Turbulent transport of fast ions in the simple magnetized torus

Kyle Gustafson
Alexandre Bovet
Ambrogio Fasoli
Ivo Furno
Paolo Ricci

Centre de Recherches en Physique des Plasmas (CRPP)
École Polytechnique Fédérale de Lausanne
Switzerland
Simple magnetized torus (SMT)

• Our inspiration is the TORPEX SMT at CRPP
TORPEX turbulence in drift-wave, ideal-interchange and resistive-interchange modes
Ideal interchange mode in SMT: \(k_\parallel \equiv 0 \)

Mode (coherent) and blob (intermittent) regions
Injection of fast ions in center of the box
Using full Lorentz force: no drift approximation
Amplitude of fluctuations \(\xi : \Phi = \Phi_0 + \xi \tilde{\Phi} \)
Fast ions in SMT turbulence

TORPEX is equipped with a Li$^{+6}$ source at $\mathcal{E} = 100 – 1000$ eV

Our goal is to establish a comprehensive theoretical framework for understanding dispersion of the fast ions in SMT ideal-interchange mode turbulence, including TORPEX.
SMT (a) versus slab (b) fast ions

Drift approximation

- Curvature and ∇B drift

$$\mathbf{v}_{SMT} = \frac{1}{r} \left(\frac{v_\bot^2}{2} + v_\parallel^2 \right) \frac{\hat{z}}{\Omega_L}$$

- Larmor motion defining a gyrocenter

$$\mathbf{v}_{E \times B} = \frac{\mathbf{E} \times \mathbf{B}}{B^2} = \frac{E_r}{B} \hat{z} - \frac{E_z}{B} \hat{r}$$

$$\langle \mathbf{v}_{E \times B} \rangle_R = \frac{1}{2\pi} \int \mathbf{v}_{E \times B} (R - \rho) d\theta$$

$E_2 > E_1$
Phases of dispersion for SMT

\[\sigma^2 \equiv \left\langle (\delta x - \langle \delta x \rangle)^2 \right\rangle \propto t^\gamma \quad \delta x \equiv x - x_0 \]

I. Short ballistic phase
\[\gamma \sim 2 \]

II. Intermediate phase:
\[\gamma > 1 \text{ if } \mathcal{E} < 50 \]
\[\gamma < 1 \text{ if } \mathcal{E} > 50 \]

III. Slow transition to asymptotic phase:
\[\gamma \sim 1 \]
Ballistic phase for gyrocenters

\[\frac{|v_{0,\perp}|}{|\Delta v_{\perp}|} \sim 1 \]

\[\Delta v_{\perp} \equiv v_{\perp}(\tau_{ba}) - v_{0,\perp} \]

\[\tau_{ba} \sim \frac{\lambda_c}{2\pi v_{SMT}} \]

\[\tau_{ba} \sim \frac{\lambda_c}{2\pi \langle v_E \times B \rangle_R} \]
As the turbulence amplitude, ξ, is increased post hoc, the estimate for τ_{ba} is bounded from above at small ξ by the Eulerian correlation time: $\tau_{ba} \sim \tau_c$
γ scan in ξ and \mathcal{E} for SMT

Superdiffusion at low \mathcal{E} due to large step sizes in the coherent mode region

Subdiffusion at large injection energy in SMT due to curvature drift, which causes radial trapping at the $t_r > 4t_z$ boundary

Larmor averaging causes diffusion for large ξ

Small ξ results in slow radial transport due to disconnected topology

Colors: value of γ for scan in injection energy \mathcal{E} and turbulent amplitude ξ.
\(\gamma \) scan in \(\xi \) and \(\mathcal{E} \) for slab

Superdiffusion for low \(\mathcal{E} \)

Increased Larmor averaging causes diffusion, but never subdiffusion

Small \(\xi \) results show slow radial transport due to disconnected topology

Colors: value of \(\gamma \) for scan in injection energy \(\mathcal{E} \) and turbulent amplitude \(\xi \).
Prediction for TORPEX

- Measurement limited by:
 - toroidal resolution of detector
 - boundaries of TORPEX

- Requires an injection energy large enough for a significant curvature drift, but not so large that the population is lost to the boundaries.

\[\gamma \sim 2 \]
\[\gamma \sim 0.6 \]
Radial spreading due to plasma is consistent with simulations.

Measurement of γ in ballistic and subdiffusive phases will be accessible with new toroidal sliding rail.

First measurements: single time point

<table>
<thead>
<tr>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B field, no plasma

B field + plasma
Conclusions

• We have established a framework for interpreting fast ion data in simple magnetized torii and related experiments.

• We showed the interplay of some fundamental influences on transport:
 – Turbulent ExB drifts with gyroaveraging
 – Curvature and ∇B drifts perpendicular to pressure gradient

• Experimental comparisons are encouraging and will advance soon.