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Abstract
Bifurcated magnetohydrodynamic (MHD) tokamak equilibrium states with
axisymmetric or helical core structure are computed. When a peaked pressure
profile is chosen, the helical core structures appear like the snakes that are
observed in the JET tokamak. They also have the allure of saturated ideal
internal kinks. The existence of a magnetic island is not a requisite condition.
Novel equilibrium states that can model the snake are obtained for a JET
configuration when the q-profile has weak reversed magnetic shear with
minimum q values in the range 0.94 to 1.03. At the lower end of this qmin

range, the equilibrium snake structure lies radially well inside the domain for
which qmin � 1. Free boundary equilibria computed for the TCV tokamak
develop helical cores when βN exceeds 0.3 and have a significant axis excursion
for βN � 0.4. At fixed 〈β〉 = 1.6%, the distortion of the magnetic axis is
large in the range 0.95 � qmin � 1.01. The plasma–vacuum interface is not
significantly altered by the internal helical deformations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Internal three-dimensional (3D) structures have been extensively observed in tokamak devices
and are generally attributed to magnetohydrodynamic (MHD) instability. Many of these can
exist for very long times, even for almost a whole discharge. Among such examples are the
snakes in JET [1, 2], Tore Supra [3] and other machines, the continuous modes that persist
in TCV well after the disappearance of sawteeth [4, 5], the long-lived modes in MAST [6],
the saturated ideal internal kinks in NSTX [7] and the change of sawteeth from kink-like to
quasi-interchange-like in DIII-D [8]. Another important development is the single helical axis
(SHAx) configurations obtained in the RFX-mode reversed field pinch [9]. It is our contention
that these represent essentially the same physical phenomenon and in this work we explore
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the proposition that the ‘instability’ structures observed in the experiments we have alluded to
constitute in reality novel equilibrium states with 3D character.

Investigations of nonlinearly saturated m = 1, n = 1 ideal internal kinks have been
pursued both analytically [10–12] and numerically with the application of large scale,
computationally intensive codes [13–15]. Bifurcated equilibrium states in tokamaks were first
obtained by adding a forcing term to the second variation of an energy principle, then removing
it to get a static solution with perturbations around rational surfaces that were interpreted as
indications of the formation of magnetic islands [16]. More global structures like the SHAx
equilibria were computed with the application of the VMEC code [17, 18] in the reversed
field pinch RFX-mod with seven-fold toroidally periodic structures [19]. In tokamak systems
with an imposed axisymmetric boundary, internal helical equilibrium states similar to saturated
ideal m = 1, n = 1 kink modes have been calculated using the ANIMEC code [20], a modified
version of the VMEC code [18], in model configurations of the TCV tokamak [21], ITER [22],
MAST [23] and JET [24]. In this paper, we extend the work in [24] to yield more detailed
information about the simulation of snake-like equilibria in JET and we present initial free
boundary computations that model bifurcated equilibrium states in the TCV tokamak.

In section 2, we outline a brief review of 3D toroidal MHD equilibrium theory. In section 3,
we investigate fixed boundary JET equilibria with peaked pressure profile to simulate snake
conditions. In section 4, we identify a coil configuration current set that is predicted to lead to
free boundary bifurcated equilibria in the TCV tokamak. Finally, a conclusion and discussion
section outlines the main results of this paper.

2. 3D MHD equilibrium theory

The determination of the MHD equilibrium in 3D magnetic confinement systems is treated
such that nested magnetic flux surfaces are imposed. Thus magnetic islands and stochastic
regions are excluded from consideration. The energy W of the system is defined as

W =
∫ ∫ ∫

d3x

(
B2

2µ0
+

p||
� − 1

)
, (1)

and we solve the inverse equilibrium problem, namely we determine R = R(s, u, v) and
Z = Z(s, u, v), where 0 � s � 1 is the radial variable corresponding to the normalized
enclosed toroidal magnetic flux, 0 � u � 2π is the poloidal angle and 0 � v � 2π/L is the
toroidal angle in which L is the number of field periods. We vary the energy with respect to
an artificial time parameter t conserving the plasma mass and the magnetic fluxes. This leads
to an equation of the form

dW

dt
= −

∫ ∫ ∫
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∂R
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∂λ
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−
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du dv

[
R

(
p⊥ +
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2µ0

)(
∂R

∂u

∂Z

∂t
− ∂Z

∂u

∂R

∂t

)]
. (2)

The last term corresponds to the forces that move the plasma–vacuum interface (by definition
it vanishes in fixed boundary calculations). Note that by choosing ∂R/∂t = FR , ∂Z/∂t = FZ

and ∂λ/∂t = Fλ, the equation acquires negative definite form and is thus amenable to solution
by minimization techniques. The vanishing of Fλ corresponds to the condition of current
lines lying on flux surfaces. The components FR and FZ can be shown to correspond to the
projections

√
g∇v × ∇Z · F and

√
g∇R × ∇v · F of the force F = −∇ · P + j × B.

The pressure tensor P is chosen in the form [25] P = p⊥I + (p‖ − p⊥)bb where p‖(p⊥) is
the pressure parallel (perpendicular) to the magnetic field lines, b = B/B is the unit vector
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along the magnetic field lines, I is the identity matrix and
√

g is the Jacobian. The binormal
force projection

√
gB × ∇s · F /B2 = −Fλ, where λ is the poloidal angle renormalization

parameter [17]. Fourier decomposition in the periodic angular variables u and v together with a
special finite difference scheme for the radial discretization is applied. An accelerated steepest
descent energy minimization method is invoked with matrix preconditioning to iteratively
obtain the equilibrium state [17, 18]. The radial force balance equation is employed as a
diagnostic for the quality of the equilibrium state that is attained. This is given by〈

Fs

�′(s)

〉
= −

〈
1

�′(s)
∂p‖
∂s

∣∣∣∣
B

〉
− ∂

∂s

〈
σBv√

g

〉
− ι(s)

∂

∂s

〈
σBu√

g

〉
, (3)

where the toroidal magnetic flux function is �, prime (′) indicates the derivative of a flux
surface quantity with respect to s, 〈· · ·〉 denotes a flux surface average, p‖ simplifies to the
thermal pressure p(s) for the calculations performed in this work which leads to σ = 1/µ0.
The rotational transform is ι(s) = 1/q, Bu and Bv are the poloidal and toroidal magnetic
fields in the covariant representation, respectively, and Fs is the radial force (in covariant
representation). This model is implemented in the ANIMEC code [20].

3. Simulations of JET snake equilibria

The standard description of the snake relies on pellet material ablated in the interior of a q = 1
island that is partially maintained by an influx of impurities and improved local confinement
that increases the density [26]. There are, however, some consistency problems with this model.
In the experiments, snakes survive sawtooth events [1, 2] that would presumably remove the
q = 1 rational surface from the plasma. Furthermore, in Tore Supra, the snake radius is
considerably smaller than that of the q = 1 island [3]. These observations make it difficult
to reconcile the existence of the snake within the confines of the q = 1 magnetic island. We
propose an alternative description associated with the development of a novel equilibrium state
with the allure of a saturated ideal m = 1, n = 1 internal kink. These type of kink modes
have been shown to be nonresonantly destabilized in a circular axisymmetric tokamak when
the value of qmin is in the range of unity to 1.014 [27]. We shall discuss our perspective for
snake formation later in this text.

The boundary of JET is described by Rb = R0 + a cos(θ + δ sin θ) and Zb = Ea sin θ

with R0 = 2.96 m, a = 1.25 m, E = 1.68 and δ = 0.3. For the calculations we undertake, the
boundary remains fixed. We choose as input the plasma mass and the toroidal current profile.
The resulting pressure profile has an edge pedestal (typical of H-mode tokamak operation)
and is peaked on axis. The toroidal current profile corresponds to piecewise continuously
differentiable polynomials, namely a quadratic function with respect to s in the centre of
the plasma, a cubic function near mid-radius and a linear function towards the edge of the
plasma [28]. The resulting q-profiles for the cases considered with different toroidal currents
are shown in figure 1. Here 2πJ denotes the total toroidal current.

In the range of toroidal currents 2πJ = 3.77 MA to 4.05 MA, the minimum value of q

(qmin) drops from∼1.025 to∼0.945. In this domain, we obtain bifurcated equilibrium solutions
with the ANIMEC code. The local minimum energy solution obtained depends on the initial
guess provided for the position of the magnetic axis. A sufficiently helically deformed initial
value evolves towards the helical core branch result. Otherwise, the axisymmetric branch
ensues. Examining the pressure distribution at the midplane as a function of R and v, we
see that at high current a small snake structure distinctly emerges. It becomes significantly
larger and more extended when qmin is in the neighbourhood of unity and decreases in size
again when qmin approaches 1.02 as demonstrated in figure 2. The case with toroidal current
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Figure 1. The inverse rotational transform q-profiles that encompass the domain for which
bifurcated solutions of the MHD equilibrium state are realized as a function of

√
s in JET.

Figure 2. The pressure distribution (multiplied by µ0) in JET as a function of R and v at the
midplane for 2πJ = 3.77 MA, qmin 	 1.023 (left), for 2πJ = 3.95 MA, qmin 	 0.995 (middle)
and for 2πJ = 4.07 MA, qmin 	 0.945 (right). The pressure thus is given in units of pascals times
µ0 = 4π × 10−7 H/m, the permeability of free space.

2πJ = 4.07 MA which corresponds to qmin 	 0.945 merits particular interest. In figure 3, we
superimpose the rotational transform 1/q and the pressure (multiplied by 5µ0) distributions at
the plasma midplane as functions of R and v. In addition, we plot a cut of the q = 1 plane in
this domain. This clearly shows that the pressure distortion (the darker red surface) lies radially
inside the range for which q � 1 (the lighter orange surface). We assert that this is consistent
with the observations of the snake location with respect to the q = 1 surface position reported
on Tore Supra [3].

The fractional energy difference between the helical branch solution and its axisymmetric
counterpart is very small, only a fraction of a per cent, even smaller than 〈β〉 	 2.3% in the
case examined. At higher currents (2πJ = 3.93 MA) where qmin < 1, the helical branch has
slightly lower energy. The converse holds when qmin � 1. This is displayed in figure 4. The
helical excursion of the magnetic axis δH is plotted as a function of qmin in figure 5 which
shows bifurcated equilibrium solutions in the range 0.94 < qmin < 1.03 with a maximum
distortion that occurs at qmin slightly below unity. We have also performed a linear ideal MHD
stability analysis of the axisymmetric branch solutions with the TERPSICHORE code [29].
The growth rates (multiplied by a factor of 10 for graphical convenience) as a function of qmin

are also shown in this figure and their magnitudes align very well with the axis deformation
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Figure 3. The pressure distribution (dark red in the core) and the ι = 1/q distribution in JET as
functions of R and v at the midplane for the case with 2πJ = 4.07 MA and qmin 	 0.945. The
darker plane that cuts the pressure and ι surfaces corresponds to q = 1. The pressure deformation
(in dark red) is localized radially well inside the domain for which q � 1 (in orange). Note that
we have multiplied the pressure by 5µ0.

Figure 4. The fractional energy difference between the helical and axisymmetric bifurcated branch
solutions in JET as a function of the toroidal plasma current.

δH of the helical branch solutions, particularly when qmin > 1. The growth rates remain finite
for qmin < 0.94 due to the persistence of the internal kink mode [30].

4. Free boundary TCV equilibrium states

Free boundary calculations of MHD equilibria for the TCV tokamak require the determination
of the vacuum magnetic fields in the configuration. To achieve this, the current in the toroidal
and poloidal field (PF) coils must be specified. We model each of the 16 toroidal coils with a
single filament carrying a current of 358 kA. The 16 PF coils, which are closer to the plasma,
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Figure 5. The helical axis excursion δH for the helical branch bifurcated equilibrium solution, the
excursion of the axis for the axisymmetric branch δaxi (by definition vanishing) and the linear ideal
growth rate of the internal kink mode in the axisymmetric branch (×10) as functions of qmin in
JET. δH ≡ √

(R2
01 + Z2

01)/a, where R01(Z01) is the m = 0, n = 1 Fourier component of R(Z) and
a is the minor radius.

Figure 6. The TCV PF coils, vacuum vessel and pressure contours of the helical solution of a
bifurcated equilibrium state that encompasses half of a toroidal transit.

are modelled with 4 filaments each. The inner PF coils above the midplane have currents of
−60 kA, −40 kA, −8 kA and 167 kA from top to bottom, respectively. The corresponding
outer PF coil currents are 40 kA, 48 kA, 52 kA and 64 kA from top to bottom. We consider
up–down symmetric plasma configurations, thus the PF coil currents specified are reflected
about the midplane for the set in the lower half of the torus. The Biot–Savart law is applied
to obtain the vacuum magnetic fields from this ensemble of current filaments. Figure 6 shows
the PF coils, the vacuum vessel and the pressure surfaces of a bifurcated free boundary TCV
equilibrium solution covering half the torus.

We have prescribed the pressure with the nearly parabolic profile p(s) = p(0)(1− s)(1−
s4). The toroidal current profile is prescribed as

2πJ ′(s) = 0.98 + 5.168s − 67.464s2 + 440.42s3 − 1391.7s4 + 2146.5s5 − 1582.1s6

+ 448.27s7,
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Figure 7. The toroidal current profile that is prescribed for TCV equilibrium computations as a
function of

√
s.

Figure 8. The inverse rotational transform q-profiles at 〈β〉 = 0.55% and 〈β〉 = 1.1% as a function
of

√
s in the TCV bifurcated equilibrium calculations.

and is displayed in figure 7. It is preferable to use the toroidal current rather than the q-profile
to avoid unphysical reversed edge currents. The resulting q-profiles at 〈β〉 = 0.55% and at
〈β〉 = 1.1% are plotted in figure 8. Only small differences are apparent mainly near the edge
of the plasma.

At 〈β〉 = 0.55%, the bifurcated solution branches merge and the plasma is basically
axisymmetric. However, at 〈β〉 = 1.1%, two distinct solutions emerge. The pressure
distribution for the virtually axisymmetric solution at 〈β〉 = 0.55% and that of the helical
branch at 〈β〉 = 1.1% are displayed in figure 9 at 4 cross sections covering half of a toroidal
transit with toroidal angles v = 0, π/3, 2π/3 and π , respectively.

The pressure distribution (µ0p) as a function of R and v at the midplane for 〈β〉 = 0.55%,
〈β〉 = 0.9% and 〈β〉 = 1.6% is presented in figure 10.

The corresponding values of βN = 〈β〉aBt/It (where Bt is the toroidal magnetic field,
It = 2πJ (s = 1) is the toroidal plasma current) are βN = 0.33, 0.54 and 0.98, respectively.

7
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Figure 9. Contours of constant pressure at the cross sections with toroidal angle v = 0, v = π/3,
v = 2π/3 and v = π (columns from left to right) for the axisymmetric branch solution at
〈β〉 = 0.55% (top row) and for the helical branch equilibrium solution at 〈β〉 = 1.1% (bottom
row), where R and Z are expressed in metres.

Figure 10. The pressure distribution µ0p at the midplane as a function of R and v at 〈β〉 = 0.55%
(left), at 〈β〉 = 0.9% (middle) and at 〈β〉 = 1.6% (right).

This figure shows an incipient deformation of the plasma core at βN = 0.33, which becomes
much more significant at βN = 0.54 and resembles a strong snake structure at βN = 0.98. One
important point to note here is that the helical distortions remain concentrated in the internal
part of the plasma. The wiggles near the plasma–vacuum interface can be wholly attributed to
the ripple induced by the discreteness of the toroidal field coils.

In figure 11, we quantify the helical excursion of the magnetic axis of the TCV helical
branch solutions we have computed in free boundary with the variation of 〈β〉 by plotting
δH as a function of βN. It shows that the helical branch develops at βN ∼ 0.3, that the axis
distortion grows to about 60% of the minor radius at βN ∼ 0.8 and saturates for higher βN.
At nearly constant 〈β〉 = 1.6%, we show the variation of δH with respect to qmin in figure 12.
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Figure 11. The magnetic axis helical distortion parameter δH as a function of βN with toroidal
current 2πJ = 488 kA.

Figure 12. The magnetic axis helical distortion parameter δH as a function of qmin at βN = 0.98.
The toroidal current varies from 475 to 500 kA.

A helical deformation of the axis in excess of 10% of the minor radius develops in the range
0.95 � qmin � 1.01. Only the axisymmetric branch solution exists for qmin > 1.025. However,
a weak helical distortion of the magnetic axis persists for qmin < 0.95.

5. Conclusions and discussion

Three-dimensional bifurcated equilibrium states with helical core structures have been
computed in a fixed boundary JET configuration that can model the snakes observed in the
experiment and a free boundary TCV configuration has been identified that is susceptible to
develop internal helical equilibrium structures that could describe the continuous n = 1 mode
that is observed [4, 5]. The basic condition for helical deformation is a weak reversed core
magnetic shear with a value of qmin in the neighbourhood of unity located around or beyond
mid-radius. Furthermore, finite 〈β〉 facilitates the formation and enhances the magnitude of
the internal excursion of the magnetic axis.

9
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Two equilibrium solutions are obtained in the range 0.94 < qmin < 1.03 for the JET
configuration investigated. The axisymmetric branch is shown to be unstable to a m = 1, n = 1
internal kink mode with a linear growth rate that is consistent with the size of the excursion
of the magnetic axis in the helical branch, particularly when qmin > 0.96 (the internal kink
remains unstable for qmin < 0.94). The energy differential between the two branches is very
small, only fractions of a per cent. Nevertheless, when qmin < 1, the helical branch has slightly
lower energy than its axisymmetric twin. The converse holds when qmin > 1. We propose
that the snake structures observed in JET can be represented by he bifurcated equilibrium we
have developed. In this scenario, a peaked pressure is formed on axis by the accumulation of
impurities or pellet material which cools the centre of the plasma causing the current channel to
become displaced radially outwards. This generates the reversed shear conditions under which
the bifurcation takes place. As the range of qmin can exceed unity, our model would be robust
to sawtooth events which are observed in the experiment. Furthermore, we have demonstrated
that the snake formation at the low end of the qmin range (qmin ∼ 0.94) concentrates
well inside the region for which qmin � 1. This could explain the observations on Tore
Supra [3].

The free boundary TCV equilibrium states computed with a 3D helical core also display
features that look like a snake when we impose a pressure profile that is more peaked than
that in the continuous n = 1 mode that is observed [4, 5]. For low 〈β〉 (βN < 0.3), only the
axisymmetric branch appears. A bifurcation occurs around βN = 0.3 and the excursion of the
magnetic axis can exceed half the minor radius when βN reaches 0.7, after which it saturates.
At 〈β〉 = 1.6%, the 3D helical core is large in the range 0.95 < qmin < 1.01. A weak helical
state persits for qmin < 0.95. The helical structure is strictly internal and does not significantly
alter the plasma boundary which is more sensitive to the ripple induced by the discrete toroidal
coils in these free boundary calculations.

The emissivity from peaked profiles can highlight the internal structures that are detected.
Snakes could thus be investigated in more detail with a wider range of diagnostics than that of
the continuous modes reported on TCV [4, 5]. We contend that the snakes observed on JET,
Tore Supra and other machines represent essentially the same physical phenomenon as the
TCV continuous modes, the MAST long-lived modes or the NSTX saturated internal kinks.
Therefore, for a successful experimental programme, we could envision (1) off-axis electron
cyclotron heating and current drive with and without Ohmic current ramp-up to generate the
necessary q-profile and 〈β〉 that could lead to a 3D helical core structure, (2) injection of
Ar impurities to trigger the snake, (3) repetitive current ramp-up and ramp-down to have
qmin appear and disappear in a discharge, specifically to move throughout the predicted range
for helical deformations to be triggered or removed, and (4) diagnostics like soft and hard
x-ray detectors located at different toroidal positions in an attempt to measure snakes, as well
as new real time control procedures to optimize the trajectories to quickly identify the best
options [31].

The driving motivation for these studies is the susceptibility of ITER hybrid scenario
configurations [32, 33] to develop 3D internal helical cores [22]. The confinement of
α-particles within the helical core domain constitutes an issue of real practical importance.
The structures we compute do not allow the magnetic field lines to break, precluding the
simulation of the dynamics of islands and stochastic regions. The formation of a magnetic
island could be very relevant when qmin < 1, but not for hybrid scenario conditions where
qmin � 1. It is conceivable that an equilibrium state with a q = 1 island has a lower energy than
the ideal configuration we calculate. For this purpose, more general equilibrium and stability
codes, which are much more time consuming, would be required to assess whether equilibrium
structures linked to saturated tearing modes are likely to be formed [14, 15, 34–37].

10
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