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Abstract

Identification of genes underlying human diseases is an important step in un-
derstanding and treating genetic disorders. Based on the assumption that related
diseases are caused by related genes, several methods for candidate gene prioriti-
zation have been proposed in the past to refine lists of suspect genes obtained by
linkage analysis or other methods. The large increase in publicly available -omics
data has made it possible to implement prioritization methods that combine infor-
mation from multiple data sources to make better rankings. In this work, we present
a new method for prioritization of candidate disease genes based on gene expression
data, that ranks 12851 genes for 5080 phenotypes. The performance is comparable
to previous methods which used hand-curated protein-protein data on smaller test
sets. We also propose a method for combining multiple gene networks into a single
one with which we ranked up to 14612 genes for 5080 phenotypes, more than any
previous method. Our evaluation shows, that the performance of the fused network
is superior to that of its separate component networks. In an effort to assure repro-
ducibility of results, all the code written for this research was made public and is
freely available to anyone wishing to use or extend it in any way.

Keywords: Disease gene, gene expression, network, protein-protein interaction,
phenotype similarity, random walker

iii






Contents

1.1 Between biology and computer science . . . . . ... ... ... ..
1.2  Finding disease genes . . . . . . . . .. ... e

2.1.1  Phenotypedata . . . . . ... ... oL
2.1.2 Geneexpressiondata . . . . . ... ... L.
2.1.3  Protein-protein interaction data . . . . . . .. ... ... ..
2.1.4  Phenotype-gene associations . . . . . . ... ... ... ...
2.1.5  Artificial linkage interval . . . . . . . ... ... L.
2.2 Constructing phenotype and gene networks . . . . . ... ... ...
2.3 Random walker with restart . . . . . ... ... ... ... ... ..
2.4 Random walk on the heterogeneous network . . .. ... ... ...
2.5 Fusing gene networks . . . ... ... oL L oL
2.6 Validation methods . . . . .. . .. ... ... .
2.6.1  Leave-one-out cross-validation . . . . . .. ... ... ....
2.6.2  Ab-initio cross-validation . . . . ... ... ... ... ...
2.7 Performance measures . . . . . . . . .. ...

2.7.2 Enrichment . .. ... ... ... ... ... ...

4.1 Network characteristics . . . . . . . . . . . . . ... ...
4.2 Performance of GE networks . . . . . . . ... .. ... ... .. ..

4.4  Comparison of fused network with other methods . . . .. ... ..

1 Introduction
2 Materials and Methods
2.1 Data sources .
2.7.1 ROC .
3 Implementation
3.1 Platform . ..
3.2 Packages . . .
4  Results
4.3 Fused network
5 Comparison and reproducibility of results
6 Conclusion
7  Acknowledgements
References
8 Appendix

8.1 Input files . .

8.2 Tables of matrix comparisons . . . . . . .. .. ... ... ... ..

—_ = =

0 0000 1 ~J~JUTOU I kWwwwwww

Nej

11
11
14
18
24

25

27






List of Figures

1

10

11

12

13

Distribution of the correlation coefficients for the expression of 12851
genes in 158 tissues . . . . . . ..o Lo
Total number of edges in GE network for different thresholds . . . .
Box plot of the number of connections per node for gene expression
networks with correlation threshold 0.5,0.6,0.7,0.8 and 0.9 and the
PPInetwork . . . . . . . . . .
Histogram of the number of connections for the PPI network and
the gene expression network with correlation threshold 0.5. The PPI
network has 9607 nodes and the gene expression network has 12851

Comparison of the number of perfect rankings between different phe-
notype and gene networks . . . . . .. ... Lo Lo

Comparison of the number of null-predictions between different phe-
notype and gene networks . . . . . ... ...

15

AUC scores for different combinations of phenotype and gene networks) 16

Artificial linkage interval ROC curves for RWRH ranking on the
phenotype network with threshold 0.6 and the gene network with
threshold 0.9, once ignoring null-predictions (green) and once as-
signing random rank to null-predictions (blue). . . . . . .. .. ...

Artificial linkage interval ROC curves for RWRH ranking using gene
expression networks with different thresholds and KNN values in
combination with a symmetrical 9-KNN phenotype network.

Comparison of ROC curves for RWRH leave-one out cross-validation
rankings with PPI network, GE network with threshold 0.5 and the
two networks fused together (a=0.3). There were 1717,1630 and
1428 gene-phenotype connections for the fused network, the GE net-
work and the PPI network respectively. . . . . . .. ... ... ...

Scatterplot of rank of fused network plotted against rank of GE net-
work only for leave-one-out cross validation (1630 connections) on
an artificial linkage interval of 100 genes. Values on the diagonal
mean equal rank was assigned. The blue line shows the best linear
fit (with minimal square error), indicating that the performance of
RWRH on the fused network is superior to that of RWRH on the
gene expression network alone. . . . . .. ...

Scatterplot of rank of fused network plotted against rank of PPI
network only for leave-one-out cross validation (1428 connections)
on artificial linkage interval of 100 genes. Values on the diagonal
mean equal rank was assigned. The blue line shows the best linear
fit (minimal square error), indicating that the performance of RWRH
on the fused network is superior to that of RWRH on the protein-
protein interaction network alone. . . . . . . .. ... ... ... ..
AUC scores for the three networks for leave-one-out cross valida-
tion on artificial linkage interval, whole-genome leave-one-out cross-
validation and ab-initio cross-validation. The number of validation
cases were 1717,1428 and 1630 for the three different networks. . . .

vii

17

21

22



14

ROC curves for the three networks for whole-genome leave-one-out
cross-validation. There validation set included 1717,1630 and 1428
gene-phenotype connections for the fused network, the GE network
and the PPI network respectively. . . .. ... ... ... ....

viii



List of Tables

1

AUC values for leave-one out cross-validation on an artificial linkage
interval of 100 genes . . . . . . . ..o o
null-prediction counts for leave-one out cross-validation on an artifi-
cial linkage interval of 100 genes . . . . . . . . .. ... ... ...
Perfect ranking counts for leave-one out cross-validation on an arti-
ficial linkage interval of 100 genes . . . . . . . .. . ... ... ...
Average enrichment scores for leave-one out cross-validation on an
artificial linkage interval of 100 genes . . . . . . . . ... ... ...
AUC scores for leave-one out cross-validation on the whole genome

null-prediction counts for leave-one out cross-validation on the whole
GENOMIE .« . o o o v v e bt e e e e e e e e e e
Perfect ranking counts for leave-one out cross-validation on the whole
GENOMIE . .+ o v v e e e e e e e e e e e e e
Average enrichment scores for leave-one out cross-validation on the
whole genome . . . .. ..o Lo
AUC scores for parameter tests on artificial linkage interval . . . . .
AUC scores for parameter tests on the whole genome . . . . . . ..

X

el e

o @






1 Introduction

This section provides a background to situate the core of the thesis and gives refer-
ences to more detailed works on the concepts introduced.

1.1 Between biology and computer science

For centuries biology used to be a purely descriptive science, mainly occupying itself
with the task of describing the variety of organisms on earth, so vast in numbers that
it has occupied scores of zoologists and botanists for centuries. While this branch
of biology is still important today, advances in physics and chemistry have made it
possible to study life on a molecular level, offering insights and giving explanations
for things that the scientists of previous centuries had to accept as given. With
new techniques such as electron microscopy, radiocristallography, DNA sequencing
and many more, the limits of the explainable are pushed to ever smaller scales.
While chemistry and sometimes physics are employed to find out ’how’, the theory
of evolution provides a means to answer the question 'why?’

However, as the boundary of the visible and measurable was pushed to ever
smaller scales, it has proven very difficult to match the pace with our understanding.
Until shortly before the end of the 20th century, discoveries were usually made by
those, who had the best data. With the introduction of so-called high-throughput
methods, this changed radically. Now, there is a vast amount of data available, from
which it is increasingly difficult to extract all the possible knowledge. Inevitably,
this shift gave rise to a new kind of scientist, who - rather than staring through a
microscope or counting flies in tubes - sits behind a screen and wields the growing
power of computers and algorithms to extract as much knowledge as possible from
the mountains of data.

1.2 Finding disease genes

The great amount of -omics data that is now publicly available in different online-
databases can be used to answer many different questions. One such question con-
cerns itself with the hereditary causes of human diseases. For medicine and pharma-
cology, it is of crucial interest to understand the mechanisms underlying a disorder
in order to treat it most effectively. In the case of disorders with a hereditary com-
ponent, finding the causative genes is a first important step. Currently, over 1700
inherited disorders with unknown genetic origins are listed in the Online Mendelian
Inheritance in Man (OMIM) database [1]. An additional 1900 are listed with sus-
pected (but not proven) genetic origins. For comparison, the number of disorders
with known origin in OMIM is currently around 4400.

Linkage analysis is usually the first step towards tying a gene to an inherited
disorder. It allows researchers to identify statistically significant co-inheritance of
genetic markers and the disorder in question, pointing to a rough chromosomal
location of the genetic factors involved. Usually, current linkage studies are able to
identify an interval of 0.5 to 10 cM, containing up to 300 genes [2]. While genome
wide association studies (GWAS) can in many cases pinpoint the gene involved, they
are costly, time consuming and require careful selection of genes and subjects [3, 4].
In recent years several different computational methods allowing the refinement of
candidate gene lists have therefore been proposed.



Early computational methods for candidate gene prioritization typically ranked
genes based on their similarity to known causative genes. Peretz-Iratxeta et al [5]
were among the first to propose a data-mining method based on functional anno-
tation data. Other methods used sequence based features [6, 7] or protein-protein
interaction data [8, 9]. These methods offer a significant improvement over random
rankings, but they also have a number of limitations. First of all, it is difficult to
define a clear boundary between two diseases. A disease usually involves several bio-
logical pathways and expresses itself in more than one phenotype. Leber’s congenital
amaurosis (LCA) for instance clinically appears to be one single disease, but is in
fact caused by a group of very different defects on a molecular level [10]. Such fuzzy
boundaries make it impossible to derive direct and non-ambiguous gene-disease as-
sociations. Another difficulty with these methods is the noise and incompleteness of
genomic and proteomic data.

A number of algorithms have been proposed that try to sidestep these difficulties
by relying on gene-phenotype relationships and using multiple data sources. The
first such method, ENDEAVOUR, is based on order statistics to fuse ranks obtained
on as many as 10 data sets into one [11]. Other algorithms predicting gene-phenotype
relationships make extensive use of available information about biological networks
and calculate a distance measure of one sort or another to generate a ranking.
CIPHER combines phenotype and genotype networks and prioritizes genes based
on a concordance score of their gene-phenotype profile. Kohler et al proposed an
algorithm based on a random walker model on a protein-protein interaction network
[8]. Li & Patra later extended this work to include a phenotype network [12]. Other
approaches recently tried on disease gene prioritization include algorithms based on
network propagation, electrical flow and Bayesian regression models [13, 14, 15]. All
these methods implicitly use the fact that human diseases are modular in nature,
i.e. that related diseases tend to be caused by related genes [16].

Unfortunately, many of methods that have been proposed prioritize only a small
number of manually curated genes. ENDEAVOUR for example, which used as many
as 10 data sources, ranks only 672 genes for a very specific test set. Other methods
have greatly improved on this, but so for none of them produce a ranking for all the
genes of the human genome.



2 Materials and Methods

2.1 Data sources

Data sources used in this work include the mimMiner phenotype similarity data[17]
for 5080 phenotypes, a list of 9607 binary protein-protein interactions from the
Human Protein Reference Database (HPRD) [18], gene expression data for 33689
markers in 158 tissues from microarray experiments by Su et al [19], as well as a
list of 7106 connections between 2463 disease phenotypes and 4528 associated genes
from the Online Mendelian Inheritance in Man (OMIM) database. Gene locations
and HGNC gene symbols for the construction of artificial linkage intervals were
extracted from Ensembl[20] using BioMart [21]. All the data used in this work was
downloaded from the respective websites between April and June 2011. The exact
file names and versions can be found on page A in the appendix.

2.1.1 Phenotype data

The mimMiner phenotype similarity matrix contains similarity scores for 5080 MIM
phenotypes based on text mining of Medical Subject Headings (MEsH) terms in
OMIM records. Phenotypes are represented as a vector of weighted and normalized
feature terms from relevant OMIM records (using full text and clinical synopsis).
The similarity score between two phenotypes is calculated as the cosine of the angle
between the two feature vectors, resulting in scores in the range of [0,1]. For a more
detailed description, we refer to the work of van Driel et al [17].

2.1.2 Gene expression data

The human gene expression data we used, was collected using whole-genome gene
expression arrays that target 44775 human transcripts. Su et al built an exten-
sive gene atlas using a panel of RNAs derived from 79 human tissues[19]. Their
study represents one of the largest quantitative evaluations of gene expression on
the protein-encoding transcriptome.

2.1.3 Protein-protein interaction data

HPRD is the most extensive manually curated database for human proteins. The list
of binary interactions we used for this work contains only confirmed protein-protein
interactions. There are other databases for protein-protein interactions, such as Bi-
0oGrid, IntAct, BIND and MINT, some of which contain protein-protein interactions
mapped to human proteins from model organisms or predicted by computer models.
We did not use these networks, but we show how they could easily be integrated
with our current data. Lehne & Schlitt recently wrote a review of human protein
databases [22].

2.1.4 Phenotype-gene associations

Connections between phenotypes and related genes were extracted directly from
the OMIM plain text file. The connections relevant for each test case are filtered
on the fly such that only associations between phenotypes and genotypes that are
present in the networks are retained. For the gene network based on PPI data, 1428



phenotypes are retained, for the gene network based on GE data, 1630 phenotypes
are retained.

2.1.5 Artificial linkage interval

To calculate artificial linkage intervals, we extracted HUGO Gene Nomenclature
Committee (HGNC) symbols, chromosome name and starting location on the chro-
mosome from Ensembl using BioMart. For our experiments, we used the 100 nearest
neighbors and the gene under benchmarking as artificial linkage interval. The dis-
tance between two genes was calculated as the difference between their starting
point, without regard to whether the gene is on the plus or minus strand. If two
genes are on different chromosomes, we set their distance to infinity.

2.2 Constructing phenotype and gene networks

In this work, we used one kind of phenotype network and two kinds of gene networks.
The phenotype network is created based on the mimMiner phenotype similarity
scores. We chose to separately evaluate two ways of constructing this network, one
based on K-nearest-neighbors (KNN) and one based on thresholds. In the case
of KNN, a phenotype was connected to the k most similar (i.e. highest scoring)
neighbors with an edge weighted by the similarity score. As a small variation of
this, we also constructed an undirected (symmetrical) version of each KNN network,
where nodes a and b are connected if either a is among b’s k nearest neighbors or vice
versa. Again, the weight of an edge is given by the similarity score. In the case of a
threshold, each phenotype was connected to all its neighbors whose similarity score
was equal to or above the threshold. Unlike KNN networks, this kind of network
may have nodes with degree 0.

The gene network based on gene expression data was constructed in the same
way as the phenotype network (i.e. KNN and threshold). Edges were weighted
according to the correlation coefficient between the expression of the two genes. If
one gene was sampled by several markers, the values were averaged for each of the
158 tissues before calculating the correlation coefficient.

The gene network based on protein protein interactions is a network in which
two genes are connected, if the proteins they encode for interact with each other.
All edges have the same weight.

In order to apply the random walker algorithm, the two networks, namely the
phenotype and the genotype network must be combined into one. We achieve this
by connecting phenotypes to genes according to the gene-phenotype associations
obtained from the OMIM database. The phenotype-gene associations are therefore
represented by a bipartite graph in which each edge has weight 1.

For efficient handling in computers, the networks are represented by their adja-
cency matrix. Suppose Py, xm, Gnxn and By, xn represent the phenotype adjacency
matrix, the gene adjacency matrix and the bipartite graph respectively, then the ad-
P B ]

jacency matrix M of the combined network can be represented as: A = [ BT



2.3 Random walker with restart

In order to generate a ranking from the combined network, we used a combined
distance measure based on a random walker model. Random walker is a graph
algorithm useful for many applications in which similarity or proximity to a set of
seed nodes must be determined [23]. Kohler et al [8] were the first to propose using
the random walker algorithm for disease gene prioritization, but it is quite similar
to other algorithms also used for disease gene prioritization based on networks, such
as diffusion kernels and network propagation [13].

The random walker algorithm simulates a random walk on the graph starting
from a set of seed nodes and moving only to its immediate neighbors in each step.
Similar to a Markov-chain, the transition probability of the random walker to each
neighboring node is proportional to the weight of the node. At each step, the random
walker restarts from a seed node with a certain probability. To obtain a ranking in
the end, the nodes are sorted according to the average amount of time the random
walker spent at each of them. This can be formulated mathematically in the follow-
ing way:

Let py be the seed vector, M the transition matrix of the graph and ps the vector
where the i-th element represents the probability of finding the random walker at
node i after s steps. The probability vector at step s 4+ 1 is then given by:

Ps+1 = (1 —v)Mps +vpo (1)

Where 7 is the restart probability. After a number of iterations the probability
vector will reach a steady state poo. In practice, it is sufficient to stop iterating when
the difference in L; space between ps and psyi drops below a certain threshold
(we used 1071%). Due to rounding errors, the algorithm may never terminate if the
threshold chosen is too small. p., can be interpreted as a proximity vector respective
to the seed nodes. The higher the value, the closer a node is to the seed nodes.

2.4 Random walk on the heterogeneous network

To apply the random walker algorithm to the heterogeneous network of genes and
phenotypes, its adjacency matrix must be transformed into a stochastic matrix. The
construction of the stochastic matrix presented here is based on the RWRH algo-
rithm by Li & Patra [12].

From the previously constructed heterogeneous matrix Awe can construct the
transition matrix

| Mp Mg
M|:MBT MG:|

Two additional parameters, A and n are needed. A represents the probability
to jump from phenotype to gene network and vice versa and 7 is an optional pa-
rameter for weighting the importance of phenotype versus gene seed nodes in the
initial vector. If A is 0, genes and phenotypes will not be connected and will be
ranked independently. Similarly, if n is larger than 0.5, the random walker will be
more likely to (re-)start from the phenotype nodes. Not all genes are connected to



a phenotype and not all phenotypes are connected to a gene. This must be taken
into account when constructing the transition matrix. The four sub-matrices of M
are then constructed as follows.

The transition probability from phenotype p; to gene g; is given by:

R An.) — )‘Bij/ZjBijv ’LfZ]B”#O
(Mp)i; = p(gjlpi) = { 0. othad (2)

Conversely, the transition probability from gene g; to phenotype p; is given by:

T T T
)‘Bz’j/zj' Bija if Zj Bij #0

(Mpr)ij = p(pjlgi) = { 0 otherwise ®)

7

The phenotype-phenotype transition matrix is defined by:

0 if>; Py =0
(Mp)i; = p(pjlpi) = § Fij/ 225 Pij if>2;Bij =0 (4)
(L=XA)Py;/ >, Pij, otherwise

And similarly the gene-gene transition matrix is defined as:

0 if Zj Gij =0
(Ma)ij = p(gjlgi) = § Gii/ 225 Gij if>2;Bji=0 (5)
(1-=NGij/ >, Gij,  otherwise

Let ug be the seed vector of the phenotype network and vq the seed vector of
the gene network. For the purpose of gene prioritization we assign equal weights to
each seed gene in the gene and phenotype seed vector and scale them such that the
sum of the weights is equal to 1 for both seed vectors. We then produce the seed

vector for the heterogeneous network as py = (1 7711;70)v ] We can now apply
—1)Vo
the random walker algorithm as previously described. Phenotypes and genes will be
ranked according to U, and v given by poo = Moo .
(1 - n)voo



2.5 Fusing gene networks

Let A and B be the row-normalized transition matrices of the two networks to fuse.
The fused matrix is then given by: M = aA+ (1 —«)B, where « is a parameter that
defines the weight of each subnetwork. In practice this only works if the two matrices
are of the same size and indexed by the same genes in the same order. When this is
not the case, we can construct matrices S5 and Sp similar to permutation matrices,
such that the fused matrix M will be given by

M = aS,ASY + (1 —a)SpBSE (6)

Given the set of genes U and V in the two separate matrices, the set of genes
in the fused matrix is given by W = UUV. Let f: U — I[q4and g : W — Iy
be the bijective functions from gene name to matrix index of an input matrix and
the fused matrix. The nonzero elements of the matrix S4 are then given by the
following equation.

(Sa)ij =1 YueUst. f(u)=jand g(u) =1 (7)

To adjust for cases in which a gene is only present in one of the networks, the
fused matrix M must be row-normalized to become a transition matrix.
Obviously, this method can easily be extended to fuse more than two networks.

2.6 Validation methods

To evaluate our algorithm on different networks, we used the following two validation
methods.

2.6.1 Leave-one-out cross-validation

In order to assess the accuracy of the ranking, we remove one direct link between a
phenotype p; and a causative gene g; to subsequently test, whether the algorithm can
recover this link. In practice this is done by removing B;; from the bipartite graph
and then ranking the genes based on the new transition matrix. If the algorithm
ranks g; first, we consider it a perfect ranking. This ranking can either be done
relative to all other genes or relative to the genes in the artificial linkage interval.
The genome-wide comparison simulates a ranking of genes for which no susceptible
locus has been determined while the artificial-linkage comparison simulates diseases
for which a linkage-interval is known.

2.6.2 Ab-initio cross-validation

Leave-one-out cross-validation only deletes one phenotype-gene link, but many phe-
notypes have more than one causative gene and many genes are involved in causing
multiple phenotypes. In the dataset obtained from OMIM, one gene is involved in
1.56 phenotypes on average and one phenotype is associated with 2.88 known genes
on average. Arguably, this makes recovering phenotype-gene links very easy for any
algorithm. To simulate the case of phenotypes with no known causative genes and
no susceptible chromosomal locus, we can perform whole-genome ab-initio predic-
tion. To do so, we delete all the links between a phenotype p and its associated genes
by setting the i-th row of B to zero and running the algorithm with the updated



transition matrix. We consider it a perfect ranking if one of the known disease genes
is ranked first over all others in the genome.

2.7 Performance measures

We used the following performance measures in combination with the above men-
tioned methods to compare the performance of our algorithm for different networks.

2.7.1 ROC

The receiver operating characteristic, often used in signaling theory, can be applied
to gene prioritization,too. Instead of true positive rate (TPR) and false positive
rate (FPR), we plot the proportion of true causative genes below a threshold rank
(TPR) versus the proportion of non-causative genes below the threshold (FPR). To
compare different ROC curves, the area under the curve (AUC) is often used. The
higher the value, the better the predictor. A perfect predictor will have an AUC of
1, while a random predictor will get an average value of 0.5.

2.7.2 Enrichment

Another way to measure performance is fold-enrichment. If a method ranks known
disease genes in the top m% of all candidate genes in n% of the test cases, it is said
to have n/m-fold enrichment on average. For instance, if a method ranks 50% of
the known disease genes in the top 1%, it is said to have 50-fold enrichment. We
use this measure to compare our method with other methods, where they provided
no other indications.

We find that fold-enrichment scores can be misleading, because the score for the
top 1% need not be equal to the fold-enrichment score for the top 50%. We therefore
applied another common measure, which we call average enrichment. To calculate
the average enrichment score, the average rank of all disease genes is divided by half
the number of candidate genes. This enrichment factor is equivalent to the expected
speedup for finding causative genes when investigating them in the order they were
ranked versus investigating them in random order. If there are 100 candidate genes
and the causative gene is ranked 10th on average, the enrichment is 50/10 = 5.
Testing genes in the order they were ranked would on average be 5 times faster than
testing them in random order.



3 Implementation

This section provides an overview of the actual implementation and can serve as a
rough guide to anyone wishing to reuse or read the code. The code is made public
and copyright-free. Anyone may use it for any purpose of their liking.

3.1 Platform

We decided to use Python for the implementation of the algorithm and all other
necessary codes for a number of reasons:

e Python is non-proprietary and open-source. Therefore everyone interested in
reusing can do so without having to obtain licenses to run software written in
Python.

e Python is pre-installed on Windows and most UNIX-based systems including
Linux and MacOS, therefore making it very easy to use. Installing additional
packages or even Python itself is extremely simple.

e Python is very easy to learn, making it an ideal choice for biologists. With
Biopython, there is already a large code base available for many biology-related
applications.

e With iPython, Python has a very powerful interactive shell for all common
operating systems that makes running, testing and playing around with code
very simple and intuitive.

e Python (as opposed to matlab®), mathematica®), or others) offers a complete
environment for writing software (scientific computation, visualization, graph
algorithms, image processing, serial drivers, multi-core processing, graphical
user interfaces, web servers, etc.), which makes it easy to make an algorithm
available through a web-interface or put it into a standalone program once it
has been shown to work.

e Python allows programming in many kinds of paradigms (including procedural,
object-oriented and functional), thereby making it easy for programmers in
other language to understand and write Python code.

e Most importantly for this project, Python provides excellent packages for sci-
entific computation and visualization (NumPy, SciPy and Matplotlib).

Because Python is a scripting language, it has certain performance issues when
compared with compiled languages. However, if performance is a major concern
using PyPy instead of CPython (the standard python interpreter) or PsyCO on top
of CPython will in many cases greatly reduce the performance gap or even close
it completely. Unfortunately, this does not always work, because PyPy does not
support all of the Python packages which contain C modules (for example NumPy
and SciPy). In this work, we implemented parts of the algorithm in parallel to
increase speed as much as possible on systems that have multiple CPUs.



3.2 Packages

One focus of our code was to make it modular and as simple as possible to be reused
and adapted for different prioritization algorithms.

We put all code in a package called nxpl (short for network explorer). It contains
the following six sub-packages:

e parse:
This package contains all functions necessary for parsing the input files such
as plaintext HPRD and OMIM databases or Affymetrix gene expression data.
Output consists of a matrix as well as an index for the rows in the matrix
(for example the MIM number). This is done to ease conversion between
different formats. The package also contains functions to create sparse or dense
adjacency matrices for KNN or thresholded networks. For parsing GE data
there is a special function that can be used in case the matrix of correlation
coefficients is too large to keep in memory (in our example calculating the
correlation coefficient matrix of 12851*12851 used more than 2 GB). If there
is not enough space available to keep all correlation coefficients in memory,
the function will store intermediate results in files and apply the threshold or
KNN before creating the sparse matrix.

o fuse:
This package is specific for prioritization algorithms that combine multiple
networks. In our case, it contains the functions used for creating the hetero-
geneous network and its corresponding transition matrix.

e neighbors:
This package contains functions to create the artificial linkage intervals used
for validation.

e solve:
This package contains the random walker algorithm.

e validate:
This package contains the validation methods described in materials and meth-
ods. It performs leave-one-out cross-validation and ab-initio prediction.

e visualize:
This package contains several functions for visualizing the results, including
making ROC curves, density- and scatter-plots. It contains all the functions
that were used to create the figures in the results section. All figures in this
work were created with the functions contained in this package.

For convenience, an example script is also provided, which shows the use of
the other packages. Given HPRD, GE and OMIM input files and parameters, it
performs all the steps necessary to create the transition matrix and then does cross-
validation checks before generating graphs as output. Scripts used to run tests and
store results are also given for the sake of completeness, but are not as neat and tidy
as the code in the nxpl package

To get the documentation for all the functions in the package, one can simply
type pydoc nxpl.<name of package> in the terminal.

10



4 Results

In this section, we compare the characteristics of gene expression and phenotype
networks constructed in different ways to quantify the impact of network construc-
tion on the quality of the rankings produced by the random-walker algorithm on
the heterogeneous network (RWRH). We compare the performance of the random
walker algorithm on different gene expression networks and a protein-protein inter-
action network in combination with different phenotype networks. Finally, we fuse
a gene expression and phenotype network to create a larger network and compare
the rankings produced with it to those produced with PPI and GE networks alone.

4.1 Network characteristics

The gene expression data contains samples for 33689 markers in 158 tissues. Because
some genes contain several markers, the total number of genes sampled is only 12851.
Where several samples existed for one gene, we decided to use the average of the
expression of all markers for each tissue. In order to build a network with the gene
expression data, some measure of gene proximity must be used. In our study, we
used the absolute value of the standard correlation coefficient.

To build a network from the correlation coefficients, we applied a threshold and
set all values in the matrix to zero, where the absolute value of the correlation was
below the threshold. If the network has too few edges, it will be divided into many
separate components, which has a negative impact on the quality of the rankings
produced. On the other hand, if the network has too many edges, it becomes too
large to be efficiently handled. Choosing the right threshold is therefore important.
Figure 1 shows a density plot for the values in the correlation coefficient matrix,
which can help making the decision of where to set the threshold.

Given the smoothness of the distribution, we decided to construct several net-
works with thresholds of 0.5,0.6,0.7,0.8 and 0.9 respectively. We also generated
networks with smaller thresholds, but could not use them for efficiently ranking
genes, because their adjacency matrices take up several gigabytes of memory each.
Figure 2 shows the number of edges in the GE network for different thresholds. Our
tests showed that GE networks need to be quite large in order to be fully connected
(ie have only one connected component). To explore the influence of node connec-
tivity on the results, we also constructed KNN (k-nearest neighbors) networks from
the GE data. While the adjacency matrices of the GE network constructed with
thresholds are all symmetrical, it should be noted that this is generally not the case
for the KNN adjacency matrices.

Figure 3 shows a box plot for the number of connections per node for five different
gene expression networks as well as for the protein-protein interaction gene network.
Figure 4 shows a histogram of the number of edges per node for both networks.
Neither the PPI network nor the GE-network are clearly scale free. The distribution
of edges per node is almost uniform in the range of 50 to 100. The GE network has
many nodes with few connections and its edge distribution is more similar to that of
a scale-free network. However, like the PPI network, it also has a long flat tail. This
observation hints, that networks constructed from correlation coefficients between
the sampled markers in the gene expression need not have the scale-free property
manifest in many biological networks [24].

The phenotype network was constructed from the mimMiner phenotype similar-
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Figure 1: Distribution of the correlation coefficients for the expression of 12851 genes in
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Figure 2: Total number of edges in GE network for different thresholds
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Figure 4: Histogram of the number of connections for the PPI network and the gene
expression network with correlation threshold 0.5. The PPI network has 9607 nodes and
the gene expression network has 12851 nodes.
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ity data and includes 5080 phenotypes. We constructed different phenotype networks
in the same fashion as the networks from GE data, that is with different thresholds
and different k for KNN. Finally, we also constructed undirected (i.e. symmetrical)
KNN networks for the phenotype data. The protein-protein interaction data we
used was a binary interaction table that contained no metabolic rates or concentra-
tions. Because of this, there is no basis for pruning nodes and the protein-protein
interaction network is therefore always the same in our comparisons.

4.2 Performance of GE networks

To assess the usefulness of the networks with respect to disease gene prioritization,
we performed leave-one out cross-validations for a set of 1630 known disease genes on
an artificial linkage interval of 100 genes. The different measures used to assess per-
formance are described in Materials and Methods. The numbers for whole-genome
cross-validation correlate very well with those of the artificial linkage interval cross-
validation, so we do not show any graphs for it here. The comparison tables can be
found in the appendix.

For a useful candidate gene prioritization, it is preferable to include a maximum
number of genes in the ranking. The GE network we constructed is significantly
larger than the PPI network and thus better in this respect, but suffers from another
drawback. Ranking is not possible for all genes, if the network is so sparse that some
of them are not in the same connected component as any of the seed nodes. If this
occurs, we assign no rank to the gene and call it a null-prediction. The smaller
the number of edges in the network, the more likely it is, that this will happen.
While null-predictions also occur for the PPI network, we found them to be much
less common than for the GE networks. To assess when predictions are possible
and when not, we plotted the number of perfect rankings (i.e. where the left-out
causative gene is ranked first) versus the number of null predictions for different
combinations of phenotype and gene networks.

Figures 5 and 6 show the influence of the threshold or KNN-parameter on the
number of perfect rankings and null predictions for different phenotype and gene net-
works. Figure 7 shows the AUC scores for the same networks. We compare only the
performance of symmetrical KNN phenotype matrices, because they produced much
better rankings than the thresholded version. Compared with the non-symmetrical
phenotype networks, the performance is similar, but slightly better.

These plots show that while the number of cases in which the left out gene is
ranked first stay perfectly constant for different KNN phenotype networks, the num-
ber of null-prediction increases linearly with the sparsity of the network. Sparsity
of the gene networks on the other hand affects both the number of perfect rank-
ings and the number of null-predictions. This suggests that the gene network and
not the phenotype network is responsible for the clustering of the heterogeneous
network into several smaller connected components. As the figures show, the more
edges a gene expression network has, the better its performance. The influence of
the threshold on the number of perfect rankings is much smaller than the effect on
the number of null-predictions. In the extreme case of the phenotype network with
threshold 0.6 and the GE network of a threshold of above 0.9 (not shown in figures),
the gene is therefore either ranked first or not ranked at all. This suggests that
the dataset used for validation has a certain bias to well studied genes and easily
discovered disease to gene relationships. Evidence is in this case firmly established
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through several connections between the phenotype and neighboring genes. If we
ignore the null-predictions, the areas under the ROC curve for the GE network with
the thresholds plotted would be extremely close to 1 (0.97) This shows that depend-
ing on the measure applied, the algorithm can appear to be almost perfect, even if
it fails to rank a majority of the genes. There is however a way to make use of this
phenomenon as a feature: To predict novel disease genes, the algorithm could be
run many times, lowering the threshold at each turn until a ranking is produced.
Figure 8 shows the ROC curve when null-predictions are ignored versus when they
are assigned a random rank.

For the number of perfect rankings, all networks show comparable performance
with differences of less than 10%. The PPI network is always among the best and
only sometimes beaten by the much denser gene expression network with threshold
0.5. But these numbers should be interpreted with care, because they contain no
information about genes not ranked in the first place. As the comparison of AUC
values in figure 7 shows, the number of perfect rankings is not a reliable indicator for
overall performance. In terms of AUC score, the protein-protein interaction network
constantly beats the gene expression networks. Again, the density of the phenotype
network has only a negligible effect.

For the remainder of this section, we used the phenotype network constructed
with KNN=9 and an RWRH ranking on an artificial linkage interval of 100 genes is
used to create all the plots. Tables for all the different performance measures of all
the phenotype networks in combination with the GE and PPI networks, including
whole-genome rankings, can be found on page A in the Appendix.

ROC curves for different thresholds and KNN values for the genotype network
are shown in figure 9. In this case, a random rank was assigned for null-predictions
to make the ROC curve smooth.
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Figure 8: Artificial linkage interval ROC curves for RWRH ranking on the phenotype
network with threshold 0.6 and the gene network with threshold 0.9, once ignoring null-
predictions (green) and once assigning random rank to null-predictions (blue).
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Figure 9: Artificial linkage interval ROC curves for RWRH ranking using gene expression
networks with different thresholds and KNN values in combination with a symmetrical
9-KNN phenotype network.
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The mean enrichment values for different phenotype networks and rankings based
on the PPI network varied between 10 and 24 while the same values for GE networks
were between 8 and 20. Since the artificial linkage interval contains 100 genes, the
enrichment is 50/rank(gene). If the gene is ranked first, the enrichment is 50. In
cases were the gene could not successfully be ranked, we used an enrichment value
of 1 (=average rank).

It is reasonable to assume, that fully connected networks will produce the best
results, because they would make use of all the available data. While the evidence
indicates, that a lower threshold leads to better performance, we could not make
use of this due to memory constraints. As the number of edges in the network
grows, so does computation time for multiplication (complexity of sparse matrix
multiplication depends linearly on the number of nonzero values). Fortunately, the
data in the tables on page A indicate that while additional edges increase the quality
of the rankings, the effect levels off after a certain point. It can thus be expected
that even using a fully connected phenotype network and gene expression network
would lead to only marginally better results while incurring the cost of polynomially
increasing space and time consumption.

After applying many different comparison methods, we observed that the values
were always highly correlated, i.e. if combination X of matrices has a higher AUC
score than combination Y, it also has a higher mean enrichment score. This is also
true for cross-validation on the artificial linkage interval versus cross-validation on
the whole genome. As already mentioned, the relationship between null predictions
and perfect rankings is only very weak and the number of null-predictions cannot
be used to predict the number of perfect rankings and vice versa. Because of this,
we used only the best combinations of networks for the comparisons in the following
sections: the symmetrical phenotype network with KNN=9, the genotype network
with threshold 0.5 and the standard PPI network.

4.3  Fused network

In order to get rankings for a maximum number of genes and a maximum number
of phenotypes, we constructed a combined matrix from the best GE network and
the PPI network. The new network contains 14612 genes, compared to 9607 for the
PPI network alone and 12851 for the GE network alone. Figure 10 shows the ROC
curve for the combined network with the two single networks.

While it could be speculated that the value of «, the parameter for weighing
the contribution of the two networks in the final network, has an impact on the
performance, we did not find this to be the case: We ran trials for different values
of a ranging from 0.1 to 0.9 in steps of 0.1. The best performance was obtained
at a=0.3, but the difference between the highest and the lowest AUC values was
smaller than 0.01

We conducted a leave-one-out cross-validation between the fused network, the
GE network and the PPI network to find out whether the larger size (and thus a
higher possible worst rank and added noise) of the new network significantly lowers
its performance. To make the comparison as unbiased as possible, we performed
leave-one-out cross-validation on a subset of genes that were present in all three
networks. Figures 11 and 12 show scatter-plots where the ranks of each plotted
against the other for the leave-one-out cross-validation on the random linkage inter-
val. Equal ranks lie on the diagonal. The fitted linear regression line shows that the
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Figure 10: Comparison of ROC curves for RWRH leave-one out cross-validation rankings
with PPI network, GE network with threshold 0.5 and the two networks fused together
(w=0.3). There were 1717,1630 and 1428 gene-phenotype connections for the fused
network, the GE network and the PPI network respectively.

19



70 T

60

50

rank fused
N
o

w
o
T

20f

X

10F

XXXXX XXXX

EXXXXX X

|

0 10 20 30 40 50 60 70
rank GE only

Figure 11: Scatterplot of rank of fused network plotted against rank of GE network only
for leave-one-out cross validation (1630 connections) on an artificial linkage interval of
100 genes. Values on the diagonal mean equal rank was assigned. The blue line shows
the best linear fit (with minimal square error), indicating that the performance of RWRH
on the fused network is superior to that of RWRH on the gene expression network alone.

performance of the fused network is not worse, but actually superior to that of each
of the separate networks, despite the fact that it ranks 20% and 50% more genes
respectively.

The AUC values for RWRH with each of the three different networks can be
seen in figure 13. This time, all possible connections are used (1717, 1428 and
1630 gene-phenotype connections for the fused network, the PPI network and the
GE network respectively). The values indicate that the fused network is always
better than the GE network alone. On the artificial linkage interaval and for ab-
initio cross validation, the fused network and the PPI network show almost identical
performance. For whole-genome cross-validation the fused network is better than
the PPI and GE networks. This could be due to the fact that the fused network is
more complete in terms of connections between related genes and can thus produce
more accurate ranks even when the gene is not in close proximity to the phenotype.
The ROC curves for the whole-genome cross-validation (figure 14) seem to support
this hypothesis.

The rest of the comparisons are not shown here for the sake of brevity. A
summary can be found in the tables on page A of the appendix.

20



70

x x
x
x x %
60 X x b
x X X
X
X
x x
x X
XXX X
x x x X
50} x x XX xx B
x X
X x * x x X§ x
X M x o X x
X x X XX X x x
3 40k P : . ,
8 X X7 ox o x x x X X
3 x x x
= X X x §x X Xx x XX
% XX x kX % x % x x x
© XX § X x XX
C 30 xx X xxT X x x 7
x X XXX x x x
x x x x X X
X X xXx x x
X X X x x
XX x X xXx X%
X x xX X x X X X X
X X X x X x X %
XXXX X x X X X X
201 X XxF ox o ox® X x x T
X X XX x X X x
x XX))E XXX XXX XX x XX
% §§ §§§ X% XX x % X
S S X X X
X 3 X
10f Bk o X E X x x |
X X %X x X x
x x x
X XX 2 x XX x Sx
% xx x x XX XX x
0 1 X XX xxx% §‘ x* X X x x | x* | |
0 10 20 30 40 50 60 70
rank PPl only

Figure 12: Scatterplot of rank of fused network plotted against rank of PPI network only
for leave-one-out cross validation (1428 connections) on artificial linkage interval of 100
genes. Values on the diagonal mean equal rank was assigned. The blue line shows the
best linear fit (minimal square error), indicating that the performance of RWRH on the

fused network is superior to that of RWRH on the protein-protein interaction network
alone.
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Figure 13: AUC scores for the three networks for leave-one-out cross validation on ar-
tificial linkage interval, whole-genome leave-one-out cross-validation and ab-initio cross-
validation. The number of validation cases were 1717,1428 and 1630 for the three dif-

ferent networks.
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Figure 14: ROC curves for the three networks for whole-genome leave-one-out cross-
validation. There validation set included 1717,1630 and 1428 gene-phenotype connec-
tions for the fused network, the GE network and the PPI network respectively.
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4.4  Comparison of fused network with other methods

Various other methods for disease gene prioritization have been proposed, but it
is difficult to compare their performance methods, because they often use different
data sets and different validation methods. The following part, in which we try to
compare the performance of RWRH with the fused network to that of other methods,
should therefore be taken with a grain of salt.

The algorithm used in this work is based on the random walk with restart on
a heterogeneous network (RWRH) proposed by Li & Patra [12], who based it on
the random walk with restart algorithm from Kohler et al [8]. The comparison with
RWRH is implicit, since they used the same phenotype data as well as a subset of the
protein-protein connections from HPRD which we used. Their network contained
8919 proteins while our network contains 9607. One could expect that the addition
of more protein protein connections increases the accuracy of their algorithm, but
the opposite seems to be the case. For RWRH, the number of genes ranked in first
place is 814 and 245 for leave-one-out cross-validation on the artificial linkage interval
and whole genome respectively and 201 for ab-initio. These numbers are surprising,
because the best scores we produced for the combination of a symmetrical phenotype
network and a PPI network were only 744, 209 and 191. It could be, that the addition
of the 688 proteins somehow lowered the performance, but this is unlikely. However,
because they did not mention how they dealt with null-predictions, we believe it is
more likely, that this is the explanation for the discrepancy. If the random walker
does not reach any gene, all genes will have equal score and thus the equal rank of
1. In our trials, we did not use the 50 null-predictions for counting the number of
perfect rankings. If they are taken into account, the difference between our numbers
and those of Li & Patra are reduced to 20 in the case of artificial linkage interval
rankings and even reversed to -14 for the whole-genome ranking. There is still a
difference, but this can be explained with the fact that we used more interactions and
a phenotype matrix with more connections. To validate the result of Li & Patra, we
would have to repeat the experiments with their input data. The ab-initio validation
did not produce any null-rankings. We can confirm the result that the influence of
the parameters n, A and v on the performance of the algorithm is minimal. For our
figures and tables, we therefore used the same values as they did, i.e 0.7 for A and
0.5 for n and v

Wau et al also used phenotype similarity, protein-protein interaction networks and
known gene-phenotype connections as input for their algorithm. They generated
the rankings based on a regression model for proximity profiles of diseases and
genes [9]. In their paper, they list the number of perfect predictions as well as the
fold-enrichment for the first 1%. The fold-enrichment of our fused network is 51.5,
compared to 53.5 for CIPHER, which is almost identical. For the whole-genome
prediction, the value for CIPHER, is 954 while for our method it is 1873, which is
almost twice as much.

Other methods used for prioritization include ENDEAVOUR [11], PRINCE [13]
and RWR [8]. We are not comparing our results with theirs, because their input data
as well as their validation sets are radically different from ours, making a meaningful
comparison very difficult. In the discussion, we make a few suggestions on possible
improvements that would make it easier to compare methods in the future.
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5 Comparison and reproducibility of results

Comparisons and performance evaluations are a big problem for current algorithms.
Most papers published on disease gene prioritization involve some sort of comparison
with previous methods, but because many of the methods are hand-crafted for a spe-
cific set of manually curated data, it is difficult to compare them with one another.
CIPHER for example uses a phenotype network containing 5080 phenotypes and a
PPI network containing 8919 proteins, while ENDEAVOUR uses ontologies (GO,
KEGG, ...), microarray data, pathways and sequence similarity as data sources.
Each method alone ranks several thousand genes and was evaluated on several hun-
dred of them, but the overlapping test set only contains 80 genes, not enough to
prove that one method is significantly better than the other.

One problem that makes comparing different methods difficult, is that there is
no obvious and unbiased performance measurement. The first problem with mea-
suring performance is due to the fact that those methods that rely on known gene-
phenotype or gene-disease associations to make their ranking cannot simply be tested
on known disease genes. As we have seen, a common way to forgo this issue is leave-
one-out cross validation. However, since the algorithms are based on the modular
nature of human diseases, it is not surprising that they will in a majority of cases
correctly rank the left out connection at the top. In that case, we are in fact just
measuring how modular the network really is.

In the data we retrieved from OMIM, one phenotype was related to 2.88 genes on
average and each known disease gene was involved in 1.56 phenotypes on average.
In case there are multiple connections from one gene or phenotype, leaving out
only one of them will make prediction quite easy. A possible solution is to ignore
all phenotypes sharing the same benchmarked disease gene, but this only works in
leave-one-out cross-validation [9], because for ab-initio prioritization the modular
nature of the network would be destroyed. Another way of evaluating performance
while keeping a minimal bias is to test the performance on recently discovered disease
genes. This method was used in ENDEAVOUR and RWR. Considering only recently
discovered disease genes can reduce the literature and selective bias (disease genes
are likely to be better studied than others), but the number of genes in the sample is
usually very low. ENDEAVOUR for example was assessed on only 16 genes whose
association to disease had been recently discovered [11]. But even for this kind
of evaluation there should be concern that a significant bias remains, because new
disease genes are more likely to be discovered if they are well-researched and present
in many datasets.

Even comparing closely related methods is rendered difficult through the fact
that the source code is almost never made public or shared and that the exact
input data cannot be determined from the information available. Where the code is
made public, it usually contains only the core algorithm and a possible benchmark,
but not the code necessary for preprocessing the data set. Since it is usually the
preprocessing that is most complex and error prone, not much is gained. Making
the algorithm accessible through a website is praise-worthy and certainly useful for
inspecting results, but it is not suitable for direct comparison with other methods,
since the input data cannot be changed by the user. A clear drawback of the
non-availability of code is that unless the authors keep developing the software, no
bugs will ever be discovered or corrected. We believe that requiring authors to
always publish code would benefit everyone by making independent verification and
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comparison possible. A probable side-effect is that the code would become more
structured and readable, which is very likely to help the author reduce the number
of bugs even before publication.

As partial solutions for the problems mentioned above, especially concerning
comparison and reproducibility, we propose the following:

1. Publication of algorithms should always include publication of all associated
code and clear identification of the data sources used. If previously non-public
data sources are used, they should be made available too. The code included
should be able to do all the processing from parsing the original data source to
validation of results in order to guarantee reproducibility and enable detection
of bugs. This would further allow interested researchers to adapt the method
to their needs and use the input data they want.

2. A general framework for implementing disease gene prioritization software and
standardized output formats to make using, testing and combining different
algorithms as simple as possible would be very useful. It is especially important
to have an interface which makes interpretation easy for biologists, because
they are the ones that could benefit most from prioritization methods.

3. There should be a critical and generally agreed upon assessment standard for
prioritization methods, similar to the CAGI community project for the pre-
diction of phenotypic impacts of genetic variations [25]. This is somewhat
more difficult to do for prioritization methods, but it is possible to evaluate
performance of algorithms with input data published before the discovery of
a number of test genes. Instead of delaying the assessment for several years,
older datasets could be used. Most importantly, criteria for performance eval-
uation should be defined before results are available not chosen for convenience
afterwards.

It might be difficult to get researchers to participate, but we believe that some
steps in this direction are necessary, if there is sufficient continued interest in disease
gene prioritization.
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6 Conclusion

In comparison with protein-protein interaction networks used by several prioritiza-
tion methods, gene expression data is relatively easy to generate and available for
a great number of markers on the whole genome. The fact that our method using
gene expression data produces rankings that are as good or even better than those
of methods using a large number of manually curated datasets, is an extremely
promising result. We have successfully demonstrated the excellent performance of
a random walker algorithm on the combination of a protein-protein interaction net-
work with a GE-network, but the true strength of the proposed method lies in the
simplicity of combining data sources. Our fusion method bundles the power of pri-
oritization based on the modular nature of diseases with the high throughput of
gene expression studies. If our method is always as robust to changes in parameters
as in the example we showed, it could prove to be an extremely useful tool for gene
prioritization, making it possible to give a meaningful rank even to less well-studied
genes which other methods do not include so far.

In the future, our method could be extended by evaluating and adding more
gene expression data to eventually cover the whole genome. With the code base
we provide, this process can easily be automated. Fusing networks is of course not
limited to genes, but can also be applied to phenotypes.

Although we evaluated our method on several validation sets and proposed new
ideas for how different methods could be compared, we believe that the usefulness
of prioritization methods should be measured not on how they pass validation, but
on how they are actually used for the discovery of disease genes by other scientists.
Because usefulness for real-world applications is the real measure for algorithms in
bioinformatics, extra care should be put into making it easier for researchers to get
the information they really want. After all, the final goal is not to rank candidate
genes, but to understand the mechanisms of disease and eventually discover a cure.

27



28



7 Acknowledgements

The research for this thesis was conducted at the Bioinformatics Division of the
Tsinghua National Laboratory for Information Science and Technology (TNLIST)
in Beijing, China, under the joint supervision of Professor Rui Jiang of Tsinghua
University and Professor Bernard Moret of EPFL.

I thank Rui Jiang for his very kind support and supervision during the project.
Many thanks also to Bernard Moret, due to whose efforts I was able to spend 6
months at Tsinghua University for research and writing this thesis. Furthermore, I
would also like to thank my friends and colleagues for giving me critical input on
the thesis and making my stay at Tsinghua University a great experience overall.

29



30



References

1]

[15]

[16]

[17]

Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusic VA (2002),
Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes
and genetic disorders, Nucleic Acids Res. 30, 52-55

Botstein D, Risch N (2003), Discovering genotypes underlying human phe-
notypes:past successes for Mendelian disease, future approaches for complex
disease, Nat Genet, 33(Suppl)228-237

Glazier AM, Nadeau JH, Aitman TJ (2002), Finding genes that underlie com-
plex traits, Science, 298(5692):2345-2349

Lander ES, Schork NJ (1994), Genetic dissection of complex traits, Science,
256(5181):2037-2048

Perez-Iratxeta C, Bork P, Andrade MA (2002), Association of genes to geneti-
cally inherited diseases using data mining, Nat. Genet. 31, 316-319

Turner F et al (2003), POCUS: Mining genomic sequence annotation to predict
disease genes, Genome Biol, 4, R75

Adie EA et al (2006), SUSPECTS: Enabling fast and effective prioritization of
positional candidates, Bioinformatics, 22, 773-774

Kohler S, Bauer S, Horn D Robinson PN (2008), Walking the interactome for
prioritization of candidate disease genes,American journal of human genetics
82: 949-958

Wu X, Jiang R, Zhang MQ, Li S (2008), Network-based global inference of
human disease genes, Mol Syst Biol 4:189

Trabolusi EI et al (2006), Lumpers or splitters? The role of role of molecular
diagnostics in Leber congenital amaurosis, Ophtalmic Genet, 27,113-115

Aerts S et al (2006), Gene prioritization through genomic data fusion, Nature
Biotechnology vol 24 no 5 p 537-544

Li Y, Patra JC (2010), Genome-wide inferring gene-phenotype relationship by
walking on the heterogeneous network, bioinformatics vol. 26 no 9 p 1229 -
1224

Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R (2010), Associating
Genes and Protein Complexes with Disease via Network Propagation, PLoS
Comp Biol 6(1): 1000641

Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008), eQED: an efficient
method for interpreting eQTL associations using protein networks, Mol Sysy
Biol 4:162

Zhang W, Sun F, Jiang R (2011), Integrating multiple protein-protein interac-
tion networks to prioritize disease genes: a Bayesian regression approach, BMC
Bioinformatics 12(Suppl 1):S11

Oti M, Brunner HG (2007), The modular nature of genetic diseases, Clin Genet
71:1-11

van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA (2006),

A text-mining analysis of the human phenome, /textitEur J Hum Genet,
14(5):535-542

31



[18]

[19]

[22]
[23]
[24]

[25]

Keshava Prasad TS, Goel R,Kandasamy K, Keerthikumar S, et al (2009), Hu-
man Protein Reference Database-2009 update, Nucleic Acids Res,37:D767-772

Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J et al
(2004), A gene atlas of the mouse and human protein-encoding transcriptomes
textitProc Natl Acad Sci USA 101, 6062-6067

Hubbard TJP, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, et al (2007),
Ensembl 2007, Nucleic Acids Res. 35:D610-617

Kasprzyk A, Keefe D, Smedley D, London D, Spooner W, et al (2004), EnsMart:
a generic system for fast and flexible access to biological data, Genome res
14:160-169

Lehne B, Schlitt T (2009), Protein-protein interaction databases: keeping up
with growing interactomes, Human Genomics3:291-297

Can T, Camolgu O, Singh AK (2005), Analysis of protein-protein interaction
networks using random walks, BIOKDD 05: 61-68

Khanin R and Wit E, (2006), textitJournal of Computational Biology,13(3):
810-818. doi:10.1089/cmb.2006.13.810

http://genomeinterpretation.org/

32



8 Appendix

8.1 Input files

GE data of Su et al was downloaded from http://biogps.gnf.org/downloads/ file-
name:GNFH1data.xls (GEO code: GSE1133) and AffyUl33Aannotation.txt

PPI data was downloaded from HPRD, filename: HPRD_Release9_041310.tar.gz
BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt

The OMIM database was downloaded in plaintext format, filename: morbidmap,
last version downloaded on 9.6.2011

8.2 Tables of matrix comparisons

The tables on the following pages show a selection of the large scale comparison
study we conducted.



Table 1: AUC values for leave-one out cross-validation on an artificial linkage interval of 100 genes

PPI | thr 50 | thr60 | thr_70 | thr_80 | thr. 90 | KNN10 | KNN2 | KNN4 | KNN6 | KNN8

KNN1 | 0.741 0.72 1 0.705 | 0.667 | 0.639 | 0.597 0.715 | 0.568 | 0.633 | 0.676 | 0.689

KNN3 | 0.888 | 0.832 | 0.824 | 0.804 | 0.781 | 0.716 0.819 | 0.732 | 0.774 0.8 | 0.813

KNN5 | 0.906 | 0.858 | 0.847 | 0.827 | 0.808 | 0.765 0.844 | 0.781 | 0.822 | 0.829 | 0.831

KNN7 | 0913 | 0.867 0.86 | 0.838 0.81 0.78 0.85 | 0.796 | 0.819 | 0.839 | 0.847

KNN9 | 0916 | 0.872 | 0.859 | 0.843 | 0.818 | 0.777 0.855 | 0.808 | 0.825 | 0.844 0.85

KNN_syl | 0.837 | 0.792 | 0.785 0.76 | 0.733 | 0.665 0.782 | 0.668 | 0.744 | 0.766 | 0.784

KNN.sy3 | 0919 | 0.875 | 0.867 | 0.844 | 0.826 | 0.781 0.857 | 0.808 | 0.835 0.84 | 0.849

KNN_sy5 | 0.922 | 0.882 | 0.869 | 0.852 | 0.823 | 0.789 0.863 | 0.801 | 0.835| 0.851 | 0.858

KNN_sy7 | 0.923 | 0.882 0.87 | 0.856 | 0.822 | 0.785 0.863 | 0.804 | 0.837 | 0.846 | 0.854

KNN=sy9 | 0924 | 0.882 | 0.879 | 0.854 | 0.833 | 0.786 0.868 0.8 | 0.839 0.85 | 0.857

thr40 | 0.92 0.88 0.87 | 0.853 | 0.825 | 0.787 0.859 | 0.798 | 0.823 | 0.849 | 0.856

thr50 | 0.845 | 0.806 | 0.796 | 0.781 | 0.758 | 0.729 0.792 | 0.735| 0.769 | 0.786 | 0.787

thr60 | 0.699 0.68 | 0.678 | 0.658 | 0.637 | 0.615 0.666 | 0.611 | 0.639 0.66 | 0.659

thr70 | 0.608 | 0.582 | 0.579 | 0.577 | 0.557 | 0.552 0.599 | 0.549 | 0.571 | 0.574 0.57

thr80 | 0.545 | 0.546 | 0.545 0.53 0.53 | 0.528 0.536 | 0.525 | 0.523 | 0.524 | 0.535
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Table 3: Perfect ranking counts for leave-one out cross-validation on an artificial linkage interval of 100 genes

ones PPI | thr-50 | thr_60 | thr_70 | thr_80 | thr 90 | KNN10 | KNN2 | KNN4 | KNN6 | KNN8
KNN1 | 354 355 337 323 308 265 322 236 275 303 321
KNN3 | 584 559 956 539 546 518 520 480 509 ol17 510
KNN5 | 648 623 623 622 619 610 578 562 973 582 585
KNNT7 | 683 670 662 657 665 641 620 614 613 618 622
KNN9 | 708 695 686 676 684 672 651 634 637 649 650
KNN_syl | 481 474 459 454 451 419 439 373 406 426 435
KNN_sy3 | 683 686 679 674 683 673 642 637 634 652 650
KNN_sy5 | 720 712 709 704 708 681 674 657 662 668 671
KNN_sy7 | 737 736 730 724 716 693 691 674 682 685 688
KNN_sy9 | 744 748 735 736 729 705 704 689 700 706 701
thr40 | 732 746 740 740 726 697 710 682 697 705 700
thr50 | 594 606 o87 578 579 562 559 543 548 5954 561
thr60 | 366 363 363 351 333 324 337 311 326 336 336
thr70 | 196 191 188 182 176 172 181 161 161 169 179
thr80 85 84 86 83 80 7 78 72 73 77 79
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Table 5: AUC scores for leave-one out cross-validation on the whole genome

PPI | thr 50 | thr60 | thr_70 | thr_80 | thr. 90 | KNN2 | KNN4 | KNN6 | KNN8 | KNN10

KNN1 0.67 | 0.629 | 0.638 | 0.636 | 0.628 | 0.581 | 0.572 | 0.624 | 0.646 | 0.638 0.635

KNN3 0.792 | 0.714 | 0.735 | 0.747 | 0.742 | 0.704 | 0.732 | 0.749 | 0.745 | 0.729 0.732

KNN5 0.818 | 0.753 | 0.768 0.78 | 0.785 | 0.762 | 0.775 | 0.775 0.77 | 0.761 0.755

KNN7 0.829 | 0.772 | 0.784 | 0.793 | 0.787 | 0.776 | 0.783 | 0.792 | 0.774 | 0.774 0.772

KNN9 0.838 | 0.777 | 0.792 0.79 | 0792 | 0772 | 0.783 | 0.794 | 0.786 | 0.777 0.774

KNN=syl | 0.74 | 0.677 | 0.692 0.71 0.71 | 0.662 | 0.657 | 0.716 | 0.711 0.7 0.696

KNNsy3 | 0.84 | 0774 | 0789 | 0.797 | 0.798 | 0.772 | 0.788 | 0.799 | 0.794 | 0.782 0.782

KNN_sy5 | 0.848 | 0.792 | 0.807 | 0.813 | 0.807 | 0.775 0.79 | 0.799 | 0.796 | 0.798 0.789

KNN.ssy7 | 0.852 | 0.796 | 0.812 | 0.817 | 0.802 | 0.783 | 0.786 | 0.805 | 0.803 | 0.793 0.787

KNN_sy9 | 0.857 | 0.801 | 0.814 0.82 | 0811 | 0.786 | 0.797 | 0.805 | 0.797 | 0.799 0.792

thr40 0.848 | 0.794 | 0.803 | 0.817 | 0.808 | 0.772 | 0.779 | 0.799 0.8 | 0.793 0.783
thr50 0.774 0.73 | 0743 | 0.747 | 0.754 | 0.724 | 0.723 | 0.735 | 0.728 | 0.736 0.737
thr60 0.655 | 0.629 | 0.636 | 0.646 | 0.627 | 0.617 | 0.614 | 0.639 | 0.636 | 0.633 0.635
thr70 0.58 0.58 | 0.562 | 0.576 | 0.554 | 0.553 | 0.561 | 0.559 | 0.567 | 0.572 0.574

thr80 0.536 | 0.534 | 0.547 | 0.533 | 0.525 | 0.526 | 0.515 | 0.523 | 0.528 | 0.529 0.528
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Table 7: Perfect ranking counts for leave-one out cross-validation on the whole genome

PPI | thr 50 | thr 60 | thr_70 | thr.80 | thr 90 | KNN2 | KNN4 | KNN6 | KNN8 | KNN10
KNN1 145 154 157 156 155 149 141 142 144 147 151
KNN3 186 203 211 207 205 200 184 184 191 197 202
KNN5 188 210 218 214 206 200 180 182 188 198 201
KNN7 193 215 222 223 213 202 186 186 192 202 207
KNN9 191 216 222 218 215 206 184 184 191 201 207
KNN_syl | 183 183 187 187 184 178 167 169 171 176 181
KNN_sy3 | 201 210 219 216 212 207 189 190 196 205 211
KNN_sy5 | 207 221 227 227 221 215 193 194 200 210 215
KNN_sy7 | 209 229 233 231 226 216 197 198 204 213 219
KNN_sy9 | 209 229 235 229 225 216 199 198 204 210 219
thr40 190 195 202 199 196 187 165 167 173 179 190
thrb0 186 205 211 206 205 196 180 178 184 190 201
thr60 123 138 141 144 139 134 110 114 125 132 136
thr70 76 87 89 91 85 83 55 64 74 79 82
thr80 37 48 50 52 44 42 14 27 36 39 42
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Table 9: AUC scores for parameter tests on artificial linkage interval

A=01|A=03|A=05|A=07[A=09
v=04n=0.3 0.861 0.856 0.861 0.866 0.861
v=04n=0.5 0.86 0.863 0.86 0.859 0.86
v=04n=0.7 0.862 0.865 0.864 0.864 0.862
v=0.7n=03 0.864 0.864 0.862 0.862 0.865
v=0.7n=0.5 0.861 0.867 0.864 0.862 0.863
v=0.7n=0.7 0.863 0.86 0.867 0.869 0.866

Table 10: AUC scores for parameter tests on the whole genome

A=01|A=03|A=05|A=07|A=09
v=04n=03 0.755 0.756 0.757 0.757 0.757
v=04n=0.5 0.755 0.756 0.757 0.757 0.757
v=04n=0.7 0.755 0.756 0.757 0.757 0.757
v=0.7n=0.3 0.757 0.758 0.758 0.758 0.758
v=0.7n=0.5 0.757 0.758 0.758 0.758 0.758
v=0.7n=07 0.757 0.758 0.758 0.758 0.758




