = {0, 1}. Note that the
automaton of Figure 15 has no abort events, since process p1 has
no concurrent processes to it. Figure 16 depicts an example history
Hex of Fgp for three processes {p1, p2, p3} and two t-variables
{x, y}.

Theorem 3. The TM implementation represented by Fgp ensures
both opacity and global progress in any fault prone system.

Proof. Opacity. Consider any finite history H of Fgp. We complete
history H by aborting every transaction which is neither committed
nor aborted. We denote the resulting history by com(H).

Figure 15. Automaton Fgp for a single process p1 and a single binary
t-variable x. For simplicity, r stands for x.read1, w(1) for x.write1(1),
w(0) for x.write1(0), 1 for 11, 0 for 01, tryC for tryC1, and C for C1.
The automaton has the following states with s1 as the initial state:
s1 = (c, ∅, 0, f(p1) =⊥)
s2 = (c, {p1}, 0, f(p1) = x.write1(0))
s3 = (c, {p1}, 1, f(p1) = x.write1(1))
s4 = (c, {p1}, 0, f(p1) = x.read1)
s5 = (c, {p1}, 0, f(p1) = tryC1)
s6 = (c, {p1}, 1, f(p1) =⊥)
s7 = (c, {p1}, 0, f(p1) =⊥)
s8 = (c, {p1}, 1, f(p1) = x.read1)
s9 = (c, {p1}, 1, f(p1) = tryC1)

s10 = (c, ∅, 1, f(p1) =⊥)

p1
x.r→ 0

x.w(1)
C

y.r→ 0
A

p2
y.w(1)

A
y.r→ 1

x.r→ 1
C

p3
y.r→ 0

y.w(1)
C

Figure 16. A history Hex of the implementation Fgp for three processes
and two binary t-variables. For simplicity, x.r → v means that a process
reads value v from x, y.r → v means that a process reads value v from y,
x.w(v) means that a process writes value v to x, and y.w(v) means that a
process writes value v to y.

Let there be n commit events in history com(H). Denote as Ci

the i-th commit event in com(H). Let si = (Statusi, CPi, V ali, fi)
be a state of Fgp at which the i-th commit event was issued.
With each Ci we can associate a corresponding set of transactions
Tri = {T i

1 , . . . , T
i
|CPi|} such that every transaction T i

k ∈ Tri is a
transaction executed by process pk ∈ CPi when automaton Fgp is
at state si.

Consider the following sequential history Hs = Hs,1·. . .·Hs,n·
Hs,n+1, such that for each i ∈ {1, . . . , n}, Hs,i is formed by con-
catenating transactions Tri in a such way that Hs,i ends with the
i-th commit event. The suffix Hs,n+1 is formed by concatenating

9 2011/12/5

the rest of the transactions in com(H) which do not belong to any
Tri. Then, by definition, the sequential history Hs is equivalent to
com(H).

We now show that Hs preserves the real-time order of com(H).
Consider any two transactions T1 and T2 in com(H) such that
T1 <com(H) T2. Since T1 is committed there exists some Tri
such that T1 ∈ Tri. Because T1 ∈ Tri, T1 is a transaction in
subsequence Hs,i of sequential history Hs. Suppose there exists
some Tr′i such that T2 ∈ Tr′i, i.e. T2 is a transaction in Hs,i′ of
sequential history Hs. Since T1 <com(H) T2, then transactions T1

and T2 are not concurrent and i < i′. Thus, T1 <Hs T2. If there is
no Tri such that T2 ∈ Tri, then T2 is a transaction in subsequence
Hs,n+1 of sequential history Hs and therefore T1 <Hs T2.

To prove that in history Hs every transaction is legal, assume
that some transaction Ti is not legal. Since Ti is not legal, then for
some t-variable xj , visible(Ti) does not respect the semantics of
xj . In other words, within some transaction in visible(Ti) some
process pk is returned vk after a read from xj , while the value of xj

is not v. Since Hs is equivalent to com(H), then in the history H
process pk receives vk after invoking a read request on t-variable
xj whose value is v. However, by definition of Fgp, Fgp can only
return the value stored in V al[k][j] which is the value of xj seen
by process pk: a contradiction.

Global progress. By definition a TM implementation ensures
global progress iff in every infinite history H of the corresponding
automaton at least one correct process is not pending. Consider
any infinite history H of Fgp such that some processes are cor-
rect in H . Assume that all the correct processes are pending in
H . That is there exists some point in time, and correspondingly
a prefix H ′′ of H , after which every correct process will never
receive a commit event. Consider any prefix H ′ of H such that
H ′′ is a prefix of H ′ and H ′ takes the automaton to some state
s = (Status, CP, V al, f), where for every correct process pk we
have Status[k]k = c. Since after state s none of the correct pro-
cesses receives a commit event and every pk has Status[k]k = c,
then none of the processes ever invokes a commit request after s or
receives an abort event. Then, by definition, all the processes are
not correct: a contradiction.

7. Concluding Remarks
We propose a framework to formally reason about liveness proper-
ties of TMs and introduce the very notion of a TM-liveness prop-
erty. We prove in particular that in a system with faulty processes
(crashes or parasitic), local progress cannot be ensured together
with opacity, the safety property typically ensured by most TMs.
In other words, we cannot ensure starvation for all and consistency.
We presented this impossibility result in its direct and then general
form.

Local progress of transactional memory implementations is
analogous to wait-freedom in concurrent computing which is the
ultimate classical liveness property (for non-transactional objects)
in concurrent computing. Just like wait-freedom makes sure pro-
cesses do not wait for each other, local progress ensures that trans-
actions do not wait for each other. The fact that wait-freedom was
shown to be possible to implement led researchers to focus on how
to achieve it efficiently. The fact that local progress is impossible
to implement means that researchers have to find alternatives. We
pointed out a way to circumvent it by weakening a TM-liveness
property, requiring only progress of some processes. Other possi-
ble ways are weakening a safety property or assuming that a TM
implementation has control over the application employing the TM
implementation.

As we pointed out, this paper is a first step towards understand-
ing the liveness of TMs and many problems are open. It would be
interesting to determine precisely the strongest liveness property
that can be ensured by a TM as well as study the impact on the im-
possibility of reducing the number of possible faults that a TM can
face. Another possible direction for future work would be to gener-
alize the impossibility result even further by considering classes of
TM-liveness properties that guarantee progress for processes with
higher priority.

References
[1] Doherty, S., Groves, L., Luchangco, V., and Moir, M.: Towards formally

specifying and verifying transactional memory. REFINE, 2009.
[2] Imbs, D., Mendivil, J.R., and Raynal, M.: Brief announcement: virtual

world consistency: a new condition for STM systems. PODC, 2009.
[3] Harris, T., Larus, J. R., and Rajwar, R.: Transactional Memory, 2nd

edition. Morgan and Claypool, 2010.
[4] Herlihy, M., and Moss, J.E.B.: Transactional memory: Architectural

support for lock-free data structures. ISCA, 1993.
[5] Shavit, N., and Touitou, D.: Software transactional memory. PODC,

1995.
[6] Abadi, M., Birrell, A., Harris, T., and Isard, M.: Semantics of

transactional memory and automatic mutual exclusion. POPL, 2008.
[7] Jagannathan, S., Vitek, J., Welc, A., and Hosking, A.: A transactional

object calculus. Science of Computer Programming, 57(2):164186,
2005.

[8] Menon, V., Balensiefer, S., Shpeisman, T., AdlTabatabai, A.R., Hudson,
R. L., Saha, B., and Welc, A.: Practical weak-atomicity semantics for
Java STM. SPAA, 2008.

[9] Moore, K. F., and Grossman, D.: High-level small-step operational
semantics for transactions. POPL, 2008.

[10] Alpern, B., and Schneider, F.B.: Defining liveness. Inf. Process. Lett.,
21(4):181185, 1985.

[11] Herlihy, M.: Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124149, 1991.

[12] Fetzer, C.: Robust transactional memory and the multicore system
model. DISC09 workshop WTTM, 2009.

[13] Fraser, K.: Practical Lock-Freedom. PhD thesis, University of Cam-
bridge, 2003.

[14] Herlihy, M., Luchangco, V., Moir, M., and Scherer, W.N.: Software
transactional memory for dynamic-sized data structures. PODC, 2003.

[15] Dice, D., Shalev, O., and Shavit, N.: Transactional locking II. DISC,
2006.

[16] Dragojević, A., Guerraoui, R., and Kapałka, M.: Stretching transac-
tional memory. PLDI, 2009.

[17] Felber, P., Riegel, T. and Fetzer, C.: Dynamic performance tuning of
word-based software transactional memory. PPoPP, 2008.

[18] Guerraoui, R., and Kapałka, M.: Principles of Transactional Memory.
Morgan and Claypool, 2010.

[19] Papadimitriou, C. H.: The serializability of concurrent database
updates. Journal of the ACM, 26(4), pp. 631–653, 1979.

[20] Herlihy, M., Shavit, N.: On the nature of progress. DISC11 workshop
WTTM, 2011.

10 2011/12/5

