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Abstract—In this work, we consider a general form of noisy matrix A due to, e.g., imperfections in the signal acquisition

compressive sensing (CS) when there is uncertainty in the hardware, model mismatch, parameter discretization, tret o
measurement matrix as well as in the measurements. Matrix factors

uncertainty is motivated by practical cases in which there are Several authors have analvzed the impact of measurement-
imperfections or unknown calibration parameters in the signal y p

acquisition hardware. While previous work has focused on Matrix uncertainty on existing CS algorithms, e.g., Herman
analyzing and extending classical CS algorithms like the LASSO and Strohmer [2], Herman and Needell [3], and Chi, Pezeshki,
and Dantzig selector for this problem setting, we propose a new Scharf, and Calderbank [4]. Herman et al. analyze the effect
algorithm whose goal is either minimization of mean-squared ot aqgitive perturbations on the Basis Pursuit and CoSaMP
error or maximization of posterior probability in the presence lqorith tivel h Chi et al I therif

of these uncertainties. In particular, we extend the Approxi- algon _ms, reSPeC IVely, W grea_ls '(_3 a.. analyze _E
mate Message Passing (AMP) approach originally proposed by 0N Basis Pursuit, of a multiplicative basis mismatch matrat
Donoho, Maleki, and Montanari, and recently generalized by takes the form of the identity matrix plus a perturbation. In
Rangan, to the case of probabilistic uncertainties in the elements [2]—[4], the authors study the worst-case effects on eistadxdi

of the rr?eas:cjrement matrix.l Egnpirigall;\//,v "‘;ﬁ Shor‘:" tht";‘]t tour algorithms, but stop short of proposing new algorithms.
approach performs near oracle bounds. We then show that our : -
matrix-uncertain AMP can be applied in an alternating fashion to We are aware of only "." few alg.orlthms that. e>§pI|C|tIy
learn both the unknown measurement matrix and signal vector. address measurement-matrix uncertainty, all of whichicens
We also present a simple analysis showing that, for suitably large the additive uncertainty model = A+ E, whereA is known
systems, it suffices to treat uniform matrix uncertainty as additve and E is an unknown perturbation, yielding the observations

white Gaussian noise. o
y=(A+E)x+w. )

l. INTRODUCTION In [5], Zhu et al. develop the Sparsity-cognizant Total lteas

In compressive sensing (CS), the goal is to reconstruefluares (S-TLS) approach, which extends the classical TLS
an N-dimensional signate from M < N linear measure- approach (widely applied in the context 6f regularization)
mentsy = Az + w, where w is additive noise. In the t0 {1 regularization, yielding
n_0|sele_ss case, it is by now well known that, when the {#s11s Estis) =
signal is exactlyK-sparse and the measurement matAx
satisfies certain properties (e.g., restricted isometrly,space,
]?r sp](a;kl (',; ;lpo]s\?lt;e to_exactly r(:cons_truct rhe S'_gfl‘ﬂ# [6], Rosenbaum and Tsybakov propose the MU-Selector, a
rom n ( 08 /K) measurements using po ynomialiy, 5 gified version of the Dantzig selector [7], which reads
complexity algorithms (e.g., greedy or convex-optimiaati
based). Moreover, these methods can accurately reconteuc  {Zmu-selectott =

: ; . . ; : . N )
signal in the noisy case, even when the signal is compressibl argmin |21 s. t. A" (y — Az)|ee < Mzl +e  (3)
rather than exactly sparse (e.g., [1]). x

These results are, however, predicated on knowing the m&&e above criteria assume relatively little about the stmec
surement matrixA perfectly. In practical applications of CS, itof the perturbationss and E, and thus obtain algorithms with
is reasonable to expect uncertainty in the linear measuremeide applicability, but—as we shall see—limited performance

In [5], Zhu et al. also proposed a Weighted S-TLS (WS-TLS)
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Maleki, and Montanari [8]—and in particular the GeneralizeflL0], GAMP, etc.) suffice, so long as they are properly tuned
AMP (GAMP) proposed by Rangan [9]—to the case dfo handle the additional AWGN power.

probabilistic uncertainty on the elements of the measunéme Now, whether or not the large-system behavior predicted by
matrix A. Initially, we treat the entries ofA as independent Proposition 2.1 manifests at a givénite (M, N, K) depends
random variables that are known only in mean and variane® the distribution of i.i.d{E,,,} and the sparsityK. If
which can both vary across the entries. The resulting MatriX£,,,, } are far from Gaussian (e.g., sparse) @ndk relatively
Uncertain GAMP (MU-GAMP) provides a computationallysmall, the distribution of e,,,} can be far from Gaussian. On
efficient way to obtain nearly minimum-mean-squared-errdhhe other hand, if E,,,} is Gaussian, theam,, will also be
(MMSE) estimates of the unknown signalin the presence Gaussian, for anyx.

of uncertainties in both the linear matrix transformatidras Although, to our knowledge, Proposition 2.1 is novel, the
well as the observations of the transformed outpdis. empirical results in previous works support its claim; seg,,

We then turn our attention to parametric matrices of thbe negligible difference between optimally-tuned vensiof
form A(0) = Ao + 25:1 0,A,, where{A,} are known S-TLS and LASSO under i.i.d Gaussidh in [5, Fig. 3]. In
and® = [0,...,0p]" unknown. We then propose a schemé&ection IlI-C, we will provide further empirical evidencerf
that alternates between the estimatiorfadnd the estimation our claim.
of . Conveniently, both estimation steps can be perfor_med . M ATRIX-UNCERTAIN GAMP
using the already developed MU-GAMP framework. A salient
feature of this approach is that we alternate soft estimases” Background on GAMP
opposed to point estimates. In the Bayesian approach to compressed sensing, it is

Throughout the paper, we use boldface capital letters typically presumed that the signal is drawn from a known
denote matrices and boldface small letters to denote \&ctgieparable pdip(z) = [[, px(z,), where px(.) promotes
I and 0 to denote the identity matrix and zero matricég]  sparsity or compressibility. Similarly, the noige is drawn
transpose, an@-)* conjugate. Forr; a realization of random from a known separable pdf(w) = [],, pw(w,). Given
variable X;, we useEx, {z;} to denote meanyarx, {z;} the observationgy = Az + w, one would ideally like to
variancepx; (z;) the pdf, andpx,|p, (z; | d;) the pdf condi- compute the full joint posteriop(x |y). This is, however,
tioned onD; =d;, and sometimes we omit the subscript wheRot tractable for the pdfs and problem dimensions typical in
there is no danger of confusion. To denote the Gaussian g@mpressed sensing. Thus, one often settles for appraximat
with meanz and variance/®, we useN (z; &, v°). MAP or MMSE estimates.

The original AMP algorithm [8] assumes Laplaciag (.)
and Gaussiapy (.), and seeks the MAP solution using an ap-

Before getting into the details of MU-GAMP, we make groximation of loopy belief propagation. The approximatio
curious observation: As the problem dimensions grow larg&hich becomes tight in the large-system limit, is based @n th
the effect ofuniformmatrix uncertainty is identical to additive CLT and Taylor-series expansions, and relies on the element
white Gaussian noise (AWGN) on the observations. Thgf A to be known realizations of an independent zero-mean

II. ALARGE-SYSTEM BLESSING?

following proposition makes our claim precise. 1/M-variance random variable.
Proposition 2.1: Consider an)/-dimensional observation Rangan proposed a Generalized AMP (GAMP) [9] that 1)
of the form in (1), written equivalently as handles either MAP or MMSE, 2) allows arbitrary,,,,,, 3)
y=Az+e+w for e? Ex. 4) allows an arbitrary signal distributiopx (.), and 4) allows

an arbitrary separable pdi(y|z) = [[,,pv|zUm|zm)
Suppose thalV-dimensionalr is K-sparse, and that the matrixrelating the observationg to the linearly transformed outputs
uncertainty E is uniform, i.e., {FE,,,} are i.i.d zero-mean z £ Az. This observation-uncertainty model subsumes the
random variables with variance? = ¢£/M for bounded case of additive noise with arbitrary distributionpyy (.) via
positivec” (but otherwise arbitrary distribution). In the largey |z (Ym | 2m) = pw (ym — zm), but also handles nonlinear
system limit (i.e.,M, N, K — oo with fixed 6§ £ M/N and output transformations like that used in logistic regressi

p = K/M), the additive perturbatior becomes i.i.d zero- B. Matrix-Uncertain GAMP

mean Gaussian with varianeé = c¥5~1||z||3/N. _ _
Proof: Since the rows off are statistically independent, W& now propose a Matrix-Uncertain GAMP (MU-GAMP)

the elements{e,,} of e are independent as well. Moreoverthat extends GAMP [9] to the case of uncertainty in the
em = ZkK—l Erpn(k)Tn(k)» Wheren(k) indexes thek! non- measurement matrid. Unlike GAMP, which treats{A,,,, }
zero element ofe. Thus, in the large-system limit (i.efy — @S fixed and known, MU-GAMP treafsd,.,, } as independent

0), the central limit theorem implies that,, is zero-mean random variables with known mean and variance,
Gaussian with variance® = u?“a:”% = c?é—l\\w\\g/N. [ ] A = E{Apn} (5)
The implication of Proposition 2.1 is that, for problems A
i ) ! . ) . v =var{Ann.} (6)
of uniform matrix uncertainty anduitably large dimension, mmn ’
there is no need to design new algorithms that handle matreducing to GAMP in the case thaf!, = 0. Note that, with

uncertainty; those designed to handle AWGN (e.g., LASS® £ A — A, we recover exactly the perturbation modél=



definitions: JO pdf. We also ran the original GAMP under the same signal
pay (2ly; 2,07) = fp;;‘zz(m)ﬁ;z”z )m (01)| prior and the compensated AWGN variancé + v, for
- - : GTEvE) N eyt
gout(y, 2,07) = %(EZ‘Y{ZW;% l,:} —2) (D2) ye_var{em}_Ku . We then ran S-TLS, thg MU—SeIector.,
G2 v7) = L M,l) (o3| and LASSO (via SpaRSA [11]), each debiased and with
pxiylaly;fvm) = BN (D4) “genie-aided” tuning: for each realization, each algaritivas
UL e px@ON @) run under several values of its tuning parameter, and thegun
gn(Fv7) = [7 e pxylaly: 07 (ps)| N UNAer se 9p
gL v7) = 2 [z — gn(F, 072 px y(@ly; 7, vT)  (D6) yielding minimal NMSE was selected.
initialize:
Vn:in(l) = fIIPX(I) (12) s ‘ ‘
Vn:vi(l) = [, |z —&n(1)px(2) (12) o e
Vm ;i (0) = (13) X v setecor
fort=1,2,3,... N T et orsde
Ym : Zm(t) = Zg:1 A[nnin(t) (Rl) o - = = support oracle
Ym g (t) = > | Apn | 202 (1) (R2a), N
Vm o vh,(t) = vz () + SN vA L (v +1Ea(t)]?)  (R2b) g
Vm : pm(t) = Em(t) — vy (8) am(t — 1) (R3) Wl v N
Vm () = gout(ym, Bm (£), vin (1)) (R4) 0 RN
vm v (t) = _géut(yvapm(t)vng(t)zl (R5) S
V() = (Xnoy [Amal?vg (1) (R6)
Vi o (t) = @n(t) + vh(t) Sonl_q Afn tim () (R7)
Vn o vp (1) = v (g, (Fa(t), v (1)) (R8) T
an En(t+1) = gin(Pn(t), v (1)) (R9) ol Yemmel
end T
45l . . . . . LT e o’
TABLE | 01 02 03 0.4 \;7]\' 0.6 0.7 0.8 0.9
THE MU-GAMP ALGORITHM M
Fig. 1. 10-trial median NMSE under uniform matrix error variane& .

A + E used in (1), but now with the implicit assumption that Figure 1 shows the resulting NMSE performance of each
B, has zero mean and varianeg,,. algorithm, as well as that of two oracle estimators: support
Due to lack of space, we are unable to provide a derivatieware LMMSE, and support-an-aware LMMSE. We note
of MU-GAMP here, but we note that the approximations othat, under a Bernoulli-Gaussian signal pdf, the NMSEs of
which it is based (and the notation we use to summarize €AMP and MU-GAMP are lower bounded by these respective
are the same as those used for standard GAMP. The result@figcles. The figure shows that GAMP and MU-GAMP yield

algorithm is given in Table 1,where the only difference from essentially identical NMSE, and that fae//N > 0.3, this

the original GAMP is the additional step (R2b). With thispste NMSE essentially coincides with the support-oracle bound.
MU-GAMP requires an additional matrix multiply, althoughMeanwhile, the debiased and genie-tuned incarnations of S-
the cost of this multiplication may be reduced whef, is TLS, the MU-Selector, and LASSO show performance that is
structured. For example, whery!, = v4 vn, the matrix only slightly worse than GAMP and MU-GAMP fak//N >
multiplication in (R2b) reduces to a sum. 0.3. The fact that the matrix-uncertain algorithms (i.e., MU-
GAMP, S-TLS, MU-Selector) and the standard algorithms
(i.e., GAMP, LASSO) perform near-identically undeniform

We now study empirical performance undeniform and matrix uncertainty confirms the claim of Proposition 2.1.
non-uniformmatrix uncertainty. In both cases, we plot Nor- N&Xt, we examine the effect afon-uniformmatrix uncer-
malized Mean Squared Error (NMSE) versugN at N =256 tainty. For this, we used the same setup as in the previous
and /M = 0.2, where the relatively small problem size*Periment, except that we usedn—unlformvar!an%es{ufmg
was used due to the implementation complexity of the MUBUCH that,,,, = 0 for 99% of the entries, ngwmn =C
Selector. Thels non-zero entries of the signal were drawn ©F the remainingl% of the entries, wher&™ was chosen

+1 with equal probability, the (known) matrix meafis, .., to make the cumulative error® identical to the previous
were i.i.dA(0,1/M), and the noisav was i.i.d A (0, ). experiment. MU-GAMP was then run under the true (now

- i .
To illustrate the effect ofuniform matrix uncertainty, we "ON-uniform)uy,, = vy, while GAMP was run under the

C. Empirical Study

drew the matrix errors{E,.,} i.i.d A'(0,7), noting that compensated AWGN variance® + v*, as before. We also

in this casee — Ea is truly ii.d Gaussian (for any given mplemented the Weighted S-TLS (WS'TES) from [5], which

). Moreover, we set'” — * such that the effective SNR WS given knowledge of the non-unifor{w,, }.
E{||Az|2}/E{|le + w|2} = 20 dB. Under this setup, we Figure 2 shows the resulting NMSE. In the figure, we see

ran MU-GAMP under the true (uniform) matrix error variancéhat tf;eT?jgorlthénshasT\;ljmlggl uniform mfatrlx uncertgltlzlﬁl h
vA = u¥ the true noise statistics, the true signal variance aﬁ'oe" A and the MU-Selector) perform essentially the

mn . - . . . . .

sparsity rate, but a (mismatched) Bernoulli-Gaussian adaigr?ar_ne n this experiment as they did in _the Previous expemm_en
which is due to the fact that® was calibrated across experi-

1A MATLAB implementation of GAMP, including the MU extension, ismems' Furthermore, these algorithms do essentially nerbet

available atht t p: / / sour cef or ge. net/ proj ect s/ ganpmat | ab/.  than those designed for AWGN (i.e., LASSO and GAMP),



which makes sense in light of Proposition 2.1. However, thirectly compute the matrix uncertainty statisti{:émn} and
algorithms exploiting non-uniform uncertaintyv?. } (i.e., {v2 }, and—with them—run MU-GAMP to estimate the
WS-TLS and MU-GAMP) do significantly better. In fact,signal vectorz, which will produces the marginal posterior
MU-GAMP performs quite close to the support-aRdaware mean and variance vectofs, v*).

oracle bound foM//N > 0.3. Then, given the soft signal estlmat(ﬁ, v®), we can update
the parameter means and varian¢ésv’), also using MU-
T T T T e GAMP. To see how, we first notice that the linear outputs
o %Z,“T‘:;’*W 1 in the GAMP observation model(y | z) take the form
5L —— MU-Selector ] P
Tt raed z= Al =A@+, 4wl =B@b  (10)

for @ = [0y,01,...,0p]", 6 = 1, and the (uncertain) matrix
B(w)é[Aow‘A1w|~-~|pr}. (12)
Given (&,v7), the mean and variance @f,,, are simply

Bup 2 B{Bpp(2)} = S0 Apmniin (12)
vE 2 var{Byy(x)} = S0 |Ap v, (13)

which, together with an appropriate prior pdf ¢, }, are the
ingredients needed to estimafiewith MU-GAMP, yielding
Fig. 2. 10-trial median NMSE under non-uniform error varianfe? . }.  updated soft output$é7 v?). For example, if{ep};;l were
known to be sparse, then a sparsifying prior would be ap-
IV. ALTERNATING MU-GAMP propriate. Fordy, a prior with all mass at would suffice to
dle the constrairtty = 1.
lternating between these two MU-GAMP steps, we can
btain successively refined estimates(#fv*) and (8,v?).
ach MU-GAMP step itself involves several iterations, but
tively few would be needed if they were “warm started” at
values of the previous estimates. Note that, unlikecgipi
terative schemes for dictionary learning [12], which altge
detween point estimates, ours alternate betvesdrestimates,
i.e., mean/variance pairs.

_45 L
0.1

The performance of any reasonable compressive-sens
algorithm will improve as matrix uncertainty diminishesda
one way to reduce uncertainty is to explicitly estimate t
unknown matrix A. In fact, this is the goal of Dictionary
Learning [12], where a large number of measurement vect Eéa
{y,}I_, are assumed to be available. Since we are interesk
in estimatingA from one (or very few) measurement vectors,
we consider structured forms of that depend on only a few .
parameter®) ¢ C”. In particular, we consider affine linéar
models of the form (noting similarities to [5]) B. Empirical Study

A(0) = Ay + 2521 0,A, 7 Below, we present the results of three empirical experiment
that investigate MU-GAMP and alternating MU-GAMP (A-
with known {A,}_, and unknowné. Several examples MU-GAMP) under parametric matrix uncertainty. In all cases
of this structure are discussed in the sequel. Moreover, (¥ usedM = 103, N = 256, i.i.d Gaussian4, € CM*xN
handles the case afnstructuredA via P = MN, Ao =0, and@ € C”, i.i.d Bernoulli-Gaussiare € CV with K = 20,
and{Ap}]ff:1 each containing a single distinct non-zero entrand complex AWGN with SNR20 dB. MU-GAMP was given
. the apriori matrix statistic fl,,m,y;?, from (8)-(9). A-MU-
A. Alternating MU-GAMP GAME’ was initialized witﬁ the sami statisgtic)sf gut was able
We now propose a scheme to jointly estimafe,#} to drive down the varianceg/, } through its iterations.
based on the previously developed MU-GAMP. The proposedFirst, we study the role of matrix-uncertainty dimension
scheme is an iterative one that alternates between theaestilh on the NMSE performance of MU-GAMP and A-MU-
tion of z and#. Say the mean and variance @f are given GAMP. For this example, we used i.i.d Gaussiga, }
by 0, and?, respectively. Then it holds that As P was varied,{v/} was normalized to fix the energy
PN 6 of the uncertainty term& = S°F_ 6,A,. Fig. 3 shows the
A 2 B{ A (0)} = Aoun + X1 OpApn (8) resulting NMSE-\)//ersuﬁ, whggiaé) e;)pec?ed—MU—GAMP
u,;‘;n 2 var{A;,(0)} = Zp 1 p\Ap,mnl (9) maintains a constant performance vergtiswhereas A-MU-
GAMP benefits wherP is small (and thu® can be learned).
Next, we consider @hannel-calibrationexample involving
P =10 parallel linear measurement “channels”, each with an
The affine linear model (7) may arise from a first-order Tayloriese unknown oﬁsgt. For thI_S, we constructed each ma{tm};’g:l
approximation of a non-linear modet (8) around the poind, in which case 0 have ones irl/P of its rows and zeros elsewhere, so that
Ao = A() and Ay, = DA(0)/90,|y_g- 0, modeled the additive error in thg’® channel. Figure 4

where A, ,,.,, denotes then” row andn'* column of A,.
Thus, given the soft parameter estimatésv?), one can
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Fig. 3. 10-trial median NMSE for estimation af versus the parametric 4 and@ in the compressive blind deconvolution example.

matrix-uncertainty dimensior.

h h o . A-MU-GAMP h provide theoretical and empirical evidence of the follogvin
shows that, over its iterations, A-MU- approaches thﬁjrprising fact: as the dimensions grow large, the effect of

performance ofg-aware GAMP when estimating, which ,,iform matrix uncertainty reduces to AWGN, and can thus
comes within2 dB of the support-an@-aware oracle MMSE. be handled by matrix-certain algorithms. Our MU-GAMP

The star indicates the performance of M_U—GAMP, which 'ﬁpproach can, however, exploit knowledge rasn-uniform
about20 dB WOLSG' I\éleanvx?hne, when gstlmanrﬁg A-MU- matrix uncertainty to do significantly better. Moreover,rou
GAMP approaches the performanceasaware GAMP. A-MU-GAMP approach, which exploits soft information (as
opposed to point estimates), achieves near-oracle peafaren
In future work, we plan to investigate the application of A-

T T
A-MU-GAMP

*  MU-GAMP 4
— — —oracle bound
— — 6-aware GAMP_ ||

(1]

[2]
g
N [3]
%
=
= [4]

n
10 20 30 40 50 60 70 80 90
iteration

Fig. 4. 100-trial median NMSE of A-MU-GAMP when iterativelgtémating
x and @ in the channel calibration example.

(5]

(el
(7]

Finally, we consider @ompressive blind-deconvoluti@x-
ample. Here,A(0) = ®C(6) where(C(0) is circulant with
first column® € CY and® =[I,; 0]. Due to the size of the
uncertainty dimensionf” = N, we usedl’ = 8 measurement 8
vectors {y,}7_,, which is still much fewer than typical in
dictionary learning. Figure 5 demonstrates that, oncenagai
A-MU-GAMP is able to effectively learn botle and 8, doing
~ 20 dB better than MU-GAMP.

[
[10]
V. CONCLUSIONS

In this paper, we propose a matrix-uncertainty (MU) ex[-
tension of the GAMP algorithm, as well as an alternatin
A-MU-GAMP that aims to recover both the signal and th 2
unknown (possibly parametric) measurement matrix. We also

MU-GAMP to spectral estimation, dictionary learning, niatr
completion, and robust principle components analysis (PCA
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