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Abstract

A gradient-descent method for the run-to-run tuning of MP@toollers is proposed. Itis

shown that, with an assumption on process repeatabiléyVtRC tuning parameters may
be brought to a locally optimal set. SISO and MIMO examplessitate the characteris-
tics of the proposed approach.
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1. MPC Formulation and Tuning

The success of model predictive control (MPC) is well docotad. With the ability to
explicitly handle constraints, to “look ahead”, and to cédte an adequate model-based
control action even with a very rough linear model of the dyits, its use has now
expanded into many diverse fields and applications (Qin auy®&ell (2003)).

MPC tuning, however, remains somewhdthoc Though there now exists a fair body of
literature for good heuristic tuning choices, which caowlban operator to tune the MPC
offline before applying it to the real process (Garriga antb8sh (2010)), the obtained
parameters will only be nominally optimal and, when the moaeertainty is significant,
may be unable to yield satisfactory performance in prac#icparticular case where this
problem can be solved in a general, algorithmic manner iotteeof batch processes,
where the MPC controller may be asked to track the same refengrofile many times —
for example, when maintaining a cooling profile in a crys&tall (Shen et al. (1999)). In
this paper, we propose to solve this run-to-run (or “batehvatch”) problem via gradient-
descent optimization, noting that a simpler realizatiowbét is essentially the same idea
but with a single tuning parameter may be found in the work afjii et al. (2009).

Any MPC controller requires a dynamical model of the syst&m,1,...,Yin] = f (U,
...,Uksn_1), that is able to predict how the outpyte R™** will evolve when driven by
the inputsu € R™*1 over some discrete prediction interyiah- 1,k + nJ*.

The majority of MPC schemes use this model to calculate thienapcontrol action at
the current iteratioi, uy, by solving the following problem over the constrained#et

o k+n k+n-1
minimize 1Q(Yseti — ¥i — di) || + Z( IR(Uj —ui_1)|| (1)
ooy =

Uk, Ukn-1 =K1
subjectto  Uy,...,Ukym-1 € %; Ukemyj = Ukgm-1,V] =0,...,n—m—1

whereQ € RY*" R € R™*™ are diagonal weighting matricesis the control horizon,
anddy is the output bias at the time instagtwhich is estimated via the filtering law,
dk = K(Yk—Jx) + (In, — K)dk_1, with K € R a diagonal matrix of bias filters.

1(") denotes a model-based prediction, whiledenotes a measured value.



When constant setpoinygetc are to be tracked, the setpoiyyeri may be defined via a
reference trajectoryyseti = (Iny - e’Bfli) Ysetc, Parameterized via the diagonal matrix

B € R™*"Y, to add a degree of robustness. We noterihat, Q, R, K, andB all constitute
tuning parameters.

2. Proposed Method for Run-to-Run MPC Tuning

2.1. Optimal MPC Performance as a Static Optimization Peoibl

Given a process that uses an MPC controller to meet certa@riarduring operation,

we would like to vary the MPC tuning parameters between eancfof the process in an
intelligent manner so as to improve the controller's parfance. In order to do so, we
are required to make the following assumption.

Assumption 1 (Repeatability)

For a set of MPC tuning paramete8 € R", the obtained MPC performance;(@) for any

given run j will be represented by a deterministic, run-ipeledent function £6) and an addi-
tive stochastic, run-dependent elemént

P;(8) = Pu(6) + 9 @)

For the proposed method to be applicable, it is sufficienP§06) to exist, and for its ef-
fects to overwhelm those @¥(i.e. runs with identicab should yield very similar results).
Practically, the deterministic part corresponds to theiliambut analytically unknown,
relations between the tuning parameters and MPC behavide the stochastic part cor-
responds to measurement noise and disturbances that aificsjoea run.

The following metric forPy(0) is proposed to quantify “performance” based on recorded
input and output data for a specific run, expressed as (unknfwctions ofo?:
kg ki—1 ki—1

Pa(6) = 3 [QelYsai ~Yi(O) + 3 IWrti(8)]+ 5 IRe(ui(8) ~ui-1(6))] )

with k¢ being the value of the counter at the end of the run,@pct R™*™ Wp,Rp €
R"*Mu peing diagonal weighting matrices (let; denote the starting inputs). WitBp,
W5, andRp, one judges performance based on the MPC'’s ability to trattkowt using
excessive resources or aggressive control action.

The choice of these matrices should not be arbitrary, and steay from the simulated
performance for the nominally tuned MPC. L} denote values obtained in simulation.
For each diagonal valugr € Qp,wp € Wp,rp € Rp, one may then define, based on

the corresponding inputs and outpuis,= 1/2:11 | Yseti — Vi ||, wp = 1/2:161 G|, rp =

1/25161 |[Gi —Ti_1||. In this manner, the “good” qualitative performance foumgimula-

tion may be quantified.

Finally, by limiting the tuning parameters to lie in some defi set®, we may now

formulate the problem of run-to-run MPC tuning as a statittrojzation problem where

we seek to minimize the deterministic part of the perfornegindex:
miniemize P4(0)

. (4)
subjectto 6 € ©

2|n the case of a reference trajectory, thg in (3) refers to the original, unfiltered setpoint.



2.2. Gradient-Descent Optimization Algorithm

The gradient-descent method may be used to bA{@) to a locally optimal sef*,
provided that a good approximation of the gradigRg(6) may be obtained for all € ©.
The proposed algorithm starts by using the nominal modeligra[1P;(0) to achieve
fast improvement without requiring extra runs to estiméate gradient. When no more
progress is possible witiP4(0), OP4(0) is estimated and used to “fine tune” the solution.
Algorithm 1 (Run-to-Run MPC Parameter Tuning)
1. Initialize: Tune the MPC controller offline and obtalg, Qp, Wp, andRp. Initialize 6, :=
6p. LetH denote a logical switch that determines whether or not the process gradient
should be estimated, and $¢t= 0 (model-based gradient).
2. Gradient Definition: IH = 0, OP(6) := OPy(6h). If H = 1, OP(6y) := OPy(6h).
3. Line Search (Algorithm 2): Solve approximately, with> 0,
t =arg mintimize Py (6, —t.OP(6R)) (5)
L ~
If t¥ =0 andH = 0, setdP(6y) := —0OPy(6,) and redo the line search. tjf = 0 again, set
H := 1 and return to Step 2.
4. Update:6hq := 6y —t0OP(6h).
5. Projection: 16,1 ¢ ©
bhy1:=arg minémize [[6h+1— Ol ©)
subjectto 6 €©
6. Termination: If|| 6,1 — 6y < €, then terminate. Else, set=h+1 and return to Step 2.

A practical run-to-run adaptation should be able to obtgjnificantimprovement quickly
and have mostly monotonic improvement from run to run. Thevakalgorithm is be-
lieved to achieve those goals. Ideally, the model gradieptuwres the main relations
between the parameters and the performance to provide adgsoent direction. If this
direction is false and one of ascent, one may simply revetegyp in a descent direction.
If both yield ascent directions, the usefulness of the mgdadlient is exhausted and one
must switch to gradient estimation to find the locally opfiiget.
The line search is designed to achieve fast improvemenbwittequiring too many itera-
tions. Because the gradient may be very local, the searéhdegh very small steps and,
while improvement is noted, doubles the step size until thaeimum allowable change in
parameters per run is reached (this requi#srations, withSset by the user). Multiples
of this step are then applied. The search terminates as scamiacrease in the function
value is noted, and takes its previous value as the optiregl st
Algorithm 2 (Line Search)

1. Initialize: 6 := 6,. SetM :=1, whereM is a multiplier used to augment the step size

following observed improvement. Ud#nax the maximum allowable change éhfrom run
to run, to defind_ max as
tL max= {SUPLL : —ABmax < —tL OP(6h) < ABmax} (7)
2. Step:6iy1:=6 — MtL,maxDP(eh)/z&l-
3. Projection: Ifg 11 ¢ ©
61 :=arg minémize [61+1— 6]

. (8)
subjectto 6 €0©
4. Termination: IfPy(6 1) < Py(8) andM < 251, setM := 2M, | :=1 + 1, and return to Step
2. If Py(611) < Py(8) andM > 251 setM := M 4251, | := | + 1, and return to Step 2.

Else, set]" as corresponding t§ and terminate.

As an example, considérmax= 8 andS= 4. The sequence of step sizes would then be
1,2,4,8,16,24....



3. lllustrative Examples

We illustrate the proposed method on both a SISO and a MIMOngla with 6 :=
[M, A, q,r,b, k], with (*) denoting a scaling amgi r b, k denoting the diagonals 6j, R, B,

K, respectively. Both are set to be noise frée (), with the gradients being estimated via
two perturbations (in opposite directions) of si¥@. := [0.01,0.01,0.02 0.02,0.04,0.02]

for each parameter. A single perturbation in the feasikieation is applied when a pa-
rameter is at its boundary.

An MPC controller with%z = R™ is programmed as outlined in Section 1, with a squared
2-norm used in the objectivej€ g, r € r, b € b, K € k denote individual components.
A constant bias is assumed in simulation to help nominalheti (0.3 fory in the
SISO case, and 0.3 and 0.6 figr andy, in the MIMO case, respectively). The pro-
jection step is simplified to: 1) roundimg andn to their nearest integers, 2) settig=

6Y =12.00,2.00,1.00,1.00,2.00,1.00 or 8 := 8- = [0.02,0.02,0.10,0.10,0.10,0.10] as
necessary when upper and lower bounds on the parameterokated, and 3) setting
m=n:= (m-+n)/2 whenm> n. A 1-norm is used to definé;(6). To relax the round-
ing error onm andn, large values are chosen and scaled by a factor of 100 tongive ~
andri'that are comparable in size to the other parameters. Bothgea involve 20-min
batches where constant setpoints are to be tracked, withR@ &ttion every 6 s. A
2-norm termination criterion with the threshodd= 102 is used. For the line search,
ABmax:=[0.10,0.10,0.10,0.10,0.20,0.10 with S:= 4.

The following transfer functions describe the simulatezhit processg(s) andG(s), and
the corresponding modelg(s] andG(s):

Ale) . _ 0.8s+2.2 _ 0.95+2.1
a(s) = 1.8521+0.95+8’ 9(s) = 0.013+25%+5+6.5
R 213 52s+2 - 732 1 % Szyz - 5;52 ] (9)
_ | 2513 25%+st5 SS+2 1 _ St 22412516 S5+2 1
G(s)= | &1 3> oHtsth . G(s) = 8540.8 GogSe Shesy st
£+s+l s+l s+5 1.7s24+1.2s+0.8  2s+1 st+4

Fig. 1 illustrates the control performance, with Table 1viding the parameter informa-
tion.

Table 1. Parameter values for the SISO and MIMO examples.

SISO i [ q T b K MIMO i [ q T b K
% 70 | 100 | 70 39 | 120 | 43 % 70 | 1.00 | 50,60 20,50,50 | 1.20,30 | 50,20
Gl 70 | 100 | 1.00 | 10 | 1.35 | 1.00 Gl 71 | 123 | 10,75 | 10,99100 | 98,27 | 1.00,1.00

%F—g ‘9* .00 .00 -15 1.51 -01 -31 %F—g ‘9* 21 .03 .59,-.02 1.07,-.04,-.10 .02,.00 -.04,-.12

In the SISO case, the method works “as planned”, in that a garedtion is found with
the model gradient, and the majority of the improvement inegghin the first 10 batches,
with the switch to the estimated gradient occurring afteba@ches. However, the re-
sulting improvement is relatively small as the processiigaaly in a relatively optimal
region. The MIMO scenario illustrates a less ideal case revttee model gradient proves
almost useless and gradient estimation begins after justdhbs. For 11 parameters, this
requires a total of 22 perturbations before significant mrpmentis achieved through the
line search. The theoretically slow convergence of theigraelescent method (Boyd and
Vanderberghe (2008)) is also witnessed, as nearly 2,5@b&sbre needed to fully con-
verge. Practically, however, this is not a drawback — in @&bbne sees that the majority
of optimality gains are achieved with significantly fewetdiges. In both cases, it is pos-
sible to verify, in a somewhat cursory manner, that the resrgconditions of optimality
hold, as the derivatives with respect to the parametersatieatot at their constraints are
approximately O.
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Figure 1. Simulated MPC performance for the SISO and MIMCesad he performance
for the initial and optimal@ is given on the left, with the evolution of the performance
index over batches given on the right. For the MIMO case, adated view is also given.
A vertical dashed line indicates the batch number where igraicestimation begins.

Table 2. Optimality gains with respect to number of runs chiftiomprises the runs needed
for both the line search and gradient estimation.

SISO 0 9 45 88 MIMO 0 34 61 87 168 1000 2484
% -100% 0 75.0 96.3 100 % -100% 0 60.9 738 79.4 86.2 97.6 100
For processes where batches are particularly costly, arfiarmative model gradient may
be compensated for by working with only a subset of the patarseby lowering the
number of perturbations used for the estimation step, ordoygumore advanced gradi-
ent estimation techniques. This is particularly pertinentIMO processes, where the
dimensionality of the problem is naturally higher.
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