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ABSTRACT:

Generating detailed simplified building models such as the ones present on Google Earth is often a difficult and lengthy manual task,
requiring advanced CAD software and a combination of ground imagery, LIDAR data and blueprints. Nowadays, UAVs such as the
AscTec Falcon 8 have reached the maturity to offer an affordable, fast and easy way to capture large amounts of oblique images
covering all parts of a building. In this paper we present a state-of-the-art photogrammetry and visual reconstruction pipeline provided
by Pix4D applied to medium resolution imagery acquired by such UAVs. The key element of simplified building models extraction is
the seamless integration of the outputs of such a pipeline for a final manual refinement step in order to minimize the amount of manual
work.

1 INTRODUCTION

Virtual globe visualization software such as Google Earth(Google,
2011a) are becoming increasingly popular, both on desktop and
mobile platforms. They enable many applications in the fields of
navigation, tourism, but also city and land planning. In addition
of displaying detailed 2D vectorial and raster maps on top of dig-
ital elevation models, modern virtual globes have the ability to
render 3D building models.

These viewers often stream content over the web, for that reason
the building models need to have the lowest number of polygons
as possible. It is also a matter of processing power, as visual-
ization of large cities implies the rendering of a huge amount of
polygons by the viewer. Finally, to make the most visual sense,
these models should capture also the semantics of the building,
its main characteristics and properties. In other words it means
that the polygons should correspond to the human understanding
of a building: facades, roof, windows, balcony and so on. The
CityGML standard (Fan et al., 2009) represents objects in vary-
ing levels of detail (LOD), where level 1 and 2 correspond to box
models without and with roofs, as often encountered on Google
Earth. Level 3 includes additional architecture details that are
sometimes present on specific buildings such as landmarks on
Google Earth.

As for today, modeling of buildings is usually a difficult lengthy
manual task done using CAD software. Data is usually acquired
using a combination of total station, terrestrial laser scanners,
blueprints, airborne LIDAR and imagery (Georgeta Pop, 2008,
Karantzalos and Paragios, 2010, Haala and Brenner, 1997) . Most
of these solutions are either very expensive, lengthy, or require
advanced knowledge in these fields. There have been multiple
approaches which proposed to automate the process of generat-
ing level 1 and 2 building models using various algorithms based
purely on images. However, these techniques are usually lim-
ited to very simple buildings’ shape or to over simplified mod-
els(Debevec et al., 1996, Zebedin et al., 2008, Zhou and Neu-
mann, 2010, Guo et al., 2008, Woo et al., 2008, Melnikova and
Prandi, 2011, Nan et al., 2010). At the best of our knowledge, this
crucial step of generating fully automatically LOD 3 buildings is
not yet solved, and human intervention is still required.

We propose a workflow that drastically reduces the amount and
difficulty of manual labor both in the acquisition process and in

the modeling process. Based purely on images, it removes the
need for blueprints or LIDAR data. Images are aquired by au-
tomated UAV, making the whole process fast, easy to deploy
and affordable, and ensuring a full coverage of the building in-
cluding rooftops and facades. These images are then automati-
cally processed, outputting a LOD 1 model. Moreover, the posi-
tions of the images and dense 3D cloud of points are also gener-
ated. These two elements are seamlessly integrated in the CAD
software Google Sketchup(Google, 2011b), and this integration
greatly minimizes and simplifies the manual tasks to achieve a
LOD 3 model.

The three main elements of this workflow, shown on figure 1, are:

• Acquisition of images using automated UAVs

• Fully automated image processing and LOD 1 model extrac-
tion

• Seamless integration in CAD software

Capture of large set of images at all possible views is a per-
fect task for micro Unmanned Aerial Vehicles (UAV). Fully au-
tonomous UAV have recently become commercially available at
very reasonable cost for civil applications. The advantage of
these aircrafts is their ease of deployment and retrieval. More-
over, UAV such as the AscTec Falcon 8 have the capability of
taking oblique to horizontal imagery, allowing them to capture
images all around a building at different heights.

Recent advances in photogrametry and computer vision have al-
lowed to take full advantage of large set of images based on
Structure From Motion and Multiview stereoscopy(Strecha et al.,
2011). One key element of these algorithms is their ability to
automatically recover the exact position and orientation of large
sets of images, together with the parameters of the camera just
by analyzing and matching the content of the images and by
performing a bundle adjustment on those matches(Triggs et al.,
2000). Taking these parameters as input, dense matching algo-
rithms(Furukawa and Ponce, 2009, Furukawa et al., 2010, Fu-
rukawa et al., 2011) find as many correspondences as possible
in the images to provide a very dense cloud of point. A LOD 1
building model is then automatically extracted from this cloud of
points. Pix4D(Pix4d, 2011) is a company which provides such a



Figure 1: Workflow of our method

service applied to UAV imagery which takes into account geolo-
calization of the cameras using the GPS tags and introduction of
Ground Control Points for better geolocalization.

Modern Computer-aided design (CAD) software such as Google
Sketchup(Google, 2011b) offer powerful and intuitive tools for
modeling buildings. However they lack fully automated image
processing algorithms to register the images to the scene and gen-
erate an automated dense cloud of points. Starting with the au-
tomatically computed LOD 1 building model, together with the
overlaid cloud of points reduces greatly the modeling time for
higher level of details. Furthermore, displaying the registered im-
ages allows the finest details to be modeled, together with a very
convenient way to texture the model by a simple projection.

This paper is organized as follows. In section 2, the image ac-
quisition using an AscTec Falcon 8 and a swinglet CAM are
discussed. In section 3 the automated image processing algo-
rithms are explained. Section 4 presents the seamless integration
of the results of the algorithms with the CAD software Google
Sketchup. The workflow is demonstrated in section 5 on four dif-
ferent datasets, three taken by the AscTec Falcon 8 and one with
a swingletCAM by Sensefly. We also discuss for each of them
the results of the different steps.

2 IMAGE AQUISITION

In traditional photogrametry, the number of images is minimized
as it adds tedious work to calibrate, register and use for the mod-
eling step. With the advent of fast fully automated image pro-
cessing, this paradigm is not valid anymore. A larger number of
images equals an increased likelihood of a precise automatic reg-
istration. One of the requirement of these algorithms is a large
overlap in the order of 60% to 80% between the images. As
digital cameras equipped with sufficient memory are nowadays
ubiquitous, capturing a large amount of images is not a technical
problem anymore.

Images taken from the ground are inherently unable to capture
roof structures. On the other hand, planes and helicopter are way
too complex and expensive to deploy for capturing images from a
single building. UAVs equipped with a camera are the perfect fit
to automatically capture large amounts of images including roof
structures and facades in an easy and affordable way.

2.1 AscTec Falcon 8

The AscTec Falcon 8 produced by Ascending Technologies GmbH,
Germany, is an 8 rotors flying platform displayed on Figure 1. Its
SONY NEX-5 system camera records 14MP images. Due to the
unique design of the AscTec Falcon 8 the camera is able to face
completely down, horizontal and completely up, without any of

the rotors compromising the image. The Falcon 8 has a dedi-
cated software which handles the flight plan, allowing it to circle
around a point of interest with tilting of the camera to point to the
same target. The mission planning has been automated for the
application of generating building models. It can easily be done
by the operator while the UAV is airborne with some simple steps
using the telemetry display of the mobile ground station only. The
following steps are required before the UAV automatically takes
all images required for generating a building model. First, the pi-
lot has to fly roughly above the center of the building of interest,
operationg the AscTec Falcon 8 in GPS assisted mode and using
the camera pointing down to determine when the UAV is hovering
above the building. After pressing a button on the mobile ground
station the UAV must now be flown away from the building, until
the whole building is visible on the camera image. Also the de-
sired flying altitude and camera orienation can be selected in this
step. After pressing a button again the operator is asked to enter
the number of photos desired, which are then evenly distributed
on a circle around the building. After that, pressing GO makes
the AscTec Falcon 8 take the first photograph on its current lo-
cation and then automatically take all photos on its way around
the building. As the whole process can be done without a laptop
computer it is easy for the operator to change their position in or-
der to keep the UAV in visual range throughout the flight, which
is required by law in most countries.

2.2 swingletCam

The swinglet CAM is an electrically-powered 500-gram flying
wing including a full-featured autopilot and an integrated 12 MP
still camera. Its low weight combined with its exible-foam air-
frame makes it particularly safe for third parties as it has approx-
imately the same impact energy as a medium sized bird. It is
launched by hand, which makes it particularly quick to deploy.

3 IMAGE PROCESSING

UAVs are equipped with GPS, gyroscopes and accelerometers
which are logged during the flight. Once back on the ground,
a software is dedicated to correctly tag the images with GPS and
orientation information. The GPS information has a few meters
of inaccuracy. By analyzing the images, we can recover the true
position of the camera, also called Calibration step. Once the po-
sitions are know, we can match more pixels across the images to
generate a 3D cloud of point in a step called Dense Matching.
The cloud of point is then projected on the z axis to easily detect
the facades and compute the building’s main directions. From the
facade model, the minimum and maximum height in this area can
be found and a box model is then extracted. All of these steps are
fully automated and don’t require any extra parameter tunings or
other manual step.



3.1 Structure From Motion

In this paper we use the commercial service offered by Pix4D(Pix4d,
2011). It takes as input roughly geotagged images, and outputs
the recomputed position of the images together with the parame-
ters of the camera. It is presented in form of a web-based service
that can automatically process up to 1000 images, is fully auto-
mated and requires no manual interaction. Ground control points
can be added for more accurate geo referencement. The software
performs the following steps:

• All uploaded images are analyzed individually for keypoints.
On a second step these keypoints are compared across im-
ages to find matching ones. Most well known in computer
vision is the SIFT feature matching (Lowe, 2004). Studies
on the performance of such feature desciptors are fiven by
Mikolajzyk et.al (Mikolajczyk and Schmid, 2002). We use
here binary descriptors, which are very efficient and fast to
match (Strecha et al., 2011).

• The matching points as well as approximate values of the
image position and orientation provided by the UAV autopi-
lot are used in a bundle block adjustment (Hartley and Zis-
serman, 2004) to recompute the exact position and orienta-
tion of the camera for every acquired image.

• Based on this reconstruction, the matching points are veri-
fied and their 3D coordinates calculated. The geo-reference
system is WGS84, based on GPS measurements from the
autopilot during the flight.

A report is generated giving statistics about the calibration and
geo referencement.

3.2 Dense Matching

The cloud of points generated in the calibration step consists only
of keypoints that were successfully matched and verified along
multiple images. There are potentially many more matches which
can be verified, producing a much more dense cloud of points. In
this work, we use the approach by (Furukawa and Ponce, 2009,
Furukawa et al., 2010, Furukawa et al., 2011). It is composed
of first a image clustering part (CMVS), followed by the actual
dense matching algorithm (PMVS). CMVS takes the output of
Pix4D as input, then decomposes the input images into a set of
image clusters of manageable size. These clusters are then passed
to the PMVS software. The PMVS algorithms is based on ori-
ented patches and are computed by iteratively following these
three steps:

• Match: edge features from the images are matched along
epipolar geometry and form potential candidates

• Expend: spread the initial matches to nearby pixels and ob-
tain a dense set of patches

• Filter: visibility and smoothness constrains are applied to
remove matches

The output of this algorithm is a set of points together with the
associated normals.

Figure 2: Projection of 3D points along the z axis on a grid for
Main Building dataset

3.3 Box model extraction

A very simple algorithm for extracting a box model of the build-
ing is proposed. The idea is to project the dense 3d points on a
grid and count the number of projection for each cell. As straight
walls and facades of the building are aligned with the z axe, they
will result in much higher intensities on the grid. Simply thresh-
olding this grid allows the recovery of these points, and a 2D SVD
is applied on them in order to find the building’s main directions.
The outline is then recovered by searching for the highest val-
ues on the grid in each directions. The minimum and maximum
height of these points in the z direction is then found to create a
box from the outline rectangle.

4 CAD INTEGRATION

Building models of LOD 1 can easily be extracted from UAV
imagery. Extracting higher level of details is far from being a
trivial task for an automated algorithm.

We propose a method that minimizes the amount of manual in-
tervention involved in creating simplified 3D building models of
LOD 2 and 3. The key idea is to take advantages of the numerous
images taken by the UAV and of the state-of-the art computer
vision techniques to exploit them, and to seamlessly integrate
them in a CAD software such a Google Sketchup. The initial box
model provides the bases for fixing the coordinate system which
is essential to Sketchup. Google Sketchup is based on the proper-
ties shared by most of the buildings: horizontal walls and perpen-
dicular facades. These properties define an euclidean coordinate
system. The primitive creation tools of Sketchup are aligned on
this coordinate system, enforcing these properties. By overlaying
the computed cloud of point in Sketchup, it becomes very easy
to estimate the dimension and the subdivision to perform to ap-
proximate more closely the building. This computed box is then
resized by pushing and pulling the faces and subdivided along
the axes to fit to the cloud of points. This step generally provides
the building’s outline. In order to import a large cloud of points
into Sketchup, we used the PoinTools plugin??, which creates a
binary tree structure of the cloud of points for fast visualization.

Sketchup includes a Photomatch feature, which displays an im-
age in the background of a 3D model and the tools to draw on top
of it. Sketchup has a Ruby scripting tool that allows the import
of precomputed camera parameters and positions to Photomatch
images. This feature is very useful for drawing accurately the
roof structure on a surface in 2D. This surface is the pulled along
the main axes of the building to model the whole roof in 3D.

Finally, textures can be projected on the surfaces using the Pho-
tomatch feature. It usually works by selecting the image which



Figure 3: EPFL BC building: bundle block adjustment mesh, colorized dense matching 3D points, geolocalized refined textured model

is facing the most a selected surfaces in order to minimize distor-
tions, followed by a projection involving a homography from the
image to the surface.

5 RESULTS AND DISCUSSION

We tested this workflow on different datasets: three taken with an
AscTec Falcon 8 octocopter and one using a swingletCam wing.
The main advantage of the octocopter is the ability to program the
tilt the camera during the flight planning, thus allowing to target
the building during the capture. The swingletCam wing has a
fixed camera and needs to perform acrobatic figures in order to
take oblique imagery. As is it much harder to control, multiple
passes are done, thus capturing many more images.

5.1 Ascending building

In this flight 138 images are captured by the AscTec Falcon 8.
Three images from this dataset are show on figure 1 The flight
plan is a circle with the camera tilting to target the building. A
median of 4111 keypoints per images are found. After the match-
ing, 131079 3D points are computed and used in the bundle ad-
justment. After this step, all images are successfully registered,
with a mean reprojection error of 0.7 pixels. The overlap be-
tween the images was sufficient for a successful calibration step.
The computation of this first step by Pix4D was under an hour,
including the uploading time.

The dense matching outputs over 400’000 points, colored and
displayed in figure /refprocess. The points are extremely densely
sampled, which gives the illusion of texture from far away. Glob-
ally, most of the parts have been correctly reconstructed. This
building has two main difficulties for dense matching: very repet-
itive texture on the roof and white uniform walls. Repetitive tex-
ture can lead to errors such as floating points above the surface.
The uniform walls are poorly textured, and thus consistency can-
not be checked and no 3D point is computed. There are enough
points recovered on the balcony to estimate its size, however the
reconstruction is too sparse to accuratly estimate objects such as
a table on the balcony. There is a bit of noise in the reconstruction
which we visually estimate in the orders of 5 to 10 centimeters.

A box model is correctly estimated by projecting the points on a
grid and computing the main directions. The modeling process
start from this box. From a front facing image, the roof shape
can be approximated with segments drawn on a registered image
on the front of the box. Extruding this surface models the whole
roof. Other elements of the buildings such as the balcony are ap-
proximated by adding primitives to cover all computed dense 3D
points. In order to texturize the model, registered images facing
the different walls are chosen in order to minimize the distortions
and simply projected on the selected faces.

This model was submitted for inclusion on Google Earth, and
successfully accepted after review. It is now publicly visible at
Konrad-Zuse-Bogen 4, 82152 Krailling, Germany.

5.2 Main house and side house

In the two flights, 36 images were captured by the AscTec Falcon
8 for each dataset. The flight plans are a circle with the cam-
era tilting to target the buildings. A median of 9513 keypoints
per images are found. After the matching, 118334 3D points are
computed and used in the bundle adjustment of the main build-
ing shown on figure 4, and 70176 for the side building in figure
5. After this step, all images are successfully registered, with a
mean reprojection error of 0.6 pixels in both cases. The overlap
between the images was sufficient for a successful automatic cal-
ibration step. The computation of this first step by Pix4D was
under an 20 minutes, including the uploading time.

The dense matching outputs over 200’000 points, colored and
displayed in figure 4 and 5. The roofs got extremely well recon-
structed, with almost no floating pixels due to repetitive texture.
The facades were a bit more problematic, due to slightly overex-
posed images resulting in poor photometric consistency checks
in the dense matching. However the edges between the facades
were well reconstructed, allowing the understanding of the build-
ing’s structure. The box model was successfully extracted in both
cases as can be seen in the figures.

Modeling these building was a more challenging task, as they are
composed of many geometrical overlapping parts. The manual
steps were first to segment the starting box at places were the fa-
cade edges present in the overlaid cloud of point. Using the Push
and Pull tools, the segmented parts can the easily be adjusted to
fit the points on the facade. Once the outline of the building is
correctly set, the roof is drawn on top of registered images and
then pulled along the building’s main directions.

One additional difficulty in these two datasets is that due to the
shape of the building, not all parts can be seen in the images. The
UAV should fly twice around the building at two different heights
to capture all the details and texture. It is also interesting to note
that vegetation is very challenging and that the 3D points on trees
were often not computed.

5.3 EPFL BC building

In this flight 458 images were captured by the senseFly Swinglet-
Cam. The flight plan is consists of multiple passes over the build-
ing and its aera performing acrobatic figures to acquire oblique
imagery. A median of 1980 keypoints per images are found. Af-
ter the matching, 377983 3D points are computed and used in
the bundle adjustment, visible in figure 3. After this step, 454
images are successfully registered, excluding four blurry images,



with a mean reprojection error of 0.9 pixels. The overlap be-
tween the images was sufficient for a successful calibration step.
The computation of this first step by Pix4D was under two hours,
including the uploading time.

The dense matching step resulted in several millions of points
for the whole covered area, and around 200’000 for the building.
Because of the repetitive parts of the texture on the roof, some
cluster of pixels were floating a few meters above the roof sur-
face. Facades are very sparsely reconstructed, mostly due to the
fact that the images were not fully oblique and the reflective na-
ture of the large windows. The box model however fitted nicely
the facades. The manual part consisted mostly of creating the
primitive for the roof top.

6 CONCLUSIONS AND FUTURE WORK

We presented in this work an approach for extracting simplified
building models from UAV imagery. Our first remark is to point
out the maturity of automated algorithms for registering and cali-
brating large amount of oblique images. This creates a paradigm
shift in the photogrametry community, where the goal now is to
take as many images as possible instead of selecting a very lim-
ited number of points of view. This shift makes UAVs perfectly
suited for the image acquisition process, as they can easily fly
around buildings and take numerous images of all angles.

The dense matching step generates a large amount of measure-
ments. However, the quality still depends greatly on the texture
of the surfaces to reconstruct. The output is relatively noisy, not
uniformly sampled and contains a few outliers. This is not an
issue for box model of building, but makes higher level of de-
tail modeling not a trivial task for automated algorithm. More-
over, simplified building models are related to the semantics of
the building, a problem which is still far from being solved.

In contrast, we propose to seamlessly include the results of cali-
bration and dense matching in the process of refining a box model.
This makes the modeling of a building using only imagery pos-
sible and minimizes the amount of manual work. Future work is
needed to assess the quality of these reconstruction by compari-
son with blueprints for example.
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Figure 4: Main house dataset. From left to right, top to bottom: bundle block 3D points, dense matching colorized 3D points, box
model on top of registered image, untextured 3D refined model on top of registered image, textured refined 3D model with translucid
faces, textured refined 3D model

Figure 5: Side house dataset. From left to right, top to bottom: bundle block 3D points, dense matching colorized 3D points, box model
on top of registered image, untextured 3D refined model on top of registered image, textured refined 3D model with translucide faces,
geolocalized textured refined 3D model


