
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Parlange, président du jury
Prof. A. Berne, directeur de thèse

Dr U. Germann, rapporteur 
Dr P. Molnar, rapporteur 

Prof. J. A. Smith, rapporteur 

Experimental Quantification of the Variability of the Raindrop 
Size Distribution at Small Scales

THÈSE NO 5271 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 17 février 2012

 À LA  FACULTÉ DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
LABORATOIRE DE TÉLÉDÉTECTION ENVIRONNEMENTALE

PROGRAMME DOCTORAL EN ENVIRONNEMENT

Suisse
2012

PAR

Joël Jaffrain





It is a truism that wherever there is no precipitation,

there is also not much of a hydrological cycle.

— Wilfried Brutsaert, Hydrology An Introduction (2005)

To my parents and my future wife. . .





Acknowledgements

I am used to compare a PhD to a marathon so that to finish both, you need to be strongly

motivated, to run fast enough to be competitive and to keep in mind that you need to be able

to reach the end of the race. I have started my "marathon" in September 2007 and as the first

PhD student arrived in the Laboratoire de Télédétection Environnementale (LTE), I am proud

today to see that I have actively taken part in the development of our lab. This work, like many

others, will not have been possible without the support from many people.

First of all, I would like to express my deep thanks to my PhD advisor Alexis Berne for his trust

during these 4 years. Despite an "all the days" busy schedule, he has always found the time

required to follow and discuss my work, providing important comments that considerably

help reaching a high degree of quality. Many thanks as well to Marc Schleiss, a colleague,

friend and roommate during the conferences, for his help for the deployment of the sensors,

his grateful discussions on DSD measurement issues and of course for all these nice and funny

moments shared during conferences.

The design and the set up of a network of disdrometers, which is the first of its kind, would

not have been possible without our electronical engineer André Studzinski, who can be seen

as the "father of the network". It was a pleasure to work with André on this project, and I

would like to thank him for his involvement, his patience, his happiness and our interesting

discussions on the improvement of data acquisition and transmission. Another key person in

the realization of this network is Flavio Comino, the mechanical engineer. The great quality

and precision of his work always made as fast as possible is greatly acknowledge. The help of

Florian Pantillon and Yann Chavaillaz, i.e., short therm LTE collaborators (civil service), in the

maintenance of the network was greatly appreciated.

Furthermore, I would like to strongly acknowledge here the members of my comity, namely:

Marc Parlange (EPFL-EFLUM), James Smith (Princeton University), Urs Germann (MeteoSwiss)

and Peter Molnar (ETHZ), for there availability to evaluate this work and their helpful com-

ments and discussions that help to improve its quality.

Special thanks are dedicated to all the past and actual members of the LTE: Alexis, Alina, André,

Blandine, Dany, Florian, Jacopo, Marc 1, Marc 2, Samuel, Tobias, Xavier and Yann, that make

every day this place so pleasant to work. On the same way, thanks to the "corridor’s colleagues"

v



Acknowledgements

for the coffee breaks that help to stay awake during these long working hours. In particular, I

would like to mention Jéjé (who was as well my previous roommate) and Quentin, which one

is always in to have a beer. Thanks a lot for these long Friday evenings at the nearby Satellite

bar (even if we have missed couple of times the last metro...).

On a more personal point of view, I would like to thanks my family for the constant support

and in particular my parents and grandparents for teaching me basic qualities that help me

to successfully fulfill this PhD, e.g., the will, the motivation and the perseverance. A special

thank is dedicated here to my father with who I learned the basic notions of electronic that

were intensively used in this project. In addition, as I am not the first one in the family to

obtain a PhD degree, I have really benefited from the experience and the useful comments

from my older brother Jérôme (also called Jay). With these few lines Jay, thanks a lot for your

advertisements even if (unfortunately) I did not follow all of them (e.g., "do not stop practicing

sport..."). Thanks to my younger brother Johann ("Juan") for the organization of the airsoft

parties which considerably helped to sweep out the stress.

Finally, as the PhD deadline was approaching, the stress and the working hours increased

considerably. For this, and of course for all the additional related annoyances, I need to

acknowledge herein the patience of my future wife Marina. Her comforting words and her

happiness have strongly helped to keep on my motivation. Many thanks for being part of that.

Financial support:

The author greatly acknowledges financial support (grants

200021-118057/1 and 200020-132002) from the Swiss National

Science Foundation (SNSF).

Lausanne, 15th of January 2012 J. J.

vi



Remerciements

J’ai pour habitude de comparer la thèse de doctorat à un marathon car les deux nécessitent

une forte motivation, un esprit de compétition et de garder à l’esprit que vous devez être

en mesure de passer la ligne d’arrivée. J’ai commencé mon "marathon" en septembre 2007

au sein du Laboratoire de Télédétection Environnementale (LTE) de l’Ecole Polytechnique

Fédérale de Lausanne (EPFL). Étant le premier doctorant arrivé au sein du laboratoire, je suis

fier aujourd’hui d’avoir contribué à son développement. Ce travail, comme beaucoup d’autres,

n’aurait pas été possible sans le soutien et la collaboration de nombreuses personnes.

Tout d’abord, je tiens à exprimer mes plus profonds remerciements à mon directeur de thèse,

Alexis Berne, pour la confiance qu’il m’a accordé au cours de ces 4 années. Malgré un emploi

du temps plus que chargé, il a toujours trouvé le temps nécessaire pour suivre et discuter mon

travail. Ses commentaires ont permis d’atteindre un niveau de qualité élevé. Merci à mon

collègue, ami et colocataire de chambre lors des conférences, Marc Schleiss pour son aide

lors du déploiement des instruments, ses discussions sur les problèmes liés à la mesure de la

granulométrie des pluies et bien sûr pour ces moments partagés lors des conférences.

La conception et la réalisation d’un réseau de disdromètres, le premier de son type, n’aurait

pas été possible sans notre ingénieur électronicien André Studzinski qui peut être vu comme le

"père du réseau". J’ai grandement apprécié de travailler à ses côtés sur ce projet et je souhaite

donc vivement le remercier pour son investissement, sa patience, sa bonne humeur et pour

nos longues discussions sur l’amélioration de notre système d’acquisition de données. Une

autre personne clé sur cet aspect technique est notre ingénieur mécanicien Flavio Comino

qui se doit d’être remercier pour son travail de qualité, toujours d’une précision stupéfiante

dans un laps de temps très court. Enfin, l’aide de Florian Pantillon et Yann Chavaillaz, ayant

tous deux fait leur service civile au sein de notre labo, pour la maintenance du réseau a été

grandement appréciée.

C’est avec grand plaisir que j’adresse mes remerciements aux différent membres de mon

comité, à savoir, Marc Parlange (EPFL-EFLUM), James Smith (Université de Princeton), Urs

Germann (MeteoSuisse) et Peter Molnar (École Polytechnique de Zurich-ETHZ), pour le temps

consacré à évaluer ce travail ainsi que leurs commentaires et discussions.

J’adresse toute ma gratitude aux membres (actuel et passé) du LTE, à savoir : Alexis, Alina,

vii



Remerciements

André, Blandine, Dany, Florian, Jacopo, Marc 1, Marc 2, Samuel, Tobias, Xavier et Yann, qui

ont fait de cet endroit une place ou il est si plaisant de travailler. Je ne peux évidemment pas

oublier les (nombreux) "collègues de couloir" pour les pauses café qui ont permis de rester

éveillé pendant ces longues heures de travail (pas uniquement en fin de thèse). En particulier,

je tiens à mentionner Jéjé (également mon ancien colocataire) et Quentin, lequel se dévoue

toujours pour venir boire une bière (entre autre) à vos côtés. Merci à vous deux pour ces

longues soirées du vendredi au bar Satellite (même si nous avons raté plusieurs fois le dernier

métro...).

Sur un plan plus personnel, je souhaite remercier ma famille pour le soutien constant au cours

de ces 4 années et en particulier mes parents (Denise et Yves) et mes grands-parents (Françoise

et Charles) pour m’avoir inculqué des qualités telles que, entre autre, la volonté, la motivation

et la persévérance, qui m’ont aidé à achever avec succès cette thèse. J’adresse un petit clin

d’oeil à mon père avec qui j’ai appris les bases de l’électronique qui ont été largement mises à

contribution dans ce projet. De plus, n’étant pas le premier de la famille à obtenir une thèse,

j’ai bénéficié de l’expérience et des commentaires de mon grand frère Jérôme (surnommé

"Jay"). Jay, par ces quelques lignes, je te remercie pour tes mises en garde judicieuses même

si (malheureusement) je ne les ai pas toutes suivis (par exemple "n’arrête pas la pratique du

sport, surtout en fin de thèse..."). Merci à mon petit frère Johann ("Juan") pour l’organisation

de nos parties d’airsoft qui ont considérablement aidé à évacuer le stress.

Enfin, il est vrai qu’avec la fin de thèse approchante, le stress et les horaires de travail ont

augmenté. Merci à ma "moitié" (et future femme) Marina pour sa patience et son soutien de

tous les jours. Ses mots réconfortants et sa joie de vivre m’ont fortement aidé à garder ma

motivation.

Support financier :

L’auteur tient à exprimer toute sa gratitude au Fond National

Suisse pour le support financier (bourses 200021-118057/1 et

200020-132002).

Lausanne, 15 janvier 2012 J. J.

viii



Abstract

Reliable quantitative precipitation estimation is crucial to better understand and eventually

prevent water-related natural hazards (floods, landslides, avalanches, ...). Because rainfall is

highly variable in time and space, precipitation monitoring and forecasting is a complex task.

In addition, the variability of rainfall at small scales (for instance within the radar pixel) is still

poorly understood. Knowledge of the rain drop size distribution (DSD) is of primary concern

for precipitation estimation and in particular weather radar.

To better understand the variability of the DSD at small scales, a network of optical disdrome-

ters (Parsivel) has been designed and set up. The instruments are fully autonomous in term of

power supply and data transmission. The network of 16 disdrometers has been deployed over

a typical operational weather radar pixel (1×1 km2) in Lausanne, Switzerland, for 16 months

collecting DSD data at a high temporal resolution (30 s).

The sampling uncertainty associated with Parsivel measurements has been quantified for

different quantities related to the DSD, using a 15-month data set collected by two collocated

disdrometers.

Using a geostatistical approach, and in particular variograms, the spatial structure of quantities

related to the DSD has been quantified. The analyses have been conducted on 36 rainfall

events that have been grouped according to three types of rainfall (i.e., convective, transitional

and frontal). It shows a significant variability, i.e., larger than the one induced by the sampling

process, of the different quantities of interest. The observed spatial structure is significant for

temporal resolution below 30 min from which it is difficult to distinguish between the natural

variability and the one induced by the sampling process.

The impact of the observed variability of the DSD on radar rainfall estimators is investigated

focusing on two different radar power laws (the classical Z -R law for conventional radar and

the R-Kd p law for polarimetric radar). The parameters of the power laws are estimated at

different spatial scales: at the single station scale, at the aggregate of stations scale (aggregate

of point measurements) and at the pixel area scale (average over all the stations). First, it shows

clear distinct groups of power law parameters according to the type of rainfall. Moreover, the

observed variability of these parameters is significantly larger than the variability induced by

the sampling process of the instruments. The observed variability in power law parameters

can be responsible for deviation in terms of rain amounts at the single station scale ranging

from -5 to +15% the one estimated at the pixel (average) scale.
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Abstract

The original contributions in this work are: (1) the design and deployment of an innovative

network of autonomous disdrometers Parsivel over a typical operational weather radar pixel

(1 km2), (2) the quantification of the sampling uncertainty associated with Parsivel measure-

ments, (3) the quantification of the spatial variability of different quantities related to the

DSD within this typical radar pixel and (4) the quantification of the influence of this spatial

variability of the DSD on radar rainfall estimation (for conventional and polarimetric radar).

For illustration, the results are important: (i) to illustrate the added value of the network of

disdrometer that has been designed and the interest for various environmental fields (me-

teorology, hydrology, risks of water-related natural hazards, ...), (ii) for a better knowledge

of the spatial variability of the DSD at different scales which should helps improving radar

rainfall estimation, (iii) for the quantification of the errors associated with the extension of

relationships derived at a specific location to larger domains (e.g., pixel) and (iv) for the ground

validation of numerical weather model.

KEYWORDS: raindrop size distribution, network of disdrometers, variability of precipita-

tion, spatial structure of rainfall, radar rainfall estimation, spatial representativity.
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Résumé

Des estimations fiables des précipitations sont d’une importance capitale afin de mieux

comprendre et éventuellement de mieux prévenir les évènements extrêmes liés à l’eau (inon-

dations, glissements de terrain, avalanches, ...). Du fait de la variabilité des précipitations

dans le temps et dans l’espace, la mesure et la prévision des pluies sont des taches complexes,

d’autant que la variabilité des pluies est toujours mal connue à petite échelle (par exemple,

à l’échelle de la maille radar). Une meilleure connaissance de la variabilité de la granulomé-

trie des pluies (DSD en anglais) est cruciale pour les estimations des pluies par les radars

météorologiques.

Afin de mieux comprendre la variabilité de la granulométrie des pluies à petite échelle, un

réseau de disdromètres optiques (Parsivel) a été développé et construit. Les instruments sont

totalement autonomes en terme d’alimentation et de transfert de données. Le réseau de

16 instruments a été déployé à Lausanne, Suisse, couvrant une surface d’environ 1×1 km2

correspondant à une maille de radar opérationnel. Le réseau a collecté des mesures de la

granulométrie des pluies à haute résolution temporelle (30 s) pendant 16 mois.

Afin d’obtenir des analyses fiables, l’incertitude d’échantillonnage associée à la mesure du

Parsivel a été quantifié à partir d’un jeu de donnée collecté par deux instruments co-localisés

sur une durée de 15 mois.

La structure spatiale1 de différentes quantités reliées à la granulométrie des pluies est quanti-

fiée en utilisant une approche géostatistique (i.e., variogrammes). Une sélection de 36 évène-

ments pluvieux, lesquels ont été groupé en fonction de 3 types d’évènement (i.e., convectif,

transitionnel et frontal), est utilisée pour les analyses. Ces dernières montrent une variabilité

significative, c’est à dire plus grande que celle induite par le processus d’échantillonnage, pour

des résolutions temporelles inférieures à 30 min. Pour des pas de temps supérieurs à 30 min,

la distinction n’est plus possible entre la variabilité naturelle et celle induite par le processus

d’échantillonnage.

L’impact de cette variabilité sur les estimations des pluies au moyen des radars météorolo-

giques est également analysé. Deux lois sont considérées : la relation Z -R pour les radars

conventionnels et la relation R-Kd p pour les radars polarimétriques. Les paramètres de ces

deux relations sont calculés à différentes résolutions spatiales : (i) pour chaque instrument

(mesure ponctuelle), (ii) pour un ensemble constitué des mesures de tous les instruments

1on parle de structure spatiale dans un jeu de données lorsque ces données montrent une organisation dans
l’espace et non pas une distribution aléatoire.
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Résumé

(agrégat de points) et (iii) pour la maille radar (moyenne de tous les instruments). Les analyses

montrent, dans un premier temps, une nette distinction des valeurs obtenues en fonction du

type d’évènement. De plus, la variabilité observée dans les paramètres calculés pour ces 2 lois

est plus forte que celle induite par l’échantillonnage. Enfin, cette variabilité peut se traduire,

en terme de cumul de pluie, par des erreurs d’estimation de l’ordre de -5 à +15%.

Les contributions principales de ce travail sont : (1) la conception et la réalisation d’un réseau

de disdromètres autonomes et son déploiement sur une maille typique d’un radar opération-

nel, (2) la quantification de l’erreur d’échantillonnage associée à la mesure du Parsivel, (3) la

quantification de la variabilité spatiale de la granulométrie des pluies sur une maille radar et

(4) l’influence de cette variabilité sur les estimations radar au moyen de lois puissances tel que

la loi Z -R (radar conventionnel) et la loi R-Kd p (radar polarimétrique).

Les résultats présentés sont importants, entre autre, pour : (i) démontrer le potentiel de ce

réseau de disdromètres pour différentes disciplines environnementales (météorologie, hydro-

logie, étude des évènements extrêmes liés à l’eau, ...) , (ii) une meilleure compréhension de

la variabilité de la granulométrie des pluies à différentes échelles dans le but d’améliorer la

mesure des pluies, (iii) la quantification de l’erreur associée au changement de support (de

l’échelle ponctuelle à l’échelle d’une maille radar) et (iv) la validation au sol de modèles de

prévision des pluies.

MOTS CLÉS : granulométrie des pluies, réseau de disdromètres, variabilité des précipita-

tions, structure spatiale des pluies, estimation radar, représentativité spatiale
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1 Introduction

1.1 Rationale

The hydrological cycle, i.e., the transport of water through the different components (land,

ocean and atmosphere), is a key phenomenon in the complex equilibrium of the Earth. The

precipitation, i.e., the atmospheric water (liquid and solid) that reaches the Earth’s surface, is

a crucial component of the hydrological cycle. During the last decade, the number of studies

investigating the impacts of climate change on the Earth system is constantly increasing. While

large uncertainties remain on the magnitude of the future changes, most of the assessments

indicate that future increase of global temperature is ’very likely’ [Trenberth et al., 2007].

Instrumental observations over the past 150 years clearly indicate that temperatures at the

surface of the Earth have risen with important regional variations [Huntington, 2006]. During

the last decade, various analyses have pointed a significant intensification of the Earth’s water

cycle as a response to climate change [see Huntington, 2006, and references herein]. Because it

is affecting the whole system, changes are expected on atmospheric circulation, atmospheric

moisture and precipitation as a consequence.

Anthropogenic air pollution (aerosols, dust, black carbon) can have a strong impact on the

radiative budget of the Earth. This impact is twofold as it is related to (i) the optical properties

of aerosols, which can absorb or scatter the incoming (from the sun) and outgoing radiations

(from the Earth) and (ii) their indirect effect on cloud properties. Indeed, an increase of the

concentration of air pollutants, and consequently of cloud condensation nuclei1, tends to

increase the concentration of cloud droplets to the detriment of their sizes [Ramanathan et al.,

2001] as the water vapour has much more nuclei on which to condense (see Section 1.2). Due

to the smaller cloud droplets size, the collision efficiency decrease dramatically which tends

to suppress rainfall in urban and industrial polluted areas [e.g., Rosenfeld, 2000]. However,

further analyses have highlighted that the decrease of rainfall in polluted areas is not systematic

as it can be responsible for an invigoration of cloud convection and a delay in precipitation

1cloud condensation nuclei is a generic term to denotes all the solid particles and gaseous aggregates on which
the water vapour is condensing during the cloud droplets generation.
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Chapter 1. Introduction

[Rosenfeld et al., 2008].

Observations over the last decades have pointed that these changes in precipitation are

occurring in the amount, the intensity, the frequency and the duration of precipitation [Frei

et al., 1998; Trenberth et al., 2007; CH2011, 2011]. However, most of Global Climate Models

(GCM) succeed in approximately reproducing the observed intensity or frequency patterns of

rainfall but not both at the same time [Sun et al., 2005].

Such modifications of the characteristics of precipitation is likely to have a significant impact

on water resources [e.g., Vörösmarty et al., 2000] and water quality [Whitehead et al., 2009], in

particular with the increase of water use [Kundzewicz et al., 2007]. For instance, simulations

of impacts of climate change on groundwater storage highlight possible shifts or declines of

seasonal groundwater recharges [e.g., Eckhardt and Ulbrich, 2003]. In addition, especially for

countries producing part of their electrical consumption using hydraulic power2, it can have

a dramatic influence on the hydroelectric production and hence on the human activity. An

additional consequence of a warmer climate could be an increase of precipitation extreme

[Frei et al., 1998; Trenberth et al., 2003; Groisman et al., 2005] and most probably an increase

of floods and droughts [Wetherald and Manabe, 2002; Milly et al., 2002].

All together, these possible disturbances of the Earth’s water cycle can have strong societal

impacts [IPCC, 2007]. For instance, modifications of the hydrological cycle can have dramatic

impacts on food production [Easterling et al., 2007] and human health, such as deaths oc-

curring during heatwaves, water-borne diseases related to the increase in extreme rainfall

[Confalonieri et al., 2007] and release of pollutants washed from soils [Kundzewicz et al., 2007].

In this context, reliable estimation of precipitation is of primary importance. In order to gain

a better understanding of the characteristics and the distribution of precipitation, a brief

description of precipitation microphysics is helpful.

1.2 Precipitation microphysics

Precipitation results from the combination of various microphysical processes. A brief

overview of the principal processes involved in the formation of precipitation is provided here-

after. To initiate the process, air masses have to reach and exceed the saturation with respect

to water vapour. This is called the supersaturation. Usually, this condition can be fulfilled

when air masses are cooled down (below the dew-point), as the water-holding capacity of

air decreases with its temperature. Various mechanisms can help cooling down air masses

among which the upward motion of air to a higher elevation is the main mechanism. As the

air mass is lifted, the decrease of pressure involves the expansion and the adiabatic cooling of

the air mass.

2About 57% of the Swiss electricity is produced by hydroelectric power, i.e., by dams holding huge reservoirs,
by run-of-river stations that use the natural river flow or by pumped-storage stations (sources: http://www.uvek.
admin.ch/themen/energie/00672/00884/).
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1.3. The concept of raindrop size distribution

The initiation step is the condensation of water vapour to form cloud droplets (typical size is

50 µm). In clean air, condensation occurs through random collisions between water molecules

to create pure embryonic water droplets. This phenomenon is called homogeneous or sponta-

neous nucleation. As homogeneous nucleation requires a high degree of supersaturation, it is

rarely fulfilled in natural condition. Nevertheless, natural air contains a large concentration of

hygroscopic microscopic particles, called aerosols. Aerosols include dust, smoke, salts and

chemical compounds. For instance, the average concentration of aerosols over ocean (land)

is about 1 (5-6) million aerosols per litre [Barry and Chorley, 2003]. Because the condensa-

tion of water on an already existing nucleus requires a lower degree of supersaturation than

the homogeneous nucleation, the heterogeneous nucleation is the main process in natural

conditions. Once initiated, cloud droplets continue to grow through condensation. This

process is however too slow to produce drops large enough to fall (raindrops with a typical

size between 0.1 and 10 mm) and additional processes are required. Various theories have

been suggested to explain the growth of cloud droplets such as the coalescence by electrical

attraction, the saturation of cold versus warm droplets or the use of condensation nuclei

exceptionally large [Barry and Chorley, 2003]. Current theories are in favour of collision and

coalescence processes. Large drops sweep out the smaller ones during their fall by collision

and the swept drops are then integrated to the bigger ones by coalescence. However, when

drops become too heavy to be maintained aloft by air turbulences, they start to fall down.

Air can be forced to rise by being heated from below, by moving over mountains (called

orographic precipitation, see [Roe, 2005]) or by frontal activity [Brutsaert, 2005]. Two general

cases, that will be used in this thesis, can be roughly separated. When air masses are in

more ’stable’ condition with weak vertical motions, it may results in what is called frontal

precipitation. It is usually characterized by weak rain during relatively long durations (typically

few 10 of hours) with a wide spatial coverage. On the other hand, when the vertical motions are

strong with strong vertical gradients of temperature, it may generates convective precipitation.

Contrary to frontal one, convective precipitation is characterized by strong rain over short

duration and relatively short spatial extension (one or a few convective cells). In Switzerland,

with a continental temperate climate, frontal precipitation mainly occurs in winter while

convective precipitation occurs in summer.

Investigations of solid precipitation (snow, hail) are beyond the scope of this thesis, and the

focus will be on liquid precipitation (rainfall) in the following.

1.3 The concept of raindrop size distribution

At the scale of a few meters and above, rainfall is usually seen as a continuous process because

the focus is on the average properties of rainfall over large time intervals and large areas (i.e.,

region, country, continent). A fundamental integral quantity of rainfall for hydrological studies

is the rain rate (usually denoted R) which is the flux of atmospheric water arriving on a surface.

The associated units are mm h-1. Hydrologists usually focus their attention on the rain rate

3
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which is a macroscopic property of rainfall.

At smaller scales (i.e., below 1 m), the rainfall consists of individual raindrops with different

sizes, shapes, fall velocities, as suggested by the various processes involved in precipitation

formation (see Section 1.2). The information on raindrop characteristics is called the mi-

crostructure of rainfall. Figure 1.1 presents a schematic illustration of the microstructure of

rainfall. Due to the large number of raindrops in a given volume, which can be up to several

V = 1 m
3

Large number of drops

Discrete process

Sample volume

Drops

Figure 1.1: A static picture of the microstructure of rainfall.

thousands drops per cubic meter, the current technology (instruments, computers) does

not permit to keep track of all the characteristics of individual raindrops. To summarize this

information, a statistical approach is usually considered with the concept of (rain)drop size

distribution (denoted DSD in the following) which is the number of raindrops per cubic meter

as a function of their respective equivolume diameter3. From this information, it is possible, at

least for rain, to retrieve information on the shape [e.g., Andsager et al., 1999] and fall speed

[e.g., Beard, 1977] of raindrops.

The DSD is denoted N (D) as it expresses a concentration of drops (or number of drops in

a given volume) according to their equivolume diameter D and the associated units are

m-3 mm-1. DSD information is of primary importance for many environmental applications.

Most of these are focused on weather related investigations such as cloud/precipitation

microphysical processes [e.g., Pruppacher and Klett, 1997], numerical weather modelling

[Michaelides et al., 2009] and weather radar applications [e.g., Marshall and Palmer, 1948;

Bringi and Chandrasekar, 2001].

In addition, many natural processes occurring at the ground require knowledges of the DSD.

For instance, information on the kinetic energy of raindrops (provided by the DSD) is essential

for investigations on interception of rainfall by vegetation canopy [Keim et al., 2006; Nanko

et al., 2010], soil infiltration [Agassi et al., 1994] and erosion [e.g., Salles et al., 2002; Assouline,

2009].

3the equivolume diameter corresponds to the diameter of a sphere of equal volume.
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1.4. Radar precipitation estimation

The instrument devoted to the collection of DSD samples at the ground is called a disdrometer.

Different types of disdrometers have been developed over the last decades. The most popular

one is the Joss-Waldvogel (JW hereafter) electromechanical disdrometer [Joss and Waldvogel,

1967] developed about 40 years ago. In 1990, the Atmospheric Environment Service of Canada

has developed an automated present weather sensor called Precipitation Occurrence Sensing

System (POSS) [Sheppard, 1990]. Acoustic technology has been as well considered to design

disdrometers [Nystuen, 2001; Henson et al., 2004]. With the great improvement of optical

technologies during the last decades, optical disdrometers, such as the spectropluviometer

[Campos and Zawadzki, 2000; Salles and Creutin, 2003], the Thies and the Parsivel [Löffler-

Mang and Joss, 2000] disdrometer, are becoming more popular. Such disdrometers provide

information on the size of drops in 1D (the one orthogonal to the laser beam) which implies

some assumptions on the shape of drops [e.g., Andsager et al., 1999]. On the other hand, a

2D-Video disdrometer (2DVD hereafter) has been developed [Kruger and Krajewski, 2002]

which consists of 2 orthogonal line-scan cameras sampling at a high frequency. It provides in-

formation on the shape (i.e., shadowed area) of the particle in the 2 dimensions. Nevertheless,

while the added value of such instrument is widely recognized, the calibration, maintenance

and pre-filtering process of the 2DVD is more constraining [Kruger and Krajewski, 2002].

As presented earlier in this section, DSD information is of primary interest for many environ-

mental fields. As the present thesis focuses on weather radar applications, a brief insight into

the methods considered for radar measurement of rainfall is relevant.

1.4 Radar precipitation estimation

A convenient and widely used tool to monitor precipitation is weather radar (for RAdio Detec-

tion And Ranging) which can be installed at the ground level or on-board of space platforms.

Radar is a remote sensing instrument that allows acquiring information on remote targets

(hydrometeors in the case of weather radar) without any physical contact. The radar approach

is based upon the transmission of an electromagnetic signal at such a wavelength that it will

interact with all falling hydrometeors in the scanned volume. The receiver of the radar then

measures the signal backscattered by all individual particles. The averaged power returned to

the radar P r [W], which is integrated over all the hydrometeors that have been illuminated by

the signal, is expressed as [Battan, 1973, p.31]:

P r = PtG2λ2108

(4π)3r 4

n∑
i=0

σB ,i (1.1)

where Pt is the transmitted power [W], G is the gain of the antenna [-], λ is the wavelength

[cm] of the transmitted signal, r is the range (distance) to the target [m] and σB ,i is the

backscattering cross-section [cm2] of the target i . It is clearly emphasized in Eq 1.1 that the

received power is a function of the radar characteristics (Pt , G , λ) and the hydrometeors (σB ).

To ease comparison between measurements collected by radars with different characteristics,

P r [W] can be related to the radar reflectivity factor Z [mm6 m-3], considering a volume
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homogeneously filled by raindrops, through [Battan, 1973, p.43]:

P r = C |K |2Z A

r 2 (1.2)

where |K |2 [-] is the refractive factor of liquid water (equal to 0.93), C [-] is a constant depending

on the characteristics of the radar (= Pt G2λ2

(4π)3 ) and A [-] is a term which takes into account

possible attenuation (equal to 1 for non attenuated signal). In Eq 1.2, all the characteristics of

the radar are contained in C while hydrometeors properties are in |K |2 and Z .

The radar reflectivity factor Z [mm6 m-3] can be expressed as a function of the DSD:

Z = λ4106

π5|K |2
∞∫

0

N (D)σB (D)dD (1.3)

where σB (D) is the backscattering cross-section [cm2] of a drop of diameter D [mm]. This

equation highlights that Z is only depending of hydrometeors characteristics (N (D), σB (D)).

Under Rayleigh approximation4, Eq 1.3 can be simplified to:

Z =
∞∫

0

D6N (D)dD . (1.4)

Similarly, the rain rate R [mm h-1] is an integrated quantity of the DSD:

R = 6π×10−4

∞∫
0

D3v(D)N (D)dD (1.5)

where v(D) [m s-1] is the terminal velocity of a drop of diameter D [mm].

Both quantities can be related to each other through a power law usually of the form

Z = aRb (1.6)

where a and b are two parameters highly sensitive to the geographical location and the type of

rainfall. Usually, this power law is parametrized using measurements collected at the ground

by a unique (or a few) instrument(s). If the instrument deployed at the ground is a rain gauge,

the rain rates collected by the rain gauge are compared to simultaneous radar measurements

(Z ). On the other hand, if the instrument deployed at the ground is a disdrometer, then both

quantities can be directly calculated from the collected DSD. Nevertheless, due to the spatial

variability of rainfall, these two approaches raise the question of the adequacy of using a and

b values derived from point measurement, with a spatial representativity in the order of m3, to

calculate rain rates at the radar sampling volume scale (about km3).

4which holds for particles small with respect to the incident wavelength.
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1.5. State-of-the-art

More recently, polarimetric techniques have been developed in order to collect additional

information on the 2D-shape of hydrometeors. Similarly to the Z -R relationship for conven-

tional weather radar, a power law relationship ties R and the specific differential phase Kd p

[o km-1]. More complex polarimetric radar algorithms have been also developed for rainfall

estimation such as: R as a function of Z and the differential reflectivity Zdr [dB]5, R as a

function of Kd p and Zdr [Bringi and Chandrasekar, 2001] or R as a function of Z , Kd p and Zdr

[Ryzhkov et al., 2005].

1.5 State-of-the-art

Anyone having a look on a map showing the global distribution of precipitation over the

Earth will note that precipitation is not uniformly distributed over the Earth. For illustration,

Figure 1.2 shows the monthly rain rate climatology from the Global Precipitation Climatology

Project (GPCP) for January and July to illustrate the distribution of global precipitation during

austral summer and winter respectively. Figure 1.2 clearly highlights how the precipitation

are non-uniformly distributed in space and in time (in this case between seasons). This non

uniform distribution of precipitation can be observed at different spatial (continent, country,

region, ...) and temporal (annual, seasonal, monthly, hourly) scales. As highlighted in Sec-

tion 1.2, the combination of the various mechanisms in the formation of precipitation (air

circulation, water vapour content, aerosols concentration, ...) leads to a variability of drop

shape, size, fall speed, ...which makes difficult rainfall monitoring (see Section 1.4 on radar

rainfall estimation). In this context, the quantification of the spatial variability of the DSD is

crucial. The DSD is highly variable in time and space [Jameson and Kostinski, 2001] although

the quantification of this variability is not, so far, widely documented at all scales. Uijlenhoet

et al. [2003b] have highlighted a significant variability in the concentration of drops, the mean

raindrop sizes and the raindrop size distributions between different types of rainfall (namely,

convective, transitional and stratiform) in a mesoscale squall line in Mississippi. Additional

studies have investigated the variability of the DSD as a function of rainfall type [Tokay and

Short, 1996; Uijlenhoet, 2001; Uijlenhoet et al., 2003a].

From a microphysical point of view, additional studies have examined radar power laws

according to three microphysical modes: (i) all the variability of the DSD is controlled by

variation in the concentration of drops, (ii) on the opposite, all variability of the DSD is

controlled by variation in the raindrop size, and (iii) the variability is controlled by both

[Smith and Krajewski, 1993; Uijlenhoet et al., 2003a; Steiner et al., 2004; Prat and Barros, 2009].

However, the microphysical interpretation of the Z -R relationship coefficients is affected by

significant uncertainties [Steiner et al., 2004].

5the differential reflectivity Zdr is a polarimetric quantity providing information on the average shape of

hydrometeors. It is expressed as: 10log10

(
Zh
Zv

)
where Zh (Zv ) is the radar reflectivity at horizontal (vertical)

polarization.
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Figure 1.2: Global daily merged precipitation for January (top) and July (bottom). These maps
are from the Global Precipitation Climatology Project (GPCP) Monthly rainrate climatology
[Huffman et al., 2001]. source: http://precip.gsfc.nasa.gov/

Like for any physical parameter, the fluctuations observed at the ground level result from

the combination of two signals: the natural variability of the physical process, of interest

for hydrological studies, and the sampling fluctuations inherent to the measuring process

by the instrument [Gertzman and Atlas, 1977]. The difficulty to distinguish between those

two signals is particularly emphasized when using instruments of different types [Miriovsky

et al., 2004]. For example, Krajewski et al. [2006] point out significant differences (in the order

of 15% on rain amounts) between collocated instruments that are of different types. As a

consequence, the sampling uncertainty associated with rainfall measurements is a crucial

issue. Several studies have highlighted the significant sampling errors associated with rain

gauges [e.g., Habib et al., 2001b; Ciach, 2003] and disdrometers [e.g., Gage et al., 2004; Berne

and Uijlenhoet, 2005a; Tokay et al., 2005], which can be responsible for part of the observed

variability of the parameters of radar power laws [Ciach and Krajewski, 1999].
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1.5. State-of-the-art

Recall that radar power laws used for the estimation of rainfall are usually parametrized using

DSD measurements collected at the ground level by a unique disdrometer which, like any

other point measurement, has a limited spatial representativity (a few m3). Indeed, such

radar power laws are affected by errors inherent to the sampling properties that relate Z (the

radar reflectivity at the surface) to the radar reflectivity aloft [Krajewski and Smith, 2002]. This

scaling issue is risen by the spatial variability of the DSD which has a strong influence on such

power law [Uijlenhoet, 2001; Lee and Zawadzki, 2005]. This is translated into a wide variety of

a and b values in the literature that has already been reported by Battan [1973] about 40 years

ago6. During the last decades, additional studies have completed this variability of a and b

parameters [e.g., Doelling et al., 1998; Atlas et al., 1999; Chapon et al., 2008]. It has been shown

in the literature that these parameters are strongly sensitive to various factors. About 30 years

ago, Joss and Gori [1978] have shown the influence of the DSD sample size while Campos

and Zawadzki [2000] have highlighted that the parameters are strongly sensitive to the type of

instrument considered. Moreover, the method for data analysis (type of regression, choice of

the dependent variable) can play a significant role in this variability of a and b values [Ciach

and Krajewski, 1999; Chapon et al., 2008]. Additional sources are erroneous measurements

[Steiner et al., 1999] and measurement uncertainties affecting integral quantities of the DSD

[Ciach and Krajewski, 1999; Campos and Zawadzki, 2000]. In addition, the temporal and

spatial resolution of the data have a strong influence on the derived Z -R parameters [Morin

et al., 2003; Steiner and Smith, 2004; Mapiam et al., 2009].

The sampled DSDs obtained from disdrometer data is discrete, corresponding to the number

of classes imposed by the instrument. To overcome this rather artificial quantization, continu-

ous distribution can be fitted on the measured DSD spectra. Different parametrizations7 of

the DSD have been proposed in the literature, such as the exponential distribution [Marshall

and Palmer, 1948], the lognormal form [Feingold and Levin, 1986] or the gamma distribu-

tion [Ulbrich, 1983; Willis, 1984]. However, as suggested by Smith and Kliche [2005], DSD

parametrization requires large DSD samples for a sufficient accuracy.

As highlighted earlier, knowledge of the spatial variability of rainfall, and in particular of

the DSD, is important. This requires spatially distributed measurements from networks of

instruments. As rain gauge is still by far the most commonly used instrument to measure

rainfall, especially by operational weather services, previous analyses of the spatial structure

of rainfall using network of rain gauges have been reported in the literature [Habib et al.,

2001a; Ciach and Krajewski, 2006; Villarini et al., 2008; Tokay et al., 2010]. Moreover, the spatial

distribution and the number of instruments within the network are sensitive parameters, in

particular for investigations on the statistics of extreme rainfall [Blumenfeld and Skaggs, 2011].

Nevertheless, rain gauge only provide information about the rain rate and rain amount which

are integral quantities of the DSD.

6Battan has listed about 69 different Z -R relationship [see Battan, 1973, p. 90-92].
7The mathematical description of a discrete natural phenomena through a continuous distribution is called

parametrization.
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Chapter 1. Introduction

During the last decade, a few studies have investigated the spatial variability of the DSD

using spatially distributed measurements. For instance, Lee et al. [2009] has reported a

significant variability of the DSD for a 1.3 km distance using four Precipitation Occurrence

Sensor Systems (POSS) which can lead to an average error of about 25% in the estimate of

rainfall accumulation at the event scale. A similar experiment has been conducted using three

Joss-Waldvogel disdrometers over a straight line of about 1.7 km [Tokay and Bashor, 2010],

but the authors have reported lower differences in rain accumulations (about 5%). A set up

consisting in 16 laser disdrometers deployed at 8 sampling locations over a 4×4 km2 area has

been reported recently [Tapiador et al., 2010]. Nevertheless, the analyses were limited to some

integral quantities of the DSD, namely the rain rate and the radar reflectivity, rather than on

the DSD itself. Moreover, the sampling uncertainty associated with the instrument has not

been taken into account and is crucial for a reliable and accurate quantification [Miriovsky

et al., 2004].

1.6 Objectives

As highlighted in the previous sections, while the variability of the DSD can have a significant

influence on radar rainfall estimation, it is still poorly documented and understood. As most

of the (few) previous studies investigating the spatial variability of the DSD are focusing on

scales larger than 1 km, this thesis aims at investigating this issue at scales below 1 km, which

is about the typical size of an operational weather radar pixel. Consequently, the spatial scale

of observation considered in this thesis is below 1 km. According to the subdivision of Orlanski

[1975], for scale of observation of the atmosphere in the range 200 m to 2 km, the associated

nomenclature should be ’micro α scale’. In this thesis it will be shortened by microscale.

The quantification of the spatial variability of the DSD using an experimental approach

requires the use of DSD measurements spatially distributed. However, when this project was

initiated, in mid-2007, previous studies have been conducted using DSD data collected by

a few disdrometers (typically 3-4) rather than by a real network of disdrometers [Miriovsky

et al., 2004; Lee et al., 2009; Tokay and Bashor, 2010]. Moreover, the disdrometers used in

previous studies were of different types [Miriovsky et al., 2004; Lee et al., 2009] that are affected

by different sampling uncertainties which disturb the estimation of the natural DSD variability.

Consequently, the first step of this project was to design and build a network of identical

disdrometers that can be easily deployed, i.e., using autonomous disdrometers, in different

locations and configurations, i.e., with station of relatively modest size. The description of this

network, that have been completely built in house, is presented in details in Chapter 2 and the

associated electronic diagrams are provided in Appendix (A to D) for interested readers.

As suggested in Section 1.5, and because the errors associated with the sampling process of

the instruments can be significant, the sampling uncertainty associated with our DSD mea-

surements should be quantified prior to use the data collected by the network. To address

this issue, an experiment involving collocated measurements has been set up for about 15
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1.6. Objectives

months. The details on the set up as well as the statistical methods considered to quantify this

sampling uncertainty are presented in Chapter 3.

As soon as the two previous objectives have been fulfilled, the scientific question of the natural

variability of the DSD at 1 km2 scale can be rigorously addressed. Chapter 4 aims at an-

swering the question: Is there any spatial organization of DSD fields or are they randomly

distributed? In order to address this question, a geostatistical approach is considered in

Chapter 4. Variograms (see Section 4.3.1 for a definition) of different quantities related to the

DSD are computed as a function of the temporal resolution. Chapter 4 concludes with an

example of application: the quantification of the error associated with the extension from

point measurements to areal estimates due to the spatial structure of the DSD.

Highlighting that at a 1 km2 scale the DSD fields are organized, the remaining question is What

is the influence of this spatial variability of the DSD on radar rainfall estimates? Chapter 5 is

investigating this issue by analysing the evolution of radar rain rate estimations (Z-R and

R-Kdp power laws) with the scale of observation (from point DSD measurements to areal

estimates). Similarly to Chapter 4, this chapter concludes by presenting the typical error

associated with the extension of radar power laws parametrized at point scale (instrument) to

areal scale.

Perspectives for futures works and additional field campaigns focusing on different scales and

types of precipitation are presented in Chapter 6. Finally, a summary and conclusions are

provided in Chapter 7.
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2 A network of 16 autonomous disdrom-
eters 1

2.1 Introduction

The (rain)drop size distribution (DSD hereafter) is a statistical way to summarize the informa-

tion about the microstructure of rain and is consequently of primary importance for many

environmental fields such as investigation on cloud/precipitation microphysical processes

[e.g., Pruppacher and Klett, 1997], numerical weather modeling [e.g., Michaelides et al., 2009],

weather radar applications [e.g., Marshall and Palmer, 1948; Bringi and Chandrasekar, 2001]

and soil erosion due to the impact of raindrops [e.g., Salles et al., 2002; Assouline, 2009]. The

DSD is highly variable in time and space [Jameson and Kostinski, 2001], and this variability

has a key influence on the uncertainty affecting radar rain-rate estimates.

Previous studies have investigated the effect of the temporal variability of the DSD on radar

rain-rate estimates for different types of rain events (stratiform, transition phase, convective)

[e.g., Tokay and Short, 1996; Uijlenhoet et al., 2003b; Lee and Zawadzki, 2005]. This variability

can result in important biases in rain rate estimates (in the order of 40%) especially if the

physical processes involved are not well identified [Lee and Zawadzki, 2005].

DSD spectra can be collected at the ground level using disdrometers (electro mechanical,

acoustic or optical types). Such measurements provide point information with a limited spatial

representativity for the surrounding area. The spatial variability of the DSD can be investigated

using multiple measurements distributed in the same area. Miriovsky et al. [2004] highlighted

the difficulty to distinguish between the natural variability of the DSD and instrumental effects,

in particular when using instruments of different types. Further analyses [e.g., Krajewski

et al., 2006] pointed out the significant discrepancies between measurements from collocated

disdrometers of different types. More recently, the variability of the DSD over a distance of

1.3 km was shown to yield an average error of 25% in the estimation of rain accumulation [Lee

et al., 2009]. Tokay and Bashor [2010] also investigated the spatial variability of the DSD over

2 km using 3 disdrometers. Nevertheless, because of the limited spatial distribution of the

1This chapter is adapted from Jaffrain, J., A. Studzinski, and A. Berne (2011): A network of disdrometers to quan-
tify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, doi:10.1029/2010WR009872.
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instruments in these two studies, the collected data were not sufficient to fully characterize

and understand the spatial variability of the DSD.

More recently, the deployment of a network of 16 disdrometers distributed at 8 sampling

locations over a 4×4 km2 area has been reported [Tapiador et al., 2010]. The analyses were

however focused on the rain rate and the radar reflectivity rather than on the DSD itself, and

the uncertainty associated with each sensor was not taken into account.

The main objective of this first chapter is to explain the design and the set up of a network

of identical disdrometers over an area of 1x1 km2, corresponding to a typical pixel of an

operational weather radar, in order to collect DSD observations which enable quantitative

analysis of the spatial variability of the DSD within a weather radar pixel. Moreover, the

sampling uncertainty associated with disdrometer measurements is taken into account in the

analyses. The network architecture and its components are detailed in Sections 2.2 to 2.5. As

an illustration of the added value of the network approach, the spatial variability of the DSD is

analysed in Section 2.6 for a period of 1.5 month corresponding to frontal rainfall.

2.2 Parsivel disdrometer

Due to its capabilities, i.e., a high temporal sampling resolution (down to 10 s), the identi-

fication of the type of precipitation, the compacity of the sensor and its (relatively) limited

cost, Parsivel® (1st generation, manufactured by OTT) was selected as disdrometer to build

this network. Parsivel is an optical disdrometer [Löffler-Mang and Joss, 2000] providing DSD

measurements as well as integrated DSD parameters, i.e., rain rate, radar reflectivity factor

and information on precipitation type.

The instrument, presented in Figure 2.1, consists of a transmitter and a receiver separated by

a 54 cm2 horizontal laser beam. At the receiver, the laser signal is converted into a voltage

by a photodiode. The measuring principle is based on the attenuation of the signal when a

particle crosses the sampling laser beam [Löffler-Mang and Joss, 2000]. The size of the drop

along the horizontal axis is estimated from the maximum attenuation of the signal. Then the

equivolumetric diameter D of the drop is calculated from different axis ratios (defined here as

vertical/horizontal) assuming the shape of the particle is known. Drops smaller than 1 mm are

assumed to be spherical (axis ratio = 1). For drops between 1 and 5 mm, the axis ratio varies

linearly from 1 to 0.7. For drops with a diameter larger than 5 mm, the axis ratio is set to 0.7.

Finally, the terminal fall velocity of the drop is estimated from the time for the particle to go

out of the beam. Parsivel retrieval rationale is explained in details in Battaglia et al. [2010].

The instrument provides the number of drops according to their respective equivolumetric

diameter and fall speed. The ranges of sizes (from 0 to 25 mm) and velocities (from 0 to

20 m s-1) are each divided into 32 non-equidistant classes. Due to their low signal-to-noise

ratio, the two first classes of diameter are always empty (from 0 to 0.25 mm). In order to limit

the influence of particles partly detected by the laser beam, the drop concentration should
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2.2. Parsivel disdrometer

Figure 2.1: The optical disdrometer Parsivel® (OTT). The measuring principle is based on
laser attenuation when a particle crosses the beam.

be calculated using an effective sampling area (denoted Se f f ), which can be estimated as a

function of drop diameter [Löffler-Mang and Joss, 2000; Battaglia et al., 2010]:

Se f f (Di ) = L×
(
W − Di

2

)
. (2.1)

L (W ) is the length (width) of the laser beam, i.e 180 mm (30 mm) in the case of OTT-Parsivel

and Di is the center of the i th diameter class. Se f f is consequently smaller than the physical

sampling area (54 cm2).

There exist two types of Parsivel. The one developed by PMTech [Löffler-Mang and Joss,

2000] and the one manufactured by OTT, used in this study. The sampling area (48 cm2

for PMTech version) and the type of laser are the two major differences between those two

types. Unfortunately, no comparison of collocated measurements from the two types of

Parsivel has been reported in the literature so far. Cross-comparison of PMTech-Parsivel

measurements with other disdrometers, i.e., 2D-Video Disdrometer (2DVD) and Dual Beam

Spectropluviometer (DBS), shows in general good agreements [Krajewski et al., 2006] although

some discrepancies are observed in particular for small drops. These discrepancies between

instruments are larger during intense rainfall events (R greater than 20 mm h-1). Compared to

rain gauges, OTT-Parsivel and other disdrometers generally report higher rain rates although

they are consistent with each other [Vuerich et al., 2009]. Due to its capabilities to distinguish

between solid and liquid precipitation, Parsivel disdrometer was also used for snow studies

[PMTech type: Löffler-Mang and Blahak, 2001; Yuter et al., 2006; Battaglia et al., 2010][OTT

type: Egli et al., 2009; Matrosov et al., 2009].
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The main limitations of Parsivel are: (i) the limited sampling area, (ii) the possibility to have

multiple drops passing through the sampling area at the same time and (iii) the axis ratio

considered for drop equivolumetric diameter retrieval. The limited sampling area of Parsivel

(54 cm2) has been design to reduce the probability of multiple drops at the same time. However,

multiple drops at a time can happen, especially when rain drop concentration is large. This

results in artificially larger drops with unrealistic associated fall velocities. In addition, the

splashing of drops on the head of the sensor can induce non-natural small drops. Due to

the shape of the instrument, strong wind might have an effect on Parsivel measurements, in

particular for small drops [Chvíla and Sevruk, 2008]. Finally, the axis ratio model assumed

in Parsivel equivolumetric retrieval (mentioned above), compared to other models such as

Andsager et al. [1999] may account for part of the differences observed between Parsivel and

other instruments (rain gauges, 2D-Video disdrometer).

2.3 Autonomous station

In order to be easily deployed in different configurations at different locations, the disdrome-

ters have to be designed for an autonomous functioning in terms of power supply as well as

data transmission and storage. In the following, the term station denotes the ensemble formed

by a Parsivel and all the associated components required for energy and data management

presented hereafter. A complete autonomous station is presented in Figure 2.2.

Parsivel

Battery

GPRS

GPS

Radio

Solar panel

Figure 2.2: A wireless autonomous station for DSD measurement. The station consists of
a Parsivel, an electronic unit managing power and data transmission, a battery and a solar
panel.
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Power is provided by a 12 V battery connected to a solar panel of about 0.48 m2 providing a

maximum power of 65 W. Because the voltage provided by the solar panel can be larger than

12 V (depending on solar radiation and the altitude of the station) and in order to increase

the lifetime of the battery, charge cycles are controlled by an electronic circuit (see Diagram

in Appendix A). The voltage of the system is one of the parameters used for the monitoring

of a station. In order to reduce wind disturbance potentially induced by the solar panel, the

latter can be deployed away from the sensor (typically 5-10 m). The electronic unit has been

completely designed and built in-house. It consists of three main parts: the power, the data

and the modem units.

The power unit is managing the power supplied to the electronic unit, i.e., shutting down the

station properly if the voltage provided by the battery is below 11 V. Inversely it switches the

station on when the power is high enough for more than one hour in order to avoid electrical

hysteresis. Additional details as well as the electronic diagram for this unit is presented in

Appendix B.

The data unit controls data collection and converts serial binary data signal from RS485

(Parsivel output) to RS232TTL (data logger input). At each time step, the data unit collects and

stores the measurements in a buffer memory (denoted as FIFO for First In First Out) until the

remote logger queries those data via radio communication. Moreover, this buffer memory

gives the opportunity to repeat the data transmission process in case of disturbance in the

communication. The electronic diagrams of the RS485-RSR232TTL converter and the FIFO

are presented in Appendix C and D respectively.

Finally, the modem unit is in charge of transferring the data to the remote logger. The modem

is a common long range radio modem of 500 mW (YLX-TRM8053-500-05 from the Swiss

company Y-Lynx®) transmitting data at frequencies between 868 and 870 MHz, depending

on the channel and the group of sensors considered. According to the manufacturer, the

radio modem can transmit data up to 20 km if the transmitter and the receiver are in line-of-

sight and separated by a flat and obstacle-free area. The possible range of distances between

the transmitter and the receiver in a more complex and realistic area with buildings and/or

vegetation is considered to be about a few km. Using directional antenna improves the

communication and makes possible larger distance lags.

2.4 Network

The network consists of 16 stations designed for an autonomous functioning in terms of power

supply and data transfer, providing real-time DSD information as well as quantities derived

from the DSD (e.g., rain rate, radar reflectivity factor), identification of precipitation type

and additional technical information about the sensor at a temporal resolution of 30 s. This

number of sensors results from a trade-off between having a sufficient density of sensors for

reliable spatial investigations and limiting the cost of the network. With 16 stations and in this

configuration, interdistances range from 85 to 800 m. For instance, interdistances between
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100 and 200 m (600-800 m) have a minimum of 21 (15) pairs per time step. Assuming the

spatial structure is constant over a few min, 16 disdrometers are enough to reliably quantify

the spatial variability of the DSD by combining data collected at a 30 s temporal resolution

over short time periods (typically few min).

For data storage, the Campbell Scientific® data logger CR1000 was selected because of its

capabilities to manage different analog inputs. The CR1000 is equipped with a CompactFlash

memory module CFM100 and a 2 GB card. For cost reasons, all the 16 stations of the network

could not be equipped with a data logger. Consequently, the network is organized around four

data loggers, each one managing data from four stations. The network is hence divided in four

groups of 4 stations. Each group is lead by the station equipped with the data logger, named

master station. To avoid interference during transmission, each group is using its own range of

frequencies. Within the considered range of frequencies, different channels have been defined

in order to switch between channels in case of disturbance in the radio transmission. The

station identifiers are composed of two numbers: the first one corresponds to the number of

the group (from 1 to 4) and the second one indicates the number of the station within this

group (from 0 to 3). The station “0” of each group is the master station while the three others

stations of the group are named slave stations. The organization of the different groups within

the network is presented in Figure 2.3.

Figure 2.3: The network of 16 Parsivels deployed over EPFL campus (∼1×1 km2) in Lausanne,
Switzerland.
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2.5. Data management

Within a time step of 30 s, the master station successively queries data from the three slaves of

the same group through radio communication. In case of transmission failure, the master can

repeat up to 8 times the operation corresponding to a maximum duration of 3 s per station

using a different channel at each repetition. The collection phase can last up to 12 s in total.

2.5 Data management

The remaining 18 s (within a 30 s time step) are devoted to the transmission of the 4 mea-

surements (from one master and the 3 associated slave stations) to a remote web server

centralizing data using GPRS (General Packet Radio Service, a standard service for mobile

phone communication) connection. The temporal resolution of the network is driven by GPRS

capabilities. The GPRS module needs up to 15 s to fully transmit the data to the remote server.

The memory card is not required when using GPRS but is used as backup if problems occur

with GPRS communication. Given the size of a complete measurement, about 5 KB for each

sensor, the autonomy of the 2 GB memory card in case of data transmission failure is about

30 days. The clock of each data logger is synchronized every day at midnight using the GPS

(Global Positioning System) receiver included in the GPRS module.

Hence, the remote server receives data from the 4 master stations every 30 s. The last transmit-

ted data are visible on the server web page in order to check that all data were successfully

transmitted. Once a day, data are remotely downloaded and stored. Data from each station

of the network are then controlled and an email alert is sent if a station is not providing data.

Using the combination of GPRS and radio communication, stations can be remotely reset

and reboot. Daily quality control is very useful to quickly detect technical failures within the

network.

2.6 Applications

The network was fully deployed over the campus of the Swiss Federal Institute of Technology

in Lausanne (EPFL being the french acronym), Switzerland, in March 2009. The 16 stations

were regularly distributed on the roofs of EPFL buildings in order to cover an area of about

1x1 km2 (Figure 2.3). To prevent possible wind disturbances induced by the buildings (“edge

effects”), the stations were deployed as far as possible from the edges of the roofs. Local winds

have usually limited speed (usually below 5 m s-1) which have been shown to have negligible

effect on DSD measurements (see Section 3.2). Higher wind speeds can have an influence on

Parsivel measurements (as well as on rain gauges), but it is beyond the scope of this paper

to thoroughly investigate this issue. All the Parsivels in the network were deployed so that

the line between the 2 sensor heads was perpendicular to the prevailing wind. So Parsivel

measurements will be supposed to be at least representative of the true rainfall.

Because of maintenance work on the roofs of EPFL buildings, this deployment ended in July
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20102. The network has been running in this configuration for 16 months and has collected

about 540 hours of rain corresponding to a total rain amount of about 820 mm on average.

In order to keep this paper short, one period representative of frontal rain events has been

selected to illustrate the measurement capabilities of the network of disdrometers.

2.6.1 Method and Data Set

The selected period, from the 26th of March 2010 to the 6th of May 2010, is mainly dominated

by frontal rainfall (as seen from visual inspection of operational radar rain-rate maps). In the

following, a rainfall event is defined as a continuous rainy period of at least 15 min surrounded

by continuous dry periods of at least 15 min. The selected period corresponds to 14 rain

events lasting 53 h overall, for a total mean rain amount of about 93 mm. The rain rate values

averaged over the 16 stations of the network as well as the associated mean and individual

rain amounts are presented in Figure 2.4. The maximum difference in terms of rain amount

between individual stations is about 26 mm for the period, which corresponds to 24% of the

maximum rain amount recorded by an individual station.

The DSD spectrum integrated over the period is presented in Figure 2.5. It has to be noticed

that drops bigger than 7 mm (upper limit of the diameter class centered on D=6.5 mm ) have

been recorded over the network but have been filtered out because they do not seem to be

very realistic. Their influence appears to be limited due to their very low number (30 such

drops have been collected by the network over the considered, corresponding to less than 2

drops per station on average). Moreover, in order to remove outliers induced by instrument

limitations (rain splashing, multiple drops at a time) and non-meteorological sources of error

(insects, spiders, ...), a filter based on a velocity-diameter relationship have been applied on

DSD measurements. Similarly to Kruger and Krajewski [2002], but using the drop velocity

model proposed by Beard [1977], drops with a measured velocity that deviates more than 60%

from the theoretical velocity are disregarded. This threshold (60%) has been estimated by

comparing rain rate values derived from collocated Parsivels and tipping-bucket rain gauges

during 15 months [Jaffrain and Berne, 2011]. The filter removes between 10 and 32% of the

total number of particles detected depending on the considered station, which represents at

most only 5% of the total rain amount recorded over the period.

Data have been selected in order to have all the 16 stations providing a measurement (i.e., no

missing measurement due to data transmission failure is allowed) at all time steps. Moreover,

non-rainy periods, defined as periods during which less than 3 stations record a positive rain

rate at the same time, were not included in the analyses. According to this definition, about 9%

of the total number of measurements (collected at 30 s temporal resolution) are rainy. Finally,

in order to remove the effect of very small rain rates, only time steps for which all stations

record a rain rate R ≥ 0.1 mm h-1 are considered, which corresponds to about 70% of the rainy

2The 16-months data set, which consists of DSD measurements at a 30-s temporal resolution, is easily available
for the scientific community. For further information, please visit the Laboratoire de Télédétection Environnemen-
tal, EPFL-LTE, Lausanne, Switzerland (http//lte.epfl.ch).
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Figure 2.4: Top: mean rain rate over the 16 stations of the network at a 30 s temporal resolution
for the selected rain period. Bottom: corresponding mean (black) and individual (grey) rain
amounts.

measurements, but to 98.9% of the total amount for the period of interest.

In addition, a tipping-bucket (TB) rain gauge was deployed at about 5 m from Station 43

of the network (see Figure 2.3). Comparison between Parsivel and rain gauge data shows a

very good agreement for the presented period (difference of about 3% in the total amount).

Parsivel 43 (TB rain gauge) has recorded 87.5 mm (85.3 mm) of total rain amount. The

very good agreement in terms of rain amount between Parsivel and TB rain gauge for this

period indicates that Parsivel measurements and hence the derived variability of the different
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Figure 2.5: DSD spectrum integrated over the selected period. The points figures the center of
Parsivel diameter classes.

quantities of interest can reasonably be supposed reliable. It must be noted however that this

very good agreement can not rule out possible biases in the concentration of small drops,

as they have limited if not negligible influence on rain rate. Similar comparisons have been

conducted as well for a period of about 10 events mostly dominated by convective rainfall but

the agreement between Parsivel and TB rain gauge is less good (deviation of about 33% in total

amount). Wind is likely playing a major role in these discrepancies between the two types

of instruments [Vuerich et al., 2009]. Further investigations are needed to better understand

these differences, but are beyond the scope of this paper and consequently this convective

period has not been included in the present study. It must be noted that such disagreement

between Parsivels and rain gauges did not happen during the 15 months considered for the

quantification of the sampling uncertainty associated with Parsivel measurements [Jaffrain

and Berne, 2011].

Possible biases mentioned earlier (not included in the sampling uncertainty) could have an

influence on the estimated variability values. If such biases are constant over the network, the

proposed approach still provides a reliable order of magnitude of the variability.

2.6.2 Sampling uncertainty

Like any measurement of a physical process, DSD measurements from Parsivel are affected by

an uncertainty associated with the sampling process of the instrument. Because this sampling

uncertainty can be of the same order as the natural signal variability, it should be taken

into account for any analysis based on Parsivel measurements [Miriovsky et al., 2004]. The
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sampling uncertainty associated with measurements from a single Parsivel has been quantified

for different quantities related to the DSD (e.g., total concentration of drops, mass-weighted

diameter, rain rate) using a data set collected by two collocated Parsivels for a duration of 15

months. Because the sampling uncertainty may vary with the magnitude of the quantity of

interest, it was estimated for a range of values as well as for different temporal resolutions.

The reader is referred to the Chapter 3 (or Jaffrain and Berne [2011]) for more details on the

quantification of the sampling uncertainty associated with Parsivel measurements.

A reliable statistical analysis of the spatial variability of the DSD as seen by the network of dis-

drometers must take into account the combination of sampling uncertainties associated with

all Parsivels of the network. Because the sampling uncertainty is varying with the magnitude

of the quantity of interest, it can not be assumed uniform over the network, and analytical

estimation is not tractable. The sampling uncertainty at the network scale is hence estimated

using a stochastic simulation approach.

In the following, the quantity of interest measured by station i at time step t is denoted mi ,t .

The sampling uncertainty associated with this measurement (from the individual station i

at time step t) can be considered as a white noise [Jaffrain and Berne, 2011] and is hence

characterized by its standard deviation σω,i . At each time step and for all stations, 500 values

of mi ,t are generated from a normal distribution centered on mi ,t with a variance equal to

σ2
ω,i . At each time step t, the sampling uncertainty affecting a given statistical descriptor of

the DSD measurements collected by the 16 stations (e.g., coefficient of variation) is quantified

as the 80% confidence interval calculated from the 500 simulations. A sensitivity analysis was

performed to determine a suitable number of simulations and it appears that 500 is a good

trade-off between convergence and computation time. It should be noted that this approach is

based on the assumption that the sampling uncertainty in the observation of each instrument

is independent in space. This assumption is difficult to demonstrate as it required collocated

measurements distributed in space (at each sampling point of the network).

2.6.3 Variability of quantities related to the DSD

The DSD, denoted N (D) [m-3 mm-1], can be seen as the product of the total concentration of

drops Nt with a probability density function f (D):

N (D) = Nt f (D) . (2.2)

The total concentration of drops Nt [m-3] is the sum of the DSD over the range of sampled

drop diameters:

Nt =
Dmax∫

Dmi n

N (D) dD . (2.3)
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A commonly used first-order statistical descriptor of the probability density function f (D) is

the mass-weighted diameter Dm [mm] [Bringi and Chandrasekar, 2001] which is the ratio of

the 4th and the 3rd moment of the DSD:

Dm =

Dmax∫
Dmi n

N (D) D4dD

Dmax∫
Dmi n

N (D) D3dD

. (2.4)

Dm is less affected by the quantization of diameter sizes in disdrometer data than the median-

volume diameter (D0) which represents the diameter that divides the volume of water contains

in the sampling volume into two equal parts.

An essential quantity related to the DSD is the rain rate R [mm h-1] (flux of water through a

given surface):

R = 6π10−4

Dmax∫
Dmi n

N (D) v(D) D3dD (2.5)

where v(D) is the terminal fall velocity [m s-1] of a drop with a diameter D . According to Eq 2.2,

the variability of the DSD at the radar pixel scale can be quantified (at the first order) focusing

on Nt and Dm . Moreover, because the rain rate is of primary interest for many applications,

the variability of R within a typical weather radar pixel is also quantified for illustration. Other

quantities like radar observables for instance, could also be studied in the same way, but such

analyses are not presented to keep this paper short. The coefficient of variation (CV), defined

as the standard deviation normalized by the mean between the 16 stations, of all quantities is

calculated at each time step to quantify the relative variability of the DSD within a radar pixel

(∼ 1x1 km2).

Total concentration of drops

The relative variability of Nt averaged over the selected period (dominated by frontal events) is

about 23%. Figure 2.6 presents the scatterplot of CV values as a function of the corresponding

Nt values averaged over the 16 stations (denoted N̄t ).

The highest values of variability are observed for small Nt values, i.e., below 400 m-3, with CV

values reaching 80%. For Nt values above 400 m-3, the observed relative variability is between

8 and 40%. Sampling uncertainty values associated with CV estimates (in blue in Figure 2.6)

are close to zero (between 0.01 and 1%) with decreasing uncertainty for increasing Nt values.

Uncertainties associated with N̄t estimates are plotted in red but are not visible because they

are very small. Figure 2.6 clearly shows that the measured spatial variability of Nt across the
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Figure 2.6: Coefficient of variation (CV) of Nt as a function of the mean Nt values (N̄t ) for the
selected rain period. Blue lines figure the sampling uncertainty associated with CV values. Red
lines figure the one associated with N̄t values. When the sampling uncertainty in CV and N̄t is
below 0.1%, the error bars are not visible.

network is significant, the natural variability of Nt being larger than the variability due to the

sampling uncertainty.

Mass-weighted diameter

Figure 2.7 presents CV(Dm) values as a function of D̄m . The variability of Dm over the network

is between 3 and 60%. Similarly to Figure 2.6, uncertainty values associated with CV(Dm) and

D̄m are plotted in blue and red respectively. Contrary to Nt , globally the CV values tend to

increase with D̄m . As for Nt , the DSD measurements from the network show that the natural

variability of Dm is significant at the radar pixel scale. The same analysis on the median

volume diameter D0 produced very similar results.

Rain rate

Figure 2.8 presents the CV values as a function of R̄. Rain rate exhibits CV values between 9%

and 121%. Higher CV values are observed for low mean rain rates. The relative variability of R

is decreasing with increasing rain rates. For R̄ values above 15 mm h-1, the relative variability

is below 29%. Small CV estimates are affected by the highest sampling uncertainty values (in

blue in Figure 2.8). The uncertainty is decreasing for increasing R̄ values. Very low uncertainty
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Figure 2.7: Same as Figure 2.6 for Dm .

values are not visible in Figure 2.8. A significant amount of variability of R that can not be

explained by the sampling process alone is observed within the monitored area.
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Figure 2.8: Same as Figure 2.6 for R.
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2.7 Summary and Conclusion

A wireless network of 16 optical disdrometers (Parsivel) has been designed and deployed over

EPFL campus in Lausanne, Switzerland. This network was fully autonomous in terms of power

supply as well as data transmission and storage. Each station was connected to a battery

and a solar panel. The combination of radio communication and GPRS allowed a real-time

remote access to the data. A web server was centralizing the data from the 16 disdrometers.

Data quality was automatically controlled daily and an email alert is sent in case of technical

failure of a station. Daily data quality control is very useful to quickly detect and fix technical

problems within the network.

The network has been running for 16 months collecting 540 h of rain corresponding to a

total rain amount of 820 mm on average. A preliminary analysis of a period representative

of different frontal rain events (corresponding to 53 h of rain and 93 mm of total amount) is

presented to illustrate the measurement capabilities of the network. The spatial variability of

the DSD at the radar pixel scale is quantified as the coefficient of variation (between the 16

stations) of the total concentration of drops Nt , the mass-weighted diameter Dm and the rain

rate R.

Overall, the collected data set indicates a significant variability of the DSD, even at such a small

scale (1x1 km2), that can not be explained by the sole uncertainty associated with the sampling

process of the instrument. On average, it is for the selected period in the order of 20% for Nt ,

10% for Dm and 30% for R. This analysis demonstrates the capacity of the presented network

of disdrometers to capture and quantify the natural variability of the DSD.

Thanks to the data collected by this network of disdrometers, it will be possible to quantitatively

analyse the spatial and temporal variability of the DSD at the weather radar pixel scale. In

addition, the effect of this variability on the empirical power laws used in weather radar

data processing will be investigated. These two questions are of primary importance for

the quantification of the uncertainty associated with rainfall estimates from remote sensing

techniques.
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3 Sampling uncertainty associated with
Parsivel measurements 1

3.1 Introduction

The microstructure of rainfall, i.e., the characteristics of individual raindrops, is controlled

by the complex interactions between cloud microphysics and atmosphere dynamics [Testik

and Barros, 2007]. The microstructure of rainfall is of primary importance for remote sensing

of precipitation but also for numerical weather modeling, rainfall infiltration or soil erosion

[e.g., Salles et al., 2002]. In the present paper, the focus is on weather radar remote sensing

and therefore the size, shape and fall velocity of raindrops are of particular interest. The shape

and fall velocity of a raindrop can be accurately derived from its equivolumetric diameter

[e.g., Beard, 1977; Andsager et al., 1999]. Therefore, a fundamental property of rainfall for the

investigation of its microstructure is the (rain)drop size distribution (DSD hereafter). Rain,

and hence DSD, is highly variable in time and space at inter/intra event scales as well as for

different geographic locations [Tokay and Short, 1996; Jameson and Kostinski, 2001; Uijlenhoet

et al., 2003b; Miriovsky et al., 2004; Lee and Zawadzki, 2005; Lee et al., 2009].

In order to further our understanding of the microstructure of rainfall, reliable DSD mea-

surements are of primary importance. Information about the DSD is usually collected at

ground level using disdrometers. Different types of disdrometers have been developed. The

Joss-Waldvogel electromechanical disdrometer [Joss and Waldvogel, 1967] is the most popular

sensor to collect DSD measurements. Numerous studies have compared JW disdrometer

measurements with those of other instruments as rain gauge [Tokay et al., 2001, 2003, 2005;

Sieck et al., 2007], optical spectropluviometer [Campos and Zawadzki, 2000; Salles and Creutin,

2003], micro-rain radar [Peters et al., 2005], POSS Doppler radar [Sheppard and Joe, 1994;

Campos and Zawadzki, 2000] or 2D-video disdrometer [Tokay et al., 2001]. The fluctuations

observed at the ground level result from the combination of two signals: the natural vari-

ability of the physical process and the sampling fluctuations induced by the instrument [e.g.,

Gertzman and Atlas, 1977]. Numerous studies have pointed out the difficulties to distinguish

1This chapter is adapted from Jaffrain, J. and A. Berne (2011): Experimental quantification of the
sampling uncertainty associated with measurements from Parsivel disdrometers. J. Hydrometeor., 12 (3),
doi:10.1175/2010JHM1244.1
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between these two sources of variability in rainfall observations [e.g., Joss and Waldvogel, 1969;

Gertzman and Atlas, 1977; Smith et al., 1993; Gage et al., 2004; Miriovsky et al., 2004; Berne

and Uijlenhoet, 2005a; Uijlenhoet et al., 2006].

Any analysis of the DSD variability must take into account the sampling uncertainty associated

with DSD measurements, in order to better characterize the natural variability of the DSD,

which is the environmental phenomenon of interest. For instance, Krajewski et al. [2006]

pointed out the observed significant differences between DSD measurements from disdrome-

ters of different types deployed in the same 100 m2 area. Such strong instrumental differences

can lead to significant differences in higher-order moments of DSD and must be quantified

and integrated in DSD analyses.

The optical disdrometer considered in this study is the Parsivel (OTT ®), described by Löffler-

Mang and Joss [2000]. In previous studies, Parsivel was mostly used to investigate snowfall

measurements [Löffler-Mang and Blahak, 2001; Yuter et al., 2006; Tokay et al., 2007; Egli et al.,

2009] because of the capability of the instrument to distinguish between solid and liquid

precipitation. Recently, a critical evaluation of Parsivel snow measurements based on the

comparison with a collocated 2D-Video disdrometer was presented by Battaglia et al. [2010].

This chapter aims at quantifying and characterizing the sampling uncertainty associated with

the Parsivel disdrometer in rain. In this context, the sampling uncertainty is defined as the

uncertainty due to the limited sampling area of the Parsivel which collects measurements

about a spatially and temporally varying process (rainfall). Two collocated Parsivels will

sample two distinct subsets of the same population of raindrops, and will hence provide

slightly different measurements [Steiner et al., 2003; Berne and Uijlenhoet, 2005a]. This

sampling uncertainty does not include all sources of error [Jones et al., 1997], like for example

errors related to signal processing issues and limited representativity. Therefore the present

approach is different from investigations about the "total" uncertainty affecting rainfall gauges

[e.g., Sevruk et al., 2009], which have to deal with the issue of the impossible access to the true

rainfall characteristics.

The experimental set up and the data set are described in Section 3.2. Section 3.3 presents the

comparison between rain rate measurements from disdrometers and from nearby tipping-

bucket rain gauges. The sampling uncertainty associated with Parsivel measurements is

quantified for the total concentration of drops, the median-volume diameter, the rain rate, the

radar reflectivity and the differential reflectivity in Section 3.4. Summary and conclusions are

finally provided in Section 3.5.

3.2 Experimental Setup

Following the approach proposed in previous works [Gage et al., 2004; Tokay et al., 2005;

Krajewski et al., 2006; Sieck et al., 2007], two Parsivels (Parsivel 01 and Parsivel 02) were

collocated (about 50 cm apart) and deployed at EPFL campus in Lausanne, Switzerland, from

late January 2008 to mid-April 2009 (about 15 months). A third one (Parsivel 03) has been
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deployed perpendicularly to the two previous ones in order to investigate the effect of the wind

on Parsivel measurements. Additional meteorological information was provided by a weather

station deployed a few meters away. A picture of the experimental set up is presented in

Figure 3.1. In agreement with the local climatology, the wind speeds observed during rainfall

Figure 3.1: The experiment involves two parallel Parsivels (right), two TB rain gauges (in white
in the bottom left corner of the picture) and a weather station (center). Parsivel 01 is the closest
to the solar panel while Parsivel 02 is the closest to TB rain gauges. The third disdrometer
(Parsivel 03), perpendicular to the others, was later deployed in order to investigate the effect
of wind on Parsivel measurements.

were limited (below 6 m s-1). Figure 3.2 presents the rain rate differences between Parsivel 01

and 03 as a function of wind speed and direction. As highlighted by the negligible values of

the correlation coefficient (-0.08 and -0.05 respectively), the comparison of measurements

from the two orthogonal Parsivels did not show a significant influence of the wind (speed and

direction) on the deviation of the rain rate measurements from collocated Parsivels. Similar

results were obtained when comparing Parsivel 02 and 03.

Moreover, the negligible influence of the wind on Parsivel measurements (in our context) is

also indicated by the identical correlation coefficients (= 0.98) observed between the different

Parsivel pairs (orthogonal or not). The ratio of the average rain rate are also similar with values

of 0.92, 0.89 and 0.96 for the pair 01-02, 01-03 and 02-03 respectively. It has to be noticed

that wind effect is investigated for collocated Parsivels at the same height, consequently wind

influence on Parsivels at different locations and elevations is not considered in the present

paper. Because of a later deployment and of technical problems, Parsivel 03 has missed about

140 h of rain, that is about 20% of the rainy period recorded by Parsivel 01 and 02 and a loss of

about 170 mm of rain amount. Because the data set is large, considering two or three Parsivels

leads to similar results (see Section 3.4.2). Consequently, data from Parsivel 03 have not been

considered in the analyses presented hereafter.

Similarly, two collocated tipping-bucket (TB) rain gauges have been deployed nearby the
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Figure 3.2: Rain rate differences between Parsivel 01 and 03 as a function of wind speed (top)
and wind direction (bottom). The dashed line figures the linear regression.

pair of Parsivels (about 3 m away), providing independent measurements of rain rates and

rain amounts (Figure 3.1). The Précis Mécanique® tipping-bucket rain gauges (model 3029),

with a catching area of 400 cm2, are connected to data loggers that record tipping times

(corresponding to 0.1 mm) with an accuracy of 0.1 s. From visual inspection, splashing does

not seem to have a significant impact on TB rain gauges measurements. Because the focus of
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the present work is on the sampling uncertainty, the fact that our experimental setup does

not strictly follow the recommendations from the World Meteorological Organization [WMO,

2008] is not considered as an issue.

Parsivel is an optical disdrometer (see Section 2.2 for more details) providing drop counts as

a function of their size and terminal fall velocity. These measurements are stored in a 32 ×
32 matrix corresponding to 32 non-equidistant classes of diameter (from 0 to 25 mm) and

32 non-equidistant classes of fall speed (from 0 to 22.4 m s-1). All drops in a given class are

assigned the values corresponding to the center of the size and velocity classes. Due to their low

signal-to-noise ratio, the first two classes of diameter (0.062 and 0.187 mm) are always empty.

Therefore, sampled diameters start at the lower bound of the third class, i.e., 0.25 mm. As

highlighted in Section 2.2, concentration of drops are calculated using the effective sampling

area Se f f (see Eq2.1).

Because our investigations focus on rainfall, solid or mixed precipitation is disregarded. The

rainy periods, i.e., as soon as a strictly positive rain rate is recorded by at least one of the

Parsivels, represent about 990 h of rain. In order to avoid the effect of very weak rainfall on the

statistical descriptors, data have been filtered: only time steps for which both Parsivels measure

a rain rate R larger than 0.1 mm h-1 are considered. For consistency, the same time steps are

considered for TB rain gauges. It has to be noticed that the employed filter (R > 0.1 mm h-1)

will remove different time steps depending of the temporal resolution considered. At a time

resolution of 20 s, this threshold of 0.1 mm h-1 removes about 27% of the rainy measurements.

This proportion increases to 48% for a 1-h time step. Nevertheless, the removed time steps

represent a loss of only 2 and 3% of the total rain amount at 20 s and 1 h respectively.

To identify and remove suspicious measurements (due to splashing, multiple drops at a time,

margin fallers, insects, spiders, ...), a filter based on drop velocity-diameter relationship, similar

to the one used by Kruger and Krajewski [2002] and Thurai and Bringi [2005], is applied to the

raw Parsivel measurements (32×32 drop counts). The drop velocity model is taken from Beard

[1977]. After comparison with the rain gauges in terms of rain amount, the tolerance around

this model is set to 60%. Finally, only drops satisfying the equation:

| v(D)meas − v(D)Bear d |≤ 0.6 v(D)Bear d (3.1)

are considered, where v(D)meas is the velocity measured by Parsivel and v(D)Bear d is the

velocity for a drop of diameter D according to Beard’s model. Such filter removes about 25%

of the total number of particles detected. The filtered drops are mainly below 0.5 mm (about

71%) and between 0.5 and 1 mm (about 28%). In term of rain amount, the filtered drops

represent only 3.5% of the total rain amount recorded over the period.

All the estimates of DSD/rainfall variables used in the present study are calculated from DSDs

expressed as concentrations of drops per diameter classes (expressed in m-3 mm-1), computed

from the filtered raw DSDs. Figure 3.3 presents the scatterplot of the rain rate computed

from DSD (denoted by R ′) versus the rain rate provided by Parsivel (denoted by R) at a time
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resolution of 300 s. The correlation coefficient is about 1 and the ratio of the means is about

1.04. R ′ is slightly lower than R because of a larger number of time steps with rain rate values

below 0.5 mm h-1. Figure 3.3 shows the very good agreement between R ′ and R, and results
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Figure 3.3: Scatterplot of the rain rate provided by Parsivel 01 (R) versus the one derived from
the DSD (R ′) at a 300-s temporal resolution. The dashed (solid) line figures the 1-1 (regression)
line.

obtained in this study for R ′ will be assumed valid for R (as this parameter is likely to be more

frequently employed by Parsivel users).

The data set involved in this study (after filtering process) corresponds to about 725 h of

rainfall over 15 months from the 19th of January 2008 to the 14th of April 2009. The average rain

amount measured by the two Parsivels (TB rain gauges respectively) is about 900.3 (941.2) mm.

Figure 3.4 presents the average rain rate from the two Parsivels and the two rain gauges, as well

as the cumulative amount for each sensor at a time resolution of 300 s. It indicates that this

data set corresponds to light and moderate rainfall with limited maximum rain rate (below

40 mm h-1). Figure 3.5 shows the concentration of drops at 300 s averaged over 15 months

for each Parsivel. It shows a slight underestimation of the concentration of drops recorded by

Parsivel 01 compared to Parsivel 02 for drops between 1.8 and 5 mm. This underestimation

explains the slightly lower rain amount recorded by Parsivel 01 over the 15 months.

Parsivel 01 (02) detected 20 (24) drops in the class 6.5 mm, 10 (12) in the class 7.5 mm and 1 (2)

in the class 8.5 and 9.5 mm. Drops larger than 7 mm are considered as unrealistic and were

removed from the data set. Nevertheless, their influence on the results are negligible because

of their very low numbers (≤ 15). Table 3.1 presents the total number of drops measured by
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Figure 3.4: Mean rain rate (top) for each type of instruments. Cumulative rain amounts
(bottom) recorded by each Parsivel and each TB rain gauge. Both plots correspond to a
temporal resolution of 300 s over the 15 months of the experiment.

Parsivel 01 over the 15 months as well as some statistics on drop sizes at 60 s temporal resolu-

tion. The 90% quantile of D is about 1.375 mm, which highlights the limited number of big

Table 3.1: Number of particles N detected by Parsivel 01 integrated over the 15 months as a
function of drop sizes at 60 s temporal resolution. The corresponding quantiles as well as the
maximum number of particles measured per spectrum at 60 s and 600 s are provided as a
function of drop size.

D [mm] ≤ 0.5 0.5-1 1-1.5 1.5-2 2-3 3-4 4-5 5-6 6-7
N measured 675357 5443282 1637031 321842 98418 7277 772 72 20

Quantile 8.3% 74.0% 94.0% 98.4% 99.9% - - - -
Nmax (D)/spectrum, 60 s 453 1466 582 319 211 52 14 2 2

Nmax (D)/spectrum, 600 s 3060 9948 3558 1519 859 172 54 6 2

drops in the data set. These statistics are very similar for Parsivel 02. Because the experiment

lasted 15 months, the derived statistics are assumed to be robust and representative of the

local climatology.
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Figure 3.5: 300-s DSD spectrum of each disdrometer averaged over the 15 months of the
experiment. The X axis corresponds to the drop diameter using the center of Parsivel classes.
The Y axis is the number of drops in log scale.

3.3 Comparison between optical disdrometers and tipping-bucket

rain gauges

Prior to the quantification of the sampling uncertainty, Parsivel and gauge rain-rate values are

compared to check if there is any significant bias in Parsivel measurements, considering rain

gauge as the reference instrument. For rain gauge measurements, the intensity resolution,

0.1 mm per tip, is too coarse for time steps shorter than 5 min (one tip over 5 min corresponds

to 1.2 mm h-1) which will be the temporal resolution for the comparison of Parsivel and rain

gauge data in this section. From Figure 3.4, we see that the two Parsivels have collected 863.2

and 937.3 mm respectively, that is a difference of about 8%. The two TB rain gauges have

collected 928.7 and 953.7 mm respectively, that is a difference of about 3%. On average, Parsivel

and TB rain gauges have recorded total rain amounts of 900.3 and 941.2 mm respectively,

corresponding to a difference of 4.3% over 15 months. Moreover, considering individual

disdrometers and TB rain gauges, the maximum deviation in terms of rain amount between

an individual Parsivel and an individual TB is about 9.5% which is reasonable with respect to

the 15 months the experiment lasted.

It has been shown in previous studies that Parsivel tends to overestimate rain rate compared

to rain gauges [Vuerich et al., 2009]. In the present study however, both Parsivels recorded

lower rain amounts compared to the TB rain gauges. This could be explained by: (i) the
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3.3. Comparison between optical disdrometers and tipping-bucket rain gauges

rather limited values of the measured rain rates during the 15 months considered, as for

limited rain rate values the deviation is less pronounced (see Vuerich et al. [2009]); (ii) the

fact that the considered rain rate is directly derived from the DSD and not the one provided

by the instrument (which is about 4% larger, see Figure 3.3); (iii) the influence of the drop

velocity-diameter filtering process.

Figure 3.6 presents the scatterplot of the rain rates recorded by Parsivel 01 and 02 as well as the

comparison between rain rates recorded by Parsivel 01 and TB rain gauges 02 (the 2 sensors

between which the bias is the largest) at a resolution of 300 s. The other comparisons between

individual sensors show similar agreements, with lower bias however. Table 3.2 summarizes

the values of the correlation coefficient and the ratio of mean rain rates associated with the

different combinations of two instruments. The correlation coefficient is about 0.98 and the

ratio of means is about 0.92 for rain rates measurements between the two Parsivels, showing

that they are in very good agreement. The ratio of means between Parsivels 01 and 03 as well

as Parsivels 02 and 03 are of the same order. The ratio of means between the 2 rain gauges is

0.97 and the correlation coefficient is 0.90.

Table 3.2: Correlation coefficient (ρ) and ratio of means (r m) between rain rate measurements
from single instrument. P (T B) denotes Parsivel (TB rain gauge) and the index is the reference
of the instrument.

(X,Y) (P01,P02) (T B01,T B02) (P01,T B01) (P01,T B02) (P02,T B01) (P02,T B02)
ρ 0.98 0.90 0.94 0.92 0.94 0.91

r m = R X /RY 0.92 0.97 0.93 0.91 1.01 0.98

Concerning the comparison of rain rate values from a single Parsivel and from a single TB rain

gauge, the correlation coefficient is between 0.91 and 0.94 while the bias indicated by the ratio

of means is between 1.0 and 9.5%. Figure 3.4 and Figure 3.6 show the very good agreement

between Parsivel and TB rain gauge measurements (in particular for Parsivel 02), indicating

that Parsivel measurements have limited bias with respect to TB rain gauge measurements.

Figure 3.7 presents the difference of rain rate values between the two Parsivels over the 15

months, at a time resolution of 300 s. From March to June 2008, Parsivel 01 provides slightly

larger rain rates than Parsivel 02. From July 2008 to February 2009, Parsivel 02 provides larger

rain rates than Parsivel 01. Finally, between January and February 2008 as well as between

February and April 2009, there is no clear bias between the two Parsivels. Overall, we will

consider that the bias between the two Parsivels is negligible and that the difference between

the two Parsivels can be correctly described as a white noise with zero mean. Hence, sampling

uncertainty, as defined in Section 1, is likely the main source of error in the measurements

from the two Parsivels. Spider webs and insects as well as laser inhomogeneity could explain

some of the bias although there is no clear reasons for this timing.

These comparisons show that rain rate estimates derived from DSD measurements provided

by Parsivel are reliable and the next section is devoted to the quantification of the sampling
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Figure 3.6: Scatterplot of the rain rate recorded by Parsivel 01 and 02 (top) and comparison of
rain rates recorded by Parsivel 01 and TB rain gauge 02 at a temporal resolution of 300 s.

uncertainty associated with measurements from a single Parsivel.
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Figure 3.7: Differences between rain rate values recorded by the two Parsivels (R01 −R02) over
the 15 months at a temporal resolution of 300 s.

3.4 Quantification of the sampling uncertainty

3.4.1 Integral quantities related to the DSD

While TB rain gauges provide information only about rain rate, the main benefit of disdrome-

ters is the access to information about the microstructure of rain. For quantitative applications,

the statistical moments of the DSD (e.g., rain rate, radar reflectivity) are of major interest. Any

analysis based on DSD measurements must take into account the uncertainty induced by the

sampling process.

The DSD can be seen as the product of the drop concentration Nt [m-3] and a probability

density function f :

N (D) = Nt f (D) . (3.2)

The total drop concentration Nt is the sum of the DSD over the range of sampled diameters of

drops:

Nt =
∫ Dmax

Dmi n

N (D) dD . (3.3)

Moreover, a quantity commonly used to characterize, at least partly, the probability density f is

the median-volume diameter D0 [mm] which is defined as the 50% quantile of the normalized
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Chapter 3. Sampling uncertainty

distribution of liquid water content over all drop diameters:

D0 /
∫ D0

Dmi n

N (D) D3dD =
∫ Dmax

D0

N (D) D3dD . (3.4)

In other words, drops smaller (respectively larger) than D0 contribute to half of the total

rainwater content in the sampled volume. D0 is sensitive to the concentration of large drops.

Similarly to Tokay et al. [2005], the rain rate R, the radar reflectivity Z and the differential

reflectivity Zdr (the most commonly used moments of the DSD) are considered:

R = 6π10−4 Nt

∫ Dmax

Dmi n

f (D) v(D) D3dD . (3.5)

Zh|v = λ4106

π5|K |2 Nt

∫ Dmax

Dmi n

f (D)σB ,h|v (D) dD . (3.6)

Zdr = 10log10

(
Zh

Zv

)
. (3.7)

where v is the drop terminal fall velocity [m s-1], λ is the wavelength [cm], K is the dielectric

factor for liquid water [-], D is the equivolumetric diameter [mm] and σB ,h|v is the backscatter-

ing cross section for horizontal (vertical) polarization [cm2]. With respect to the DSD, R and

Zh depend on both the drop concentration Nt and the probability density function f , while

Zdr only depends on f .

The sampling uncertainty will be quantified for Nt and D0, as well as for R, Zh and Zdr . Be-

cause the data set is representative of the local climatology characterized by light to moderate

rainfall, the corresponding values of specific attenuation and specific differential phase are

low. The sampling uncertainty for these ranges of values is of limited interest, and is hence

not considered in the present paper.

3.4.2 Method

Following Tokay et al. [2005], we consider that n collocated sensors sample the same popula-

tion (the two Parsivels are 50 cm apart). We denote mi ,t the variable of interest, derived from

the DSD spectrum measured by sensor i at time step t. In the following, Sk denotes a subset of

k instruments among n. The arithmetic mean of mi ,t for i in Sk at time step t (denoted mSk ,t )

is expressed as

mSk ,t = 1

k

∑
i∈Sk

mi ,t . (3.8)
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3.4. Quantification of the sampling uncertainty

Similarly, the mean over n sensors at time step t is

mn,t = 1

n

n∑
i=1

mi ,t . (3.9)

As proposed in Chandrasekar and Gori [1991], Gage et al. [2004], Berne and Uijlenhoet [2005a]

and Tokay et al. [2005], using the difference between two collocated sampled values of a

quantity removes the natural variability and enables the quantification of the sampling vari-

ability alone. In order to limit the influence of large absolute uncertainty values and to ease

comparison with other sensors, we will consider the relative sampling uncertainty. Assuming

that the mean over n instruments is representative of the true value, the normalized difference

between Eq 3.8 and Eq 3.9, denoted by εSk ,t is defined as

εSk ,t =
mSk ,t −mn,t

mn,t
. (3.10)

A similar approach based on the relative error has been used previously by Habib et al. [2001b]

and Ciach [2003], considering the specific case of one sensor (k = 1) among n collocated ones

for tipping-bucket rain-gauge measurements.

Moreover, we consider that a given variable related to the DSD spectrum measured by sensor i

at time step t can be seen as the sum of the real value of the variable at time t (denoted by Mt ),

which is of interest but not known, and a sampling uncertainty denoted by ωi ,t associated

with the measurement process and considered as a Gaussian white noise.

mi ,t = Mt +ωi ,t (3.11)

Because the considered sensors are identical, the distribution of ωi is supposed to be identical

for all sensors. As a Gaussian white noise, ωi is supposed to be 0 on average, so the sampling

uncertainty is fully characterized by its standard deviation σω. Hence, σω must be derived

from the collected data. Replacing Eq 3.8, 3.9 and 3.11 in Eq 3.10 leads to

εSk ,t =
1
k

∑
i∈Sk

(Mt +ωi ,t )

1
n

n∑
i=1

(Mt +ωi ,t )
−1 . (3.12)

As suggested for radar reflectivity measurements [Gage et al., 2004; Berne and Uijlenhoet,

2005a], the relative sampling uncertainty affecting mSk is quantified by σεSk
, the standard

deviation of εSk .

Assuming the collocated instruments sample the same DSD population, the relative sampling

uncertaintyσr
ω (r standing for relative) can be calculated fromσεSk

(see Appendix E for details):
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Chapter 3. Sampling uncertainty

σr
ω = σω

E[M ]
'σεSk

√
nk

n −k
. (3.13)

Considering that the sampling uncertainty may depend on the value of M , σω is estimated for

different classes of M , within which M andω are assumed to be uncorrelated. Figure 3.8 shows

the distribution of εi values for D0 between 0.6 and 0.7 mm at a 60 s temporal resolution. For

other D0 classes and temporal resolutions, the distributions of εi look similar and therefore

the assumption of Gaussian white noise appears reasonable. Nevertheless, outliers cannot

ε

D
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s
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y

−0.1 0.0 0.1 0.2

0
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5

mean

Q_10%

Q_90%

Figure 3.8: Distribution of εi (D0) values for D0 between 0.6 and 0.7 mm at a temporal resolu-
tion of 60 s. Solid vertical line represents the mean while dashed vertical lines represents the
10% and 90% quantiles.

be excluded especially for classes with low number of εi values. The classical estimation of

the standard deviation is sensitive to possible outliers, while quantiles are more robusts. The

difference between quantiles Q90% and Q10% corresponds to 80% of the distribution which

is in the interval [−1.28σ;+1.28σ] for a Gaussian distribution. Consequently, a more robust

estimation of σεSk
can be derived from the quantiles as:

σεSk
= Q90%(εSk )−Q10%(εSk )

2×1.28
. (3.14)

As mentioned in Section 3.3, the limited bias between the 2 disdrometers (about 8% in 15

months) is neglected.
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3.4. Quantification of the sampling uncertainty

In order to check the validity of Eq 3.13, 4 additional disdrometers were collocated next to

the 2 considered ones for a period of about 2 months (all sensors gathered over about 10 m2).

Figure 3.9 shows σεSk
and σr

ω as functions of the number of sensors for R between 0.1 and

2 mm h-1. As expected, the number of collocated instruments has a significant impact on σεSk
.

On the contrary, the relative uncertainty σr
ω does not significantly depend on the number

of sensors deployed. The same computation was performed as well for Nt , D0, Zh and Zdr
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Figure 3.9: Relative sampling uncertainty [-] as a function of the number of collocated dis-
drometers and the temporal resolution for R values between 0.1 and 2 mm h-1. The number
of collocated instrument has a significant impact on σεSk

(top) while the relative uncertainty
σr
ω does not significantly depend on the number of sensors deployed (bottom).

with similar results. This experimentally demonstrates that Eq 3.13 is valid at least for the

local climatology. Because the approximation used in Eq E.2 may cause problems when
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Chapter 3. Sampling uncertainty

the considered number of samples (denoted by ns) is small [Stuart and Ord, 1994, p.351],

this 2-month data set is too limited to check the validity of this approximation for higher R

classes (the quantile 95% is about 3 mm h-1). Eq E.2 will nevertheless be assumed to hold for

higher R (and other quantities of interest). In order to provide reliable quantification of the

relative sampling uncertainty, σr
ω is calculated only if there are more than 30 values in a given

class (ns ≥ 30). Comparison between results obtained by considering data from two or three

Parsivels shows that working with only two has a limited effect on the derived sampling errors.

Therefore, the analyses are conducted on data from Parsivels 01 and 02 which have the longest

record.

Because time resolution has a strong impact, σr
ω is estimated at 11 different time resolutions

ranging from 20 s to 1 h. The analyses were also conducted for three typical frequencies of

weather radar systems: 2.8 GHz (S-band), 5.6 GHz (C-band) and 9.4 GHz (X-band).

The sampling error has been investigated and quantified for TB rain gauges [e.g., Habib et al.,

2001b; Ciach, 2003] as well as for Joss-Waldvogel disdrometer [e.g., Chandrasekar and Gori,

1991; Tokay et al., 2005]. Although our approach is similar to these last two (in particular

by considering collocated stations as well as by using the standard deviation to quantify the

sampling uncertainty), we focus on the relative sampling error per class of the considered

quantity. Hence direct comparison with these studies is not possible.

3.4.3 Sampling uncertainty associated with total drop concentration estimates

Because the sampling uncertainty may vary with the total concentration of drops, the range of

observed Nt values was divided into 9 non-equidistant classes in order to have a sufficient

number of values in each class (ns ≥ 30). Nt values range from 0 to 2000 drops per cubic meter.

Figure 3.10 presents the relative sampling uncertainty σr
ω(Nt ) associated with Nt estimates

from a single Parsivel. The corresponding values of the uncertainty for the different classes

and temporal resolutions are provided in Table F.1 in Appendix F.

For Nt estimates, the relative sampling uncertainty is between 3 and 25 %. It is decreasing

with increasing Nt classes and increasing time steps. For time steps longer than 300 s, the

relative sampling uncertainty is below 10% independently of Nt . The highest values of σr
ω(Nt )

are observed for the first class, i.e., for Nt below 50 drops per cubic meter. For low Nt values,

a few missed drops will have a stronger effect on the uncertainty than for larger Nt values

independently of the time resolution.

3.4.4 Sampling uncertainty associated with median-volume diameter estimates

Similarly to Nt , 10 non-equidistant classes of D0 have been defined from 0.6 to 2.5 mm. The

map of relative sampling uncertainty associated with D0 estimates is presented in Figure 3.11

(the corresponding values of σr
ω(D0) are provided in Table F.2 in Appendix F) according to the

different D0 classes and temporal resolutions. The relative sampling uncertainty associated
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Figure 3.10: Relative sampling uncertainty associated with estimates of total concentration of
drops from a single Parsivel as a function of total drop concentration and temporal resolution.
The white area corresponds to pixels with less than 30 values to estimate σr

ω(Nt ). X-axis is
logarithmic. Note that the color scale stops at 0.30 while contour lines figures the whole range
of values.

with D0 estimates is between 1 and 27%. σr
ω(D0) is decreasing for decreasing D0 and increasing

time steps. For D0 about 1.75 mm and below, the relative sampling uncertainty is below 20%

independently of the temporal resolution. Figure 3.12 presents the median of the number

of drops with a diameter D larger than D0 for each D0 class. This number decreases with

increasing D0 classes, illustrating the decreasing number of big drops (recall that D0 is sensitive

to big drops, see Eq. 3.4). The larger sampling uncertainty for small time steps (i.e., 20 and 60 s)

and higher D0 classes is hence due to the limited number of drops in these classes. Therefore,

a few missed big drops will induce a large relative sampling uncertainty.

3.4.5 Sampling uncertainty associated with rain rate estimates

Following the same approach, 9 rainfall intensity classes have been defined from 0.1 mm h-1

to 30 mm h-1. Due to the large number of low rain rate values, the first classes are thinner than

the higher ones. Figure 3.13 presents the relative sampling uncertainty σr
ω(R) associated with

rain rate measurements from a single sensor for both types of instrument (i.e., Parsivel and TB

rain gauges). The corresponding values of the relative sampling uncertainty for the different

classes and temporal resolutions are provided in Table F.3 in Appendix F.
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Figure 3.11: Same as Figure 3.10 for the median-volume diameter estimated from a single
Parsivel.

For Parsivel measurements, the relative sampling uncertainty is between 7 and 25 %. It is

globally decreasing with increasing rain rate classes and increasing time steps. At a temporal

resolution of 300 s, the relative sampling uncertainty is below 12% for all R values. At high

temporal resolutions, e.g., 20 s, the sampling uncertainty is below 20% for rain rates higher

than 6 mm h-1 and between 20 and 25% for light rain rates, i.e., below 6 mm h-1. Figure 3.14

presents the median of the number of drops measured as well as the mean diameter as a

function of R classes at a 60 s temporal resolution. As expected the measured number of

particles is increasing with increasing rain rates. The larger values of sampling uncertainty at

high temporal resolutions and for low R values can be related to the lower number of drops

measured compared to higher R values. Therefore, σr
ω(R) is more sensitive to a difference

of a few drops for low than for large R values. The slight increase for higher classes is due

to the influence of a few big drops (with low concentrations) as illustrated by the increasing

mean diameter in Figure 3.14. Similarly, the decrease of σr
ω(R) for increasing time steps can

be related to the larger number of drops for larger time steps (see Table 3.1). The relative

sampling uncertainty is then less affected by a few missed drops.

For TB rain gauge measurements, the relative sampling uncertainty is between 4 and 110%.

σr
ω(R) shows a similar pattern with decreasing σr

ω(R) for increasing rain rate classes and time

steps. TB rain gauge measurements are globally affected by a sampling uncertainty larger than

Parsivel’s one for temporal resolutions below 15 min (e.g., above 25% for R below 4 mm h-1 for
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Figure 3.12: Median of the number of drops with D > D0 measured by both Parsivels over
the 15 months as a function of D0 classes. N depends on the sampling area (54 cm2) and the
considered temporal resolution (here 60 s).

temporal resolutions below 5 min). Large sampling uncertainty at low rainfall rates and short

integration intervals is directly related to the quantization inherent to the instrument, caused

by the discrete volume of its buckets. This strong quantization results in numerous identical

values, explaining the identical 110% uncertainty values at short time steps and low R values

(quantile estimates are affected by a lot of identical values in the sample). For example, the

resolution of a rain rate measurement corresponding to one tip of 0.1 mm is 6 mm h-1 for a

temporal resolution of 60 s. For temporal resolution about 15 min, the sampling uncertainty

affecting Parsivel and TB rain gauge is similar. For time steps about 30 min or larger, TB rain

gauge measurements are affected by a smaller sampling uncertainty than Parsivel ones. For

instance, at a temporal resolution of 24 h (not shown in Figure 3.13), σr
ω(R) for Parsivel (8%) is

about 4 times higher than the one for TB rain gauges (2%).

3.4.6 Sampling uncertainty associated with radar reflectivity estimates

Zh is expressed in dBZ in the subsequent analyses. The map of sampling uncertainty accord-

ing to the different Zh classes and temporal resolutions is presented in Figure 3.15 and the

corresponding values of σr
ω(Zh ) are provided in Table F.4 in Appendix F. For Zh below 40 dBZ,
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Figure 3.13: Same as Figure 3.10 for rain rate measurements of a single Parsivel (top) and a
single TB rain gauge (bottom).

σr
ω(Zh ) is below 14% for all the investigated temporal resolutions. For Zh above 40 dBZ, the

relative sampling uncertainty is between 3 and 17%. For time steps about 300 s or larger,σr
ω(Zh )

is below 7% for X-band independently of Zh values (see Table F.4 in Appendix F). The relative

sampling uncertainty associated with Zh estimates is globally decreasing for increasing time

steps as well as for increasing Zh values up to about 30 dBZ. For Zh values higher than 30 dBZ,

σr
ω(Zh ) increases up to 17%.
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Figure 3.14: Median of the number of drops measured by both Parsivels (top) and mean
diameter [mm] (bottom) over the 15 months as a function of R classes. N depends on the
sampling area (54 cm2) and the considered temporal resolution (here 60 s). For consistency
with Figure 3.13, statistical descriptors associated with classes characterized by less than 30
measurements are not drawn.

Figure 3.16 presents the median of the number of drops measured over the 15 months as well

as the mean diameter as a function of Zh classes at a temporal resolution of 60 s. Similarly to
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Figure 3.15: Same as Figure 3.10 for the radar reflectivity at horizontal polarization estimated
from a single Parsivel at X-band.

R, small Zh values are affected by a larger relative sampling uncertainty because of the lower

number of drops measured by the instrument for low Zh values (see Figure 3.16). When aver-

aging over longer time steps, the number of drops measured by the instrument is increasing

(see Table 3.1). Hence, the relative sampling uncertainty is less sensitive to a few missed drops.

Because Zh is a moment of higher order (∼ 6) than R (∼ 3.67), it is more sensitive to the very

limited number of big drops. The mean diameter according to each Zh class presented in

Figure 3.16 shows the presence of larger drops in higher Zh classes. Therefore, the increase of

the sampling uncertainty for Zh values above 30 dBZ is due to the influence of a few missed

big drops (which have low concentrations).

The pattern of relative sampling uncertainty, presented in Figure 3.15 at X-band, is very similar

at C- and S-band, with σr
ω(Zh ) ranging from 3(2) to 20(12)% for C-(S-)band. All the values are

provided in Table F.4 in Appendix F.

3.4.7 Sampling uncertainty associated with differential reflectivity estimates

Polarimetric capabilities have been shown to be of great added-value for weather radar systems

[e.g., Bringi and Chandrasekar, 2001]. As explained in Section 3.4, the data set considered in

this paper corresponds to limited values of specific attenuation and specific differential phase

(even at X-band). The focus will therefore be on the differential reflectivity Zdr . Figure 3.17
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Figure 3.16: Same as Figure 3.14 for Zh .

presents the relative sampling uncertainty as a function of Zdr classes and the temporal

resolutions. The corresponding values are provided in Table F.5 in Appendix F. The relative

sampling uncertainty associated with Zdr estimates is ranging from 8 to 50%. σr
ω(Zdr ) is below

31% for Zdr below 0.5 dB independently of the temporal resolution. For time steps below

5 min and for Zdr higher than 1 dB, σr
ω(Zdr ) is above 38%.
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Figure 3.17: Same as Figure 3.10 for the differential reflectivity estimated from a single Parsivel
at X-band.

Because the shape of the probability density function is better defined for larger samples, the

relative sampling uncertainty on Zdr is decreasing with increasing time steps. The pattern of

the relative sampling uncertainty as well as the range of σr
ω(Zdr ) values, are clearly different

from the ones presented for R and Zh . Contrary to Zh , σr
ω(Zdr ) is strongly increasing for

increasing Zdr classes. The median of the number of drops as well as the mean diameter as

a function of Zdr classes are presented in Figure 3.18 at a temporal resolution of 60 s. The

increase of the mean diameter associated with the decrease of the median of the number of

drops for the higher Zdr classes indicates that large Zdr values are due to big oblate drops

which have very low concentrations. Therefore, missing one or a few of these big drops has a

strong impact on the the uncertainty in the shape of the empirical probability density function

and therefore on the uncertainty in Zdr . The values of σr
ω(Zdr ) at C- and S-band are also very

similar (see Table F.5 in Appendix F).

3.5 Conclusion

The quantification of the variability of the DSD in time and space is of great interest for many

environmental fields and in particular for precipitation estimation using remote sensing. A

reliable quantification of the DSD variability must take into account the variability due to

the sampling process of DSD measurement. To address this issue for Parsivel measurements,
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Figure 3.18: Same as Figure 3.14 for Zdr .
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two collocated Parsivels as well as two TB rain gauges have been deployed in Lausanne,

Switzerland. The experiment ran for 15 months. The difference between the values recorded

by both instruments only depends on the sampling process. Using this large data set, the

relative sampling uncertainty associated with two quantities characterizing the DSD, namely

the total concentration of drops Nt and the median-volume diameter D0, is quantified as

a function of the temporal resolution and their respective values. Similarly, the sampling

uncertainty associated with the estimates of rain rate R, radar reflectivity Zh and differential

reflectivity Zdr (all weighted moments of the DSD) is quantified at different weather radar

frequencies (X-, C- and S-band).

The relative sampling uncertainty associated with Nt estimates is below 25% and is globally

decreasing with increasing Nt values and increasing time steps. D0 shows a different pattern

of sampling uncertainty with higher values of σr
ω(D0) for higher D0 values and shorter time

steps, for which it can reach about 27%. On average, for D0 smaller than 1 mm, σr
ω(D0) is

below 8%. It has to be noticed that similar results have been obtained for the mass-weighted

diameter Dm . For R estimates, the relative sampling uncertainty associated with Parsivel

is below 25% contrary to TB rain gauges for which σr
ω(R) can reach 110% at high temporal

resolution (below 120 s). For both types of instruments, σr
ω(R) is decreasing for increasing

time steps. For temporal resolution of about 30 min or above, TB rain gauge measurements

are affected by a smaller sampling uncertainty than Parsivel ones for rain rates higher than

2 mm h-1.

At X-, C- and S-band, the sampling uncertainty associated with Zh estimates (in dBZ) exhibits a

similar pattern to R . For Zh values lower than 35 dBZ, σr
ω(Zh ) is below 12% for time steps below

1 h. For Zh values between 40 and 50 dBZ, σr
ω(Zh ) is below 17%. Concerning Zdr , its estimates

are affected by a larger sampling uncertainty ranging from 8% to about 50%. The increase of

σr
ω(Zdr ) with Zdr can be related to the strong influence of the very low concentration of big

oblate raindrops in the estimation of Zdr . For time steps smaller than 5 min and Zdr values

below 0.75 dB, σr
ω(Zdr ) is smaller than 36%. For Zdr values above 1 dB, the relative sampling

uncertainty is between 16 and 50%.

The quantification of the sampling uncertainty affecting measurements from the Parsivel

optical disdrometer is a crucial step to be able to accurately quantify the natural variability

of the DSD from Parsivel measurements, in particular at small scales. Because the data set is

only representative of light to moderate rainfall in a temperate climate, the present analysis

needs to be extended to heavy rain.
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4 Spatial structure of the DSD at the
radar subgrid scale 1

4.1 Introduction

The estimation of rainfall using remote sensing techniques requires a minimum knowledge of

the microstructure of rain (e.g., the concentration, size and shape of raindrops). A statistical

tool to summarize some of this information is the (rain)drop size distribution, DSD hereafter,

which is the concentration of raindrops according to their respective size in a sampling

volume. As the DSD is highly variable in time and space [Jameson and Kostinski, 2001], the

understanding of the spatial structure of the DSD, i.e., how the DSD fields are organized

(or not) in space, is crucial to be able to quantify the error structure associated with remote

sensing of precipitation.

While rain gauges only provide information about some integral quantities of the DSD (namely

the rain rate and rain amount), disdrometers provide measurements of the DSD, which allow

a deeper insight into rainfall microstructure. Significant work has been done during the last

decades focusing on the spatial structure of the rain rate [e.g., Ciach and Krajewski, 2006;

Villarini et al., 2008], i.e., the flux of water arriving at a surface during a specific time, which is

a quantity derived from the DSD of primary importance for many environmental fields.

During the last decade, the deployment of networks of disdrometers has become a common

setup to investigate the spatial structure of the DSD. Miriovsky et al. [2004] have pointed out

the difficulty to quantify the variability of the DSD, especially when using disdrometers of

different types which are affected by different sampling uncertainties. This issue on sampling

errors has been investigated by Krajewski et al. [2006] using collocated measurements. More

recently, additional experiments have been reported using four Precipitation Occurrence

Sensor Systems (POSS) and radar data [Lee et al., 2009] and three Joss-Waldvogel disdrometers

[Tokay and Bashor, 2010]. Nevertheless, the limited spatial distribution of the instruments

did not allow to fully characterize the spatial variability of the DSD. A network 16 optical

1This chapter is adapted from Jaffrain, J. and A. Berne (in press): Quantification of the small-scale spatial
structure of the raindrop size distribution from a network of disdrometers. Journal of Applied Meteorology and
Climatology
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disdrometers deployed over 8 sampling locations covering an area of about 4×4 km2 has

recently been presented [Tapiador et al., 2010]. However, the analyses were focused on the rain

rate and the radar reflectivity rather than on the DSD itself. Studies focusing on the modelling

of the DSD in space have been reported in the literature [e.g., Berne and Uijlenhoet, 2005b;

Lee et al., 2007]. More recently, Schleiss et al. [2009] and Schleiss et al. [2011] have proposed a

geostatistical simulation framework to generate realistic intermittent DSD fields in time.

The objective of the present paper is to investigate a possible spatial structure of the DSD

fields within an operational radar pixel (scale of about 1 km×1 km) and to quantify it using

a geostatistical approach (i.e., using variograms). Section 2 presents the experimental setup

and the considered data while the method is detailed in Section 3. The spatial structure of the

different quantities of interest (namely the total concentration of drops, the mass-weighted

diameter and the rain rate) is presented in Section 4. Finally, Section 5 illustrates how this

information can be used to quantify the error associated with the upscaling from point to

areal measurements.

4.2 Experimental set up and data set

In order to quantify the spatial structure of the DSD, a network of 16 disdrometers (OTT-

Parsivel, first generation) has been deployed in Lausanne, Switzerland, during 16 months over

a 1 km × 1 km area, which is the size of a typical operational weather radar pixel. The network

is presented in detail in Chapter 2 and Jaffrain et al. [2011]. According to this configuration,

the interdistance between pairs of disdrometers ranges from 85 to 800 m. The network has

collected DSD spectra corresponding to 540 h of rain and a total rain amount of about 820 mm.

In the following, a rainfall event is defined as a continuous rainy period of at least 15 min

surrounded by continuous dry periods of at least 15 min. It has to be noticed that rain events

with a rain amount lower than 1 mm are not considered. Among these events, only those for

which all the 16 disdrometers collect data are considered. A tipping-bucket rain gauge was

collocated with one of the disdrometer (Station 43, see Figure 2.3). Only the rain events for

which rain amounts recorded by Station 43 deviate less than 10% from the one recorded by

the rain gauge are considered. In the end, 36 rain events of different types are considered,

assuming that the bias is also limited for the other stations of the network. From visual

inspection of MeteoSwiss radar rainfall maps, these events are classified as convective, frontal

or transitional and grouped accordingly. Despite this somehow arbitrary classification, the

main goal is to cover a broad range of types of rainfall. For illustration, a typical radar rainfall

map for a convective and a frontal rainfall event is presented in Figure 4.1.

Convective type rainfall is usually characterized by strong rainfall with a limited duration

in time and a limited extension in space (i.e., few convective cells) while frontal rainfall is

characterized by light rainfall widely spread over long durations. This provides three groups

of rainfall events for which statistics at a 60-s temporal resolution are provided in Table 4.1.

It has to be noticed that all data within a group of rainfall are considered all together. The
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Figure 4.1: Radar rain-rate map to illustrate a convective (top) and a frontal (bottom) rainfall
event. The black and white cross (at about X=530 km and Y=150 km) denotes the position of
the network of disdrometers.
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convective, transitional and frontal groups consist of 9, 19 and 8 rainfall events for a total

of 643, 3665 and 839 rainy minutes respectively. As expected, quantiles of rain rate values

are increasing from frontal to convective rainfall events. For example, the median rain rate

value for convective type events is about 2.42 mm h-1 while it is about 1.24 and 0.64 mm h-1

for transitional and frontal ones respectively. The averaged DSD spectrum of each group is

Table 4.1: Statistics of the three different groups of rainfall events at a 60-s temporal resolution.

Convective Transitional Frontal
Number of events 9 19 8
Number of rainy minutes 643 3665 839
Rain amount averaged over the network [mm] 32.6 113.7 10.5

Mean of the averaged rain rate R [mm h-1] 3.05 1.86 0.75

Q10%(R) [mm h-1] 0.50 0.33 0.25

Q50%(R) [mm h-1] 2.42 1.24 0.64

Q90%(R) [mm h-1] 5.98 4.12 1.33

presented in Figure 4.2. It shows that convective rainfall events exhibit higher concentrations

of drops larger than 0.8 mm than frontal ones. Moreover, larger drops are recorded in the

convective group (Dmax =6.5 mm) than in the frontal one (Dmax =4.75 mm).
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Figure 4.2: Drop size spectra integrated over all events within each group of rainfall types (i.e.,
convective, transitional and frontal). The symbols indicate the center of Parsivel diameter
classes.
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4.3 Methods

4.3.1 Framework and Assumptions

Prior to the analyses, the same filtering process as Jaffrain and Berne [2011] is applied on the

data set, i.e., the filtered DSDs must satisfy the following conditions (see Section 3.2 for more

details):

• all stations must record a rain rate higher than 0.1 mm h-1 at the considered temporal

resolution

• drops outside ±60% around the terminal fall speed-diameter relationship are removed

(see Eq 3.1) to filter out possible artifacts (from e.g., splashing, insects)

The raindrop size distribution, denoted N (D) and expressed in m-3 mm-1, can be defined as

the product of the total concentration of drops Nt , which is the sum of all drops over the range

of sampled diameters, and a probability density function f (D). A commonly used descriptor

of the center of the probability density function f (D) is the mass-weighted diameter Dm which

is the ratio of the fourth to the third moment of the DSD. Because it represents a flux of water

through a given surface, the rain rate is of primary interest for many hydrological applications.

Recall that the rain rate can be expressed as a function of the DSD:

R = 6π10−4

Dmax∫
Dmi n

N (D) v(D) D3dD (4.1)

where v(D) is the terminal fall speed (m s-1) of a drop with a diameter D (mm).

The quantities of interest considered in the following (i.e., Nt , Dm and R) are all derived from

the filtered DSDs. As highlighted in Figure 4.3 for rain rate values for the convective group,

the distributions of the estimates of these quantities, in particular for Nt and R, are highly

positively skewed due to a few large values. Classical tools to characterize the spatial structure

like autocorrelation and variogram in geostatistics, are well suited for Gaussian-like distributed

random fields, because the estimation of the mean is involved.

The logarithmic transform of the estimates of the different quantities helps obtain distributions

closer to normality or at least more symmetrical (see Figure 4.3 bottom). Nevertheless, with

this approach, the variability of the DSD within the typical weather radar pixel is quantified

in the log space and needs to be back-transformed into linear space which is more relevant

for environmental applications. Considering a stationary random function U (x), x being a

position vector, which has a lognormal distribution and defining Y (x) = ln[U (x)], the means

mY and mU , the variances σ2
Y and σ2

U and the covariances CY (h) and CU (h) of Y and U are
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Figure 4.3: Distribution of R̄ values (i.e., averaged over the network) in linear space (top) and
logarithmic space (bottom) for the convective rainfall group.

related as follows [Chilès and Delfiner, 1999, p. 103]:

mU = exp

(
mY + 1

2
σ2

Y

)
(4.2)

σ2
U = m2

U

[
exp

(
σ2

Y

)−1
]

(4.3)

CU (h) = m2
U

{
exp[CY (h)]−1

}
(4.4)
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where mY and σY are the mean and the standard deviation of the population of Y values and

h is a separation vector. We will assume that the statistical descriptors estimated from all Y

sample values (i.e., considering all stations and all measurements of the period of interest) are

representative of the population values.

4.3.2 Variogram estimation

The (semi)variogram is a key tool used in Geostatistics in order to investigate and quantify the

spatial (or temporal) structure of a random function U (x) [Matheron, 1965]. It is expressed as:

γ(h) = 1

2
E

{
[U (x +h)−U (x)]2} (4.5)

where E denotes the expectation, x is a position vector and h is a distance (or time) separation

vector. The definition of the variogram requires U (x) to be an intrinsic random function, i.e.,

its increments U (x +h)−U (x) should be second-order stationary. From Eq 4.5, it is clear

that the units associated with γ(h) are the square of the ones associated with U (x). The

variogram of a regionalized variable u(x), which is a realization of U (x), can be calculated if

the distribution of u(x) values is known at every point of the spatial (or temporal) domain of

interest. Because this condition is hard to fulfil in practice, the variogram is estimated from a

sample that should be as large as possible for representativeness. The classical widely used

sample variogram estimator, sometimes called "Matheron" estimator, is expressed as [Chilès

and Delfiner, 1999]:

γ̂(h) = 1

2Nh

∑
xβ−xα'h

{[
u(xβ)−u(xα)

]2
}

(4.6)

where Nh is the number of pairs (xα,xβ) separated by a distance approximately equal to h.

As the mean is involved, the quality of γ̂(h) estimates is influenced by the possible skewness

of the distribution of the increment values. A more robust estimator based on the quantile

variogram γ̂p (h), as defined by Armstrong and Delfiner [1980], can be used:

γ̂p (h) = Qp
xβ−xα'h

{
1

2
[u(xβ)−u(xα)]2

}
(4.7)

where Qp denotes the quantile with a probability p ∈]0,1[. Quantile variograms are all pro-

portional to the classical variogram with proportionality factors being the quantiles of the

distribution of a chi-square variable with one degree freedom χ2
1 [Chilès and Delfiner, 1999]

when U is bi-normal. For robustness, the median variogram estimator is used to estimate the

variogram according to:

γ̂(h) = γ̂0.50(h)

Q0.50(χ2
1)

(4.8)

where Q0.50(χ2
1) is the median of a χ2

1 distribution which is equal to 0.455.
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The next step consists in back-transforming the variogram estimates from logarithmic space

(γY (h)) into the original space (γU (h)). For a stationary random function U (x), the variogram

γU (h) and the covariance CU (h) at a distance lag h are linked in the following way:

γU (h) =σ2
U −CU (h) (4.9)

where σU is the standard deviation of U . From Eq 4.9, the covariance of Y (x), with Y (x) =
ln[U (x)], can be estimated from γY at each distance lag h. Hence,the covariance of U (x) can

be derived from CY estimates using Eq 4.4. Finally, γU is derived from CU estimates for each

distance lag h.

In order to test if the spatial structure recorded over the field can be considered as isotropic

(that is if it does not depend on the spatial direction), the variogram has been estimated in 4

directions (0, 45, 90 and 135o). The variograms estimated in each direction are similar, which

indicates that the observed spatial structure is not dependent on the considered direction.

Therefore, the isotropic assumption is hereafter considered as valid. According to the configu-

ration of the network, 120 pairs of disdrometers are available at each time step. 15 classes of

distance lag h have been defined ranging from 80 to 800 m with a class width of about 50 m.

In the following, the average isotropic variogram for each rainfall group and each quantity of

interest is estimated.

As we are considering the averaged variogram for each group of rainfall events, the number of

values per interdistance class corresponds to the product between the number of disdrometer

pairs in this class and the number of measurements for the considered group of events.

Therefore, the number of values per class of distance is a function of the temporal resolution

and of the size of the period considered. For instance, at 60 s (1 h) temporal resolution for

the convective period, the number of values per class is ranging from 643 (22) for the class

centered at h =750 m to 10288 (352) for the class centered at h =225 m. These values are the

minimum, and frontal and transitional periods are characterized by larger numbers. It must

be noted that the number of independent values is likely lower due to their autocorrelation in

time within each rain event. We will assume that there are enough values in each distance class

to have representative variogram estimates, as several (independent) events are considered

together.

4.3.3 Spatial correlation estimation

As a first step in the estimation of the small-scale variability of the DSD, the Pearson correlation

coefficient (ρi , j (h)) is calculated for each pair of disdrometers (i , j ). Following Ciach and

Krajewski [2006], a modified-exponential parametric model is fitted on the experimental

correlation values. This model is expressed as:

ρ̂(h) = c0 exp

[
−

(
h

h0

)s0
]

(4.10)
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where h is the separation distance between the two disdrometers, c0 is the nugget parameter,

h0 is the e-folding distance and s0 is the correlogram shape parameter. c0 is the spatial

correlation at distance lag zero and can be estimated from collocated measurements. Contrary

to Ciach and Krajewski [2006], no collocated measurements are available for this campaign

and consequently, three parameters (c0, h0 and s0) need to be fitted. A nonlinear least-squares

method is considered, using the nls function of the software R [R Development Core Team,

2011], in order to estimate the three parameters of the empirical spatial correlation. For

illustration, Figure 4.4 shows the spatial correlation estimates (ρi , j (h)) and the associated

correlation model for R at a 60-s temporal resolution for the convective rainfall group.
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Figure 4.4: Spatial correlation ρ(h) (◦) and associated empirical model ρ̂(h) (solid line) for R
for the convective rainfall types at a 60-s temporal resolution.

Because Pearson’s correlation estimates can be affected by significant biases for non-normal

data [e.g., Habib et al., 2001a], a logarithmic transformation was applied to the data prior to

the calculation of correlation coefficient, as suggested by Stedinger [1981] for the estimation

of correlation for multivariate streamflow data. Similarly to the variogram, ρ̂log (h) is then

converted into ρ̂(h) in linear space using Eqs (4.2) to (4.4).
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4.4 Results

4.4.1 Spatial correlations

As the correlation coefficient is the most widely used statistical tool in the literature for the

quantification of the spatial variability of rainfall [e.g., Ciach and Krajewski, 2006; Villarini et al.,

2008; Tapiador et al., 2010; Tokay and Bashor, 2010], this section is devoted to the estimation

of ρ̂(h) for comparison purposes. Recently, Tokay and Bashor [2010] investigated the spatial

variability of the raindrop size distribution using three Joss-Waldvogel disdrometers with

interdistances of about 0.65, 1.05 and 1.7 km. The maximum distance lag of the network in

the present study being about 800 m, the obtained characteristics of the spatial structure will

nicely complement results from Tokay and Bashor [2010]. To check the consistency between

the two studies, spatial correlation estimates can only be compared for the 0.65 km distance

lag. In the present configuration of the network, two disdrometer pairs have interdistance

closed to 650 m (646 and 658 m). At a 15-min temporal resolution, both studies exhibit similar

correlation values for R (0.961 and 0.952 compared to 0.985). At a 60-s time resolution, we

have a correlation of about 0.863 and 0.861, while Tokay and Bashor [2010] indicate about

0.945. These discrepancies can be due to the different climates investigated in the two studies,

as well as to the fact that different types of disdrometer are used.

Ciach and Krajewski [2006] and Villarini et al. [2008] have estimated the three parameters

of the correlation model (c0, h0 and s0 in Eq.4.10) for different temporal resolutions based

on networks of tipping-bucket rain gauges. Villarini et al. [2008] provide a set of parametric

equations describing the evolution of these three parameters with the temporal resolution. For

illustration, these estimates are presented for 1 and 15 min temporal resolutions in Table 4.2.

Our estimates are globally in better agreement with the one of Ciach and Krajewski [2006] than

Villarini et al. [2008]. For instance, at a temporal resolution of 15 min, Ciach and Krajewski

[2006] show values of about 0.998, 10.5 km and 1.45 while our estimates for transitional rainfall

are about 0.988, 5.8 km and 1.61 respectively.

Table 4.2: c0, h0 and s0 estimates for rain rate R as proposed by Ciach and Krajewski [2006] and
Villarini et al. [2008] at 1 and 15 min temporal resolutions. The third column shows the results
from the present study for convective, transitional and frontal rainfall events respectively.

[Ciach and Krajewski, 2006] [Villarini et al., 2008] Present study
c0 (-) ∼0.996 0.510 0.949 0.953 0.922

1 min h0 (km) 7.5 6.3 1.9 4.9 4.1
s0 (-) 1.10 0.41 1.32 1.11 1.01
c0 (-) ∼0.998 0.980 0.983 0.988 0.970

15 min h0 (km) 10.5 94.4 2.9 5.8 16.7
s0 (-) 1.45 0.92 1.78 1.61 0.94

These differences can have various origins such as: the different types of instruments, the

accuracy of the instruments, the configuration of the network (interdistances), the size of
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the data set and the different climatologies due to the different locations. Nevertheless,

these spatial correlations can be considered to be in reasonable agreement, which shows the

consistency of the correlation values estimated from our data set with the ones presented in

the literature. The variogram being more general than the covariance and the correlation, we

will use the former to investigate the spatial structure of the DSD field.

4.4.2 Variograms

Averaged spatial structure

Isotropic variograms of the different quantities of interest (Nt , Dm and R) are estimated for the

different types of rainfall (convective, transitional and frontal). Figure 4.5 presents the sample

variogram of Nt for each rainfall type at a 60-s temporal resolution. It is clear that the network

is not spatially extended enough to capture the range of the variogram (corresponding to the

decorrelation distance). This is consistent with previous studies: typical ranges of about 5 km

have been reported for radar reflectivity measurements at a 1-min temporal resolution in

Mediterranean rainfall [Berne et al., 2004]; in a more recent experiment, based on reflectivities

calculated from DSD measurements collected in Spain, the decorrelation distance was not

reached at a distance lag of about 4 km [Tapiador et al., 2010]. However, our results also clearly

show that there is a spatial structure in the DSD field (i.e., that the field is organized and not

randomly varying) even at such a small scale (interdistances below 800 m).
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Figure 4.5: Sample variogram and fitted linear variogram model for Nt for the three rainfall
types at a 60-s temporal resolution. The units associated with γ(h) are m-6. The X axis shows
the interdistance h classes (m).

In terms of rainfall types, the variability observed over the monitored area is larger for convec-
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tive events than for transitional and for frontal ones. For example, for an interdistance of about

h =225 m, the variogram value is about 2384.5, 1181.5 and 787.8 m-6 for convective, transi-

tional and frontal type rain events respectively at a 60-s temporal resolution. This corresponds

to an average difference of about 48.8, 34.4 and 28 drops per m-3 between two locations 225 m

away.

To ease the comparison between rainfall events of different types, a variogram model was fitted

on each empirical variogram. Because the range is not reached at the scale of the network,

a linear variogram model is used. The high values of the coefficient of determination (ρ2)

confirm the goodness of fit of this linear model to the experimental variogram values. For

instance, ρ2 is about 0.91, 0.90 and 0.74 for the rain rate at a 60-s temporal resolution for

convective, transitional and frontal rain events, respectively. The linear models are considered

valid up to 800 m and the authors recommend not to extrapolate these models to much larger

interdistance classes. It has to be noticed that variogram models have been adjusted using the

gstat package [Pebesma, 2004]. Each linear model is characterized by two parameters: the

nugget and the slope. The slope parameter indicates how fast U (x) is varying with the distance

lag. The nugget, similarly to c0 for spatial correlation, quantifies the variability at very short

distance lags (with respect to the minimum distance lag of the network). The nugget effect is

explained by the possible variability of the considered process at interdistances smaller than

the minimum interdistance in the network (all micro-scale variability, below 80 m in our case)

and/or measurement errors. The linear model fitted on each sample variogram is also plotted

in Figure 4.5 and the fitted values of nugget and slope are summarized in Table 4.3. Figures 4.6

and 4.7 show the same information for Dm and R.

Although they can not be directly compared, preliminary analyses show that the sampling

uncertainty previously quantified (see Section 3) is consistent with the estimated nugget

values. Indeed, the nugget must be larger than the sampling uncertainty because it includes

all other sources of error. The sampling uncertainty is about 1/4th of the nugget for Nt and R

while for Dm this proportion is larger. Future work will further investigate this issue question.

Figures 4.5-4.7 show that there is a spatial structure at this scale for all the quantities of interest.

Moreover and as intuitively expected, the nugget and slope parameters are increasing from

frontal to transitional to convective events. For Nt for instance, the nugget (slope) of the

transitional and frontal group represents about 74% (34%) and 54% (15%) of the one estimated

for the convective group. These percentages for Dm exhibit similar values while the differences

between convective and frontal parameters for R are larger. For example, the nugget (slope)

parameter for frontal events represents about 4% (1%) of the one for convective events. The

nugget explains a larger part of the total variability (interpreted as a stronger influence of

the measurement error) for frontal than for transitional and convective events. In order to

test if the slopes of the variogram models are significantly different from zero, especially for

frontal rainfall which exhibits smaller slope values than convective and transitional rainfall,

the p-value probability of a Student t-test has been computed. It shows that, at a 60-s temporal

resolution, all the slope values observed for the different quantities are significantly (at a 1%
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Figure 4.6: Same as Figure 4.5 for Dm . The units associated with γ(h) are mm2.
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Figure 4.7: Same as Figure 4.5 for R. The units associated with γ(h) are mm2 h-2.

confidence level) different from zero.

Influence of the temporal resolution

The variogram has been estimated and a linear model has been fitted at 7 temporal resolutions

ranging from 60 s to 1 h. The evolution of the fitted nugget and slope values is presented

in Figures 4.8, 4.9 and 4.10 for Nt , Dm and R respectively. Independently of the quantity of
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Table 4.3: Variations of the two parameters (nugget and slope) of the linear variogram model
as a function of rainfall type for each quantity of interest at a 60-s temporal resolution. The
coefficient of determination ρ2 between the experimental variogram values and the associated
linear model is as well presented. For transitional and frontal groups, values in brackets shows
the values of the parameters expressed as a percentage of the ones for the convective group.

Parameters Convective Transitional Frontal
Nugget (m-6) 1089.47 807.21 (74%) 585.16 (54%)

Nt Slope (m-6 m-1) 5.81 1.96 (34%) 0.89 (15%)
ρ2 (-) 0.93 0.87 0.65

Nugget (mm2) 1.22 10-2 7.80 10-3 (64%) 4.22 10-3 (35%)
Dm Slope (mm2 m-1) 2.09 10-5 8.07 10-6 (39%) 3.19 10-6 (15%)

ρ2 (-) 0.93 0.79 0.80
Nugget (mm2 h-2) 0.96 0.33 (34%) 0.04 (4%)

R Slope (mm2 h-2 m-1) 3.43 10-3 5.22 10-4 (15%) 4.03 10-5 (1%)
ρ2 (-) 0.91 0.90 0.74

interest, there is a strong decrease in the nugget and slope values until a temporal resolution

of 600 s, followed by a much more limited decrease. The slope of the variogram decreases with

increasing temporal resolution. Slope values significantly different (at 10% significance level)

from zero are observed for temporal resolutions up to 600 s (10 min) for Dm and R, and up to

1800 s (30 min) for Nt . The respective evolution of the nugget and of the respective variogram

estimates at h =800 m indicates that the influence of the measurement errors is lower for

Nt than for Dm and R. This can explain the fact that the slope of the variogram becomes

negligible at shorter time steps for Dm and R (about 10 min) compared to Nt (about 30 min).

These results show that the DSD fields are correlated up to 10 to 30 min, corresponding to

typical temporal scales of rain cells. Berne et al. [2004] found similar temporal scales in the

radar reflectivity (although for Mediterranean rainfall).

The observed decrease of the variability for increasing time steps results from the complex

interactions between the decrease of the measurement error and the decrease of the natural

variability of the DSD due to the smoothing effect from time integration. At temporal resolu-

tions larger than 30 min, the sample variogram is basically flat and the fitted variogram model

is a pure nugget model (slope∼0) which indicates that the natural variability of the DSD (if

any) is below the noise level in the observations. In other words, the integration in time of

the DSD measurements tends to remove the variability existing at high temporal resolution,

and the remaining (limited) variability is solely due to measurement errors. The pure nugget

variograms for large temporal resolutions also confirm the assumption of stationarity of the

DSD at the pixel scale, as any trend in the DSD over the domain would result in non-flat

variograms.
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Figure 4.8: Influence of the temporal resolution on the nugget (top) and slope (bottom)
parameters of the linear variogram model for the different types of rainfall.

4.5 Applications: the spatial representativity issues

Because of the strong spatial and temporal variability of rainfall, the issue of the representativ-

ity is crucial. For example in radar meteorology, the power law used to convert the measured

reflectivity into rain rate is usually parameterized using point measurements from disdrom-

eters, but applied at the radar sampling volume scale. Such scale discrepancies introduce

uncertainty [Morin et al., 2003; Steiner and Smith, 2004].

In order to investigate the influence of the spatial structure of the DSD when upscaling

from point (e.g., disdrometer) to areal measurement (e.g., weather radar pixel), a stochastic

simulation approach is considered because there is no sill/range in the fitted variograms so

classical quantification of the extension variance cannot be used [e.g., Journel and Huijbregts,

1978, p.54]. For each quantity of interest (Nt , Dm and R), 1000 fields are generated for each type

of precipitation in the log space as the data are considered to be log-normal (see Section 4.3.2).
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Figure 4.9: Same as Figure 4.8 for Dm .

The simulated 2D fields are constrained by the spatial structure quantified previously (i.e.,

variogram) and the average value of the quantity observed over the network (considering all

measurements from all stations of the period of interest), both in log space. The simulated

fields are then transformed into linear space. For each simulated field i , the relative error εr
i (r

standing for relative) between the value simulated at the pixel in the center of the field (M p
i )

and the average value over the domain (M a
i , a standing for areal) is quantified as:

εr
i (M) = M p

i −M a
i

M a
i

. (4.11)

Since εr
i (M) exhibits a Gaussian like distribution with zero mean, the dispersion of εr

i (M)

values can be accurately quantified by the standard deviation (σεr
i
). A sensitivity test was

performed to define the number of simulations required and 1000 was shown to be a good
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Figure 4.10: Same as Figure 4.8 for R.

trade off between robustness and computation time.

The analyses have been performed for different sizes of domain ranging from 100 m×100 m to

1000 m×1000 m. It should be noticed that two approaches have been considered to define

the spatial resolution for each domain: (i) considering a constant number of pixels within the

different domains (with the pixel size depending on the size of the domain) and (ii) considering

a constant size of pixel (and hence a number of pixels per field varying as a function of the

domain size). It appears that the two approaches provide similar results and hence only the

results for a constant pixel size of 10 m are presented.

Figure 4.11 presents σεr
i

for Nt , Dm and R as a function of the size of the considered domain

for the three types of rainfall at a 60-s temporal resolution. It shows that, independently of

the quantity of interest and of the type of rainfall, the error associated when considering the

value in the center of the field as representative of the domain is globally increasing with the

domain size.
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Figure 4.11: Standard deviation of σεi for Nt (top), Dm (middle) and R (bottom) as a function
of domain size at a 60-s temporal resolution. X axes present the length of the side of the
considered square domain.

72



4.6. Conclusion

The error associated with the upscaling of Nt ranges from 11.5% for convective rainfall for a

domain of 100×100 m2 to about 18% for frontal rainfall and a domain of 1000×1000 m2. Nt

exhibits higher values of σεr
i

for frontal than for convective and transitional rainfall. Since Nt

exhibits a smaller variability for frontal than for convective rainfall, one would expect lower

values of σεr
i

for frontal than convective rainfall. Because the frontal period is characterized

by smaller values of Nt than for the two other types of rainfall (the median of Nt values for

convective and transitional periods are respectively about 67% and 27% larger than the one

for the frontal period), small differences between point and domain values will have stronger

impact for frontal period. For instance, 32% of εr
i values are higher than 16.3% (17.6%) for

convective (frontal) rainfall events (recall that 68% of a Gaussian distribution is within the

interval ±1σ) for a domain of about 1000×1000 m2.

The standard deviation of εr
i (Dm) is smaller than the one observed for Nt , with values below

8.5%. Globally, convective rainfall exhibits higher σεr
i

values than for transitional and frontal

ones. The error is ranging from 7.2% (6.0%) to 8.5% (6.6%) for convective (frontal) rainfall with

intermediate values for the transitional type.

Concerning R, the distinction of σεr
i

between the different types of rainfall as a function of

domain size is much more complex. This can be due to the combination of the behaviors

observed for Nt and Dm as R is a weighted moment of the DSD depending on both the total

concentration of drops and their diameter. The error associated with the upscaling process

ranges from about 18.4% (20.3%) to about 24.5% (23.2%) for convective (frontal) rainfall. For

instance, for a domain size of about 500×500 m2 for which σεr
i

values between the different

types of rainfall are similar, 32% of the differences between point and areal values are larger

than 21%.

Furthermore, Figure 4.11 shows that the error associated with the extension of the domain for

R corresponds to the combination of the error associated with Nt and Dm . However, further

analyses do not show any significant relation between Nt and Dm .

The influence of the sampling resolution on σεr
i

is also investigated for 7 temporal resolutions

ranging from 60 s to 1 h. As the variability tends to be reduced for increasing time steps

(see Section 4.4.2), the error observed between point and areal values is decreasing. At 600-

s temporal resolution and for a domain of 1000×1000 m2, σεr
i

is about 16.5% (15.5%) for

convective (frontal) rainfall while it is about 24.5% (22.7%) at a 60-s temporal resolution.

Similarly to the variograms, for time steps of 30 min and above, σεr
i

is no more dependent on

the size of the domain, highlighting that σεr
i

is mainly dominated by measurement errors.

4.6 Conclusion

Information on the spatial organization of the DSD is of primary importance, especially

for quantitative estimation of rainfall using remote sensing techniques. A network of 16

disdrometers has been deployed over 1×1 km2, which is the typical size of a weather radar
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pixel, in Lausanne, Switzerland for about 16 months. Different types of rainfall have been

collected and a total of 9, 19 and 8 rainfall events have been selected to illustrate convective,

transitional and frontal rainfall types, respectively. Analyses have been performed for Nt , Dm

and R. In a first step, the spatial correlation has been calculated and a parametric model has

been fitted in order to compare our results with the literature. It globally shows that parameter

values are of the same order as the ones presented in previous studies albeit the different

studies are using different kinds of instrument in different climatologies. Variograms have

been calculated for the different quantities of interest and linear models have been fitted.

DSD can be considered as isotropic at the radar pixel scale. The results show that DSD fields

are organized and not randomly distributed even at such a small scale (below 800 m). The

observed variability is larger for the convective rainfall type than for the transitional and frontal

ones. For decreasing temporal resolution, the variability is decreasing, as the integration in

time tends to remove the variability existing at high temporal resolution. For time steps larger

than 10 min for Dm and R and larger than 30 min for Nt , the variability of the DSD is below

the noise level in the observations.

Such information about the spatial structure of the DSD can be used, for instance, to quantify

the error associated with the extension of a point measurement as an areal value representing

a spatial domain. Analyses have been conducted for different sizes of domain from 100 to

1000 m. It is shown that this error increases with the size of the domain: it is around 7% for

Dm , 17% for Nt and around 23% for R, for a domain of 1000×1000 m2. For Dm , convective

type rainfall exhibits larger errors than frontal rainfall, while the opposite is observed for Nt .

Distinction between rainfall of different types is much more complex for the rain rate R. The

temporal resolution is shown to have an influence on the error associated with the upscaling

process. Similarly to the variograms, larger temporal resolutions exhibit smaller errors. For

time steps of 30 min and larger, the observed error is mainly dominated by measurement

errors and is no more depending on the size of the domain. The spatial structure of the DSD

within a radar pixel has also an influence on the representativity of the parameters of the

power laws used for radar rain-rate estimation, usually derived from point measurements and

applied at the radar pixel. This question is currently investigated and will be addressed in a

future publication.

The spatial structure of the DSD quantified in the present study has been obtained from

measurements collected in Lausanne, Switzerland, and can be considered to give a relevant

order of magnitude for temperate mid latitude climate. The same approach can be used

to characterize the spatial structure of the DSD in different climatic regions. Moreover, the

experimental setup limited the interdistance to about 1 km, so the spatial structure of the DSD

and the error associated with using point measurements as areal estimates at larger scales

(e.g., GPM pixel of 5×5 km2) needs to be investigated.
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5 Influence of the variability of the DSD
on radar rainfall estimators 1

5.1 Introduction

The rain rate is a quantity of primary importance for various hydrological processes. Rainfall

information can be measured using ground-based instruments (e.g., rain gauges) or estimated

using remote sensing. Remote sensing has the significant advantage of providing rainfall

estimates over large areas with high resolution. However, such techniques do not directly

measure rain rate but rather quantities related to the electromagnetic properties of falling

hydrometeors such as the radar reflectivity factor Z (for conventional radar) and the spe-

cific differential phase shift Kd p (for polarimetric radar). It is commonly assumed that both

quantities can be related to the rain rate through power laws:

Z = aRb (5.1)

R = cK d
d p (5.2)

where Z is expressed in mm6 m-3, R in mm h-1 and Kd p in o km-1. The coefficients a and b (c

and d) are usually estimated from rain drop size distribution (DSD hereafter) measurements

collected at a unique sampling location. The values a=200 and b=1.6 proposed by Marshall

et al. [1955] about 60 years ago are still widely used. Numerous studies have shown the wide

range of a and b values in different climatologies [e.g., Battan, 1973; Doelling et al., 1998;

Chapon et al., 2008].

These parameters are influenced by the variability of the DSD [Uijlenhoet, 2001; Lee and

Zawadzki, 2005], and consequently by the geographical location and the type of rainfall

regime. They are also sensitive to: (1) the DSD sample size [Joss and Gori, 1978]; (2) the type of

instrument for data collection [Campos and Zawadzki, 2000]; (3) the method for data analysis

[Ciach and Krajewski, 1999; Chapon et al., 2008]; (4) erroneous measurements [Steiner et al.,

1999] and measurement uncertainties affecting Z and R or R and Kd p [Ciach and Krajewski,

1This chapter is partly based on a manuscript submitted to Journal of Applied Meteorology and Climatology
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Chapter 5. Influence on radar rainfall estimators

1999; Campos and Zawadzki, 2000] and (5) the temporal and spatial integration [Morin et al.,

2003; Steiner and Smith, 2004]. This last item raises the question of the adequacy of using (a,b)

or (c,d) values derived from point measurements to calculate rain rates at the radar sampling

volume scale (which is about 109 times larger). To the authors’ knowledge, no studies have

investigated this issue using spatially distributed DSD measurements at the radar pixel scale.

The objective of the present work is to quantify the influence of the spatial variability of

the DSD at radar subgrid scale (1×1 km2) on Z -R and R-Kd p relationships at the point and

pixel scales using DSD measurements collected by a network of disdrometers. The sampling

uncertainty associated with the disdrometers is taken into account in the analyses. The

experimental setup and the data set are presented in Section 5.2 while the methods are

detailed in Section 5.3. Section 5.4 presents the results for Z -R and R-Kd p relationships.

Finally, a summary and conclusive remarks are provided in the last section.

5.2 Experimental set up and data set

A network of 16 optical disdrometers (PARSIVEL, OTT) deployed over an area of approximately

1 km×1 km in Lausanne, Switzerland, has collected DSD spectra for about 16 months (see

Chapter 2 and Jaffrain et al. [2011]). The same selection of 36 rainfall events than the one

presented in Section 4.2 is considered hereafter. Recall that a rainfall event is defined as a

continuous rainy period of at least 15 min associated to an average rain amount of at least

1 mm, surrounded by continuous dry periods of at least 15 min. The dataset consists of 9, 19

and 8 rainfall events that have been identified as convective, transitional and frontal ones,

corresponding to 571, 3493 and 838 rainy minutes respectively. Statistics of each group of

rainfall events are provided in Table 5.1. It has to be noticed that the number of rainy minutes,

and consequently the associated statistics, of each type of rainfall is slightly different from the

ones presented in Chapter 4 (see Table 4.1). This is due to measurements that have not been

considered in the following due to resonance effects especially at C-band (see Section 5.3.2 for

details).

Table 5.1: Statistics of the three different groups of rainfall events at a 60-s temporal resolution.

Convective Transitional Frontal
Number of events 9 19 8
Number of rainy minutes 571 3493 838
Rain amount averaged over the network [mm] 25.2 99.7 10.5

Mean of the averaged rain rate R [mm h-1] 2.63 1.71 0.75

Q10%(R) [mm h-1] 0.47 0.32 0.25

Q50%(R) [mm h-1] 2.07 1.16 0.64

Q90%(R) [mm h-1] 5.26 3.66 1.33
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5.3. Methods

5.3 Methods

5.3.1 Pre-processing

Similarly to Jaffrain and Berne [2011], analyses are conducted on the different quantities of

interest (Z , R and Kd p ) derived from the DSD measurements. To filter out possible non-natural

drops (e.g., from splashing, insects), all drops with a measured fall speed that deviates of more

than 60% from the theoretical one given by Beard [1977] are disregarded. For consistency,

only time steps for which all the 16 stations have recorded a rain rate R larger than 0.1 mm h-1

are considered in the analyses. Such filtering process have been shown to have negligible

influence on total rain amounts [Jaffrain and Berne, 2011].

5.3.2 R, Z and Kdp calculation

The raindrop size distribution, denoted N (D) and expressed in m-3 mm-1, is the concentration

of drops according to their respective equivolume diameters. The rain rate is related to the

DSD through:

R = 6π10−4

Dmax∫
Dmi n

N (D) v(D) D3dD (5.3)

where v(D) is the terminal fall speed [m s-1] of a drop with a diameter D [mm]. The radar

reflectivity factor at horizontal polarization Zh [mm6 m-3] and the specific differential phase

shift Kd p [o km-1] can be expressed as:

Zh = 106λ4

π5|m2−1
m2+2 |

Dmax∫
Dmi n

σBh (D)N (D)dD (5.4)

Kd p = 1800λ

π

Dmax∫
Dmi n

ℜ(Sh,h(D)−Sv,v (D))N (D)dD (5.5)

where λ is the radar wavelength [cm], m is the complex refractive index of water [-], σBh

is the backscattering cross section at horizontal polarization [cm2] and ℜ(Shh|v v (D)) is the

real part of the forward scattering amplitudes at horizontal/vertical polarization [m]. All

scattering coefficients have been computed using the T-matrix code by Mishchenko et al.

[1996] and using the drop shape (axis ratio) from Andsager et al. [1999]. Z and Kd p estimates

are computed at X-, C- and S-band radar frequencies. Interestingly, Z -R scatterplots exhibit

complex patterns at C-band for all types of rainfall, with very high Z values associated with

low to moderate R values. Figure 5.1 presents an example of the Z -R scatterplot associated

with the transitional rainfall at C-band at a 60-s temporal resolution. The scatterplot shows

two groups of shifted Z values that have been linked to the presence in the DSD of at least one
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Chapter 5. Influence on radar rainfall estimators

drop in the diameter class centered on 5.5 and 6.5 mm. Figure 5.1 clearly shows that shifted

Z values are functions of the drop diameters, with the highest shifted Z values associated

with the biggest recorded drops (class [6,7[ mm). Similar patterns have been observed for

the other stations. At S- and X-band, the influence of such drops is much more limited with

slightly shifted Z values than can not be as easily distinguished from the other points of the

scatterplot.
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Figure 5.1: Z -R scatterplot from Station 10 for the transitional period at C-band at a 60-s
temporal resolution. Blue crosses (red circles) denote time steps during which at least one
drop in the diameter class centered on 6.5 (5.5) mm has been recorded.

These high Z values could be explained by resonance effects, which occur in the 5.5-7 mm

range at C-band [Keenan et al., 2001; Thurai et al., 2007], and the associated measurements

have been removed from the following analyses. Therefore, a total of 72, 172 and 1 measure-

ments have been disregarded for the convective, transitional and frontal group respectively.

The statistics presented in Table 5.1 are based on the filtered data.

5.3.3 Power-law fitting

In order to estimate the parameters a and b (c and d), a non-linear least-square regression

is performed on Z -R (R-Kd p ) scatterplots. Consequently, a set of (a,b) and (c,d) parameters

have been computed for each sampling point (disdrometer) of the network for each type

of rainfall. Considering all the point values as an ensemble (denoted with a subscript P in

the following) helps reducing the sampling effect as regressions are performed on 16 times

more points. On the other hand, the averaged values of R, Z and Kd p over the 16 stations
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5.3. Methods

is supposed to be more representative of the radar values at the pixel scale (subscript A).

However, it cannot be considered as representative of the full radar sampling volume because

the disdrometers network does not sample the DSD over the full vertical extend.

Because the parameters are sensitive to the chosen independent variable [Ciach and Krajewski,

1999; Chapon et al., 2008], two regressions have been considered for the Z -R relationship.

Eq 5.1 shows the more conventional one which considers Z as the dependent variable. As this

relationship is devoted to the estimation of rain rates from the observed radar reflectivities, a

more appropriate form is:

R =
(

1

a

) 1
b

Z
1
b (5.6)

where R is the dependent variable. As an illustration, Figure 5.2 shows the ZA-RA scatterplot

and the fitted ZA-RA and RA-ZA relationships for the transitional rainfall type at C-band and

at a 60-s temporal resolution. The RA-ZA power law exhibits a different behaviour with lower

a values and higher b values. Additional analyses have shown that the fitted R-Z power law is

more sensitive to the density of point in the scatter (mainly concentrated at R values below

2.5 mm h-1) while the fitted Z -R power law is more sensitive to the large values of Z .
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Figure 5.2: ZA-RA scatterplot and the fitted ZA-RA (solid line) and RA-ZA (dashed line)
relationships for the transitional rainfall type at C-band and at a 60-s temporal resolution.
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5.3.4 Sampling uncertainties

Because it can have significant impact on the estimation of the power-law parameters [Ciach

and Krajewski, 1999; Campos and Zawadzki, 2000], the sampling uncertainty associated with

R , Z and Kd p estimates from Parsivel measurements is taken into account. Jaffrain and Berne

[2011] have quantified this sampling uncertainty which is considered as a white noise and

hence characterized by its standard deviation σ.

As it can not be assumed uniform over the network, a stochastic simulation approach is

considered. In the following, the quantity of interest observed by station i at time step t

is denoted mi ,t . Similarly to Jaffrain et al. [2011] (see Section 2.6.2), for each station and

each simulation, a set of m̂i ,t values is generated from a normal distribution centered on the

observed mi ,t with a variance equal to σ2
i ,t . To avoid generating non-physical values (e.g.,

negative R̂), the distribution is truncated between min(mi ) and max(mi ). It provides a set

of (a,b) and (c,d) values for each simulation. A sensitivity test has been performed and 500

simulations is a good trade-off between computation time and statistical significance. The

uncertainty associated with a, b, c and d parameters due to the sampling process is quantified

as the 80% confidence interval of these 500 values. It has to be noticed that the reflectivity

values are first calculated in dBZ and then converted to mm6 m-3.

5.4 Results

5.4.1 Z-R relationships

As C-band is the most commonly used radar frequency in Europe, and because the Swiss

operational network of radars is working at C-band, the focus will be hereafter on this fre-

quency. Figure 5.3 presents the a and b values for the Z -R and R-Z power laws for each type

of rainfall at C-band and for a temporal resolution of 60 s. It first shows that, independently

of the considered power law, the different rainfall types can clearly be distinguished in terms

of a and b values. Moreover, this figure clearly highlights that the observed variability of the

parameters a and b of the Z -R relationship at point scale within a radar pixel can not be

solely explained by the sampling uncertainty affecting Parsivel measurements. Concerning

convective and transitional rain, they are much more distinct in the (a,b) space for the R-Z

power law.

Overall, the uncertainty in a and b is smaller for the R-Z than the Z -R regression, and is

larger for convective rain. For Z -R (R-Z ) power laws fitted on individual station, the relative

uncertainty in a is on average about 17%, 9% and 4% (8%, 4% and 3%) while it is about 7%,

5% and 6% (5%, 3% and 4%) for b for convective, transitional and frontal rain respectively.

Moreover, independently of the type of rain and of the independent variable, the values of a

and b from all point data together (the sample is 16 times larger than for a individual station)

and from the pixel (due to the smoothing occurring when the resolution decreases) are affected

by smaller uncertainties than values from individual stations.

80



5.4. Results

250 300 350 400 450 500

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

a

b

AA
PP

AA
PP

AA
PP

Z = aR
b Conv

Trans

Front

200 250 300

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

a

b

AA

PP

AA

PP

AA

PP

R = (Z a)(1 b) Conv

Trans

Front

Figure 5.3: Fitted a and b parameters of the Z -R (top) and R-Z (bottom) relationships for the
convective (circles), transitional (diamonds) and frontal (triangles) types of rainfall at C-band
and at a 60-s temporal resolution. Dotted lines figure the associated uncertainty. The A (P )
point denotes the a and b values at the pixel (aggregate of points) scale.

5.4.2 R-Kdp relationships

Similarly to Figure 5.3, the values of c and d at a temporal resolution of 60 s for each type

of rain are presented at C-band in Figure 5.4. Overall, the observed c values are between 13
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and 24 and the d values are between 0.63 and 0.80 at C-band. While d values are similar

between the different radar frequencies, the observed c values are larger (25≤ c ≤46) at S-band

and smaller (10≤ c ≤17) at X-band compared to C-band values. These values are consistent

with previously published work (e.g., Tokay et al., 2005 at S-band, Anagnostou et al., 2009 at

X-band).
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Figure 5.4: Same as Figure 5.3 for the c and d parameters of the R-Kd p relationship at C-band.

Convective and transitional rain exhibit distinct c and d ranges of values while frontal rainfall

shows a large variability in c and d values. The observed relative (to the areal cA and dA values)

variability in c and d values for frontal rain is about [-27%;+20%] and [-11%;+5%] respectively

while it is in the order of [-12%;+1%] and [-6%;-1%] for c and d values for convective and

transitional rain. As for the Z -R and R-Z relationships, the uncertainty affecting c and d

values is smaller for areal values than individual station estimates. The two parameters of

the R-Kd p relationship appears to be dependent with increasing c values associated with

increasing d values.

Similar behaviours are observed at S-band with similar range of d values while c values are

higher (24<c<45) than for C-band (13<c<24). At X-band, although the general behaviour is

similar to the one at C-band, frontal and convective rainfall are much more distinct. Figure 5.5

presents the ranges of c and d estimates for the R-Kd p relationships at X-band.

Interestingly, d values seem "stable" between the different weather radar frequency, i.e.,

ranging from about 0.65 to 0.85 independently of the type of precipitation. On the other hand,
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Figure 5.5: Same as Figure 5.4 at X-band.

the prefactor (c) values are increasing for decreasing frequencies indicating that, similarly to

the ah = αK β

d p relationship, where ah is the specific attenuation at horizontal polarization

[dB km-1], only the prefactor is significantly influenced by the wavelength [Thurai and Bringi,

2008].

5.4.3 Impacts on rain amount estimation

The observed variability of the parameters of the Z -R and R-Kd p relationships within the

monitored area (∼1 km2) can have a significant influence on the estimated rain rate, which

is the quantity of interest for many environmental studies. To illustrate this issue, the aver-

aged reflectivity ZA and the averaged specific differential phase shift Kd p,A are considered as

representative of the quantities directly measured by a radar. The rain rates are estimated at

each station and at the radar pixel scale using the different power laws to convert Z or Kd p

in R. Finally, the cumulative rain amounts are calculated for each type of rain based on the

estimated rain rates. Figure 5.6 presents the rain amounts estimated from the Z -R, R-Z and

R-Kd p power laws at C-band and for each type of rain. To ease the comparison between the

different types of rain, total amounts are expressed as the ratio to the pixel (A) rain amount.

Figure 5.6 shows that the observed variability of the power-law parameters at the point scale

can lead to a deviation between -5 and +15% compared to the areal rain amount. The Z -R

power law exhibits the highest variability in rain amount estimates independently of the type
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Figure 5.6: Rainfall amounts estimated from Z -R (circles), R-Z (triangles) and R-Kd p (crosses)
power laws for each type of rain at C-band frequency. For comparison purposes, rain amounts
are normalized by the respective areal rain amount. Black (green) symbols denote the rain
amounts associated with the average A (P) relationships.

of rain. For R-Z and R-Kd p power laws, most point-scale parameter sets (a, b or c, d) tend to

overestimate the rain amount compared to the pixel value.

5.4.4 Influence of the temporal resolution

Previous sections have highlighted the significant influence of the spatial variability of the DSD

on radar rainfall estimators at a 60-s temporal resolution. As it has been shown in Section 4.4.2

that there is a significant spatial variability of the DSD at 1 km2 scale at temporal resolution

below 30 min the analyses have been performed as well for 5 additional temporal resolutions,

namely 2, 5, 10, 15 and 30 min.

Independently of the relationship considered, a significant variability of the a, b, c and d

parameters is observed for time steps below 30 min. As the time step increases, the distinction

between the estimated parameters for the different types of rainfall is more difficult. For

R-Kd p relationship, a similar behaviour is observed with closer c and d parameters for all

types for rainfall for increasing time steps. At a temporal resolution of 30 min and above, the

sampling uncertainty of Parsivel that is propagating into the estimation of the parameters of
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the relationships is of the same order of magnitude as the natural variability of the parameters.

As an illustration, Figure 5.7 presents the fitted a and b parameters for the R-Z relationship at

a temporal resolution of 30 min.
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Figure 5.7: Same as Figure 5.3 for R-Z relationship at C-band and a temporal resolution of
30 min.

Interestingly, further investigations have shown that the variability of the power law param-

eters is not decreasing for larger time steps. While the variability of the DSD is decreasing

for increasing time steps (see Section 4.4.2), the variability of a and b estimates seems to

be globally independent of the temporal resolution (not shown). However, the sampling

uncertainty propagated into the parameter estimates tends to increase for larger time steps.

The average (over the 16 stations) relative error (expressed in %) on each parameter derived at

point scale is calculated and presented in Figure 5.8 as a function of the temporal resolution.

For example, the error on c (d) due to the sampling uncertainty is ranging from about 5% (3%)

at 1 min to about 20% (8%) at a temporal resolution of 30 min.

In terms of rain amounts deviation, the time resolution does not appear to have a significant

influence, providing similar results for all temporal resolutions.
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5.5 Summary and conclusion

The significant spatial variability of the DSD has been highlighted in Chapter 4 using DSD

measurements collected by a network of 16 disdrometers deployed over a 1×1 km2 area in

Lausanne, Switzerland. This chapter aims at quantifying the propagation of the DSD spatial

structure into a variability of the power-law parameters used to estimate rain rates from radar

data. Similarly to Chapter 4, the considered data set consists of 36 rainfall events that have

been identified and grouped according to their respective type of rainfall (i.e., convective,

transitional and frontal).

From DSD measurements, integral quantities of the DSD such as the rain rate R, the radar

reflectivity factor Z and the specific differential phase Kd p have been calculated. A non-linear

least square fitting on the Z = f (R), R = f (Z ) and R = f (Kd p ) scatterplots have provided

estimates of the different parameters of the Z -R, R-Z and R-Kd p relationships, respectively.

These parameters have been derived at different spatial scales: (i) for each of the 16 dis-

drometers, (ii) considering an aggregate of all the 16 point values and (iii) considering the

averaged value at each time step over the 16 instruments, which should provide estimates

more representative of the covered spatial area. The sampling uncertainty associated with

DSD measurements is taken into account and propagated into the power-law parameters

through stochastic simulations.

First, it points out the influence of the observed variability of the DSD within a typical weather

radar pixel on the parameters of the power laws for R estimation, independently of the type

of rain (convective, transitional and frontal). Indeed, the variability of the parameters of the
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power laws within the radar pixel can be larger than the sampling uncertainty associated

with disdrometer measurements showing that this variability cannot be solely explain by the

sampling uncertainty inherent to the instrument. Distinct patterns of a and b (or c and d)

values are observed between the different types of rainfall. Moreover, the dependent variable

considered (i.e., Z or R) in the Z -R relationship has a strong influence on the parameter

estimates and their respective variability.

This variability has been propagated into the radar rain amount estimates from radar power

laws. Considering the reflectivity averaged over the 16 disdrometers at each time step as

representative of the reflectivity that should be seen by the radar, rain rate are estimated

using the power laws parametrized previously (at each station, for the aggregate and for the

pixel area). The derived rain amount varies between -5% to +15% of the pixel rain amount.

Depending on the application, care must be taken when using power-law parameters derived

from point-scale measurements and applied at radar pixel scale.

Finally, the influence of the temporal resolution on the variability of the power law parameters

has been investigated in this chapter. The observed variability appears to be significant, i.e.,

larger than the error associated with the sampling process, for time steps below 30 min. For

time steps of 30 min and above, the natural variability of the power law parameters cannot

be clearly distinguished from the one induced by the sampling process. Further analyses

have pointed that the observed variability is not influenced by the temporal resolution. In

addition, the error associated with the estimates, i.e., the variability induced by the sampling

uncertainty, is increasing for larger time steps.
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6 Perspectives and additional field cam-
paigns

6.1 Introduction

Part of this PhD was devoted to the design and the construction of a network of autonomous

disdrometers in collaboration with A. Studzinsdki. The network has been deployed over a

1×1 km2 area in Lausanne, Switzerland, for about 16 months from March 2009 to July 20101.

Based on this data set, it has been shown in Chapters 4 and 5 that the spatial variability of the

DSD and its consequences on radar rainfall estimations are significant even at a 1 km2 scale.

Additional field campaigns have been conducted in order to extend the analyses presented

in this PhD to larger spatial scales as well as other climatologies. This chapter is presenting

some perspectives and issues that might be addressed thanks to this set up of autonomous

disdrometers. It has to be noticed that this chapter is illustrating the added value of the

network of disdrometers presented in Chapter 2 rather than presenting scientific results.

6.2 Variability of the DSD for Mediterranean region

The Mediterranean region is characterized by complex interactions between the Mediter-

ranean sea, the urbanized coastal areas and the orography. These interactions are still poorly

understood especially in the context of natural hazards (extreme rainfall, flash floods, hail

events, landslides, . . . ). In this context, an international project called HYMEX (HYdrological cy-

cle in Mediterranean EXperiment) launched by the french scientific community (more details

at http://www.hymex.org/) has been set up to address this issue. HYMEX is an international

project which includes couples of short-term (i.e., few months) multi-instruments (aircrafts,

ground-based C-band radars, mobile X-band radars, disdrometers, ...) field campaigns. The

main goal of this huge project is to provide better knowledges of the Mediterranean area in

terms of the water budget, the continental hydrological cycle, the natural hazards and the

associated societal and economic impacts.

1This 16-months data set (DSD measurements at 30-s temporal resolution from 16 disdrometers) is easily
available for the scientific community. For further information, please visit the Laboratoire de Télédétection
Environnemental, EPFL-LTE, Lausanne, Switzerland (http://lte.epfl.ch).
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Climatological analyses of rainfall data collected by the MétéoFrance operational network of

rain gauges on the period 1958-2000 have pointed out significant differences in rain amounts

collected by a few rain gauges in the Mediterranean area [G. Molinié, personal communication].

The orography is known to play a major role in Mediterranean precipitation. In this context,

a field campaign, called HPicoNet (http://www.ohmcv.fr/hpiconet/index.html), has been

organized in Ardèche, France, in the neighbouring area of the operational rain gauge reporting

the largest yearly and daily rain amounts. The objectives of this campaign are twofold. As a

preliminary field campaign to HYMEX, the first goal was to test the technical feasibility for the

deployment of a multi-sensors network for monitoring rainfall at a high time resolution. In

addition, this campaign should provide the data set required for a better understanding of the

local climatology in terms of rainfall.

Figure 6.1 presents the regional situation and the neighbouring orography of the HPicoNet

network. Each sampling location has been equipped with a 1000 cm2 tipping-bucket rain

Figure 6.1: Regional situation of the HPicoNet network in Ardèche, France. Blue circles
denote the operational rain gauge network while the pink bars present the HPicoNet network.
(courtesy of Gilles Molinié, LTHE, Grenoble).

gauge and an optical disdrometer Parsivel. Moreover, at two sampling locations, an induc-

tion ring has been deployed providing additional measurements of the electrical charge of

raindrops. Figure 6.2 shows a typical setup including the induction ring. Because the distance
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Figure 6.2: Example of experimental setup during the HPicoNet campaign on the roof of a
school in Lavilledieu, Ardèche, France. The setup consists of a 1000 cm2 tipping-bucket rain
gauge (left), an optical disdrometer Parsivel (back-right) and an induction ring (front-right).

between a slave and the associated master station can be up to 6 km, the disdrometer stations

as presented in Chapter 2, using omni-directional antennas, had to be upgraded for this setup.

The use of directional antennas greatly helps improving radio transmission between master

and slave stations for slave-master distances larger than 1 km.

The HPicoNet campaign has been initiated by the Laboratoire d’étude des Transferts en

Hydrologie et Environnement (LTHE, Grenoble, France) and is a collaboration between LTHE,

EPFL-LTE (Lausanne, Switzerland) and the Laboratoire d’Aérologie (Toulouse, France). The

instruments have been deployed in October 2010. For administrative reasons with the custom

office, EPFL-LTE disdrometers have been removed in June 2011.

Some preliminary results have been recently presented at the Plinius 2011 conference (’High-

resolution rainfall sampling: the scales of interest’ by G. Molinié et al). A more in depth analysis

of this data set is still in progress.
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6.3 Variability of the DSD as a function of the altitude

The observed variability of raindrops characteristics (size, shape, terminal fall velocity, ...) is

related to the various microphysical processes involve in the formation of precipitation (see

Section 1.2). In more complex terrain (i.e., mountainous area), the dynamic of air masses

is strongly disturbed by the local topography which increases the complexity of orographic

precipitation formation [Roe, 2005]. In addition, rainfall estimation in mountainous area

is a challenging task due to strong echoes from ground and shielding of the radar beam by

the relief [e.g., Germann et al., 2006] and the presence of solid precipitation (snowflakes,

aggregates, ...).

A better knowledge of the DSD variability in mountainous area is crucial to better understand

orographic precipitation and reduce the impact of natural hazards. In this framework, a

join project between EPFL-LTE and the Swiss Institute for Snow and Avalanche Research

(WSL-SLF, Davos) has been launched in 2009. 3 optical disdrometers have been deployed

along a slope in Davos, Switzerland in February 2009. The disdrometers’ altitudes are 1520,

2276 and 2543 m respectively. Figure 6.3 shows the 3 disdrometers that have been deployed

in the Davos area. The disdrometers were collecting DSD measurements at a 30-s time

resolution. In terms of technical issues, because the instruments required to be heated for

Figure 6.3: The experimental setup deployed in Davos, Switzerland in order to investigate the
influence of the altitude on the variability of the drop size distribution.

measurements at high altitude, the disdrometers have been modified for a 24-V functioning.

The disdrometer deployed at the top was neighbouring the WSL-SLF experimental site at the
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Weissfluhjoch, providing additional measurements of liquid and solid precipitation. Moreover,

to complement the transect of disdrometers, a 2D-Video Disdrometer (2DVD) [Kruger and

Krajewski, 2002] has been deployed in September 2009 at the Weissfluhjoch experimental

site as illustrated by Figure 6.4. Finally, a mobile X-band weather radar has been installed,

Figure 6.4: The 2D-Video Disdrometer deployed at the Weissfluhjoch experimental site (WSL-
SLF) at 2543 m height in Davos, Switzerland.

in September 2009, on the opposite site of the valley in order to scan the Weissfluhjoch

experimental site.

This experiment was conducted until July 2011. The transect of disdrometers has been col-

lecting data for about 2.5 years while the 2DVD and X-band radar have been operational for

a bit less than 2 years. This campaign has provided a rich and promising data set for the

quantification of the variability of the DSD according to the altitude and various investigations

on liquid and solid precipitation. Analyses of this data set are currently conducted.
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LTE) in the deployment and maintenance of the disdrometers and the 2DVD is herein greatly
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6.4 The use of commercial microwave links for rainfall monitoring

in urban area

The increase of the anthropogenic activity is associated with the development of urbanized

areas, characterized by non-permeable surfaces (buildings, roads, . . . ), which considerably

93



Chapter 6. Perspectives and additional field campaigns

affect the hydrological dynamics of a watershed. Reliable estimation of rainfall in urban areas

is crucial for the design and the operation of urban drainage infrastructures (e.g., sewers,

rainwater retention tanks) in order to prevent urban floods. Nevertheless, urban water man-

agement requires rainfall data at a higher spatial (below 1 km) and temporal (about 1-5 min)

resolution than the ones provided by operational weather services [Berne et al., 2004].

The possibility to estimate rainfall from microwave links used in telecommunication has

been recently reported [Messer et al., 2006; Leijnse et al., 2007]. The high spatial density of

microwave links, especially in urban area, makes it a powerful and promising tool for rainfall

monitoring. Due to the range of frequencies considered in telecommunication to transmit

the data, the signal is attenuated if rainfall occurs along the path transmitter-receiver. This

information can be related to the path-averaged rain rate as soon as the attenuation occurring

during dry periods (called attenuation baseline) is taken into account. Various approaches

have been proposed in the literature to take into account the attenuation baseline [e.g., Rahimi

et al., 2003; Upton et al., 2005; Schleiss and Berne, 2010]. Additional analyses have been

reported, mainly using links that have been specifically designed for rainfall estimation which

makes difficult to integrate these results into an operational telecommunication network.

However, the reported studies have focused the analyses on rain rate retrieval, which is an

integral quantity related to the DSD, rather than on the DSD itself. As many challenges remain

regarding the processing of microwave link data for DSD retrieval in urban area, a project

called COMMON (COmmercial Microwave links for urban rainfall MONitoring) has been initi-

ated. This project is based on a collaboration between the Urban Water Management group of

the Center for Aquatic Research (EAWAG-UWM, Dübendorf) and the Environmental Remote

Sensing Laboratory (EPFL-LTE, Lausanne). In this framework, a commercial telecommunica-

tion microwave link has been deployed over a 1.85 km urbanized straight line as illustrated in

Figure 6.5. For ground validation, a set of 5 autonomous disdrometers [Jaffrain et al., 2011]

has been deployed at 4 sampling locations along the path of the microwave link. The dual

disdrometers set up will help to characterize the sampling uncertainty of the disdrometers

[Jaffrain and Berne, 2011] in the analyses. The 4 sampling locations have been chosen as a

trade-off between a regular distribution of the instruments, the distance to the microwave-link

path, line of sight for data transmission between the different instruments and minimum

probability of disturbance. In order to have independent rain rate measurements, 3 of the

sampling locations have been in addition completed by a tipping-bucket rain gauge (Précis

Mécanique, model 3029) deployed in the nearby vicinity of the disdrometers. This campaign

has started on March 2011 and is still collecting data.
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UWM) and Zhe Wang (EAWAG-UWM) for the deployment and the constant maintenance of
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Figure 6.5: The COMMON field campaign involves a microwave link deployed over a 1.85 km
distance, 5 autonomous disdrometers deployed at 4 sampling locations and 3 tipping bucket
rain gauges (courtesy of Marc Schleiss, EPFL-LTE).
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7 Summary and Conclusions

The quantification of the various impacts of the global warming on the hydrological cycle is a

question of primary interest. While the amplitude of future changes is still difficult to estimate,

numerous climatic models have pointed out a general increase of the Earth temperature. As

it will affect all the Earth system, significant changes in precipitation amounts, intensities,

durations and frequencies are expected. A fundamental tool for precipitation estimation is

the radar which can be ground based or on-board of a space platform. The main issue in

radar techniques is the conversion of the observable parameter (Z for conventional radar, Zdr

and Kd p for polarimetric ones) into the variable of interest (the rain rate R) for hydrological

applications. Various relationships have been presented in the literature for the last 50 years

highlighting the strong influence of the DSD variability (in time and space) on the relationships

used for conversion in radar processing. In this context, a better understanding of the spatial

structure of the DSD is of primary importance to improve radar rainfall estimations.

In order to address this issue using an experimental approach, a network of 16 disdrometers

(Parsivel) has been developed and built at EPFL-LTE. The network has been presented in

details in Chapter 2. To ease instrument deployment, they have been designed for an au-

tonomous functioning in term of power supply and data transmission. To reduce the cost

of the project, the network has been divided into four groups, each group of 4 disdrometers

being equipped with only one data logger. The data transmission within each group is based

on radio communication (between master and slave stations) and GPRS, a commonly used

data service for telecommunication, to transmit the data in real time to a remote web server.

The network has been deployed over a typical weather radar pixel (∼1×1 km2) in order to

investigate the small scale variability of the DSD. The deployment lasted for about 16 months

and DSD measurements at 30-s temporal resolution for different types of rainfall have been

collected. This set up has provided a key data set to investigate the spatial variability of the

DSD at radar subgrid scales.

Any measurement of a physical process can be seen as the combination of two signals: the

natural signal, of interest but not known, and an artefact signal induced by the sampling

process of this natural phenomena. As it has been emphasized in the literature, this artefact
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signal can be of the same order as the natural one. A quantification of the sampling uncertainty

associated with our instrument (Parsivel) is hence crucial for reliable analyses. Consequently,

Chapter 3 presents a 15-month experiment that has been conducted involving collocated

measurements from 2 disdrometers and 2 tipping-bucket rain gauges (for independent mea-

surement of rain rate). The sampling uncertainty associated with Parsivel measurements has

been quantified as a function of the magnitude of the quantity of interest and the temporal

resolution considered. Two quantities describing the DSD have been considered, namely the

total concentration of drops Nt and the median-volume diameter D0. Moreover, the analyses

have been conducted as well on integral quantities of the DSD, such as the rain rate R, the

radar reflectivity factor Z and the differential reflectivity Zdr . Globally, independently of the

time resolution and of the magnitude of the considered quantity, the sampling uncertainty

is below 25% for Nt , D0 and R and is decreasing for increasing time steps. The sampling

uncertainty associated with Nt and R estimates is decreasing for increasing magnitude of the

quantity of interest. For D0, a different pattern is observed, with larger uncertainty values for

large D0 estimates.

Based on the data set presented in Chapter 2, a selection of 36 rainfall events has been con-

sidered and classified according to three types of rain from visual inspection of radar rainfall

maps. It consists of 9 convective, 19 transitional and 8 frontal rainfall events corresponding

to about 643, 3665 and 839 rainy minutes respectively. As the three groups of rainfall are

considered as representative of each type of rainfall, each group of events is considered as an

homogeneous ensemble to illustrate the average spatial structure associated with each type of

rainfall.

A geostatistical approach has been used in Chapter 4 to quantify the spatial structure of the

different quantities of interest. The analyses have been focused on Nt , Dm and R. Because

classical tools to characterize the spatial structure are well suited for Gaussian-like distribu-

tions, which is not a fulfilled condition as the quantities of interest exhibit positively skewed

distributions, a logarithm transform has been considered. A sample variogram based on

quantiles, similar to the classical Matheron sample variogram, has been calculated on the log

transforms for each quantity of interest and each type of rainfall. The estimated semi-variance

(γ̂(h)) values are then back-transformed into linear space. Independently of the quantity

considered, the average sample variograms clearly show that DSD fields are organized and

not randomly distributed within a typical radar pixel. The observed variability is larger than

the nugget of the variogram, which can be seen as an estimation of the measurement errors

in the analyses. Linear variogram models are well suited to represent the different sample

variograms for distance lags up to 800 m (which is the maximum interdistance of the network).

The influence of the temporal resolution on the spatial structure of the DSD is also addressed

in Chapter 4. It is shown that there is a spatial structure in the DSD field at a 1×1 km2 scale for

temporal resolution below 10 min for Dm and R and 30 min for Nt . Globally, for time steps of

30 min and larger, the observed variability is within the noise level inherent to the measuring

process.
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Finally, Chapter 4 illustrates a possible application of such information about the spatial

structure of the DSD, namely the spatial representativity issue when upscaling from point

(instrument) to areal (radar pixel) measurements. Because there is no sill/range in the fitted

variograms, a stochastic simulation approach has been chosen. 1000 2D-fields are generated

and constrained by the spatial structure previously observed. For each simulation, the value at

the center of the field is compared to the value averaged over the pixel. The standard deviation

of the 1000 simulations is an appropriate indicator of the average error due to the upscaling.

Globally, the error associated with the upscaling is increasing with increasing domain size.

For instance, the error associated with the upscaling of Nt (R) for convective tape rainfall

is ranging from 12% (18%) to 16% (24%) for domain size of 100×100 m2 and 1000×1000 m2

respectively.

It has been shown that the DSD fields are spatially organized within an area of about 1 km2,

which can have a strong impact on the use at radar pixel scale of relationships derived at

point scale (Chapter 4). This raises the question of the influence of this variability on radar

rainfall estimators. This issue is addressed in Chapter 5 focusing on two particular power laws

commonly used for radar rainfall estimations: the Z -R (for conventional radar) and the R-Kd p

(for polarimetric radar) relationships. The power law parameters (a and b or c and d) are

estimated from a non-linear regression of Z -R and R-Kd p scatterplots. The influence of the

independent variable considered for regression (i.e., Z or R) is also investigated for the Z -R

relationship. Power law relationships are estimated at different spatial scales: using data from

each instrument (point), using data from all point measurements (aggregate of points) and

finally using the data averaged at each time step between the 16 instruments which provides a

reliable estimate of the radar pixel. For robustness, the part of variability of the parameters

induced by the sampling uncertainty associated with Parsivel has to be taken into account.

As the sampling uncertainty associated with Parsivel measurements can not be assumed

uniform over the network (recall that the sampling uncertainty is function of the magnitude

of the quantity of interest), a stochastic simulation approach is considered to propagate the

sampling uncertainty into the parameter estimation. For each of the 500 simulations and

each station, a normal distribution centered on the value of the quantity measured with its

standard deviation equal to the corresponding uncertainty value is generated. The power law

parameters are estimated for each simulation and the 80% confidence interval of these 500

values provides an estimate of the propagation of the sampling uncertainty of Parsivel in the

power law parametrization.

At a 60-s temporal resolution, the results show distinct groups of a and b (c and d) values

according to the type of rainfall. Moreover, the variability of the power law parameters is

significant even at 1×1 km2 area, i.e., the observed variability of the parameters is larger than

the one due to the sampling process. As expected, the error associated with the estimates is

lower for the aggregate of points and the pixel value than the single point estimates.

The influence of this variability on radar rainfall estimation is investigated. Considering the

average reflectivity (over the 16 stations) as the one that should be seen by the radar, the rain

rates and rain amounts theoretically estimated from a radar using the previously parametrized
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power laws are calculated. Globally, independently of the power law considered, it shows a

deviation of single point estimates between -5 and + 15% from the one estimated for the pixel.

Finally, the analyses show that the observed variability of the power law parameters is signifi-

cant for temporal resolution below 30 min. For time steps of 30 min and above, the natural

variability can not be clearly distinguished from the noise induced by the sampling process.

Additional investigations have shown that the variability of these parameters seems ’stable’ be-

tween the different temporal resolutions while the error associated with power law parameters

estimates is strongly increasing for larger time steps.

The data set collected by the network of autonomous disdrometers during these 16 months

have highlighted a significant variability of the DSD at the 1 km2 scale. As this data set is

far from being completely explored, it is easily available for the scientific community. In the

same time, additional campaigns have been conducted in order to investigate the spatial

variability of the DSD at different scales and for different climatologies. These campaigns have

been briefly presented in Chapter 6 in order to illustrate different applications of the network

of autonomous disdrometers. As a part of the HYMEX international project (HYdrological

cycle in Mediterranean EXperiment), a preliminary field campaign has been conducted in

Ardèche, France called HPicoNet focusing on high resolution sampling of Mediterranean

rainfall. This campaigns has involved 8 autonomous stations that have been deployed at 7

sampling locations so that a sampling location is equipped with a dual disdrometer setup for

sampling uncertainty issues. Moreover, TB rain gauges have been collocated to the disdrome-

ters. Finally, in order to provide information on the electrical charge of raindrops, an induction

ring is completing the setup at two sampling locations. The experiment lasted for about 10

months and has collected DSD data for about 65 rainfall events. This promising setup should

provide a powerful tool to better understand the spatial and temporal variability of the DSD in

Mediterranean regions. In addition, in order to quantify the variability of the DSD as a function

of the altitude, a field campaign has been conducted in Davos, Switzerland. 3 disdrometers

have been deployed along a slope at different altitudes ranging from 1520 m to about 2550 m.

The disdrometers have been tuned (higher voltage, heating) for working in difficult weather

conditions. At the top of the transect of disdrometers, a 2DVD has been deployed in order

to have additional information on the 2D shape of falling hydrometeors. The experiment

lasted for 2.5 years and has collected DSD spectra for about 300 precipitation (liquid and

solid) events. Finally, as microwave links used for telecommunication purpose have been

shown to be a promising tool for rainfall monitoring, a campaign has been conducted in

Dübendorf, Switzerland. The experiment involves a microwave link deployed over a 1.85 km

path, 5 autonomous stations deployed at 4 sampling locations for ground validation and 3 TB

rain gauges. This campaign has started on March 2011 and is still collecting data.
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Main contributions of this work

In summary, the main contributions of this work are:

• During this PhD, the work has been first devoted to the design and the set up of an

autonomous network of disdrometers that can be easily deployed in different locations

(autonomous in term of power supply and data transmission) and different configura-

tions (flexibility in the structure and the number of stations in the network).

• The sampling uncertainty associated with the disdrometer measurements has been

quantified using an experimental approach based on measurements from collocated

disdrometers for about 15 months. The sampling uncertainty has been estimated for

quantities that can describe the DSD (i.e., Nt and Dm) as well as integral quantities of

the DSD (i.e., R, Z and Zdr ).

• Using a selection of 36 rainfall events in the 16-month data set, that has been split up

according to 3 different types of rainfall (i.e., convective, transitional and frontal), a

geostatistical approach was considered (through variograms) to quantify the spatial

structure of the DSD within the 1×1 km2 monitored area. Analyses show that the DSD

fields are spatially organized and not randomly distributed. The observed structure of

the DSD is significant for temporal resolutions below 30 min from which the natural

variability of the DSD is within the noise associated by the sampling process.

• The influence of this variability on radar rainfall estimators has been investigated focus-

ing the analyses on the Z -R (for conventional radar) and the R-Kd p (for polarimetric

radar) relationships. As the sampling uncertainty associated with the instruments is

propagated into the analyses, it shows that this variability of the DSD produces a signifi-

cant variability, i.e., larger than the one induced by the sampling process, of the radar

power law parameters. In terms of rain amount, this variability can induce deviations in

rain amounts estimated from the radar between -5 and +15% the one estimated at the

pixel scale (which is more representative of the pixel area).

Perspectives

The presented results are opening various perspectives, such as:

1. The usefulness of the developed disdrometric station is demonstrated by the different

field campaigns in which some disdrometers are involved.

2. The collected data set is far from being explored as the analyses presented in this thesis

have been conducted on a selection of 36 rainfall events. The considered rainfall events

have been selected for their good agreements (deviation of less than 10% in term of

rain amount) between Parsivel Station 43 and 2 collocated TB rain gauges. It would be
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Chapter 7. Summary and Conclusions

of interest to extend the presented analyses on the whole liquid precipitation events

collected in the 16-month data set to see if the results are (or not) similar to the one

observed for the subset of 36 rainfall events.

3. In 2013, the Global Precipitation Measurement (GPM) satellite, devoted to the measure-

ment of solid and liquid precipitation using a combination of active and passive sensing

techniques, will be launched. The deployment of the network of 20 disdrometers (this is

the maximum number of stations managed by this network in this configuration) over

a GPM footprint (about 5×5 km2) should provide relevant data to investigate various

issues related to precipitation estimation from space satellites such as, for instance, the

spatial structure within the radar footprint, the influence of non-uniform beam filling

and the disaggregation1 of rainfall fields.

4. In addition, such network of disdrometers can be a useful tool for ground validation of

numerical weather models. By comparing between spatially distributed measurements

and simulations can help improving precipitation monitoring and forecasting.

5. In order to catch the decorrelation distance (if any) in the DSD fields, the deployment

of the disdrometer network over a larger area (e.g., 25×25 km2) would be appropriate.

This would also nicely complement the data set collected at the radar pixel scale and

presented in this thesis.

6. Finally, the capability to use radio modem to gather information from slave stations and

to then send it in real time to a safe archiving system via the mobile phone network can

certainly be adapted to the monitoring of other environmental variables.

1disaggregation is generic term to describe techniques used to generate higher spatial resolution from a coarse
resolution
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A Electronic diagram: Solar control
(kindly provided by A. Studzinski)

As the voltage provided by the solar panel can be up to 17 V (depending on the sunlight

and the altitude), the battery can not be directly connected to the solar panel. To increase

battery’s lifetime, an electronic circuit (connected between the solar panel and the battery) is

controlling in real time the battery’s voltage (denoted hereafter Ubat ). The charge cycles of the

battery are defined according to the following modes:

• Ubat ≤ 13.8 V : full load charge mode.

• 13.8 <Ubat ≤ 14.9 V : reduced load charge (30% duty cycle).

• Ubat > 14.9 V : floating charge (7% duty cycle)

Figure A.1 presents a picture of this electronic circuit and the associated diagram is provided

in the next page.

Figure A.1: Picture of the electronic circuit controlling the power provided by the solar panel
to the battery.
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B Electronic diagram: Station power
control (kindly provided by A. Studzinski)

To prevent from possible default and malfunctioning of the station due to low voltage, the

incoming voltage is controlled in real time. For the first switch on of a station, the voltage

should be higher than 11 V. For an operating station, the electronic circuit switch off the station

as soon as the voltage reach 10.5 V. The station is switch on again only after a dead time of 1 h

(in order to prevent from hysteresis phenomenon) and if the power supply provided by the

battery is above 12 V.

Moreover, the ’station power control’ circuit reset the station (switch off, 5 min break and

switch on) if one of the following condition is fulfilled:

• Radio communication problem: no one of the 3 slave stations is providing data for 6 h

• Parsivel communication default (for each station)

• GPRS communication default
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C Electronic diagram: RS485 to
RS232TTL converter
(kindly provided by A. Studzinski)

As Parsivel output is RS485 while campbell data loger input is RS232TTL, a converter have

been designed and connected between Parsivel and the logger. The converter is equipped

with a long range radio modem in order to query data for the slave stations. The electronic

diagram of the RS485 to RS232TTL converter is presented hereafter.
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D Electronic diagram: FIFO
(kindly provided by A. Studzinski)

Because radio disturbances during data transmission can happen, the system have been

designed to repeat the data transmission up to 8 times per slave station if necessary. During

the time required to repeat data transmission, the data collected by Parsivel is stored in a buffer

memory denoted FIFO (First In First Out). This FIFO is as well the electronic component that

provide the address (and hence the associated range of frequency considered) to the slave

station. The electronic diagram of the FIFO is presented hereafter.
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E Calculation of the relative sampling
uncertainty

Taking X = mSk =
1

k

∑
i∈Sk

(M +ωi ) and Y = mn = 1

n

n∑
i=1

(M +ωi ), we have according to Eq (3.12):

σ2
εSk

= Var

[
X

Y

]
. (E.1)

X and Y being two strictly positive random variables, we have according to Stuart and Ord

[1994, p.351]:

Var

[
X

Y

]
= E2[X ]

E2[Y ]

(
Var[X ]

E2[X ]
−2

Cov(X ,Y )

E[X ]E[Y ]
+ Var[Y ]

E2[Y ]

)
+o(n−1

s ) (E.2)

with ns the number of samples (time steps) considered in the class of interest (ns ≥ 30). All

collocated sensors are supposed to sample the same population of DSDs.

E[X ] = E

[
1

k

∑
i∈Sk

(M +ωi )

]
= E

[
1

k

∑
i∈Sk

M

]
+E

[
1

k

∑
i∈Sk

ωi

]
(E.3)

The sampling error ωi is assumed to be a Gaussian white noise, consequently

E[ωi ] = 0 ∀i ∈ n (E.4)

Cov
[
ωi ,ω j

] = 0 ∀i 6= j . (E.5)

Therefore we have:

E[X ] = E[Y ] = E[M ] . (E.6)

Assuming in addition that M and ω are not correlated within the classes of the considered

quantity related the DSD (Cov[M ,ωi ] = 0) and that the sampling uncertainty has a similar
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Appendix E. Calculation of the relative sampling uncertainty

distribution for all sensors (σωi =σω j =σω ∀i , j ), we have:

Var[X ] = Var
[
m̄Sk

]=σ2
M + 1

k
σ2
ω (E.7)

Var[Y ] = Var[m̄n] =σ2
M + 1

n
σ2
ω (E.8)

Cov[X ,Y ] = Var[Y ] =σ2
M + 1

n
σ2
ω (E.9)

Substituting Eq(E.6), (E.7), (E.8) and (E.9) in Eq(E.2), the variance of εSk is approximated as

Var
[
εSk

]' σ2
ω

E 2 [M ]

(
1

k
− 1

n

)
. (E.10)

Then, the relative sampling uncertainty σr
ω can be calculated from σεSk

σr
ω = σω

E[M ]
'σεSk

√
nk

n −k
. (E.11)
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F Experimental values of the sampling
uncertainty σr

ω

The sampling uncertainty σr
ω have been expressed as a function of the temporal resolution

and the variable intensity classes. The following values correspond to the ones presented in

Figure 3.10, 3.11, 3.13, 3.15 and 3.17.

Table F.1: Relative sampling uncertainty associated with Nt estimates.

Classes ∆ t
[m-3] 20 s 60 s 120 s 180 s 240 s 300 s 600 s 900 s 1800 s 2700 s 3600 s
[0,50[ 0.25 0.17 0.13 0.12 0.11 0.09 0.07 0.07 0.06 0.05 0.04
[50,100[ 0.22 0.14 0.11 0.09 0.08 0.08 0.07 0.06 0.05 0.06 0.05
[100,200[ 0.17 0.11 0.09 0.07 0.07 0.07 0.06 0.06 0.05 0.05 0.05

N t [200,400[ 0.13 0.08 0.07 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.04
[400,600[ 0.10 0.07 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.04 -
[600,800[ 0.09 0.06 0.05 0.05 0.04 0.04 0.04 - - - -
[800,1000[ 0.08 0.06 0.05 0.05 0.04 - - - - - -
[1000,1500[ 0.07 0.05 0.05 0.04 - - - - - - -
[1500,2000[ 0.07 - - - - - - - - - -

Table F.2: Relative sampling uncertainty associated with D0 estimates.

Classes ∆ t
[mm] 20 s 60 s 120 s 180 s 240 s 300 s 600 s 900 s 1800 s 2700 s 3600 s
[0.6,0.7[ 0.05 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 - -
[0.7,0.8[ 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
[0.8,0.9[ 0.06 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
[0.9,1[ 0.08 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

D0 [1,1.25[ 0.10 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03
[1.25,1.5[ 0.11 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03
[1.5,1.75[ 0.15 0.10 0.08 0.06 0.07 0.06 0.05 0.06 0.03 0.03 -
[1.75,2[ 0.19 0.10 0.09 0.08 0.07 0.06 0.06 - - - -
[2,2.25[ 0.22 0.14 0.10 0.12 0.07 - - - - - -
[2.25,2.5[ 0.27 0.15 - - - - - - - - -
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Appendix F. Experimental values of the sampling uncertainty

Table F.3: Relative sampling uncertainty associated with R estimates.

R Classes ∆ t
[mm h-1] 20 s 60 s 120 s 180 s 240 s 300 s 600 s 900 s 1800 s 2700 s 3600 s

P [0.1,2[ 0.25 0.18 0.15 0.13 0.12 0.12 0.11 0.10 0.10 0.10 0.09
a [2,4[ 0.21 0.15 0.12 0.11 0.11 0.10 0.10 0.10 0.08 0.09 0.09
r [4,6[ 0.20 0.14 0.12 0.11 0.09 0.09 0.08 0.07 0.07 - -
s [6,8[ 0.18 0.13 0.11 0.10 0.09 0.09 0.07 0.07 - - -
i [8,10[ 0.16 0.11 0.09 0.10 0.06 0.08 - - - - -
v [10,15[ 0.16 0.12 0.11 0.08 0.08 - - - - - -
e [15,20[ 0.16 0.10 - - - - - - - - -
l [20,25[ 0.13 - - - - - - - - - -

[25,30[ 0.13 - - - - - - - - - -
T [0.1,2[ 1.10 1.10 1.10 1.10 1.10 1.10 1.10 0.37 0.22 0.14 0.11
B [2,4[ 1.10 1.10 1.10 0.37 0.37 0.22 0.12 0.09 0.05 0.04 0.04

[4,6[ 1.10 1.10 0.37 0.22 0.19 0.16 0.09 0.05 0.04 - -
g [6,8[ 1.10 0.37 0.22 0.16 0.14 0.11 0.07 0.05 - - -
a [8,10[ 1.10 0.37 0.22 0.17 0.10 0.15 - - - - -
u [10,15[ 1.10 0.37 0.33 0.28 0.13 - - - - - -
g [15,20[ 1.10 0.39 - - - - - - - - -
e [20,25[ 0.74 - - - - - - - - - -

[25,30[ 0.69 - - - - - - - - - -
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Table F.4: Relative sampling uncertainty associated with Zh estimates (in dBZ) at X- (9.4 GHz),
C- (5.6 GHz) and S-band (2.8 GHz) respectively.

Classes ∆ t
[dBZ] 20 s 60 s 120 s 180 s 240 s 300 s 600 s 900 s 1800 s 2700 s 3600 s
[10,15[ 0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.05

X [15,20[ 0.11 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
[20,25[ 0.09 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04

b [25,30[ 0.08 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.04
a [30,35[ 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
n [35,40[ 0.14 0.11 0.09 0.07 0.07 0.07 0.06 0.05 0.04 0.03 0.03
d [40,45[ 0.17 0.10 0.09 0.08 0.07 0.06 0.05 0.04 - - -

[45,50[ 0.15 0.13 0.06 - - - - - - - -
[10,15[ 0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.05

C [15,20[ 0.11 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
[20,25[ 0.09 0.07 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.03

b [25,30[ 0.09 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
a [30,35[ 0.09 0.06 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03
n [35,40[ 0.08 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.07 0.06 0.06
d [40,45[ 0.06 0.11 0.06 0.13 0.13 0.13 0.09 - - - -

[45,50[ 0.17 0.19 0.20 - - - - - - - -
[10,15[ 0.12 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.06

S [15,20[ 0.11 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
[20,25[ 0.09 0.07 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04

b [25,30[ 0.09 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03
a [30,35[ 0.09 0.06 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.03 0.03
n [35,40[ 0.09 0.06 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.02 0.02
d [40,45[ 0.09 0.08 0.07 0.06 0.05 0.04 - - - - -

[45,50[ 0.11 0.04 - - - - - - - - -
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Table F.5: Relative sampling uncertainty associated with Zdr estimates (in dB) at X- (9.4 GHz),
C- (5.6 GHz) and S-band (2.8 GHz) respectively.

Classes ∆ t
[dBZ] 20 s 60 s 120 s 180 s 240 s 300 s 600 s 900 s 1800 s 2700 s 3600 s
[0.1,0.2[ 0.16 0.12 0.11 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08

X [0.2,0.3[ 0.22 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.11 0.10
[0.3,0.4[ 0.28 0.22 0.20 0.19 0.18 0.17 0.17 0.16 0.14 0.13 0.13

b [0.4,0.5[ 0.31 0.26 0.23 0.23 0.21 0.21 0.17 0.17 0.15 0.14 0.14
a [0.5,0.75[ 0.36 0.31 0.27 0.25 0.25 0.24 0.21 0.21 0.22 0.19 0.21
n [0.75,1[ 0.41 0.37 0.35 0.32 0.31 0.30 0.30 0.31 0.31 0.32 0.30
d [1,1.5[ 0.47 0.43 0.40 0.39 0.40 0.41 0.38 0.35 0.32 0.35 0.32

[1.5,2[ 0.50 0.46 0.44 0.43 0.41 0.39 0.36 0.34 0.30 0.28 0.24
[2,3[ 0.49 0.44 0.41 0.39 0.38 0.32 0.31 0.35 0.23 0.23 0.16
[0.1,0.2[ 0.16 0.12 0.11 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08

C [0.2,0.3[ 0.22 0.18 0.17 0.15 0.15 0.14 0.12 0.11 0.11 0.11 0.10
[0.3,0.4[ 0.28 0.22 0.20 0.19 0.18 0.17 0.17 0.15 0.14 0.13 0.14

b [0.4,0.5[ 0.30 0.26 0.23 0.23 0.21 0.20 0.17 0.16 0.16 0.13 0.12
a [0.5,0.75[ 0.35 0.29 0.25 0.23 0.21 0.20 0.18 0.18 0.15 0.14 0.15
n [0.75,1[ 0.39 0.33 0.27 0.24 0.24 0.25 0.21 0.17 0.19 0.19 0.19
d [1,1.5[ 0.44 0.37 0.33 0.32 0.28 0.27 0.25 0.25 0.21 0.21 0.23

[1.5,2[ 0.50 0.42 0.41 0.41 0.42 0.37 0.37 0.39 - - -
[2,3[ 0.53 0.50 0.47 0.49 0.51 0.47 0.53 0.56 - - -
[0.1,0.2[ 0.16 0.12 0.11 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08

S [0.2,0.3[ 0.22 0.18 0.17 0.15 0.15 0.14 0.12 0.11 0.11 0.11 0.10
[0.3,0.4[ 0.28 0.22 0.20 0.19 0.19 0.18 0.17 0.16 0.14 0.13 0.14

b [0.4,0.5[ 0.30 0.26 0.23 0.23 0.21 0.21 0.17 0.16 0.16 0.14 0.13
a [0.5,0.75[ 0.35 0.29 0.26 0.23 0.22 0.21 0.19 0.18 0.16 0.14 0.15
n [0.75,1[ 0.39 0.33 0.27 0.25 0.24 0.26 0.23 0.20 0.21 0.22 0.20
d [1,1.5[ 0.43 0.38 0.35 0.33 0.31 0.29 0.27 0.28 0.25 0.21 0.22

[1.5,2[ 0.49 0.43 0.41 0.40 0.40 0.38 0.38 0.38 0.36 - -
[2,3[ 0.50 0.47 0.42 0.43 0.43 0.37 0.26 0.29 0.17 0.25 -
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