
Ian David Lockhart Bogle and Michael Fairweather (Editors), Proceedings of the 22nd European
Symposium on Computer Aided Process Engineering, 17 - 20 June 2012, London.
c© 2012 Elsevier B.V. All rights reserved.

Run-to-Run MPC Tuning via Gradient Descent

Gene A. Bunin, Fernando Fraire Tirado, Grégory François, and Dominique
Bonvin
Laboratoire d’Automatique, École Polytechnique Fédéralede Lausanne,
CH-1015 Lausanne, Switzerland.

Abstract
A gradient-descent method for the run-to-run tuning of MPC controllers is proposed. It is
shown that, with an assumption on process repeatability, the MPC tuning parameters may
be brought to a locally optimal set. SISO and MIMO examples illustrate the characteris-
tics of the proposed approach.

Keywords: Model predictive control, Run-to-run adaptation, Gradient descent.

1. MPC Formulation and Tuning

The success of model predictive control (MPC) is well documented. With the ability to
explicitly handle constraints, to “look ahead”, and to calculate an adequate model-based
control action even with a very rough linear model of the dynamics, its use has now
expanded into many diverse fields and applications (Qin and Badgwell (2003)).

MPC tuning, however, remains somewhatad hoc. Though there now exists a fair body of
literature for good heuristic tuning choices, which can allow an operator to tune the MPC
offline before applying it to the real process (Garriga and Soroush (2010)), the obtained
parameters will only be nominally optimal and, when the model uncertainty is significant,
may be unable to yield satisfactory performance in practice. A particular case where this
problem can be solved in a general, algorithmic manner is theone of batch processes,
where the MPC controller may be asked to track the same reference profile many times –
for example, when maintaining a cooling profile in a crystallizer (Shen et al. (1999)). In
this paper, we propose to solve this run-to-run (or “batch-to-batch”) problem via gradient-
descent optimization, noting that a simpler realization ofwhat is essentially the same idea
but with a single tuning parameter may be found in the work of Magni et al. (2009).

Any MPC controller requires a dynamical model of the system,[ŷk+1, ..., ŷk+n] = f (uk,
...,uk+n−1), that is able to predict how the outputsy ∈ R

ny×1 will evolve when driven by
the inputsu ∈ R

nu×1 over some discrete prediction interval[k+1,k+n]1.

The majority of MPC schemes use this model to calculate the optimal control action at
the current iterationk, u∗

k, by solving the following problem over the constrained setU :

minimize
uk,...,uk+n−1

k+n

∑
i=k+1

‖Q(yset,i − ŷi −dk)‖+
k+n−1

∑
i=k

‖R(ui −ui−1)‖

subject to uk, ...,uk+m−1 ∈ U ; uk+m+ j = uk+m−1,∀ j = 0, ...,n−m−1

(1)

whereQ ∈ R
ny×ny,R ∈ R

nu×nu are diagonal weighting matrices,m is the control horizon,
anddk is the output bias at the time instantk, which is estimated via the filtering law,
dk = K(yk− ŷk)+ (Iny −K)dk−1, with K ∈ R

ny×ny a diagonal matrix of bias filters.

1(·̂) denotes a model-based prediction, while (·) denotes a measured value.

1



When constant setpointsyset,c are to be tracked, the setpointyset,i may be defined via a

reference trajectory,yset,i =
(

Iny −e−B−1i
)

yset,c, parameterized via the diagonal matrix

B∈R
ny×ny, to add a degree of robustness. We note thatm, n, Q, R, K , andB all constitute

tuning parameters.

2. Proposed Method for Run-to-Run MPC Tuning

2.1. Optimal MPC Performance as a Static Optimization Problem

Given a process that uses an MPC controller to meet certain criteria during operation,
we would like to vary the MPC tuning parameters between each run of the process in an
intelligent manner so as to improve the controller’s performance. In order to do so, we
are required to make the following assumption.
Assumption 1 (Repeatability)

For a set of MPC tuning parametersθ ∈ R
nθ , the obtained MPC performance Pj(θ ) for any

given run j will be represented by a deterministic, run-independent function Pd(θ ) and an addi-
tive stochastic, run-dependent elementδ j :

Pj(θ ) = Pd(θ )+δ j (2)

For the proposed method to be applicable, it is sufficient forPd(θ ) to exist, and for its ef-
fects to overwhelm those ofδ (i.e. runs with identicalθ should yield very similar results).
Practically, the deterministic part corresponds to the familiar, but analytically unknown,
relations between the tuning parameters and MPC behavior, while the stochastic part cor-
responds to measurement noise and disturbances that are specific to a run.

The following metric forPd(θ ) is proposed to quantify “performance” based on recorded
input and output data for a specific run, expressed as (unknown) functions ofθ 2:

Pd(θ ) =

kf

∑
i=1

‖QP(yset,i −yi(θ ))‖+

kf −1

∑
i=0

‖WPui(θ )‖+

kf −1

∑
i=0

‖RP(ui(θ )−ui−1(θ ))‖ (3)

with kf being the value of the counter at the end of the run, andQP ∈ R
ny×ny,WP,RP ∈

R
nu×nu being diagonal weighting matrices (letu−1 denote the starting inputs). WithQP,

WP, andRP, one judges performance based on the MPC’s ability to track without using
excessive resources or aggressive control action.

The choice of these matrices should not be arbitrary, and maystem from the simulated
performance for the nominally tuned MPC. Let(·) denote values obtained in simulation.
For each diagonal valueqP ∈ QP,wP ∈ WP, rP ∈ RP, one may then define, based on

the corresponding inputs and outputs,qP = 1/Σkf
i=1‖yset,i −yi‖,wP = 1/Σkf −1

i=0 ‖ui‖, rP =

1/Σkf −1
i=0 ‖ui −ui−1‖. In this manner, the “good” qualitative performance found in simula-

tion may be quantified.

Finally, by limiting the tuning parameters to lie in some defined setΘ, we may now
formulate the problem of run-to-run MPC tuning as a static optimization problem where
we seek to minimize the deterministic part of the performance index:

minimize
θ

Pd(θ )

subject to θ ∈ Θ
(4)

2In the case of a reference trajectory, theyset in (3) refers to the original, unfiltered setpoint.



2.2. Gradient-Descent Optimization Algorithm
The gradient-descent method may be used to bringPd(θ ) to a locally optimal setθ ∗,
provided that a good approximation of the gradient∇Pd(θ ) may be obtained for allθ ∈Θ.
The proposed algorithm starts by using the nominal model gradient ∇P̂d(θ ) to achieve
fast improvement without requiring extra runs to estimate the gradient. When no more
progress is possible with∇P̂d(θ ), ∇Pd(θ ) is estimated and used to “fine tune” the solution.
Algorithm 1 (Run-to-Run MPC Parameter Tuning)

1. Initialize: Tune the MPC controller offline and obtainθ0, QP, WP, andRP. Initialize θh :=
θ0. Let H denote a logical switch that determines whether or not the true process gradient
should be estimated, and setH := 0 (model-based gradient).

2. Gradient Definition: IfH = 0, ∇P(θh) := ∇P̂d(θh). If H = 1, ∇P(θh) := ∇Pd(θh).

3. Line Search (Algorithm 2): Solve approximately, withtL ≥ 0,
t∗L = argminimize

tL
Pd (θh− tL∇P(θh)) (5)

If t∗L = 0 andH = 0, set∇P(θh) := −∇P̂d(θh) and redo the line search. Ift∗L = 0 again, set
H := 1 and return to Step 2.

4. Update:θh+1 := θh− t∗L∇P(θh).

5. Projection: Ifθh+1 /∈ Θ
θh+1 := arg minimize

θ
‖θh+1−θ‖

subject to θ ∈ Θ
(6)

6. Termination: If‖θh+1−θh‖ < ε, then terminate. Else, seth := h+1 and return to Step 2.

A practical run-to-run adaptation should be able to obtain significant improvement quickly
and have mostly monotonic improvement from run to run. The above algorithm is be-
lieved to achieve those goals. Ideally, the model gradient captures the main relations
between the parameters and the performance to provide a gooddescent direction. If this
direction is false and one of ascent, one may simply reverse it to go in a descent direction.
If both yield ascent directions, the usefulness of the modelgradient is exhausted and one
must switch to gradient estimation to find the locally optimal set.
The line search is designed to achieve fast improvement without requiring too many itera-
tions. Because the gradient may be very local, the search begins with very small steps and,
while improvement is noted, doubles the step size until the maximum allowable change in
parameters per run is reached (this requiresS iterations, withSset by the user). Multiples
of this step are then applied. The search terminates as soon as an increase in the function
value is noted, and takes its previous value as the optimal step:
Algorithm 2 (Line Search)

1. Initialize: θl := θh. SetM := 1, whereM is a multiplier used to augment the step size
following observed improvement. Use∆θmax, the maximum allowable change inθ from run
to run, to definetL,max as

tL,max= {suptL : −∆θmax≤−tL∇P(θh) ≤ ∆θmax} (7)

2. Step:θl+1 := θl −MtL,max∇P(θh)/2S−1.

3. Projection: Ifθl+1 /∈ Θ
θl+1 := arg minimize

θ
‖θl+1−θ‖

subject to θ ∈ Θ
(8)

4. Termination: IfPd(θl+1)≤ Pd(θl ) andM ≤ 2S−1, setM := 2M, l := l +1, and return to Step
2. If Pd(θl+1) ≤ Pd(θl ) andM > 2S−1, setM := M +2S−1, l := l +1, and return to Step 2.
Else, sett∗L as corresponding toθl and terminate.

As an example, considertL,max= 8 andS= 4. The sequence of step sizes would then be
1,2,4,8,16,24... .



3. Illustrative Examples
We illustrate the proposed method on both a SISO and a MIMO example with θ :=
[m̃, ñ,q, r ,b,k], with (·̃) denoting a scaling andq, r ,b,k denoting the diagonals ofQ,R,B,
K , respectively. Both are set to be noise free (δ = 0), with the gradients being estimated via
two perturbations (in opposite directions) of size∆θe := [0.01,0.01,0.02,0.02,0.04,0.02]
for each parameter. A single perturbation in the feasible direction is applied when a pa-
rameter is at its boundary.
An MPC controller withU = R

nu is programmed as outlined in Section 1, with a squared
2-norm used in the objective.q ∈ q, r ∈ r , b∈ b, K ∈ k denote individual components.
A constant bias is assumed in simulation to help nominally tune K (0.3 for y in the
SISO case, and 0.3 and 0.6 fory1 and y2 in the MIMO case, respectively). The pro-
jection step is simplified to: 1) roundingm andn to their nearest integers, 2) settingθ :=
θU = [2.00,2.00,1.00,1.00,2.00,1.00] or θ := θ L = [0.02,0.02,0.10,0.10,0.10,0.10] as
necessary when upper and lower bounds on the parameters are violated, and 3) setting
m= n := (m+n)/2 whenm> n. A 1-norm is used to definePd(θ ). To relax the round-
ing error onm andn, large values are chosen and scaled by a factor of 100 to give ˜m
andñ that are comparable in size to the other parameters. Both examples involve 20-min
batches where constant setpoints are to be tracked, with an MPC action every 6 s. A
2-norm termination criterion with the thresholdε = 10−3 is used. For the line search,
∆θmax := [0.10,0.10,0.10,0.10,0.20,0.10] with S:= 4.
The following transfer functions describe the simulated “real” process,g(s) andG(s), and
the corresponding models, ˆg(s) andĜ(s):

ĝ(s) = 0.8s+2.2
1.8s2+0.9s+8

, g(s) = 0.9s+2.1
0.01s3+2s2+s+6.5

Ĝ(s) =

[

1
2s+3

s+2
2s2+s+5

−s+2
s3+2s2+s+1

9s+1
s2+s+1

s−2
s+1

2
s+5

]

, G(s) =

[

1.5
s+4

s+2
2s2+1.2s+6

s+2
s3+2s2+s+1

8s+0.8
1.7s2+1.2s+0.8

s−2
2s+1

2
s+4

]

(9)

Fig. 1 illustrates the control performance, with Table 1 providing the parameter informa-
tion.

Table 1. Parameter values for the SISO and MIMO examples.
SISO m̃ ñ q r b K MIMO m̃ ñ q r b k

θ0 .70 1.00 .70 .39 1.20 .43 θ0 .70 1.00 .50,.60 .20,.50,.50 1.20,.30 .50,.20
θ∗ .70 1.00 1.00 .10 1.35 1.00 θ∗ .71 1.23 .10,.75 .10,.99,1.00 .98,.27 1.00,1.00

dPd
dθ

∣

∣

θ∗ .00 .00 -.15 1.51 -.01 -.31
dPd
dθ

∣

∣

θ∗ .21 .03 .59,-.02 1.07,-.04,-.10 .02,.00 -.04,-.12

In the SISO case, the method works “as planned”, in that a gooddirection is found with
the model gradient, and the majority of the improvement is gained in the first 10 batches,
with the switch to the estimated gradient occurring after 20batches. However, the re-
sulting improvement is relatively small as the process is already in a relatively optimal
region. The MIMO scenario illustrates a less ideal case, where the model gradient proves
almost useless and gradient estimation begins after just 6 batches. For 11 parameters, this
requires a total of 22 perturbations before significant improvement is achieved through the
line search. The theoretically slow convergence of the gradient-descent method (Boyd and
Vanderberghe (2008)) is also witnessed, as nearly 2,500 batches are needed to fully con-
verge. Practically, however, this is not a drawback – in Table 2 one sees that the majority
of optimality gains are achieved with significantly fewer batches. In both cases, it is pos-
sible to verify, in a somewhat cursory manner, that the necessary conditions of optimality
hold, as the derivatives with respect to the parameters thatare not at their constraints are
approximately 0.



0

0.5

1

1.5

2

2.5

y

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

u

20 40 60 80 100 120 140 160 180 200 220 240
1

2

3

4

5

6

7

Batches

P
e

rf
o

rm
a

n
c
e

 C
ri
te

ri
a

 (
T

ru
n

c
a

te
d

)

 

 

Tracking error penalty

Input size penalty

Input change penalty

Total performance

500 1000 1500 2000
1

2

3

4

5

6

7

P
e

rf
o

rm
a

n
c
e

 C
ri
te

ri
a

 

 

∇P
d
(θ)∇P̂

d
(θ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

Time (min)

u

 

 

optimal

initial - simulation

initial - real

1

2

3

4

5

6

P
e

rf
o

rm
a

n
c
e

 C
ri
te

ri
a

 

 

Tracking error penalty

Input size penalty

Input change penalty

Total performance

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

Batches

P
a

ra
m

e
te

r 
V

a
lu

e
s

 

 

m n q r b K
~~

∇P
d
(θ)∇P̂

d
(θ)

S
IS
O

M
IM

O

y2

y1

u1

u2

u3

Time (min) Batches

Figure 1. Simulated MPC performance for the SISO and MIMO cases. The performance
for the initial and optimalθ is given on the left, with the evolution of the performance
index over batches given on the right. For the MIMO case, a truncated view is also given.
A vertical dashed line indicates the batch number where gradient estimation begins.

Table 2. Optimality gains with respect to number of runs, which comprises the runs needed
for both the line search and gradient estimation.

SISO 0 9 45 88 MIMO 0 34 61 87 168 1000 2484
Pd(θ0)−Pd(θk)
Pd(θ0)−Pd(θ∗)

·100% 0 75.0 96.3 100
Pd(θ0)−Pd (θk)
Pd(θ0)−Pd(θ∗)

·100% 0 60.9 73.8 79.4 86.2 97.6 100

For processes where batches are particularly costly, an uninformative model gradient may
be compensated for by working with only a subset of the parameters, by lowering the
number of perturbations used for the estimation step, or by using more advanced gradi-
ent estimation techniques. This is particularly pertinentto MIMO processes, where the
dimensionality of the problem is naturally higher.

References
Boyd, S., Vanderberghe, L., 2008. Convex Optimization. Cambridge University Press.

Garriga, J., Soroush, M., 2010. Model predictive control tuning methods: A review. Ind. Eng. Chem.
Res. 49, 3505–3515.

Magni, L., Forgione, M., Toffanin, C., Man, C., Kovatchev, B., De Nicolao, G., Cobelli, C., 2009.
Run-to-run tuning of model predictive control for type 1 diabetes subjects: In silico trial. J.
of Diabetes Science and Technology 3 (5), 1091–1098.

Qin, S. J., Badgwell, T. A., 2003. A survey of industrial model predictive control technology. Contr.
Eng. Practice 11, 733–764.

Shen, J., Chiu, M., Wang, Q., 1999. A comparative study of model-based control techniques for
batch crystallization process. Journal of Chemical Engineering of Japan 32 (4), 456–464.


