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Abstract / Résumé

Abstract.

This dissertation is concerned with modular representation theory of finite groups, and more
precisely, with the study of classes of representations, which we shall term relative endotrivial
modules. Given a prime number p, a finite group G of order divisible by p, we shall say that a
kG-module M is endotrivial relatively to the kG-module V if its endomorphism algebra Endk(M)
is isomorphic, as a kG-module, to a direct sum of a trivial module and another module which is
projective relatively to V , i.e. in short Endk(M) ∼= k ⊕ (V − projective).

More accurately, in the first part of the text projectivity relative to kG-modules is used to define
groups of relative endotrivial modules, which are obtained by replacing the notion of projectivity
with that of relative projectivity in the definition of ordinary endotrivial modules. However, in
order to achieve this goal we first need to develop the theory of projectivity relative to modules, in
particular with respect to standard group operations such as induction, restriction and inflation.
Then, for finite groups having a cyclic Sylow p-subgroup, using the structure of the group T (G) of
endotrivial modules described in [MT07], we give a complete classification of the groups of relative
endotrivial modules. We also study the case of groups that have a Sylow p-subgroup isomorphic
to a Klein group C2 × C2, as well as the case of p-nilpotent groups.

In a second part of the text, it is shown how our new groups of relative endotrivial modules
provide a natural context to generalise the Dade group of a p-group P to an arbitrary finite group.
The classification of endo-permutation modules and the complete description of the structure of
the Dade group D(P ) was completed in 2004 by S. Bouc with [Bou06]. This adventure had started
about 25 years earlier with the first papers and results by E. Dade in [Dad78a] and [Dad78b] in
1978, and the final classification was in fact achieved through the non-effortless combined work
of several (co)-authors between 1998 and 2004, including S. Bouc, J. Carlson, N. Mazza and J.
Thévenaz. It is most interesting to note that crucial building pieces for this classification are
indeed the endotrivial modules, which are particular cases of endo-permutation modules. Yet, for
an arbitrary finite group G, no satisfying equivalent group structure to the Dade group on a class
of kG-modules has been defined so far. With the goal to fill this gap, we turn the problem upside
down, in some sense, and show how one can regard an endo-permutation module as an endotrivial
module, of course not in the ordinary sense, but in the relative sense. This shall enable us to
endow a set of isomorphism classes of endo-p-permutation modules with a group structure, similar
to that of the Dade group. We shall call this new group, the generalised Dade group of the group
G, explicitly compute its structure and show how it is closely related to that of the G-stable points
of the Dade group of a Sylow p-subgroup of G.

Keywords: relative projectivity to modules, relative endotrivial modules, endotrivial modules,
endo-permutation modules, endo-p-permutation modules, Dade group, modular representations of
finite groups.
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Résumé.

Cette thèse se place dans la théorie des représentations modulaires des groupes finis. On
y étudie des familles de représentations que l’on appellera modules endo-triviaux relatifs. Etant
donné un nombre premier p, un groupe fini G d’ordre divisible par p et un corps algébriquement
clos k, un kG-module M est appelé endo-trivial relativement au kG-module V si son algèbre des
endomorphismes Endk(M) est isomorphe, comme kG-module, à la somme directe d’un module
trivial et d’un module projectif relativement à V , i.e. Endk(M) ∼= k ⊕ (V − projectif).

Dans un premier temps, on y traite en particulier de projectivité relative à un kG-module,
laquelle notion servira à définir des groupes de modules endo-triviaux relatifs, obtenus en rem-
plaçant la notion de projectivité ordinaire par la notion de projectivité relative dans la définition
classique d’un module endo-trivial. Pour atteindre ce but, on y développe la théorie de la projec-
tivité relative à un module, dont en particulier certains aspects d’algèbre homologique relative et les
comportements par rapport aux opérations de groupes standards comme la restriction, l’induction
et l’inflation. Pour les groupes finis avec un p-sous-groupe de Sylow cyclique, on y donne une clas-
sification complète des groupes d’endo-triviaux relatifs. On y traite aussi plus précisément les cas
de groupes p-nilpotents et des groupes possédant un 2-sous-groupe de Sylow isomorphe au groupe
de Klein C2 × C2.

Dans une deuxième partie de ce travail, on utilise l’approche des modules endo-triviaux relatifs
afin de fournir un contexte naturel qui permet de généraliser la structure de groupe de Dade d’un
p-groupe à un groupe fini arbitraire. La classification complète des modules d’endo-permutations,
via la description de la structure du groupe de Dade D(P ) s’est achevée en 2004 avec S. Bouc. Cette
aventure avait commencé un quart de siècle plus tôt avec les premiers articles sur le sujet [Dad78a]
et [Dad78b] par E. Dade en 1978. La classification finale est en fait le résultat du travail combiné
et de longue haleine de plusieurs (co)-auteurs entre 1998 et 2004, incluant S. Bouc, J. Carlson, N.
Mazza et J. Thévenaz. On notera en particulier, avec grand intérêt, que les pièces de construction
élémentaires de cette classification sont les modules endo-triviaux, qui sont des cas particuliers de
modules d’endo-permutation. Cependant, jusqu’à présent, aucun équivalent du groupe de Dade
n’a été défini pour un groupe fini arbitraire. Pour palier à ce manque, on propose dans ce texte,
de regarder ce problème, comme depuis l’hémisphère sud, c’est-à-dire la tête à l’envers, et l’on
montre comment voir un module d’endo-permutation comme un module endo-trivial, bien sûr non
pas au sens ordinaire, mais au sens relatif. Cette approche nous permet de définir un groupe de
Dade généralisé D(G) pour n’importe quel groupe fini G, à partir d’une sous-classe de la classe des
kG-modules d’endo-p-permutation. Finalement on donne une description explicite de la structure
du groupe D(G) et montre qu’elle est étroitement liée à celle des points G-stables du groupe de
Dade d’un p-sous-groupe de Sylow de G.

Mots-clés: projectivité relative à un module, modules endo-triviaux relatifs, modules endo-
triviaux, modules d’endo-permutation, modules d’endo-p-permutation, groupe de Dade, représen-
tations modulaires des groupes finis.
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Notation

Coker cokernel

CG(H) centraliser of the subgroup H in G
Cn cyclic group of order n

Γ(X(NG(P ))) group of kG-Green correspondents of the modules in X(NG(P ))

dim dimension
D(P ) Dade group of the p-group P

D(G) generalised Dade group of the finite group G
Endk k-endomorphism ring

[G,G] commutator subgroup of the group G

Homk(M,N) k-homomorphisms from M to N

InfGG/N inflation from G/N to G, inflation map

IndG
H induction from H to G

ker kernel

kG group algebra of the group G over the field k

mod(kG) category of f.g. left kG-modules
Mod(kG) category of all left kG-modules

N the natural numbers, 0 included

NG(H) normaliser of the subgroup H in G
Proj(V ) subcategory of V -projective modules

ResGH restriction from G to H, restriction map

Σn symmetric group of degree n
stmod(kG) stable category of f.g. left kG-modules

stmodV (kG) relative stable category of f.g. left kG-modules

TrV trace map of the module V
T (G) group of endotrivial modules of G

TV (G) group of V -endotrivial modules of G

VG(M) support variety of the kG-module M
X(G) group of one-dimensional representations of the group G

Z the Integers
Ωn(M) n-th syzygy module of the module M

Ωn
V (M) n-th V -relative syzygy module of the module M

Ω̃n
V (M) Ωn

V (M)⊕ (V − proj)
Ωn
H(M) n-th relative syzygy module of the module M relative to the family of subgroups H

ΩV class in TV (G) of the relative syzygy module ΩV (k)

Ω class in T (G) of the syzygy module Ω(k)
M∗ k-dual of the kG-module M
gV conjugate of the module V by the element g
gH conjugate of the subgroup H by the element g
a | b a divides b
a - b a does not divide b

M |N M is a direct summand of N
⊕,⊗ direct sum, tensor product
∼= isomorphism

≤G subgroup relation up to conjugacy in G
↓GH restriction from G to H

↑GH induction from H to G

↑
⊗
G

H
tensor induction from H to G

↪→, � injective morphism, surjective morphism

∀, ∃, ∃! universal symbols “for all”, “there exists”, “there exists a unique”
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Introduction

The field of mathematics this thesis is concerned with is the theory of modular representations
of finite groups, which studies the modules over the group algebra kG of a finite group G over a field
k of characteristic p dividing the order of G. We shall even require that the field is algebraically
closed.

One of the main goals of the algebraist is to understand his field of study by classifying the
objects he works with. Thus in module theory, one wants to understand the indecomposable mod-
ules. Unfortunately, in modular representation theory of finite groups it was been proven that in
general it is impossible to classify the indecomposable modules. Said in mathematical terms, but
for exceptions, the group algebra of a finite group has wild representation type. In consequence,
the philosophy becomes that described by E. Dade in his celebrated introduction to his paper
[Dad78a]: [...we are reduced to looking for subfamilies which are, at the same time, small enough
to be classified and large enough to be useful.]

Given a p-group P , in [Dad78a], Dade describes two interesting families of kP -modules by
requiring their endomorphism algebra to fulfill a certain property, namely the family of endo-
permutation modules and the family endotrivial modules. A kP -module is called endo-permutation
if its endomorphism algebra is a permutation module, and it is called endotrivial if its endo-
morphism algebra decomposes as the direct sum of a trivial module and a projective module.
Endotrivial modules are particular cases of endo-permutation modules. These two notions give rise
to two group structures D(P ) and T (P ) called, the Dade group of the p-group P and the group of
endotrivial modules of P , respectively. In fact, T (P ) ≤ D(P ). Moreover, the problems of classi-
fying the endo-permutation and endotrivial modules are equivalent to describing the structure of
the groups D(P ) and T (P ), respectively. As mentioned in the abstract, this classification started
with Dade in 1978 and was completed in 2004 through the joint efforts of several mathematicians.

A first encounter with these notions raises two questions:
(1) Why require a trivial summand k in the endomorphism algebra of an endotrivial module?
(2) The group of endotrivial modules T (G) can be defined for an arbitrary finite group G, so why
isn’t there a Dade group for an arbitrary finite group?

These rather informal questions are in fact the real starting points of the work presented in
this text. The answers are both hidden in the following result by D. Benson and J. Carlson [BC86,
Thm. 2.1]:

13



Theorem 0.0.1 (Benson-Carlson).
Let k be an algebraically closed field of characteristic p (possibly p = 0), and let Λ be a Hopf algebra
with antipode over k (e.g. Λ = kG). If M and N are finite-dimensional indecomposable Λ-modules,
then

k |M ⊗N if and only if

{
(1) M ∼= N∗ ;

(2) p - dimk(N).

Moreover, if k is a direct summand of N∗ ⊗ N then it has multiplicity one, i.e. k ⊕ k is not a
summand.

This result is yet another evidence of a splitting in the theory between the indecomposable kG-
modules with k-dimension coprime to p, and those with k-dimension divisible by p. The philosophy
of this thesis being in some sense to further develop Dade’s idea to define interesting families of
modules by requiring a fixed property on the endomorphism algebras, this result is crucial. Let’s
dissect it deeper. First recall that if M is a kG-module, then Endk(M) ∼= M∗ ⊗M . Thus the
endomorphisms of an indecomposable kG-module M with k-dimension coprime to p have the form

Endk(M) ∼= k ⊕X

for some kG-module X. Therefore, asking that the trivial module is a direct summand in the
endomorphisms is very natural, because it is there anywhere, as soon as the dimension of the
module is coprime to p. The module M is endotrivial if X is a projective module, and when
G is a p-group, it is endo-permutation if X is a permutation module. But, asking that X is
projective or permutation are extremely restricting requirements. The main idea of this piece of
work is to relax these hypothesis and to allow the module X to be projective relatively to some
other f.g. kG-module V . We shall call such a module endotrivial relatively to the module V . We
shall soon discover that, for this notion to be interesting, it is also necessary to require that the
trivial summand k cannot appear a second time as summand a of X, which is equivalent to re-
quire that all the indecomposable summands of X have k-dimension divisible by p. In consequence
with relative endotrivial modules we shall study families of modules, all with dimension equal to ±1
modulo p, and with projectivity relative to V , families of modules all with dimension divisible by p.

From the categorical point of view, one reason for interest in endotrivial modules comes from
the fact that the tensor product with an endotrivial module always induces a self-equivalence of
the stable category stmod(kG). Likewise the tensor product with an endotrivial module always
induces a self-equivalence of the associated relative stable category.

The text itself is built according to the following pattern. In a first part (in Chapter 2) we
develop the theory of projectivity relative to kG-modules. It originates in the early 1990’s in an
unpublished piece of work by T. Okuyama [Oku91] and was then further developed by J. Carlson
and co-authors, essentially with a view to cohomological properties. Here we need to develop other
aspects of this theory, such as the behaviour of relative projectivity with respect to restrictions,
inflations, inductions, or vertices, sources and Green correspondence. We also need to develop the
associated relative homological algebra, and in particular properties of the relative syzygy modules.
Finally, [Oku91] being unpublished, this chapter is also an opportunity to bring together the known
and new material on relative projectivity to modules.

In a second part we define our main objects of study, that is the groups TV (G) of relatively
V -endotrivial modules of a group G. These groups generalise naturally the ordinary group T (G) of
endotrivial modules as they are simply obtained by replacing projectivity with relative projectiv-
ity, according to the process described above. As a consequence, the study of relative endotrivial
modules is always two-fold: on the one hand it is necessary to develop the properties of these
relative endotrivial modules themselves, and on the other hand, in order to reach this aim, it is
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crucial to master the behaviours of the associated relative projectivity. Hence the reason to be of
the first part. In a first time, we generalise many properties of the ordinary case to the relative
case, whereas in a second time we examine more accurately the three cases of p-nilpotent groups, of
groups with Klein Sylow 2-subgroups, and of groups having cyclic Sylow p-subgroups. In the latter
case, we provide a description of all the different subcategories of relatively projective modules,
and secondly give a complete classification of the groups of relative endotrivial modules.

In a third part, we come to a main motivation for an interest in the families of relative endotriv-
ial modules: they provide a natural context to build a version of the Dade group for an arbitrary
finite group G, and in the meantime, shed new light on the class of endo-p-permutation modules.
Oddly enough, for p-groups P , it took about a quarter of a century to classify endo-permutation
modules via the description of the structure of the Dade group and yet there is no version of this
group for an arbitrary finite group G.

In fact, one attempt to build such a group was made by J.-M. Urfer in [Urf06], where the
author generalises Dade’s compatibility equivalence relation to the class of endo-p-permutation
kG-modules and obtains a group structure on the resulting set of equivalence classes, which is
induced by the tensor product. Although this group has many similarities with the Dade group of
a p-group, it is unsatisfying in the sense that the classes constituting its elements do not have a
unique indecomposable representative, up to isomorphism.

Hence the idea that perhaps one should not use the whole class of endo-p-permutation modules,
but restrict to a subclass that has more similarities with the class of capped endo-permutation
modules.

This is where our relative endotrivial modules come in the picture. In the classical theory, en-
dotrivial modules are always regarded as special cases of endo-permutation modules. Here the idea
is to take this description upside down and realise that endo-permutation modules are endotrivial
modules relatively to the module V :=

⊕
Q�P k↑PQ, or in other words, relatively to the family of all

proper subgroups of the group P . As the latter condition easily passes to arbitrary finite groups,
it allows of a definition of a group structure D(G), induced by the tensor product ⊗k, on the set
of isomorphisms classes of indecomposable endo-p-permutation modules which are also endotrivial
relatively to the module W :=

⊕
Q�P k ↑GQ, where P is a Sylow p-subgroup of G. The result is

that this new group D(G) generalises naturally the Dade group in many ways. We shall call it the
generalised Dade group of the group G. Furthermore, using the general results we have developed
for the groups of relative endotrivial modules, it becomes easy to express the structure of D(G) in
terms of the Dade group of the Sylow p-subgroup P and in terms of the Green correspondents of
the one-dimensional representations of the normaliser NG(P ).





CHAPTER 1

Background Material

Conventions and Notations

Throughout this text we assume the reader is acquainted with elementary group, ring, module
and algebra theory. Unless otherwise specified, k shall denote an algebraically closed field of prime
characteristic p, G an arbitrary finite group with order divisible by p, P a finite p-group. We write
M∗ = Homk(M,k) for the k-dual of a kG-module M , ⊗ instead of ⊗k for the tensor product
balanced over k when no confusion is to be made. Modules are considered to be finitely generated
left modules. Moreover, we shall always consider modules up to isomorphism.

1.1. Modules for group algebras

We briefly review a few of the most fundamental properties of group algebras and their mod-
ules. The reader is refered to [CR90] and [Ben98a] for proofs and statements of these results in
wider generality. In particular, most of the results hereafter hold if the characteristic of the field is
zero or does not divide the order of the group, or if the field k is replaced with a ring with unity.

Let G be a finite group and k a field. The group algebra is the k-algebra kG whose elements are
the formal sums

∑
g∈G ag ·g for ag ∈ k. Addition is defined component-wise, while the multiplication

derives from the group law: ∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g ;

(
∑
g∈G

agg) · (
∑
g∈G

bgg) =
∑
g∈G

(
∑
h∈G

agh−1bh)g .

In addition kG is a k-vector space with a k-basis given by the elements of G. The data of a kG-
module is equivalent to the data of a representation of the group G over k. The group algebra
kG is a finite dimensional algebra and hence the Krull-Schmidt Theorem holds, and allows one to
reduce the study of kG-modules to that of indecomposable kG-modules.

17



18 1. BACKGROUND MATERIAL

Krull-Schmidt Theorem.
Let A be a k-algebra, finitely generated as a k-module, where R is complete commutative noetherian
local ring (such as for example a field or a complete discrete valuation ring). Then every finitely
generated left A-module M is expressible as a finite direct sum of indecomposable submodules.
Furthermore, if M =

⊕r
i=1Mi

∼=
⊕s

j=1Nj are two such expressions, then r = s and there is a
permutation σ ∈ Σn such that Mi = Nσ(i) for every integer 1 ≤ i ≤ r.

Maschke’s Theorem.
The group algebra kG is semi-simple if and only if the characteristic of the field k does not divide
the order of the group G.

As a consequence, the theory diverges into two parts, depending on whether the characteristic
of the field k divides the order of the group. In case kG is semi-simple, any irreducible kG-module
is projective. In this piece of work, as announces the title we are interested in the other framework,
where char(k) = p > 0 divides |G|, and where not every module is projective. This part of the
theory is called modular representation theory of finite groups. Also recall that the algebra kG is
symmetric and therefore the class of projective kG-modules coincides with the class of injective
kG-modules.

Module categories. Let mod(kG) denote the category of finitely generated left kG-modules
and Mod(kG) the category of all left kG-modules. Moreover, let stmod(kG) denote the stable
category of finitely generated kG-modules modulo projectives. The objects in stmod(kG) are the
same as those in mod(kG) and the morphisms from a module M to a module N are given by

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) denotes the set of all morphisms from M to N that factor through a projec-
tive module. A morphism f : M −→ N is said to factor through a projective module if there exists
P ∈ mod(kG) and two morphisms α ∈ HomkG(M,P ) and β ∈ HomkG(P,N) such that f = βα.

A useful property of mod(kG) is the following.

Lemma 1.1.1.

A short exact sequence 0 −→ A
α−→ B

β−→ C −→ 0 in mod(kG) splits if and only if B ∼= A⊕ C.

Of course, the necessary condition is true in any abelian category. The converse is a particu-
larity of module categories over finite-dimensional algebras. See [Car96, Lem. 6.12] for a proof.

Group operations, tensor products, Homs and duality.

Restriction. If H ≤ G, then kH is a subring of kG and so any kG-module M can be restricted
to a kH-module, which we write as M ↓GH , or ResGH(M). In other words, restriction can be seen as
the forgetful functor

ResGH : mod(kG) −→ mod(kH)
M 7−→ M ↓GH .

This functor is exact, for obvious trivial reasons.

Induction. If L is a kH-module, then the induced module in mod(kG) is defined as the extension

of scalars L↑GH := kG⊗kH L, also denoted IndGH(M). Since kG is a free right kH-module, of rank
|G : H|, there is an isomorphism of k-vector spaces L↑GH∼=

⊕
x∈[G/H] x⊗L, where [G/H] denotes a

complete set of representatives of the left cosets of H in G, and where x⊗L denotes the conjugate



1.1. MODULES FOR GROUP ALGEBRAS 19

module of L by x (x⊗L is also denoted xL and it is a k[ xH]-module). Moreover, induction can be
seen as the functor

IndGH : mod(kH) −→ mod(kG)
L 7−→ L↑GH ,

which is exact, again because kG is a free right kH-module.

Note that if a short sequence of kH-modules 0 −→ A
α−→ B

β−→ C −→ 0 is exact, then so is the

induced sequence 0 −→ A ↑GH
α↑GH−−→ B ↑GH

β↑GH−−→ C ↑GH−→ 0. Moreover, one splits if and only if the
other splits.

Inflation. If N E G, any k[G/N ]-module V can be seen as a kG-module, denoted InfGG/N (V ) and

called the inflation of the module V from G/N to G. This operation also yields an exact functor

InfGG/N : mod(k[G/N ]) −→ mod(kG).

Tensor induction. Let H ≤ G and L be a kH-module. Let |G : H| =: n and consider the wreath
product Σn oHn, whose elements are of the form (σ;h1, . . . , hn) with σ ∈ Σn, (h1, . . . , hn) ∈ Hn,
and whose multiplication is given by: (σ′;h′1, . . . , h

′
n) · (σ;h1, . . . , hn) = (σ′σ;h′σ(1)h1, . . . , h

′
σ(n)hn).

Given cosets representatives g1, . . . , gn of H in g, for g ∈ G, we can write g · gj = gσ(j)hj for
uniquely defined elements σ ∈ Σn and (h1, . . . , hn) ∈ Hn. In other words, there is an injective
group homomorphism i : G −→ Σn oHn : g −→ (σ;h1, . . . , hn). Now, if M ∈ mod(kH), then the
n-fold tensor product M⊗n can be made into a Σn oHn-module via

(σ;h1, . . . , hn) · (m1 ⊗ · · · ⊗mn) := hσ−1(1)mσ−1(1) ⊗ · · · ⊗ hσ−1(n)mσ−1(n) .

The tensor induced module is defined to be L↑⊗
G

H
:= i∗(M) = (M⊗n) ↓ΣnoH

n

G . The kG-module

structure on L↑⊗
G

H
does not depend on the choice of the coset representatives. Tensor induction is

well-behaved with respect to the tensor product ⊗k, but not to the direct sum: if L1 and L2 are

kH-modules, then (L1⊗L2)↑⊗
G

H
∼= L1

↑
⊗
G

H
⊗L2

↑
⊗
G

H
and (L1⊕L2)↑⊗

G

H
∼= L1

↑
⊗
G

H
⊕L2

↑
⊗
G

H
⊕L′, where L′ is

the direct sum of modules induced from subgroups K containing the intersection of the conjugates
of H.

Here are summarized some of the most useful relations between tensor products, Homk(−,−)
and group operations.

Proposition 1.1.2.
Let H,K be subgroups of G, N a normal subgroup of G. Let M,S ∈ mod(kG), L ∈ mod(kH),
U ∈ mod(kK) and V ∈ mod(k[G/N ]).

(a) There is a natural isomorphism of kG-modules θM,S : M∗ ⊗k S −→ Homk(M,S) defined
by θM,S(f ⊗ s)(m) := f(m) · s. In particular Endk(M) ∼= M∗ ⊗M .

(b) Frobenius Reciprocity. There is a natural isomorphism of kG-modules:

L↑GH ⊗M ∼= (L⊗M ↓GH)↑GH
(c) Nakayama Relations. There are natural isomorphisms of kG-modules

HomkG(L↑GH ,M) ∼= HomkH(L,M ↓GH)

HomkG(M,L↑GH) ∼= HomkH(M ↓GH ,M)

or, in other words, the functors IndGH and ResGH are adjoint functors on both sides.

(d) Mackey Decomposition Formula. There is an isomorphism of kK-modules

L↑GH↓GK ∼=
⊕

x∈[K\G/H]

( xL)↓
xH
xH∩K↑KxH∩K

where [K\G/H] denotes a set of representatives of the (K,H) double cosets in G.
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(e) A consequence of the Mackey formula is the following:

L↑GH ⊗U ↑GK ∼=
⊕

x∈[K\G/H]

(( xL)↓
xH
xH∩K ⊗U ↓KxH∩K)↑GxH∩K

(f) Let ϕ : H/H ∩ N −→ HN/N be the canonical group isomorphism. Restriction and
inflation commute in the following way:

ResGH ◦ InfGG/N (V ) ∼= InfHH/N∩N ◦ Iso(ϕ−1) ◦ Res
G/N
HN/N (V )

(g) If moreover N ≤ H and W ∈ mod(k[H/N ]), then induction and inflation commute in the
following way:

IndGH ◦ InfHH/N (W ) = InfGG/N ◦ Ind
G/N
H/N (W )

Vertices, sources and Green correspondence. The theory of vertices and sources estab-
lishes relationships between representation theory and the p-local structure of the group G. We
shall make extensive use it.

Proposition-Definition 1.1.3.
Let M be a kG-module and H a subgroup of G. Then M is called projective relative to H iff it is
a direct summand of some module induced from H, or equivalently, iff it is a direct summand of
M ↓GH↑GH .

Notice that a kG-module is projective if and only if it is projective relative to the trivial
subgroup {1}. It is also a corollary that if H is a subgroup of G containing a Sylow p-subgroup of
G, then every kG-module is projective relatively to H.

Definition 1.1.4.

Let H ≤ G. A short exact sequence of kG-modules 0 −→ A
α−→ B

β−→ C −→ 0 is called H-split if

the restricted sequence 0 −→ A↓GH
α−→ B ↓GH

β−→ C ↓GH−→ 0 splits.

Proposition-Definition 1.1.5.
Let U be an indecomposable kG-module.

(a) There is a p-subgroup Q of G, unique up to conjugacy in G, such that U is relatively
H-projective for a subgroup H of G if and only if H contains a G-conjugate of Q. Such
a subgroup Q is called a vertex of U .

(b) There is an indecomposable kQ-module S, unique up to conjugacy in NG(Q), such that
U |S ↑GQ. Then, the module S is called a source of U .

One of the main tools of modular representation theory is Green’s correspondence theorem
that transfers the study of the indecomposable kG-modules from G to proper subgroups of G. We
refer the reader to [CR90, §20] for a proof, as well as for a statement of the result in full generality
and use this section to set up notation for the next chapters.

An admissible triple (G,H,D) for the Green correspondence consists of a finite group G, a
p-subgroup D and a subgroup H containing NG(D). For each such triple, we define three families
of subgroups:

X := {xD ∩D |x ∈ G \H} , Y := {xD ∩H |x ∈ G \H} A := {D∗ ≤ D |D∗ �G X} .
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Theorem 1.1.6 (Green Correspondence).
Let (G,H,D) be an admissible triple as above. Then, there exists a bijection

Γ : [M ]� [N ] : Gr

from the set of isomorphism classes of indecomposable kG-modules M with vertex in A to the set
of isomorphism classes of indecomposable kH-modules N with vertex in A. An indecomposable
kG-module M with vertex in A corresponds to an indecomposable kH-module N with the same
vertex if and only if the following equivalent conditions hold:

(i) M ↓GH∼= N ⊕ (Y − proj); (ii) N ↑GH∼= M ⊕ (X − proj).
Furthermore, corresponding modules have the same source as well as the same vertex.

Module varieties. Sources for a complete introduction to module varieties are [Ben98b] and
[CTVEZ03].

By the Evens-Venkov Theorem, the cohomology ring H∗(G, k) is a finitely generated k-algebra,
and thus it is noetherian. Define VG(k), or simply VG, to be the maximal ideal spectrum ofH∗(G, k),
topologized by the Zariski topology. This is a homogeneous affine variety.

For modules M,N ∈ mod(kG), Ext∗kG(M,N) is a finitely generated module over H∗(G, k) =
Ext∗kG(k, k). For any kG-module M , let JG(M) be the annihilator in H∗(G, k) of the cohomology
ring Ext∗kG(M,M). We can take JG(M) to be the annihilator in H∗(G, k) of the identity element
IdM . By definition, the support variety of the module M is the closed subset VG(M) := VG(JG(M))
of VG(k) consisting of all maximal ideals that contain JG(M). The variety VG(M) is homogeneous.
Moreover varieties have the following properties:

Properties 1.1.7.
Let M and N be kG-modules.

(a) VG(M) = 0 if and only if M is projective.
(b) VG(M) = VG(M∗).
(c) VG(M ⊕N) = VG(M) ∪ VG(N).
(d) VG(M ⊗N) = VG(M) ∩ VG(N).

If G is an elementary abelian p-group, then the notion of support variety coincides with the notion
of rank variety which is defined as follows. Let G =< x1, . . . , xn >. For α = (α1, . . . , αn) ∈ kn, let
uα = 1 +

∑n
i=1 αi(xi − 1). For a kG-module M , define the rank variety of M to be

V rG(M) = {α ∈ kn |M ↓〈uα〉 is not a free k〈uα〉-module} ∪ {0}
where M ↓〈uα〉 is the restriction of M to the subalgebra k〈uα〉 of kG.

1.2. Endo-permutation modules, endotrivial modules and relatives

Our main goal is the study of classes of modules, that we shall call relative endotrivial modules,
and that will turn out to be closely related to endotrivial and endo-permutation modules. We
review here the definitions and basic properties of the two latter classes of modules. For a nice
and shallow introduction to the subject we refer the reader to the survey paper Endo-permutation
modules, a guided tour, by J. Thévenaz [Thé07], which gives an overview of the main steps of the
recent classification of endo-permutation modules, and is also a great source for further material
related to the subject.
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Definition 1.2.1.
Let G be a finite group and P be a finite p-group.

(a) A kG-module is called a permutation module iff it possesses a G-invariant k-basis.
(b) A kG-module is a p-permutation module iff it is isomorphic to a direct summand of

permutation kG-module.
(c) A kP -module M is called an endo-permutation module iff its endomorphism algebra

Endk(M) is a permutation kP -module. Furthermore, an endo-permutation module M
is capped if it possesses an indecomposable summand with vertex P .

(c) A kG-module M is called an endo-p-permutation module iff Endk(M) is a p-permutation
kG-module.

(d) A kG-module M is termed endotrivial iff Endk(M) ∼= M∗ ⊗k M ∼= k ⊕ (proj), where
(proj) denotes a projective module.

Remarks 1.2.2.
It follows from the definitions that:
— For a p-group the notions of permutation and p-permutation module coincide. So do the notions
of endo-permutation and endo-p-permutation modules.

— Any permutation kP -module is an endo-permutation kP -module and any p-permutation kG-
module is an endo-p-permutation kG-module.

— Any endotrivial kG-module is a an endo-p-permutation kG-module.

— If X is a G-invariant k-basis of a permutation kG-module M , then the decomposition of X into
G-orbits yields a direct sum decomposition of M into summands, each isomorphic to a permutation
module k[G/H] with H the stabiliser of an element x ∈ X in the considered G-orbit.

— For a p-group P , the modules k[P/Q] are indecomposable for every subgroup Q of P (since
their socle is clearly indecomposable). By contrast this is not true in general if G is not a p-group
and the indecomposable direct summands of k[G/H] are, in general, not permutation modules any
more, hence the notion of a p-permutation module. — Permutation modules are stable under the
operations of restriction, induction and conjugation.

— For instance, kP is a permutation module and thus an endo-permuation module but it is not
endotrivial.

— For instance, the trivial kG-module k is endo-p-permutation, p-permutation and endotrivial.

Proposition 1.2.3 (Endo-permutation modules and the Dade group, [Dad78a]).

(a) The class of endo-permutation modules is closed under taking direct summands, duals,
tensor products (over k), Heller translates, restriction to a subgroup and tensor induction
to an overgroup.

(b) An endo-permutation kP -module M is capped if and only if the trivial module is a direct
summand of Endk(M).

(c) If M is capped, then any two indecomposable summands of M with vertex P are isomor-
phic. This unique summand, up to isomorphism, is called the cap of M and is written
M0.

(d) An equivalence relation ∼ on the class of endo-permutation module is defined by: M ∼ N
if and only if M0

∼= N0.
(e) Let D(P ) denote the resulting set of equivalence classes. Then D(P ) is an abelian group

for the following law:
[M ] + [N ] ∼= [M ⊗N ]

The zero element is the class [k] of the trivial kP -module, while the opposite of a class [M ]
is the class of the dual module [M∗]. This group is called the Dade group of the group P .
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Proposition 1.2.4 (Endotrivial modules).

(a) The class of endotrivial modules is closed under taking duals, tensor products (over k),
Heller translates, restriction to a subgroup.

(b) An endotrivial kG-module M can be written in a unique way (up to isomorphism) as
M = M0 ⊕ F , where M0 is indecomposable and endotrivial and F is a projective kG-
module.

(c) An equivalence relation ∼ on the class of endotrivial modules is defined by: M ∼ N if
and only if M0

∼= N0.
(d) Let T (G) denote the resulting set of equivalence classes. Then T (G) is an abelian group

for the following law:
[M ] + [N ] ∼= [M ⊗N ]

The zero element is the class [k] of the trivial kG-module, while the opposite of a class
[M ] is the class of the dual module [M∗]. This group is called the group of endotrivial
modules of the group G.

(e) If G is a p-group, then an endotrivial kG-module is a capped endo-permutation module
with cap M0, and the group T (G) embeds as a subgroup of the Dade group D(G).

The classification of endo-permutation modules, through the description of the structure of the
Dade group, started with [Dad78a], [Dad78b] and independently [Alp77]. It was completed in 2004
by S. Bouc in [Bou06]. In between, crucial steps for this classification include the classification of
the endotrivial modules of a p-group. All this was achieved through the work of [Pui90], [BT00],
[CT00], [CT04], [CT05], [Bou04] and [BM04].
At this stage there is no classification for endotrivial modules in general. Some cases are treated
in the following articles: groups with a cyclic Sylow p-subgroup in [MT07], groups with a normal
Sylow p-subgroup in [Maz07], symmetric and alternating groups in [CMN09], finite groups of Lie
type in [CMN06], p-solvable groups in [CMT11a], groups with quaternion or semi-dihedral Sylow
2-subgroups in [CMT11b].

The class of endo-p-permutation modules was mainly studied in [Urf06] and [Urf07]. Main
properties are the following:

Proposition 1.2.5 (Endo-p-permutation modules).
The class of endo-p-permutation modules is closed under taking direct summands, duals, tensor
products (over k), restriction to a subgroup and tensor induction to an overgroup.

More detailed properties of endotrivial, endo-permutation and endo-p-permutation modules
shall be recalled in the following chapters in relevant situations.





CHAPTER 2

Projectivity Relative to a Module

The purpose of this first chapter is to provide a wide-ranging treatment of the subject of
relative projectivity with respect to a kG-module. It originates in the early 1990’s in T. Okuyama’s
unpublished piece of work [Oku91]. Afterwards, it was further developed and used by J. Carlson,
C. Peng and W.Wheeler in [CP96] and [CPW98]. A more detailed reference is Carlson’s Lectures
in Mathematics [Car96].

Relative projectivity to a module, however, is just a special case of the relative homological
algebra generated by a projective class of epimorphisms as described in [HS71, Chap. 10]. It also
coincides with the relative projectivity relative to a pair of adjoint functors as described in [HS71,
Chap. 9]. For the sake of completeness, sections 1,2,3,4,5, 11 and 12 essentially give an overview
of the properties of relative projectivity expounded in the aforementioned references, whereas the
other sections develop further material.

2.1. Definitions, notation, terminology

Definition 2.1.1 ([Oku91]).
Let V be a kG-module.

(a) A finitely generated kG-module M is termed projective relative to the module V or rela-
tively V -projective, or simply V -projective if there exists a kG-module N such that M is
isomorphic to a direct summand of V ⊗k N .

(b) A short exact sequence E : 0 −→ A
α−→ B

β−→ C −→ 0 in mod (kG) is termed V -split

if the tensored sequence V ⊗ E : 0 −→ V ⊗A V⊗α−−−→ V ⊗B V⊗β−−−→ V ⊗ C −→ 0 splits.

Notation and Terminology.
The subcategory of all V -projective modules of mod(kG) shall be denoted by Proj(V ) and the class
of V -projective indecomposable modules by IProj(V ). A module U is said to be a generator for
Proj(V ) iff Proj(U) = Proj(V ). Moreover, in computations we shall often denote by (V −proj) a
module in Proj(V ), which does not need to be specified, and simply (proj) for a projective module.
We shall also always consider the modules in Proj(V ) and IProj(V ) up to isomorphism.

25
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Categorical setting. From the point of view of category theory, relative projectivity has the
following two characteristics:

Firstly, projectivity relative to a kG-module V gives rise to an analogue of the stable module
category stmod(kG). Indeed, define the V -stable category to be the category stmodV (kG) in which
the objects are those in mod(kG) and the morphisms from a module M to a module N are given
by

HomV
kG(M,N) = HomkG(M,N)/PHomV

kG(M,N),

where PHomV
kG(M,N) denotes the subspace of HomkG(M,N) consisting of all morphisms from M

to N that factor through a V -projective module.
[CPW98, Sect. 6] proves that stmodV (kG) is a triangulated category. (See [CPW98] for a

description of the distinguished triangles.) Moreover (stmodV (kG),⊗k, k) can be seen as a ⊗-
triangulated category , when equipped with the symmetric monoidal structure given by the tensor
product over k,

⊗k : stmodV (kG)× stmodV (kG) −→ stmodV (kG) ,

which is exact in each variable, and with unit k.

Secondly, the subcategories Proj(V ) are functorially finite in the sense of [AS80] and therefore
the homological algebra generated by Proj(V ) also coincides with their notion of homological
algebra generated by a functorially finite subcategory.

2.2. The trace map and first properties

To any kG-module V one can associate a kG-homomorphism called a trace map and defined
by:

TrV : V ∗ ⊗ V −→ k
f ⊗ v 7−→ f(v)

Indeed TrV ◦ θ−1
V,V is the ordinary trace of matrices. (Where θ−1

V,V is the natural isomorphism of

proposition 1.1.2.)

As Okuyama points out in [Oku91], the real point of origin of the notion of relative projectivity
to a module is the following crucial lemma due to Auslander and Carlson in [AC86].

Lemma 2.2.1 ([AC86], [Car96]).
Let V be a kG-module.

(a) If p - dimk(V ), then the trace short exact sequence

0 −→ ker(TrV ) −→ V ∗ ⊗ V TrV−→ k −→ 0

splits. In consequence, V ∗ ⊗ V ∼= k ⊕ ker(TrV ).

(b) Furthermore, the trace s.e.s. is always V -split, that is the s.e.s.

0 −→ V ⊗ ker(TrV ) −→ V ⊗ V ∗ ⊗ V V⊗TrV−−−−−→ V ⊗ k −→ 0

splits. In consequence, V |V ⊗ V ∗ ⊗ V .

(c) Furthermore, if p | dimk(V ), then V ⊕ V |V ⊗ V ∗ ⊗ V .

Proof.
(a) Let n := dimk(V ), let {vi}1≤i≤n be a k-basis for M and let {v∗i }1≤i≤n be its dual basis.

Then, r :=
∑n
i=1 v

∗
i ⊗ vi is the element in V ∗ ⊗ V corresponding to idV ∈ Endk(V ) ∼=

V ∗ ⊗ V and there is a kG-homomorphism
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I: k −→ V ∗ ⊗ V
1k 7−→ r .

It is easy to check that the homomorphism 1
dimk(V )I is a kG-section for TrV .

(b) The map

V ⊗ k −→ V ⊗ V ∗ ⊗ V
v ⊗ 1 7−→

∑n
i=1 v ⊗ v∗i ⊗ vi

is a kG-section for the map V ⊗ TrV , whatever the value of dimk(V ) modulo p.

(c) Define

ψ: V ⊗ V ∗ ⊗ V −→ V ⊕ V
v ⊗ f ⊗ v′ 7−→ (f(v)v′, f(v′)v)

which is a surjective kG-homomorphism. In addition, the assumption that dimk(V ) is 0
in k implies that the kG-homomorphism

θ: V ⊕ V −→ V ⊗ V ∗ ⊗ V
(v, v′) 7−→

∑n
i=1 v ⊗ v∗i ⊗ vi +

∑
i vi ⊗ v∗i ⊗ v′

is a section for ψ. The result follows.

�

The following omnibus proposition sums up elementary properties of relative projectivity, that
we shall use extensively in the sequel of this text.

Proposition 2.2.2 (Omnibus properties).
Let A,B,M,U, V be kG-modules.

(a) Any direct summand of a V -projective module is V -projective.

(b) If U ∈ Proj(V ), then Proj(U) ⊆ Proj(V ).

(c) If p - dimk(V ) then Proj(V ) = mod(kG).

(d) Proj(V ) = Proj(V ∗).

(e) Proj(U ⊕ V ) = Proj(U)⊕ Proj(V ).

(f) Proj(U) ∩ Proj(V ) = Proj(U ⊗ V ) ⊇ Proj(U)⊗ Proj(V ) .

(g) Proj(
⊕n

j=1 V ) = Proj(V ) = Proj(
⊗m

j=1 V ) ∀m,n ∈ N\{0}.
(h) C ∼= A⊕B is V -projective if and only if both A and B are V -projective.

(i) Proj(V ) = Proj(Ωn(V )) for all n ∈ Z.

(j) Proj(V ) = Proj(V ∗ ⊗ V ).

(k) M ∈ Proj(V ) if and only if Endk(M) ∼= M∗ ⊗M ∈ Proj(V ).
(l) Let H E G, let g ∈ G, and let W ∈ mod(kH). Then gProj(W ) = Proj( gW ). In

particular, if W is G-invariant, then Proj( gW ) = Proj(W ) for all g ∈ G and a kH-
module M is W -projective if and only if all its G-conjugates gM are W -projective.

(m) Proj(kG) ⊆ Proj(V ) for every kG-module V . Moreover, Proj(kG) is equal to the whole
collection of projective modules in mod(kG) and Proj(kG) = Proj(P ) for any projective
kG-module P .

Apart from (l), all these properties appear either in [Oku91], or in [Car96, Sect. 8], or in [CP96,
Sect. 3.3]. However, they do not necessarily come with a proof.

Moreover we note that statement (f) was mistyped (and not proven) in [CP96, Lem. 3.3(iii)]
as Proj(U) ⊗ Proj(V ) = Proj(U ⊗ V ) instead of Proj(U) ∩ Proj(V ) = Proj(U ⊗ V ). We note
that in general, Proj(U)⊗ Proj(V ) 6= Proj(U ⊗ V ). For instance, take G := C9 the cyclic group

of order 9, U := k↑C9

C3
and V := kG. Then, Proj(V ) = Proj(U⊗V ), the set of projective modules,
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whereas it will be easy to compute from the results we obtain in Chapter 5 for cyclic p-groups that
Proj(U)⊗ Proj(V ) = {kG⊕3n |n ∈ N}.

Proof.

(a) Is straightforward from the definition.
(b) Let M ∈ Proj(U), then M |U ⊗ N for some kG-module N . In addition U ∈ Proj(V )

means that U |V ⊗ L for some kG-module L. Thus, M |V ⊗N ⊗ L, i.e. M ∈ Proj(V ).

(c) If p - dimk(V ), the trace map TrV : V ∗ ⊗ V −−� k splits by 2.2.1. Therefore k |V ∗ ⊗ V .
So that for every M ∈ mod(kG), M |V ∗ ⊗ V ⊗M . Hence Proj(V ) = mod(kG).

(d) By part (b) of 2.2.1, V |V ⊗ V ∗ ⊗ V . Thus, V ∈ Proj(V ∗) and dually V ∗ ∈ Proj(V ).
Hence by (b) Proj(V ) = Proj(V ∗).

(e) Let M ∈ Proj(U ⊕ V ). Then there is N ∈ mod(kG) such that

M | (U ⊕ V )⊗N ∼= (U ⊗N)⊕ (V ⊗N) .

By Krull-Schmidt we can write M ∼= MU ⊕MV with MU |U ⊗N and MV |V ⊗N . Then
MU ∈ Proj(U) and MV ∈ Proj(V ), so that M ∈ Proj(U) ⊕ Proj(V ). For the reverse
inclusion, let M ∈ Proj(U)⊕ Proj(V ). Write M ∼= MU ⊕MV with MU ∈ Proj(U) and
MV ∈ Proj(V ). Thus MU |U ⊗ NU and MV |V ⊗ NV for some NU , NV ∈ mod(kG).
Then,

MU ⊕MV | (U ⊕ V )⊗NU ⊕ (V ⊕ U)⊗NV ∼= (U ⊕ V )⊗ (NU ⊕NV )

whence M ∈ Proj(U ⊕ V ), and the result follows.

(f) Proj(U ⊗ V ) ⊆ Proj(U) ∩ Proj(V ) by the very definition of U ⊗ V -projectivity. If
M ∈ Proj(U) ∩ Proj(V ), then there are kG-modules N and L such that M |U ⊗N and
M |V ⊗ L. By 2.2.1 M |M ⊗M∗ ⊗M . In consequence:

M |M ⊗M∗ ⊗M |U ⊗N ⊗M∗ ⊗ V ⊗ L ∼= U ⊗ V ⊗N ⊗M∗ ⊗ L .
Hence Proj(U) ∩ Proj(V ) = Proj(U ⊗ V ). In addition, if M ∈ Proj(U) ⊗ Proj(V ),
that is M ∼= MU ⊗MV with MU ∈ Proj(V ) and MV ∈ Proj(V ), then there are modules
NU , NV ∈ mod(kG) such that MU |U ⊗NU and MV |V ⊗NV . This yields

M ∼= MU ⊗MV |U ⊗NU ⊗ V ⊗NV ∼= U ⊗ V ⊗NU ⊗NV .
Hence Proj(U ⊗ V ) ⊇ Proj(U)⊗ Proj(V ).

(g) Follows from (e) and (f).

(h) The necessary condition is given by (a). For the converse, assume that A,B ∈ Proj(V ),
then by (e), C ∼= A⊕B ∈ Proj(V )⊕ Proj(V ) = Proj(V ⊕ V ) = Proj(V ) .

(i) For all n ∈ Z, Ωn(k) ⊗ V ∼= Ωn(V ) ⊕ (proj), whence Proj(Ωn(V )) ⊆ Proj(V ) by (b).
Now Ωn(V )⊗Ω−n(V ) ∼= Ω0(V )⊕(proj), so that Proj(Ω0(V )) ⊆ Proj(Ωn(V )). Moreover
V ∼= Ω0(V )⊕ (proj) ∈ Proj(Ω0(V )) by (m) below. Hence Proj(V ) ⊆ Proj(Ω0(V )) and
the result follows.

(j) By (d) and (g), Proj(V ∗⊗V ) = Proj(V ∗)∩Proj(V ) = Proj(V )∩Proj(V ) = Proj(V ).

(k) By (j), Proj(M) = Proj(M∗ ⊗ M). Thus by (c), if M ∈ Proj(V ), then
Proj(V ) ⊇ Proj(M) = Proj(M∗ ⊗ M), so that in particular M∗ ⊗ M ∈ Proj(V ),
and conversely.

(l) Let M be a kH-module. Then M ∈ Proj(W ) if and only if M |W ⊗ N for some
N ∈ mod(kG) if and only if gM | g(W ⊗N) ∼= gM ⊗ gN if and only if gM ∈ Proj( gW ) .

(m) Recall that V ⊗ kG ∼= kG⊕dimkV , hence kG is V -projective and Proj(kG) ⊆ Proj(V )
by (b). In particular, if P is a projective module, then Proj(kG) ⊆ Proj(P ). In addi-
tion, P is a direct summand of kGn for some n ∈ N, hence P ∈ Proj(kG) and by (b)
Proj(P ) ⊆ Proj(kG).

�
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2.3. V -split short exact sequences

Proposition 2.3.1 ([Car96]).

Let E : 0 −→ A
α−→ B

β−→ C −→ 0 be a V -split short exact sequence in mod(kG) and M a
V -projective module. Then, the tensored sequence

E ⊗M : 0 −→ A⊗M α⊗M−→ B ⊗M β⊗M−→ C ⊗M −→ 0

splits.

Proof (Sketch): Since the M |V ⊗ N for some module N ∈ mod(kG), the exact sequence
E ⊗M is a direct summand of the exact sequence E ⊗ V ⊗N , which splits, and therefore so does
E ⊗M . �

Corollary 2.3.2.

Let E : 0 −→ A
α−→ B

β−→ C −→ 0 be a short exact sequence in mod(kG).

(a) Let U, V ∈ mod(kG) such that Proj(U) = Proj(V ). Then, E is U -split if and only if E
is V -split.
In particular, E is V -split if and only if E is V ∗-split if and only if E is Ωn(V )-split.

(b) E is V -split if and only if E∗ is V -split.

Proof.
(a) If E is U -split then E ⊗W splits for every W ∈ Proj(U) by 2.3.1, in particular E ⊗ V

splits, i.e. E is V -split. Swap the roles of U and V to obtain the converse.
(b) It is clear that E is V -split if and only if E∗ is V ∗-split. Then (a) yields the result because

Proj(V ) = Proj(V ∗).

�

2.4. Equivalent definitions

Finally, we have all the tools in hand to establish the following equivalent definition for V -
projectivity.

Proposition 2.4.1.
Let M and V be kG-modules. Then the following statements are equivalent:

(a) M is V -projective;

(b) M |V ∗ ⊗ V ⊗M ;
(c) Universal property of V -projective modules: for every surjective V -split kG-homo-

morphism β : B −→ C and every kG-homomorphism θ : M −→ C with M ∈ Proj(V ),
there exists a kG-homomorphism µ : M −→ B such that the following diagram commutes:

M

θ

��

∃µ

~~
B

β
// // C

Proof.
(b) ⇒ (a): is obvious.
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(c)⇒ (b): Since TrV is V -split, so is TrV ⊗M . Therefore, taking θ = IdM in (c) yields the existence
of a kG-section µ : M −→ V ∗ ⊗ V ⊗M for TrV ⊗M . Hence V ∗ ⊗ V ⊗M ∼= M ⊕ ker(TrV ⊗M) .

(a) ⇒ (c): There is a commutative diagram

HomkG(M,B)

	

β∗ //

∼=
��

HomkG(M,C)

∼=
��

HomkG(k,M∗ ⊗B)
(1⊗β)∗

// HomkG(k,M∗ ⊗ C)

Now, since M is V -projective, so is M∗ by the omnibus properties of V -projectivity. Thus the
sequence

0 −→M∗ ⊗ ker(β) −→M∗ ⊗B 1⊗β−−−→M∗ ⊗ C −→ 0

splits. Therefore, the kG-homomorphism (1 ⊗ β)∗ is onto and, by commutativity of the diagram,
so is β∗. Thus there exists a map µ ∈ HomkG(M,B) such that θ = β∗(µ) = βµ. �

Remark 2.4.2.
A kG-module M shall be termed V -injective if and only if it is V -projective. In fact, a proper
definition should be established by dualizing the universal property of V -projective modules. How-
ever, since kG is symmetric, as in the case of ordinary projectivity, this would produce a class of
modules coinciding with the class of V -projective modules.

2.5. Projectivity relative to subgroups

The notion of projectivity relative to a module encompasses the notion of projectivity relative
to a subgroup, widely used in the theory of vertices and sources. We refer to [Alp86] and [CR90]
for presentations of this theory.

Lemma 2.5.1.
Let G be a finite group and H be a subgroup. Let M be a kG-module. Then

(a) M is projective relative to the subgroup H if and only if M is projective relative to the
kG-module k↑GH ;

(b) a short exact sequence E : 0 −→ A −→ B −→ C −→ 0 in mod(kG) is H-split if and only
if it is k↑GH-split.

Proof.

(a) M is projective relatively to H if and only if

M |M ↓GH↑GH∼= (k ⊗M ↓GH)↑GH∼= k↑GH ⊗M

therefore M ∈ Proj(k ↑GH). Conversely, M ∈ Proj(k ↑GH) if and only if there exists a
module N ∈ mod(kG) such that M | k↑GH ⊗N ∼= (k⊗N ↓GH)↑GH which is a module induced
from H, thus M is H-projective.
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(b) Recall that a short exact sequence is H-split if and only if it splits upon restriction to H.
There is a commutative diagram:

E ⊗ k↑GH : 0 // A⊗ k↑GH
	∼=

��

α⊗1 // B ⊗ k↑GH
∼=
��

β⊗1 //

	

C ⊗ k↑GH
∼=
��

// 0

E ↓GH↑GH : 0 // A↓GH↑GH // B ↓GH↑GH // C ↓GH↑GH // 0

Thus, the top sequence splits if and only if the bottom sequence splits. In addition E ↓GH↑GH
splits if and only if E ↓GH splits (see 1.1). Hence the result.

�

Furthermore, the notion of projectivity relative to a module also encompasses the notion of
projectivity relative to a familly of subgroups as described in [Thé85] or [Knö78] . With the
advantage that it becomes somewhat less cumbersome when we look at it as projectivity relative
to a single module.

Lemma 2.5.2.
Let G be a finite group and H be a family of subgroups of G. Let M be a kG-module. Then

(a) M is projective relative to the family H if and only if M is projective relative to the
kG-module V (H) :=

⊕
H∈H k↑GH ;

(b) a short exact sequence E : 0 −→ A −→ B −→ C −→ 0 in mod(kG) is H-split if and only
if it is V (H)-split.

Proof.

(a) If M ∈ Proj(H) then M ∼=
⊕

i∈IMi, with I a finite indexing set and for all i ∈ I

Mi ∈ Proj(Hi) = Proj(k↑GHi) for some Hi ∈ H. Therefore

M ∈
⊕
i∈I

Proj(k↑GHi) = Proj(
⊕
i∈I

k↑GHi) ⊆ Proj(
⊕
H∈H

k↑GH)

since
⊕

i∈I k↑GHi |
⊕

H∈H k↑GH .

Conversely, if M ∈ Proj(
⊕

H∈H k ↑GH) =
⊕

H∈H Proj(k ↑GH), then M decomposes as

M ∼=
⊕

H∈HMH with MH ∈ Proj(k↑GH), that is M is projective relatively to H.

(b) The sequence E is H-split if and only if it has a kH-linear section for all H ∈ H, that is
if and only if it is k↑GH -split for all H ∈ H by the preceeding lemma. But

E ⊗ V (H) ∼= E ⊗ (
⊕
H∈H

k↑GH) ∼=
⊕
H∈H

E ⊗ k↑GH

as short exact sequences, thus if E is H-split, then it is also V (H)-split. Indeed, taking
the direct sum of the sections on each summand E ⊗ k↑GH gives a section for E ⊗ V (H).
For the converse recall that if E is assumed to be V (H)-split, then by Proposition 2.3.1,
E⊗N splits for any V (H)-projective module N . In particular, k↑GH∈ Proj(

⊕
H∈H k↑GH)

for all H ∈ H, hence E ⊗ k ↑GH splits for all H ∈ H, or in other words, by the preceding
lemma, E has a kH-linear section for every H ∈ H.

�

Notation.
In the sequel of this text, if H is a family of subgroups, then we always write V (H) :=

⊕
H∈H k↑GH

and for simplicity, we also sometimes write Proj(H) instead of Proj(V (H)).
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Remark 2.5.3.
As two different families of subgroups H1 and H2 can generate the same subcategories Proj(H1)
and Proj(H2) of modules, the following observation shall be useful in computations. Recall that
equivalently a kG-module M is projective relatively to a subgroup H ≤ G or to any conjugate
subgroup gH for g ∈ G. In other words, M ∈ mod(kG) is projective relatively to H if and only if
it is projective relatively to the family of subgroups of G defined by the conjugacy class of H (or
to any subfamily of the latter). Indeed, Proj(k↑GH) = Proj(k↑GgH) implies that

Proj(
⊕
g∈G

k↑GgH) =
⊕
g∈G

Proj(k↑GgH)

=
⊕
g∈G

Proj(k↑GH) = Proj(k↑GH)

by the omnibus properties for relative projectivity. In consequence, a family H of subgroups of a
group G may always be replaced by a larger family

H := { gH | g ∈ G,H ∈ H}

closed under conjugation, or, on the contrary, by a subfamily H containing only one representative
for the conjugacy classes of subgroups in H, without altering the resulting relative projectivity:

Proj(H) = Proj(H) = Proj(H)

2.6. Operations on groups

We now establish some notation and basic facts concerning projectivity relative to modules
with respect to standard operations on groups.

Lemma 2.6.1.
Let H be a subgroup of G and N be a normal subgroup of G such that p divides |G/N |.

(a) Restriction: Let Z be a V -projective kG-module, then Z ↓GH is a V ↓GH-projective kH-
module. We shall use the following short notation:

Proj(V )↓GH ⊆ Proj(V ↓GH)

(b) Induction: Let Z be a V -projective kH-module, then Z ↑GH is a V ↑GH-projective kG-
module. We shall use the following short notation:

Proj(V )↑GH ⊆ Proj(V ↑GH)

(c) Tensor induction: Let Z be a V -projective kH-module, then Z ↑⊗
G

H
is a V ↑⊗

G

H
-projective

kG-module.

(d) Inflation: let Z be a V -projective k[G/N ]-module, then InfGG/N (Z) is an InfGG/N (V )-
projective kG-module. We shall use the following short notation:

InfGG/N (Proj(V )) ⊆ Proj(InfGG/N (V ))

(e) Isomorphism: let ϕ : G −→ G̃ be a group homomorphism and Z be a V -projective

kG-module. Then V and Z can be viewed as kG̃-modules via ϕ−1, denoted Iso(ϕ)(V ) and

Iso(ϕ)(Z). Then Iso(ϕ)(Z) is an Iso(ϕ)(V )-projective kG̃-module.
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Proof.
(a) Z is V -projective if and only if Z |V ⊗ L for some kG-module L, thus

Z ↓GH | (V ⊗ L) ↓GH∼= V ↓GH ⊗L ↓GH ,

i.e. Z is V ↓GH -projective.

(b) Z is V -projective if and only if Z |V ⊗ L for some kH-module L, hence

Z ↑GH | (V ⊗ L) ↑GH |V ↑GH ⊗L ↑GH
since V ↑GH ⊗L ↑GH∼=

⊕
[HgH][

gV ↓HgH∩H ⊗L ↓HgH∩H ]↑GgH∩H . Thus Z ↑GH is V ↑GH -projective.

(c) Z is V -projective if and only if Z |V ⊗L for some kH-module L. Write V ⊗L ∼= Z ⊕Z ′,
then

(V ⊗ L)↑⊗
G

H
∼= Z ↑⊗

G

H
⊕ Z ′ ↑⊗

G

H
⊕ S

where S is a kG-module that does not need to be described for the purpose of this
argument. However, it follows that

Z ↑⊗
G

H
| (V ⊗ L)↑⊗

G

H
∼= V ↑⊗

G

H
⊗ L↑⊗

G

H

i.e. Z ↑⊗
G

H
is a V ↑⊗

G

H
-projective kG-module.

(d) Z is V -projective if and only if Z |V ⊗ L for some k[G/N ]-module L. Then

InfGG/N (Z) | InfGG/N (V ⊗ L) ∼= InfGG/N (V )⊗ InfGG/N (L),

i.e. InfGG/N (Z) is an InfGG/N (V )-projective kG-module.

(e) is clear enough.

�

Remark 2.6.2.
As we shall use restriction extensively, note that the reverse inclusion for (a) does not hold in

general. For instance, if G = C3×C3, let h be one of its generators, H :=< h > and V := k↑C3×C3

H ,
then V ↓GH∼= k ⊕ k ⊕ k. It follows that

Proj(V ↓GH) = Proj(k⊕3) = Proj(k) = mod(kH) ,

whereas using Green’s indecomposability theorem it is easy to compute that

Proj(V )↓GH= {M ∈ mod(kH) |M ∼= a1k ⊕ a2Ω(k)⊕ a3kH, a1, a2, a3 ∈ 3Z} ,

where Ω(k) denotes the kernel of a projective cover of the trivial kH-module.

Next we focus on the behaviour of relatively projective modules with respect to restrictions
and inductions.

Lemma 2.6.3.
Let G be a finite group and X ≤ H ≤ G be subgroups. Let U, V be kG-modules and W,Z be
kX-modules. The following inclusions and equalities hold:

(a) Proj(V ↓GH)↓HX= Proj(V ↓GX);

(b) Proj(W ↑HX)↑GH= Proj(W ↑GX);

(c) Proj(V ↓GH) ↑GH⊆ Proj(V ↓GH↑GH) ⊆ Proj(V ). If, moreover, V is H-projective, then

Proj(V ↓GH↑GH) = Proj(V );
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(d) If Proj(V ) ⊆ Proj(U), then Proj(V ↓GH) ⊆ Proj(U ↓GH) and if Proj(V ) = Proj(U),

then Proj(V ↓GH) = Proj(U ↓GH).

(e) If Proj(W ) ⊆ Proj(Z), then Proj(W ↑GX) ⊆ Proj(Z ↑GX) and if Proj(W ) = Proj(Z),

then Proj(W ↑GX) = Proj(Z ↑GX).

Proof.
(a)/(b) In both cases the inclusion ⊆ was stated in Lemma 2.6.1. The reverse inclusion is a

straightforward consequence of the transitivity of restrictions and inductions. E.g. V ↓GX=
(V ↓GH) ↓HX so that V ↓GX∈ Proj(V ↓GH) ↓HX and by the omnibus properties of relative
projectivity Proj(V ↓GX) ⊆ Proj(V ↓GH) ↓HX . A similar argument can be carried through
for induction.

(c) The inclusion Proj(V ↓GH)↑GH⊆ Proj(V ↓GH↑GH) is a special case of Lemma 2.6.1, part (a).
In addition, Frobenius reciprocity yields V ↓GH↑GH∼= V ⊗ k↑GH , thus by 2.2.2.(f),

Proj(V ↓GH↑GH) = Proj(V ) ∩ Proj(k↑GH) ⊆ Proj(V ) .

Moreover, if V is H-projective, then Proj(V ) ⊆ Proj(k ↑GH) by 2.2.2.(b) again. Conse-
quently,

Proj(V ↓GH↑GH) = Proj(V ) ∩ Proj(k↑GH) = Proj(V ) .

(d)/(e) If Proj(V ) ⊆ Proj(U), then, in particular, V ∈ Proj(U) so that V ↓GH∈ Proj(U ↓GH) by
2.6.1.(a), hence Proj(V ↓GH) ⊆ Proj(U ↓GH) by 2.2.2. Swap the roles of V and U for the
reverse inclusion. Property (e) is obtained likewise.

�

The following lemma partly restates (a) and (b) of the two preceding ones, respectively, but
focuses on a particular module rather than on a whole subcategory of relatively projective modules.

Lemma 2.6.4.
Let G be a finite group and H be a subgroup of G. Let M be an H-projective module. Then, the
following conditions are equivalent:

(a) M is V -projective;

(b) M ↓GH is V ↓GH-projective;

(c) M ↓GH↑GH is V -projective.

Proof.
(a)⇒ (b): is given by Lemma 2.6.1 (a).
(b)⇒ (c): Again by 2.6.1, M ↓GH∈ Proj(V ↓GH) implies that M ↓GH↑GH∈ Proj(V ↓GH)↑GH⊆ Proj(V ).
(c)⇒ (a): By H-projectivity and by Lemma 2.6.3, M |M ↓GH↑GH∈ Proj(V ), therefore M ∈ Proj(V ).

�

As a consequence, one sees that the set of V -projective modules is actually determined by
restriction to a Sylow p-subgroup, in the sense that two different kG-modules generate the same
set of relative projectivity if and only if their restriction to Sylow p-subgroup generate the same
set of relative projectivity:

Corollary 2.6.5.
Let G be a finite group and P a Sylow p-subgroup of G. Let V and W be two kG-modules. Then:

(a) Proj(V ) ⊆ Proj(W ) if and only if Proj(V ↓GP ) ⊆ Proj(W ↓GP );
(b) Proj(V ) = Proj(W ) if and only if Proj(V ↓GP ) = Proj(W ↓GP ).
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Proof. In both cases the necessary condition was established in 2.6.3. For the sufficient
condition, assume that Proj(V ↓GP ) = Proj(W ↓GP ). Applying 2.6.4 twice yields the following
equivalences: M ∈ Proj(V ) if and only if M ↓GP∈ Proj(V ↓GP ) = Proj(W ↓GP ) if and only if
M ∈ Proj(W ). In other words, Proj(V ) = Proj(W ). This proves (b). The same argument can
be carried through with an inclusion instead of an equality, it proves (a). �

Notice that inflation has similar properties:

Lemma 2.6.6.
Let N be a normal subgroup of the group G such that p | |G/N |. Let V,W be k[G/N ]-modules.
Then:

(a) Proj(V ) ⊆ Proj(W ) if and only if Proj(InfGG/N (V )) ⊆ Proj(InfGG/N (W ));

(b) Proj(V ) = Proj(W ) if and only if Proj(InfGG/N (V )) = Proj(InfGG/N (W )) .

Proof. We have the equivalences:

Proj(V ) ⊆ Proj(W ) ⇐⇒ V is W -projective

⇐⇒ V |V ⊗W ∗ ⊗W by Lemma 2.2.1

⇐⇒ InfGG/N (V ) | InfGG/N (V )⊗ InfGG/N (W )∗ ⊗ InfGG/N (W )

⇐⇒ InfGG/N (V ) is InfGG/N (W )-projective

⇐⇒ Proj(InfGG/N (V )) ⊆ Proj(InfGG/N (W )) by Proposition 2.2.2.

The reverse inclusion is obtained by exchanging the roles of V and W . �

Lemma 2.6.7.
Let G be a group and p a prime that divides |G|. Assume G is a p-group or possesses a normal
subgroup H such that the factor group G/H is a p-group. Then, the indecomposable modules
projective relatively to the subgroup H are described as follows:

IProj(k↑GH) = {M ↑GH |M is an indecomposable kH-module}

Proof. Let N be a kG-module, then,

k↑GH ⊗N ∼= N ↓GH↑GH∼=
⊕
I finite

Ni ↑GH

with N ↓GH∼=
⊕

I Ni a decomposition of N ↓GH into indecomposable modules. By assumption G is
such that Green’s indecomposability criterion applies, therefore Ni ↑GH is indecomposable for all
i ∈ I. Now, by definition, an indecomposable kG-module is projective relatively to H if it is a
direct summand of k ↑GH ⊗N for some kG-module N , therefore the above and the Krull-Schmidt
theorem yield the inclusion

IProj(k↑GH) ⊆ {M ↑GH |M is an indecomposable kH-module} .

On the other hand, recall that a kG-module is projective relatively to H if and only if it is a direct
summand of a module induced from H. In particular, M ↑GH∈ Proj(k ↑GH) for all indecomposable
kH-module M . Now by assumption Green’s indecomposability criterion applies so that M ↑GH is
indecomposable for all indecomposable kH-module M . Hence the reverse inclusion. �

Remark 2.6.8.
In particular, in case H is a cyclic p-group of order pn, then the set IProj(k↑GH) of indecomposable
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kG-modules projective relatively to the subgroup H is finite of order pn:

IProj(k↑GH) = {Mi ↑GH |Mi is the unique indecomposable kH-module of dimension i, ∀1 ≤ i ≤ pn}

2.7. Vertices, sources and Green correspondence

We establish here links between the notion of V -projectivity, vertices, sources and the Green
correspondence.

Lemma 2.7.1.
Let M be an indecomposable kG-module and (D,S) a vertex-source pair for M . Moreover, let
V ∈ mod(kG) and W ∈ mod(kD).

(a) If S ∈ Proj(W ), then M ∈ Proj(W ↑GD).
(b) If M ∈ Proj(V ), then S ∈ Proj(V ↓GD).

Proof.
(a) It follows from the definitions of vertices and sources of a module that if S ∈ Proj(W ),

then M |S ↑GD. Moreover, S ↑GD∈ Proj(W ↑GD) by Lemma 2.6.1, hence M ∈ Proj(W ↑GD)
by 2.2.2.(a).

(b) Likewise, if M ∈ Proj(V ), then S |M ↓GD∈ Proj(V ↓GD). Hence the result.

�

Lemma 2.7.2.
Let (G,H,Q) be an admissible triple for the Green correspondence.

(a) Let U be an indecomposable kG-module with vertex Q and Gr(U) be its kH-Green corre-
spondent. Let V ∈ mod(kG).

Then U ∈ Proj(V ) if and only if Gr(U) ∈ Proj(V ↓GH).

(b) Let T be an indecomposable kH-module with vertex Q and Γ(T ) be its kG-Green corre-
spondent. Let W ∈ mod(kH). Then the following holds:
if T ∈ Proj(W ) then Γ(T ) ∈ Proj(W ↑GH) and if Γ(T ) ∈ Proj(W ↑GH), then T ∈
Proj(W ↑GH↓GH).

Proof.
(a) If U ∈ Proj(V ), then by 2.6.1 U ↓GH∈ Proj(V ↓GH), therefore so does Gr(U) as a direct

summand of U ↓GH . Conversely, if Gr(U) ∈ Proj(V ↓GH), then by 2.6.3,

Gr(U)↑GH∈ Proj(V ↓GH)↑GH⊆ Proj(V ) .

Hence U ∈ Proj(V ), as a direct summand of Gr(U)↑GH .

(b) In like manner, if T ∈ Proj(W ), then by 2.6.1 T ↑GH∈ Proj(W ↑GH), therefore so does

Γ(T ) since Γ(T ) |T ↑GH . Now, if Γ(T ) ∈ Proj(W ↑GH), then

Γ(T )↓GH∈ Proj(W ↑GH)↓GH⊆ Proj(W ↑GH↓GH)

and so does T as a direct summand of Γ(T ).

�
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2.8. Absolute p-divisibility

Many arguments shall use the next result by D. Benson and J. Carlson [BC86, Thm. 2.1],
which we shall often refer to as the Benson-Carlson theorem:

Theorem 2.8.1.
Let k be an algebraically closed field of characteristic p (possibly p = 0). Let M,N be finite-
dimensional indecomposable kG-modules, then

k |M ⊗N if and only if

{
(1) M ∼= N∗ ;

(2) p - dimk(N).

Moreover, if k is a direct summand of N∗ ⊗ N then it has multiplicity one, i.e. k ⊕ k is not a
summand.

Remark 2.8.2.
In general, if M and N are finite-dimensional decomposable modules, write M ∼=

⊕
i∈IMi and

N ∼=
⊕

j∈JMj as direct sums of indecomposable modules, then,

k |M ⊗N if and only if ∃ i ∈ I, j ∈ J such that Mi
∼= N∗j and p - dimk(Nj).

In particular, if p divides the k-dimension of all direct summands of N then k is not a summand
of N∗ ⊗N = Endk(N).

Moreover it is worth keeping in mind that the implication (p - dimk(N)⇒ k |N∗⊗N) is always
true, that is even if N is decomposable, since in this case the trace map splits. Futhermore, the
theorem enables us to characterize those kG-modules V relatively to which the trivial module is
projective, which shall be essential later on to define the promised-since-the-title groups of relative
endotrivial modules.

Proposition 2.8.3.
Let V ∈ mod(kG). Then, the following are equivalent:

(a) The trivial kG-module k is V -projective;
(b) p = char(k) does not divide the k-dimension of at least one of the indecomposable direct

summands of V ;
(c) the subcategory Proj(V ) is equal to the whole category of finite-dimensional kG-modules

mod(kG).

Proof.

(a)⇒(b): By 2.4.1, k ∈ Proj(V ) if and only if k |V ∗ ⊗ V . Thus, according to the remark above, V
has an indecomposable direct summand whose k-dimension is not divisible by p.

(b)⇒(c): Since V is finitely generated, write V =
⊕

j∈J Vj as a direct sum of indecomposable
modules. Then by 2.2.2,

Proj(V ) =
⊕
j∈J

Proj(Vj) .

By assumption, there exists j0 ∈ J such that p does not divide dimk(Vj0) so that by
Proposition 2.2.2, Proj(Vj0) = mod(kG). Therefore Proj(V ) = mod(kG) as well.

(c)⇒(a): is trivial.

�
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In other words, the proposition shows that projectivity relative to a module V is interesting
essentially if the k-dimensions of all the indecomposable direct summands of V are divisible by
p = char k, that is when Proj(V ) is not equal to the whole category of finite-dimensional kG-
modules mod(kG). To use the terminology introduced in [BC86], in the sequel, such a kG-module
V shall be called absolutely p-divisible.

As another consequence of Theorem 2.8.1 we can rephrase [Ben98a, Prop. 5.8.1] to get the
following characterisation for dimensions of V -projective kG-modules.

Lemma 2.8.4.
Let V be an absolutely p-divisible kG-module and U ∈ Proj(V ). Then p divides dimk U .

Proof. Assume that p - dimk(U), then by Proposition 2.2.2 the trace map TrU : U∗⊗U −→ k
splits. Whence k |U∗ ⊗ U . But U is V -projective, thus by definition there exists a kG-module N
such that U |V ⊗N . Therefore

k |U∗ ⊗ U |U∗ ⊗N ⊗ V
so that k ∈ Proj(V ) and by Proposition 2.8.3, V is not absolutely p-divisible. �

Lemma 2.8.5.
Let V,M,N ∈ mod(kG) such that M is not absolutely p-divisible.Then N ∈ Proj(V ) if and only if
M ⊗N ∈ Proj(V ).

Proof. Since M is not absolutely p-divisible, Proj(M) = mod(kG) by Proposition 2.8.3
above. Therefore, by the omnibus properties of V -projectivity:

Proj(M ⊗N) = Proj(M) ∩ Proj(N) = mod(kG) ∩ Proj(N) = Proj(N)

Thus Proj(M⊗N) ⊆ Proj(V ) if and only if Proj(N) ⊆ Proj(V ) and in consequence N ∈ Proj(V )
if and only if M ⊗N ∈ Proj(V ). �

2.9. Absolute p-divisibility and operations on groups

Restriction. The aim of this section is mainly to describe the behaviour of absolute p-divisibility
with respect to restrictions. It shall turn out to be a key argument for the forthcoming study of
relative endotrivial modules.

Lemma 2.9.1.
Let V be a kG-module whose restriction V ↓GH to some subgroup H ≤ G is absolutely p-divisible,
then V is absolutely p-divisible itself.

Proof. Let Vi be an indecomposable summand of V , then Vi ↓GH is absolutely p-divisible by
assumption. Thus its k-dimension is divisible by p, since the k-dimensions of all its direct summands
are, and consequently so is dimk(Vi) = dimk(Vi ↓GH), as required. �

As shows the following counterexample, the converse statement to the lemma is not true in
general.

Counterexample 2.9.2.
Let G := C2 × C2 be the Klein Group. Then the module k ↑C2×C2

C2×1 is indecomposable and its
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k-dimension is 2, therefore it is absolutely 2-divisible, but k↑C2×C2

C2×1 ↓
C2×C2

C2×1
∼= k⊕k which is certainly

not absolutely 2-divisible.

Notwithstanding, it is always true that a restriction to a subgroup containing a Sylow p-
subgroup preserves absolute p-divisibility. Besides, depending on the vertices of the module con-
sidered, it is even possible to restrict to p-subgroups and preserve absolute p-divisibility. Precisely,
the result is stated as follows.

Theorem 2.9.3.
Let P be a Sylow p-subgroup of G. Let V be a kG-module with vertex Q ≤ P .

(a) Then for every subgroup H ≥ P , the module V is absolutely p-divisible if and only if V ↓GH
is absolutely p-divisible.

(b) Furthermore, if Q � P , then for every subgroup R of P such that P ≥ R 
 Q, the module
V is absolutely p-divisible if and only if V ↓GR is absolutely p-divisible.

Proof. In both cases the sufficient condition is given by lemma 2.9.1 and we are left with the
necessary condition to prove.

(a) Let P ≤ H ≤ G be a subgroup and assume that V ↓GH is not absolutely p-divisible. Then,
by Proposition 2.8.3, Proj(V ↓GH) = mod(kH). Besides Lemma 2.6.3 yields:

mod(kH)↑GH= Proj(V ↓GH)↑GH⊆ Proj(V ↓GH↑GH) = Proj(V )

We deduce that, in particualr, k↑GH∈ Proj(V ). Finally since p - dimk(k↑GH) = |G : H|, it
follows from Lemma 2.8.4 that V is not absolutely p-divisible.

(b) Let R be a subgroup of P . By assumption, V ∈ Proj(k↑GQ), so that V ↓GR∈ Proj(k↑GQ↓GR)
and the Mackey formula yields:

k↑GQ↓GR ∼=
⊕

g∈[R\G/Q]

(gk)↓
gQ
gQ∩R↑

R
gQ∩R =

⊕
g∈[R\G/Q]

k↑RgQ∩R

Therefore,

V ↓GR ∈
⊕

g∈[R\G/Q]

Proj(k↑RgQ∩R)

and so do all its direct summands. Now, the assumption that Q � R implies that
gQ ∩ R � R for every g ∈ [R\G/Q]. Thus any direct summand of V ↓GR has a vertex
strictly smaller than R and it is well-known that the k-dimension of such indecomposable
modules is divisible by p (see Lemma 3.5.1 in Chapter 3). Hence the result.

�

Inflation.
Lemma 2.9.4.
Let G be a finite group with a normal subgroup N such that p | |G/N | and V ∈ mod(k[G/N ]) be an

indecomposable module. Then V is absolutely p-divisible if and only if InfGG/N (V ) is.

Proof. Since inflation does not alter dimensions and InfGG/N (V ) is indecomposable if and only
if V is, the result is straightforward. �

Induction. Absolute p-divisibility is not well-behaved with respect to induction. First, contrary
to restriction, the fact the an induced module M ↑GH is absolutely p-divisible does not imply that
the initial module M is itself absolutely p-divisible.
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Counterexample 2.9.5.
Let P be a p-group with |P | ≥ 2 and Q be a subgroup such that 1 � Q � P . Then the permutation
module k ↑PQ is absolutely p-divisible. Indeed, its k-dimension is divisible by p and moreover
it is indecomposable since its socle clearly is. However, the trivial kQ-module is not absolutely
p-divisible.

Nonetheless, we have the following criterion for an induced module to be absolutely p-divisible.

Lemma 2.9.6.
Let G be a finite group with a subgroup H and V ∈ mod(kH) be an arbitrary module. If G is a
p-group, or else if H is normal in G and G/H is a p-group, then V ↑GH is absolutely p-divisible.

Proof. Since induction and direct sums commute, we may as well assume that V is indecom-
posable and the assumptions of the lemma imply that V ↑GH is indecomposable as well by Green’s
indecomposability theorem. Furthermore, p | dimk V ↑GH= |G : H|dimk V because p | |G : H|.
Hence the result. �

2.10. Relative projectivity and module varieties.

One can think of varieties as a way for grouping kG-modules into families of modules all with
a given variety (or one contained in it). Now, given a fixed closed homogeneous subvariety V of
VG(k), if we pick a module M affording V, then the subcategory Proj(M) is made up of modules
all affording a variety contained in V. In this respect relative projectivity to modules is a finer
notion than that of variety.

Lemma 2.10.1.

(a) If Proj(M) ⊆ Proj(M ′), then VG(M) ⊆ VG(M ′);
(b) If Proj(M) = Proj(M ′), then VG(M) = VG(M ′);
(c) The converse of statement (b) does not hold. In particular, VG(M) = VG(k) does not

imply that Proj(M) = mod(kG).

Proof.

(a) In particular M ∈ Proj(M ′), hence there exists two kG-modules N and U such that
M ⊕ U ∼= M ′ ⊗N . Taking varieties yields:

VG(M) ⊆ VG(M) ∪ VG(U) = VG(M ′) ∩ VG(N) ⊆ VG(M ′) .

(b) Applying (a) twice yields the double inclusion.
(c) (Author’s favourite example.) For G = C3 × C3 =:< g > × < h >, k of characteristic 3,

the module M defined by the following diagram

•
·(g−1)

~~
~~
~~ ·(h−1)

@@
@@

@@

• •
has a variety equal to VG(k). Indeed, simply for dimensional reasons, it can never be
free on restriction to a shifted subgroup. However, Proj(M) ( mod(kG). For M is
indecomposable and 3-dimensional, hence absolutely 3-divisible.

�
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2.11. Relative homological algebra

We give here a review of the basic relative homological algebra linked to the projectivity relative
to a kG-module V . All the results presented are generalisation of the non-relative case and their
proofs are similar (see for example [HS71]). Most of the material here comes from [Oku91] or
[Car96] where the results are stated but often not proven. For completeness we give sketches of
the proofs.

Definition 2.11.1 ([Car96], Sect. 8).
Let V ∈ mod(kG) be a module.

(a) A V -projective resolution of a module M ∈ mod(kG) is a non-negative complex P∗ of

V -projective modules together with a surjective kG-homomorphism P0
ε
−−−�M such that

the sequence

· · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
ε
−−−�M −→ 0

is exact and totally V -split , that is such that for all i ≥ 1, the short exact sequences

0 −→ ker(∂i) −→ Pi
∂i−→ Im(∂i) −→ 0 ,

0 −→ ker(ε) −→ P0
ε
−−−�M −→ 0

are V -split. The latter sequence is called a V -projective presentation of M .

(b) Similarly, there is a notion of V -injective presentation and a notion of V -injective resolu-

tion M
ı−→ I∗.

Existence of V -projective resolutions.([Car96, Prop. 8.7])
Every module M ∈ mod(kG) has a V -projective resolution and a V -injective resolution.

Proof. Since the trace map TrV : V ∗ ⊗ V −→ k is V -split, so is the tensored exact sequence

ker(TrV )⊗M ↪−→ V ∗ ⊗ V ⊗M
TrV ⊗M−−−−−−−−�M .

Iterate this construction to get, for every n ≥ 2, V -split exact sequences:

ker(TrV )⊗n⊗M ↪−→ V ∗⊗V ⊗(ker(TrV )⊗(n−1)⊗M)
TrV ⊗ ker(TrV )⊗(n−1)⊗M
−−−−−−−−−−−−−−−−−−−� ker(TrV )⊗(n−1)⊗M

Obtain a V -projective resolution of M by splicing these sequences together:

· · · //

""D
DD

DD
DD

D V ∗ ⊗ V ⊗ ker(TrV )⊗M //

((QQ
QQQ

QQQ
QQQ

Q
V ∗ ⊗ V ⊗M // // M

ker(TrV )⊗2 ⊗M

66mmmmmmmmmmmmm
ker(TrV )⊗M

99sssssssssss

To obtain a V -injective resolution of M , start with a V -projective resolution of the dual M∗ and
dualize! (I.e. apply the functor Homk(−, k).) �

Lemma 2.11.2 ([Car96], Sect. 8).

Let M,N ∈ mod(kG) and let P∗
ε
−−−� M be a V -projective resolution of M . Then the tensored

complex P∗ ⊗N
ε⊗N
−−−−−�M ⊗N is a V -projective resolution of M ⊗N .

Proof. Since Pi is V -projective, so is Pi ⊗N by 2.2.2, and since the complex P∗
ε
−−−� M is

exact and totally V -split, so is the complex P∗ ⊗N
ε⊗N
−−−−−�M ⊗N . �
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Lemma 2.11.3 ([Car96], Sect. 8).

Let M,N,U, V ∈ mod(kG). Let P∗
ε
−−−�M be a U -projective resolution of M and let Q∗

η
−−−� N

be a V -projective resolution of N . Then P∗ ⊗Q∗
ε⊗η
−−−−−�M ⊗N is a U ⊗ V -projective resolution

of M ⊗N .

Proof. By assumption H∗(P∗) = H0(P∗) ∼= M and H∗(Q∗) = H0(Q∗)
∼= N , because P∗ and

Q∗ are exact complexes in positive degrees. Therefore, by the Künneth formula, H∗(P∗ ⊗Q∗) =

H0(P∗⊗Q∗)
∼= H0(P∗)⊗H0(Q∗)

∼= M⊗N . Thus P∗⊗Q∗
ε⊗η
−−−−−�M⊗N is a resolution of M⊗N .

Moreover, for every n ≥ 0, (P∗⊗Q∗)n =
⊕

i+j=n Pi⊗Qj ∈ Proj(U ⊗ V ) since Pi ∈ Proj(U) and

Qj ∈ Proj(V ) for all i, j ≥ 0. Finally to see that P∗ ⊗Q∗ is totally (U ⊗ V )-split, it suffices to
notice that (P∗ ⊗Q∗) ⊗ (U ⊗ V ) ∼= (P∗ ⊗ U) ⊗ (Q∗ ⊗ V ) is totally split, because both (P∗ ⊗ U)
and (Q∗ ⊗ V ) are. �

Relative Schanuel’s Lemma 2.11.4.
Let V,M ∈ mod(kG).

(a) Let P
ε
−−−�M and Q

θ
−−−�M be two V -projective presentations of M . Then there is an

isomorphism of kG-modules P ⊕ ker θ ∼= Q⊕ ker ε.

(b) Let M
ı−→ I and M

−→ J be two V -injective presentations of M . Then there is an
isomorphism of kG-modules I ⊕ Coker  ∼= J ⊕ Coker ı.

Proof. Form B := {(p; q) ∈ P×Q | ε(p) = θ(q)} the pullback of the pair of maps ε : P −−�M
and θ : Q −−� M , and let πP : B −→ P and πQ : B −→ Q be the canonical projections. Since
P,Q ∈ Proj(V ) and ε, θ are V -split, by the universal property of V -projective modules there
are kG-homomorphisms µ : Q −→ P , ν : P −→ Q such that εµ = θ and θν = ε. Then the
universal property of the pull-back applied twice yields kG-linear sections for πQ and πP . Hence
P⊕ker θ ∼= B ∼= Q⊕ker ε. This proves (a), and (b) is proved in similar fashion using a pushout. �

Relative Lifting Theorem 2.11.5.
Let V ∈ mod(kG). Let P∗, Q∗ be two non-negative complexes, such that Pn ∈ Proj(V ) for all n ≥ 0
and Q∗ is totally V -split and exact, except possibly in degree zero. Let f : H0(P∗) −→ H0(Q∗)
be a kG-linear map. Then there exists a chain map µ∗ : P∗ −→ Q∗ inducing f in degree zero.
Furthermore µ∗ is unique up to homotopy.

Relative Comparison Theorem 2.11.6.

Let V ∈ mod(kG). Let P∗
ε
−−−�M and Q∗

η
−−−�M be two V -projective resolutions of the module

M ∈ mod(kG). Then P∗ and Q∗ are canonically homotopy equivalent, that is, there are chain
maps µ∗ : P∗ −→ Q∗, ψ∗ : Q∗ −→ P∗ lifting idM , unique up to homotopy, such that ψ∗µ∗ ∼ idP∗

and µ∗ψ∗ ∼ idQ∗ . (Where ∼ means that the maps are homotopic chain maps.)

These theorems can be dualized to obtain similar statements for V -injective modules and
resolutions. The proofs are identical to those of the non-relative case.

Definition 2.11.7.
Let V,M ∈ mod(kG).

(a) A V -projective cover of M is a minimal V -projective presentation ε : PM −−� M
satisfying the following property: if θ : Q −−� M is another surjective V -split kG-
homomorphism, then there exists an injective kG-homomorphism σ : PM −→ Q such
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that ε = θσ, and likewise there is a surjective kG-homomorphism τ : Q −→ PM such that
ετ = θ .
A minimal V -projective resolution of M is a V -projective resolution P∗

ε
−−−� M such

that if Q∗
θ
−−−�M is another V -projective resolution of M , then there exists an injective

chain map µ∗ : (P∗
ε
−−−� M) −→ (Q∗

θ
−−−� M) and likewise a surjective chain map

µ′∗ : (Q∗
θ
−−−�M) −→ (P∗

ε
−−−�M), both lifting the identity on M .

(b) V -injective hulls and minimal V -injective resolutions are defined similarly.

Remark 2.11.8.
The relative Schanuel’s Lemma shows that V -projective covers and minimal resolutions, and V -
injective hulls and minimal resolutions, if they exist, are unique up to isomorphism.
Moreover, as in the non-relative case, one can also define a relative version of the notion of essential
kG-homomorphism and use it to define V -projective covers.

Proposition 2.11.9 ([Car96], Sect. 8).
Every module M ∈ mod(kG) has a minimal V -projective resolution and a minimal V -injective
resolution.

Proof. Choose PM ∈ mod(kG) to be a V -projective module of smallest k-dimension such
that there exists a surjective kG-homomorphism ε : PM −−�M (in the worst case take TrV ⊗M :
V ∗ ⊗ V ⊗M −−� M). Then, as in the non-relative case, use Fitting’s Lemma to prove that it is
a V -projective cover of M . Likewise, build a V -projective cover of ker(ε). Iterate the process to
get a minimal V -projective resolution. Notice that the dual of a minimal V -projective resolution
of M∗ is a minimal V -injective resolution of M . �

A V -projective cover of the trivial module provides us with a canonical generator for Proj(V ):

Corollary 2.11.10 ([Car96], Sect. 8).
Let ε : Vk −→ k be a V -projective cover of the trivial module k. Then Proj(V ) = Proj(Vk).

Proof. By definition Vk ∈ Proj(V ), so Proj(Vk) ⊆ Proj(V ) by 2.2.2. In addition the

sequence ker(ε) −→ Vk
ε
−−−� k is V -split so that V |Vk ⊗ V , thus Proj(V ) ⊆ Proj(Vk). �

Remark 2.11.11.
A V -projective resolution P∗

ε
−−−�M is minimal if and only if for all n ≥ 1, Im(∂n) is V -projective

free, i.e. it has no non-zero V -projective direct summands. This leads to the following definition
of relative syzygy modules.

Definition 2.11.12 ([Car96], Sect. 8).

Let V,M ∈ mod(kG). Let (P∗, ∂∗)
ε
−−−� M and M

ı
↪−→ (I∗, ∂

∗) be minimal V -projective and
V -injective resolutions of M , respectively. Define for n ≥ 1:

ΩnV (M) := ker ∂n−1 and Ω−nV (M) := Coker(∂n−1)

For n = 0, define Ω0
V to be the V -projective free part of M . The modules ΩnV (M) are called the

relative syzygy modules of M and ΩnV , the relative Heller operators. Moreover, if V is projective
(e.g. if V = kG), we drop the index V and write Ωn(M) instead of ΩnV (M), and if n = 1, then we
drop the exponent and write ΩV (M) instead of Ω1

V (M).
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Remark 2.11.13.
If G =: P is a p-group and if V = k ↑PQ for some subgroup Q of P , then the notion of projectivity
relative to the module V coincides with the notion of projectivity relative to the subgroup Q, as
we have already noticed, but it also coincides with the notion of projectivity relative to the P -
set X = P/Q described in [Bou00]. In consequence, for any M ∈ mod(kP ), we have ΩV (M) ∼=
ΩX(M) in the sense of [Bou00]. Also, if Y is any non transitive finite P -set, it can be decomposed
as a disjoint union of transitive P -sets

⊔
i∈I P/Qi and projectivity relative to Y coincides with

projectivity relative to the family of subgroups {Qi}i∈I . In the sequel we shall juggle with these
three visions in order to use the one that reveals to be the most adapted to the situation.

Because two minimal V -projective resolutions of the same module M are isomorphic, the mod-
ules ΩnV (M) do not depend on the choice of the V -projective resolution (i.e. up to isomorphism).
They do not depend either on the choice of the generator V for Proj(V ):

Lemma 2.11.14.
Let V,W ∈ mod(kG) such that Proj(V ) = Proj(W ). Then ΩV (M) ∼= ΩW (M) for every module
M ∈ mod(kG).

Proof. Let M ∈ mod(kG) and PV
ε
−−−� M be a V -projective cover of M . Then, on the one

hand PV ∈ Proj(V ) = Proj(W ), and on the other hand, by 2.3.2, ε is V -split if and only if it is
W -split. As a consequence, ΩV (M) = ker(ε) = ΩW (M). �

2.12. Arithmetic of relative syzygies

Relative syzygy modules behave in much the same way as ordinary syzygy modules do.

Proposition 2.12.1 (Omnibus properties).
Let M,N, V ∈ mod(kG) and let m,n ∈ Z.

(a) Ω−nV (M) ∼= (ΩnV (M∗))∗.

(b) ΩnV (M) is V -projective free.

(c) If M ∈ Proj(V ), then ΩnV (M) = 0.

(d) Ω1
V (Ω−1

V (M)) ∼= Ω0
V (M) ∼= Ω−1

V (Ω1
V (M)).

(e) If the word minimal is dropped in Definition 2.11.12, then we get modules

Ω̃nV (M) ∼= ΩnV (M)⊕ (V − proj) .

(f) ΩnV (M ⊕N) ∼= ΩnV (M)⊕ ΩnV (N).

(g) ΩnV (ΩmV (M)) ∼= Ωn+m
V (M).

(h) Suppose M /∈ Proj(V ). If M is indecomposable, then so is ΩnV (M).

(i) ΩmV (M)⊗N ∼= ΩmV (M ⊗N)⊕ (V − proj).
(j) ΩmV (M)⊗ ΩnV (N) ∼= Ωm+n

V (M ⊗N)⊕ (V − proj).
(k) If ΩnV (M) = 0, then M ∈ Proj(V ).

Most of these properties can be found in [Car96, Sect. 8] or are more general versions of [Car96,
Prop. 4.4], in which case the proofs are similar and obtained by replacing projectivity with relative
projectivity.
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Proof. (Sketches)
These properties hold for n = 0, almost trivially. Moreover, once (a) is proven, then it is enough
to prove the other formulae for n ≥ 1. Dualizing yields the result for n ≤ 1.

(a) is straightforward from the fact that the dual of a minimal V -projective resolution of M
is a minimal V -injective resolution of M∗ and conversely.

(b) follows from the minimality of the V -projective resolution in Definition 2.11.12.

(c) A minimal V -projective resolution of M is given by (· · · −→ 0 −→M
id−→M). Hence

ΩnV (M) = 0 for all n ∈ Z.

(d) Let Ω1
V (Ω−1

V (M)) ↪−→ P −−� Ω−1
V (M) be a V -projective cover and letM ↪−→ I −−� Ω−1

V (M)

be a V -injective hull. The latter is also a V -projective cover of Ω−1
V (M), therefore the

relative Schanuel’s Lemma yields I ⊕ Ω1
V (Ω−1

V (M)) ∼= P ⊕ M , where I, P ∈ Proj(V )

and Ω1
V (Ω−1

V (M) is V -projective free by (b). Thus the Krull-Schmidt Theorem forces

Ω1
V (Ω−1

V (M) ∼= Ω0
V (M). A similar arguments yields the second isomorphism.

(e) follows from the relative Schanuel’s Lemma and part (b).
(f) follows from the fact that V -projective covers are additive.
(g) follows by truncating a minimal V -projective resolution of M to a minimal V -projective

resolution of ΩmV (M).
(h) If ΩnV (M) were decomposable, then so would be M by (f).

(i) If P∗
ε
−−−� M is a minimal V -projective resolution of M , then by Lemma 2.11.2,

P∗ ⊗N
ε⊗N
−−−−−�M ⊗N is a V -projective resolution of M ⊗N , but it is not necessarily

minimal. Then by (e):

ΩmV (M)⊗N ∼= Im(∂m ⊗N) = Ω̃mV (M ⊗N) ∼= ΩmV (M ⊗N)⊗ (V − proj)
(j) Using (i) twice, compute:

ΩmV (M)⊗ ΩnV (N) ∼= ΩmV (M ⊗ ΩnV (N))⊕ (V − proj)
∼= ΩmV (ΩnV (M ⊗N)⊕ (V − proj))⊕ (V − proj)
∼= ΩmV (ΩnV (M ⊗N))⊕ ΩmV (V − proj)⊕ (V − proj)
∼= Ωm+n

V (M ⊗N)⊕ (V − proj)
The last equality follows from (c) because ΩmV (V − proj) = 0.

(k) If ΩnV (M) = 0, then Ω0
V (M) ∼= Ω−nV (ΩnV (M)) = 0, that is the V -projective free part of M

is zero.

�

Lemma 2.12.2.

(a) Let H be a subgroup of G and M,V be kG-modules, then:

ΩV (M)↓GH ∼= ΩV↓GH (M ↓GH)⊕ (V ↓GH −proj)

(b) Let N be a normal subgroup of G and M be a k[G/N ]-module, then :

Ωk↑GN (InfGG/N (M)) ∼= InfGG/N (Ω(M))

Proof.
(a) The restriction of a minimal V -projective resolution is a V ↓GH -projective resolution of

M ↓GH , it is not necessarily minimal though. Thus the formula follows from the relative
Schanuel’s lemma.

(b) This formula is a version for projectivity relative to modules of a formula given in [Bou00,
Cor. 4.1.2] for relative syzygies of P -sets, with P a p-group. The proof is identical.

�
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Relative syzygies, vertices, sources and Green correspondence.

Lemma 2.12.3 ([Oku91], Cor 9.9).
Let V,W ∈ mod(kG).

(a) Let M ∈ Proj(W ). Then ΩnV (M) ∈ Proj(W ) for all n ∈ Z.
(b) Let M be an indecomposable non-V -projective kG-module. Then, for all n ∈ Z, M and

ΩnV (M) have the same vertices.

Proof. Let n ∈ Z.

(a) If M ∈ Proj(W ), then M |W ⊗N for some module N ∈ mod(kG). Moreover, by Lemma
2.12.1 part (i), ΩnV (M) |ΩnV (k)⊗M . Thus

ΩnV (M) |ΩnV (k)⊗M |ΩnV (k)⊗W ⊗N
and so ΩnV (M) ∈ Proj(W ).

(b) If D is a vertex for M , then M is k↑GD-projective and by part (a) so is ΩnV (M). Moreover
D is also a vertex for ΩnV (M), otherwise there would exist a subgroup Q �G D such
that ΩnV (M) is k↑GD-projective and therefore so would be M ∼= Ω−nV (ΩnV (M)) (by 2.12.1),
contradicting the minimality of D.

�

From this result, one easily concludes that relative Heller operators commute with the Green
correspondence.

Corollary 2.12.4.
Let V be a kG-module.

(a) Let (G,H;Q) be an admissible triple for the Green correspondence. Let U be a non V -
projective indecomposable kG-module with vertex Q. If T is the kH-Green correspondent
of U , then ΩV↓GH (T ) is the kH-Green correspondent of ΩV (U).

(b) Let M be an indecomposable non-V -projective kG-module and (D,S) a vertex-source pair
for M . Then ΩV↓GD (S) is a source for ΩV (M).

Proof.
(a) First, the assumption that U is non V -projective ensures that neither ΩV (U), nor ΩV↓GH (T )

is zero. Indeed, by 2.7.2 U /∈ Proj(V ) if and only if Gr(U) /∈ Proj(V ↓GH). Then, by
assumption, both the modules U and T have vertex Q, thus, by the lemma, so do the
modules ΩV (U) and ΩV↓GH (T ). Therefore, it suffices to prove that ΩV↓GH (T ) is a direct

summand of ΩV (U) ↓GH . Indeed, as seen before ΩV↓GH (U ↓GH) |ΩV (U) ↓GH . In addition,

by the Green correspondence, T |U ↓GH , so that, by the properties of relative syzygies,
ΩV↓GH (T ) |ΩV↓GH (U ↓GH).

(b) Let ΩV↓GD (S) ↪→ PV↓GD (S) � S be a minimal V ↓GD-projective presentation of S. Then

ΩV↓GD (S) ↑GD↪→ PV↓GD (S) ↑GD� S ↑GD is a V -projective presentation of S ↑GD, but it is not

necessarily minimal though. Nonetheless, the relative version of Shanuel’s lemma yields:

ΩV↓GD (S)↑GD∼= ΩV (S ↑GD)⊕ (V − proj) .

By assumption, S is a source of M , thus M is a direct summand of S ↑GD and so ΩV (M)
is a direct summand of ΩV (S ↑GD), which is, as seen above, in turn a direct summand
of ΩV↓GD (S) ↑GD. Furthermore, according to the previous lemma, M and ΩV (M) have a

common vertex. It follows that ΩV↓GD (S) is a source for ΩV (M).

�
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The composition formula. Finally we focus on compositions of relative Heller operators,
taken relatively to different modules.

Proposition 2.12.5 ([Oku91], Thm. 9.10).
Let V,W ∈ mod(kG). Then for any kG-module M the following formula holds:

ΩV ◦ ΩW (M) ∼= ΩV⊕W ◦ ΩV⊗W (M)

In particular, relative syzygy operators “commute” with each other, that is:

ΩV ◦ ΩW (M) ∼= ΩW ◦ ΩV (M)

This formula is the version for relative projectivity to modules of the same formula for projec-
tivity relative to P -sets entitled “Thévenaz’ Lemma” in [Bou00]. Since the document [Oku91] is
unpublished we give a proof to this result which shall turn out to be very handy.

Proof. Start with V - and W -projective covers of k and M :

EV,k : 0 −→ ΩV (k) −→ PV
ε
−−−� k −→ 0

EW,M : 0 −→ ΩW (M) −→ PW
τ
−−−�M −→ 0 .

Form the augmented tensored complex EV,k � EW,M = [(EV,k)∗ ⊗ (EW,M )∗
ε⊗τ
−−−−−� M ] described

in remark 2.12.7 below:

0 −→ ΩV (k)⊗ ΩW (M)
h−→ (ΩV (k)⊗ PW )⊕ (PV ⊗ ΩW (M))

g−→ PV ⊗ PW
ε⊗τ−−→M −→ 0

Since the sequences EV,k ⊗ V and EW,M ⊗W both split by definition of relative projective covers,
and (EV,k � EW,M )⊗ (V ⊗W ) ∼= (EV,k ⊗ V )� (EW,M ⊗W ), the sequence

0 −→ ker(ε⊗ τ) −→ PV ⊗ PW
ε⊗τ−−→M −→ 0

is (V ⊗W )-split. As PV ⊗ PW ∈ Proj(V ⊗W ), this sequence is a V ⊗W -projective presentation
of M , but it is not necessarily minimal. Thus, the relative Schanuel’s Lemma yields

ker(ε⊗ τ) ∼= ΩV⊗W (M)⊕ ((V ⊗W )− proj) .

On the other hand, the tail of the sequence EV,k � EW,M :

0 −→ ΩV (k)⊗ ΩW (M)
h−→ (ΩV (k)⊗ PW )⊕ (PV ⊗ ΩW (M)) −→ Coker(h) −→ 0

is a V ⊕W -projective presentation of Coker(h). Indeed, the middle term is clearly V ⊕W -projective
by 2.2.2. It is also V ⊕W -split: first it is V -split since (EV,k � EW,M )⊗ V ∼= (EV,k ⊗ V )� EW,M
and EV,k ⊗ V splits, and second it is W -split by a similar argument.
Then, using the fact that ker(ε ⊗ τ) ∼= Coker(h), Lemma 2.12.3 and the omnibus properties of
relative syzygies and relative projectivity, compute:

ΩV ◦ ΩW (M)⊕ (V − proj) ∼= ΩV (k)⊗ ΩW (M)

∼= ΩV⊕W (Coker(h))⊕ ((V ⊕W )− proj)
∼= ΩV⊕W (ΩV⊗W (M)⊕ (V ⊗W )− proj))⊕ ((V ⊕W )− proj)
∼= ΩV⊕W ◦ ΩV⊗W (M)⊕ ((V ⊕W )− proj)

If M ∈ Proj(V ) or M ∈ Proj(W ), then ΩV ◦ ΩW (M) ∼= 0 ∼= ΩV⊕W ◦ ΩV⊗W (M). So assume
that M is indecomposable, M /∈ Proj(V ) and M /∈ Proj(W ). Thus both ΩV ◦ ΩW (M) and
ΩV⊕W ◦ΩV⊗W (M) are indecomposable, and they are neither V -projective nor V ⊕W -projective.
The result follows from the Krull-Schmidt Theorem. �

In terms of families of subgroups, this formula has the following user-friendly form:
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Corollary 2.12.6 ([Oku91], Cor. 9.11).
Let F and H be families of subgroups of the group G. Then, for any M ∈ mod(kG), the following
formula holds:

ΩF ◦ ΩH(M) ∼= ΩF∪H ◦ ΩGF∩H(M)

where GF ∩H = { gF ∩H |F ∈ F , H ∈ H}.

Proof. Let V (F) =
⊕

F∈F k↑GF and V (H) =
⊕

H∈H k↑GH be the modules associated with the
families F and H. The proposition yields

ΩV (F) ◦ ΩV (H)(M) ∼= ΩV (F)⊕V (H) ◦ ΩV (F)⊗V (H)(M) .

Besides,

V (F)⊕ V (H) = (
⊕
F∈F

k↑GF )⊕ (
⊕
H∈H

k↑GH) =
⊕

H∈F∪H
k↑GH= V (F ∪H) ,

and using Frobenius reciprocity and the Mackey formula, we compute

V (F)⊗ V (H) ∼= (
⊕
F∈F

k↑GF )⊗ (
⊕
H∈H

k↑GH) ∼=
⊕
F∈F

⊕
H∈H

(k↑GF ⊗k↑GH)

∼=
⊕
F∈F

⊕
H∈H

(k↑GF↓GH ⊗k)↑GH

∼=
⊕
F∈F

⊕
H∈H

(
⊕

x∈[H\G/F ]

xk↓
xF
xF∩H↑HxF∩H)↑GH

∼=
⊕
F∈F

⊕
H∈H

⊕
x∈[H\G/F ]

k↑GxF∩H

Finally it follows from Proposition 2.2.2 that Proj(V (F)⊗V (H)) = Proj(V (GF∩H)), as required.
�

Remark 2.12.7.

If E : 0 −→ A
α−→ B

β−→ C −→ 0 and F : 0 −→ S
σ−→ T

τ−→ U −→ 0 are short exact sequences, then

one can define chain complexes E∗ : 0 −→ A
α−→ B −→ 0 and F∗ : 0 −→ S

σ−→ T −→ 0 with B and
T in degree zero, and with homology H∗(E∗) = H0(E∗) = B/A ∼= C and H∗(F∗) = H0(F∗) ∼= U .
Then E∗ ⊗F∗ is exact with homology H∗(E∗ ⊗F∗) = H0(E∗ ⊗F∗) ∼= C ⊗ U . In other words, the

augmented complex [E∗ ⊗ F∗
β⊗τ
−−−−−� C ⊗ U ] =: E � F is a four-term exact sequence:

0 −→ A⊗ S h−→ (A⊗ T )⊕ (B ⊗ S)
g−→ B ⊗ T β⊗τ−−−→ C ⊗ U −→ 0

where h =

(
A⊗ σ
α⊗ S

)
and g = (−α⊗T,B⊗τ). Moreover, if β and τ are split kG-homomorphisms,

then so is β ⊗ τ , and if α or σ is a split kG-homomorphisms, then so is h.



CHAPTER 3

The Groups of Relative Endotrivial Modules

Recall that a module M ∈ mod(kG) is called endotrivial if its endomorphism algebra, con-
sidered as a kG-module, has the form Endk(M) ∼= k ⊕ (proj). In this chapter we generalise this
family of modules to weaker versions by replacing ordinary projectivity with projectivity relative
to a kG-module. This operation enables us to build groups of representations which naturally
generalise the group of endotrivial modules T (G).

In the sequel, unless otherwise stated, V shall denote a fixed absolutely p-divisible kG-module
so that the subcategory Proj(V ) is not the whole category mod(kG) of kG-modules, which is
equivalent to requiring that the trivial module k is not projective relatively to V .

3.1. Relative endotrivial modules

Definition 3.1.1.
Let V ∈ mod(kG) be an absolutely p-divisible module. A kG-module M is termed endotrivial rela-
tive to the kG-module V or relatively V -endotrivial or simply V -endotrivial if its k-endomorphism
ring is the direct sum of a trivial module and a V -projective module. That is, M is endotrivial
relative to V if and only if

Endk(M) ∼= M∗ ⊗M ∼= k ⊕ (V − proj) .

Notice that, if such an isomorphism exists, it is provided by the trace map TrM : M∗⊗M −−� k,
and thus it is natural.

Also notice that an endotrivial module, in the usual sense, is, in this terminology, a kG-
endotrivial module. In the sequel, we shall often refer to endotrivial modules as ordinary endotrivial
modules in order to differentiate the usual notion from the relative notion. In addition, since for
any kG-module V , the subcategory Proj(V ) contains the projective kG-modules, it follows that
endotrivial modules are always V -endotrivial modules, however the choice of V .

Categorical setting 3.1.2.
Definition 3.1.1 is equivalent to requiring that Endk(M) is isomorphic to a trivial module in the

49
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relative stable category stmodV (kG). Furthermore, it follows, straightforwardly, from the Benson-
Carlson Theorem (2.8.4) that an indecomposable module M is V -endotrivial if and only if it is
invertible in stmodV (kG) endowed with its usual tensor (triangulated) structure1, with inverse M∗.

To begin with, here is a rudimentary but extremely useful dimensional characterisation for
relatively endotrivial modules.

Lemma 3.1.3.
Let V be an absolutely p-divisible kG-module and M be a V -endotrivial module. Then:

(a) dimk(M)2 ≡ 1 mod p.
(b) In case V = k ↑GQ, that is if we consider projectivity relative to the p-subgroup Q of G,

then dimk(M)2 ≡ 1 mod |P : Q| where P is a Sylow p-subgroup of G containing Q.

Proof.
(a) By 2.8.4 the k-dimension of any V -projective module is divisible by p, hence

dimk(M)2 = dimk(Endk(M)) = dimk(k ⊕ (V − proj)) ≡ 1 mod p .

(b) As a consequence of Green’s indecomposability theorem, the k-dimension of a module is
divisible by the index of one of its vertices in the corresponding Sylow p-subgroup. (See
[CR90].)

�

In the sequel, we shall often use statement (a) of this lemma without further mention.

Remark 3.1.4.
Notice that in particular, if G is a p-group of order pn then statement (b) gives the standard
dimensional characterization for an ordinary endotrivial kG-module M : dimk(M)2 ≡ 1 mod pn .

3.2. Direct sum decomposition structure

Before giving the first examples, it is helpful to describe the direct summands of relative
endotrivial modules.

Lemma 3.2.1.
If M ∈ mod(kG) is a V -endotrivial module, then so is M ⊕W for any W ∈ Proj(V ).

Proof. Compute

Endk(M ⊕W ) ∼= Endk(M)⊕ (M∗ ⊗W )⊕ (W ∗ ⊗M)⊕ (W ∗ ⊗W )

∼= k ⊕ (V − proj)⊕ (V − proj)⊕ (V − proj)
∼= k ⊕ (V − proj) .

�

The next easy result is the first step towards the construction of an abelian group structure on
the class of relative endotrivial modules.

1The algebraic geometers ([Bal10]) say that the ⊗-invertible elements of stmod(kG) have been dubbed endotrivial
by the representation theorists. We follow up and dub V -endotrivial the ⊗-invertible elements of stmodV (kG).
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Lemma 3.2.2.
Let M be a V -endotrivial kG-module and assume there is a direct sum decomposition M ∼= M0 ⊕M1,
then one of M0 or M1 is V -endotrivial and the other is V -projective. In consequence, M is
V -endotrivial if and only if its V -projective-free part is indecomposable and V -endotrivial.

Proof. By assumption, we have

k ⊕ (V − proj) ∼= Endk(M) ∼= Endk(M0)⊕Homk(M0,M1)⊕Homk(M1,M0)⊕ Endk(M1) .

As a result, the Krull-Schmidt theorem forces the trivial module k to be a direct summand of
either Endk(M0), or Endk(M1). Indeed, if it were not the case, k would be a direct summand
of Homk(M0,M1) or Homk(M1,M0). But the two latter modules being dual to each other, k ⊕
k would be a direct summand of Endk(M), which is not possible because, by the assumption
that V is absolutely p-divisible, k /∈ Proj(V ) (Proposition 2.8.3). Thus we may assume that
Endk(M0) ∼= k ⊕ (V − proj) and Endk(M1) ∈ Proj(V ). But, by 2.2.2, M1 ∈ Proj(V ) if and only
if M1 ⊗M∗1 ∈ Proj(V ). In conclusion, M0 is V -endotrivial and M1 ∈ Proj(V ), as required. �

3.3. Examples and constructions

Ordinary endotrivial modules are endotrivial relatively to any kG-module V . In particular, so
is any one-dimensional kG-module χ. Indeed, χ∗ ⊗k χ ∼= k because it is one-dimensional and thus
trace map Trχ splits.

The other class of examples of V -endotrivial modules that springs to mind is given by the
kernels (and cokernels) of V -projective resolutions of the trivial module and in particular, the
relative syzygies ΩnV (k), n ∈ Z. More generally, we have the following construction to manufacture
new V -endotrivial modules from old ones :

Lemma 3.3.1.

(a) Let P ∈ Proj(V ) and 0 −→ L −→ P −→ N −→ 0 be a V -split short exact sequence.
Then N is V -endotrivial if and only if L is.

(b) Let M be a V -endotrivial kG-module. Then the kG-modules ΩnW (M) are V -endotrivial
modules for every kG-module W ∈ Proj(V ) and for every n ∈ Z.

Proof.
(a) follows from (b). Indeed, the sequence 0 −→ L −→ P −→ N −→ 0 can be seen as a

V -projective presentation of N as well as a V -injective presentation of L. In consequence,

L = Ω̃V (N) ∼= ΩV (N)⊕ (V − proj) and N = Ω̃−1
V (L) ∼= Ω−1

V (L)⊕ (V − proj), by 2.12.1.

(b) Using the arithmetic of the relative syzygies developed in section 2.12 compute:

Endk(ΩnW (M)) ∼= ΩnW (M)∗ ⊗ ΩnW (M) ∼= Ω0
W (M∗ ⊗M)⊕ (W − proj)

∼= Ω0
W (k ⊕ (V − proj))⊕ (W − proj)

∼= Ω0
W (k)⊕ Ω0

W (V − proj)⊕ (W − proj)
∼= k ⊕ (V − proj)⊕ (W − proj) ∼= k ⊕ (V − proj)

The last isomorphism comes from the assumption that W ∈ Proj(V ). For, the last-but-
one isomorphism, Ω0

W (k) ∼= k because k /∈ Proj(W ) ⊆ Proj(V ) 6= mod(kG) and because
Ω0
W (k) is W -projective-free, and Ω0

W (V − proj) = (V − proj) by Lemma 2.12.3.

�
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Furthermore, the class of V -endotrivial kG-modules is closed under taking tensor products, duals
and thus under application of Homk(−,−).

Lemma 3.3.2.
If M,N are V -endotrivial kG-modules, then so are the modules M ⊗N , M∗ and Homk(M,N).

Proof. Compute:

Endk(M ⊗N) ∼= Endk(M)⊗ Endk(N) ∼= (k ⊕ (V − proj))⊗ (k ⊕ (V − proj))
∼= k ⊕ (V − proj)

Moreover M∗ is V -endotrivial because Endk(M∗) ∼= Endk(M). Finally Homk(M,N) ∼= M∗ ⊗ N
which is V -endotrivial by the preceding arguments. �

Lemma 3.3.3.
Let V ∈ mod(kG) be absolutely p-divisible. Let M be a kG-module such that M ∼= N1⊗N2 for some
N1, N2 ∈ mod(kG) . Then M is V -endotrivial if and only if both N1 and N2 are V -endotrivial.

Proof. If M is V -endotrivial, then k⊕ (V −proj) ∼= M∗⊗M ∼= N∗1 ⊗N1⊗N∗2 ⊗N2 . Since V
is absolutely p-divisible, then in the first place k /∈ Proj(V ) and, in the second place, by Lemma
3.1.3, dimk(M) is coprime to p. Hence so are dimk(N1) and dimk(N2). Thus it follows from Lemma
2.2.1 and the Krull-Schmidt theorem that N∗1 ⊗N1

∼= k⊕(V −proj) and N∗2 ⊗N2
∼= k⊕(V −proj).

As required. �

Next, we investigate the behaviour of relative endotrivial modules with respect to standard group
operations.

Lemma 3.3.4.

(a) If H is a subgroup of G and M a V -endotrivial kG-module, then M ↓GH is a V ↓GH-
endotrivial module.

(b) If N is a normal subgroup of G and M a V -endotrivial k[G/N ]-module, then InfGG/N (M)

is an InfGG/N (V )-endotrivial module.

(c) Let ϕ : G1 −→ G2 be a group isomorphism and M a kG1-module. Then M can be seen

as a kG2-module, denoted by IsoG2

G1
(M), the action of G2 on M being given via ϕ−1.

Furthermore, if V is a kG1-module and M is a V -endotrivial kG1-module then IsoG2

G1
(M)

becomes an IsoG2

G1
(V )-endotrivial kG2-module.

Proof. Use Lemma 2.6.1 to compute:

Endk(M ↓GH) ∼= Endk(M)↓GH∼= (k ⊕ (V − proj))↓GH∼= k↓GH ⊕(V − proj)↓GH∼= k ⊕ (V ↓GH −proj)

This proves (a). Likewise:

Endk(InfGG/N (M)) ∼= InfGG/N (Endk(M)) ∼= InfGG/N (k ⊕ (V − proj))
∼= InfGG/N (k)⊕ InfGG/N (V − proj) ∼= k ⊕ (InfGG/N (V )− proj)

and

Endk(IsoG2

G1
(M)) ∼= IsoG2

G1
(Endk(M)) ∼= IsoG2

G1
(k ⊕ (V − proj))

∼= IsoG2

G1
(k)⊕ IsoG2

G1
(V − proj) ∼= k ⊕ (IsoG2

G1
(V )− proj) .

�
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Tensor induction. The tensor induction of a relative endotrivial module does not necessarily
produce a relative endotrivial module either. A counterexample will be provided in section 7.6.

Induction. Relative endotrivial modules are, in general, not stable under induction. This is easily
seen by considering the group G := C3×C3 and its index 3 subgroup H := C3×1. Then, the trivial
kH-module k is endotrivial, but the induced module k ↑GH can’t be endotrivial relatively to any
kG-module since it is indecomposable and thus by the Benson-Carlson Theorem 2.8.1, the module
(k ↑GH)∗ ⊗ k ↑GH does not have the trivial module as a direct summand. (This example extends to
any indecomposable relative endotrivial kH-module M and any G ≥ H satisfying the hypothesis
of Green’s indecomposability criterion, since then dimk(M ↑GH) = |G : H|dimk(M) is divisible
by p.)

Notwithstanding, if the problem is taken the other way around, here is a condition for an
induced module to be relatively endotrivial:

Lemma 3.3.5.
Let V ∈ mod(kG) be absolutely p-divisible. If M is a V -endotrivial kG-module such that M ∼= L↑GH
for some proper subgroup H of G and some L ∈ mod(kH), then H contains a Sylow p-subgroup of
G and L is V ↓GH-endotrivial.

Proof. First, because M is V -endotrivial, dimk(M) is coprime to p and therefore so are
dimk L and |G : H|. Thus H must contain a Sylow p-subgroup of G.
Then, Theorem 2.9.3 implies that V ↓GH is absolutely p-divisible as well. Furthermore, the Mackey
formula implies that L |M ↓GH , which, for dimensional reasons, is not V ↓GH -projective (Lemma
2.8.4). It follows that L is V ↓GH -endotrivial. Indeed, by the previous lemma, M ↓GH is V ↓GH -
endotrivial, thus by 3.2.2 we can write M ↓GH= M0⊕(V ↓GH −proj) with M0 its unique indecompos-
able and V ↓GH -endotrivial. Now, looking at dimensions, dimk(M0) is coprime to p and any direct
summand of the V ↓GH -projective part has dimension divisible by p, so that L, as a direct summand
of M ↓GH , must be of the form M0 ⊕ (V ↓GH −proj) as well. �

3.4. Self-equivalences of the relative stable category

From the categorical point of view, one reason for interest in endotrivial modules comes from
the fact that the tensor product with an endotrivial module always induces a self-equivalence
of the stable category stmod(kG). We establish in this section that, in like manner, the tensor
product with a V -endotrivial module always induces a self-equivalence of the relative stable category
stmodV (kG) associated with the module V . To start with, we dissect the tensor product with a
V -endotrivial module in mod(kG).

Lemma 3.4.1.
Let V be an absolutely p-divisible kG-module and M be an indecomposable kG-module with dimen-
sion coprime to p.
Then, M is a V -endotrivial kG-module if and only if for any indecomposable kG-module N , the
tensor product M ⊗N has at most one non-V -projective indecomposable direct summand.
More accurately, for the necessary condition we have:

(a) if N ∈ Proj(V ), then M ⊗N ∈ Proj(V ) and so do all its direct summands.
(b) if N /∈ Proj(V ), then M ⊗N has exactly one non-V -projective direct summand.
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Proof. Note that because M has dimension coprime to p, M /∈ Proj(V ). For the necessary
condition, statement (a) is given by Lemma 2.2.2, parts (a),(b) and (f). For statement (b), Lemma
2.8.5 ensures that if N /∈ Proj(V ), then M ⊗N /∈ Proj(V ) either, therefore M ⊗N has at least
one non-V -projective direct summand. In order to prove that it is unique, write

M ⊗N ∼=
⊕
i∈I

Ai ⊕ (V − proj)

where
⊕

i∈I Ai is a decomposition into indecomposable summands of the V -projective-free part of
M ⊗N . Then, on the one hand, we get

M∗ ⊗ (M ⊗N) ∼= M∗ ⊗ (
⊕
i∈I

Ai ⊕ (V − proj)) ∼=
⊕
i∈I

(M∗ ⊗Ai)︸ ︷︷ ︸
/∈Proj(V )

⊕(V − proj)

where, because M is V -endotrivial, it is not absolutely p-divisible so that we can invoke Lemma
2.8.5 to obtain that none of the modules M∗ ⊗ Ai belongs to Proj(V ). But, on the other hand,
because M is V -endotrivial,

M∗ ⊗M ⊗N ∼= (k ⊕ (V − proj))⊗N ∼= N ⊕ (V − proj)

in which decomposition N is the unique non-V -projective indecomposable summand. Therefore,
using Krull-Schmidt to compare the two decompositions of M∗⊗M⊗N yields |I| = 1, as required.

Conversely, taking N = M∗ means that M∗ ⊗M ∼= L ⊕ (V − proj) for some L ∈ mod(kG).
Moreover, since dimkM is coprime to p, Lemma 2.2.1 states that the trivial module k is a summand
in M∗ ⊗ M . Since V is absolutely p-divisible, k /∈ Proj(V ) and therefore the Krull-Schmidt
Theorem forces the existence of a decomposition M∗ ⊗M ∼= k⊕ (V − proj). In other words, M is
V -endotrivial. �

Passing to the relatively V -stable category stmodV (kG) provides us with the desired nicer
statement:

Proposition 3.4.2.
Let V be an absolutely p-divisible kG-module and M be a V -endotrivial module. The tensor product
with M induces a self-equivalence of the relative stable category stmodV (kG) with inverse induced
by the dual module M∗:

stmodV (kG)
M⊗− // stmodV (kG)
M∗⊗−
oo

Proof. First, by the lemma, the tensor product of a V -projective module with M or M∗ is
V -projective again. Then, let N be an indecomposable non-V -projective kG-module. Because M
is V -endotrivial, we have seen in the lemma that M∗ ⊗M ⊗ N ∼= N ⊕ (V − proj) in mod(kG),
hence M∗ ⊗M ⊗ N ∼= N in stmodV (kG). The same is true, if we swap the roles of M and M∗.
Since the isomorphism M∗ ⊗M ∼= k ⊕ (V − proj) is natural (obtained via the trace map TrM ), it
follows that M ⊗− and M∗ ⊗− are self-equivalence of stmodV (kG). �

3.5. Vertices and sources of relative endotrivial modules

To begin with, here is a well-known characterization of the dimension of modules with vertices
strictly smaller than Sylow p-subgroups. Having found no reference for it, for completeness we give
a quick proof using the language of relative projectivity.



3.6. GROUP STRUCTURE 55

Lemma 3.5.1.
Let M be an indecomposable kG-module and assume that a vertex Q of M is strictly smaller than
a Sylow p-subgroup P of G. Then p divides the k-dimension of M .

Proof. By assumption M ∈ Proj(k ↑GQ). Thus Proj(M) ⊆ Proj(k ↑GQ) by 2.2.2 and

Proj(k↑GQ) 6= mod(kG) because Q � P (this is well-known from the theory of vertices and sources).

In consequence Proj(M) ( mod(kG). Hence by Proposition 2.8.3, M is absolutely p-divisible so
that p | dimk(M) because it is indecomposable. �

As a consequence, this lemma allows us to characterize the vertices of relatively endotrivial
modules and compute their sources.

Lemma 3.5.2.
Let V be an absolutely p-divisible kG-module and M be an indecomposable V -endotrivial kG-module.
Then:

(a) The vertices of M are the Sylow p-subgroups of G.
(b) If (P, S) is a vertex-source pair for M , then S is a V ↓GP -endotrivial module S has multi-

plicity one as a direct summand of M ↓GP .
(c) Assume moreover that M ↓GP∼= k ⊕ (V ↓GP −proj), then the trivial kP -module is a source

for M .

Proof.
(a) The contrapositive statement of the previous lemma asserts that the vertices of a module

with dimension coprime to p are the Sylow p-subgroups. Hence the result.

(b) By assumption S |M ↓GP , so that S∗ |M∗ ↓GP and

S ⊗ S∗ |M ↓GP ⊗S∗ |M ↓GP ⊗M∗ ↓GP∼= (M ⊗M∗)↓GP∼= k ⊕ (V ↓GP −proj) .

Thus it remains to show that k |S ⊗ S∗. Assume ab absurdo that it is not the case,
then S ⊗ S∗ has to be V ↓GP -projective by the above and therefore, so is S by 2.2.2. In
consequence,

M |S ↑GP ∈ (Proj(V ↓GP ))↑GP ⊆ Proj(V )

by Lemma 2.6.3, which contradicts the fact that for an absolutely p-divisible module V ,
an indecomposable V -endotrivial module is V -projective-free.

(c) Since P is a Sylow p-subgroup, M is P -projective so that

M |M ↓GP↑GP ∼= (k ⊕ (V ↓GP −proj))↑GP∼= k↑GP ⊕(V ↓GP −proj))↑GP= k↑GP ⊕(V − proj),

by Lemma 2.6.3 (c). Moreover, M is V -projective-free by assumption, thus the Krull-
Schmidt theorem yields that M | k ↑GP . In consequence, P being a vertex of M , k is a
source of M .

�

3.6. Group structure

We can now copy the group structure on the ordinary endotrivial modules. Let V ∈ mod(kG)
be an absolutely p-divisible module and set an equivalence relation ∼V on the class of V -endotrivial
kG-modules as follows: for M and N two V -endotrivial modules let

M ∼V N if and only if M0
∼= N0 ,
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where M0 and N0 are the unique V -endotrivial indecomposable summands of M and N , respec-
tively, given by 3.2.2. This amounts to requiring that M and N are isomorphic in stmodV (kG).
Then let TV (G) denote the resulting set of equivalence classes. In particular, any equivalence class
in TV (G) consists of an indecomposable V -endotrivial module M0 and all the modules of the form
M0 ⊕ (V − proj).

Proposition 3.6.1.
The ordinary tensor product ⊗k induces an abelian group structure on the set TV (G) defined as
follows:

[M ] + [N ] := [M ⊗k N ]

The zero element is [k] and the opposite of a class [M ] is the class [M∗]. Moreover TV (G) is called
the group of V -endotrivial modules.

Notice that we use an additive notation, which is consistent with the choice made in [BT00]
and related articles treating endo-permutation and endotrivial modules.

Proof. The composition law + is clearly commutative. It is also clearly well-defined by
Lemma 3.3.2. Furthermore, if M ∼V M ′ and N ∼V N ′ then M ∼= M0 ⊕ (V − proj),
M ′ ∼= M0 ⊕ (V − proj), N ∼= N0 ⊕ (V − proj), N ′ ∼= N0 ⊕ (V − proj), with M0, N0 indecom-
posable V -endotrivial modules. The omnibus properties of relative projectivity imply that

M ⊗N ∼= (M0 ⊗N0)⊕ (V − proj) and M ′ ⊗N ′ ∼= (M0 ⊗N0)⊕ (V − proj) ,

that is M ⊗N ∼V M ′ ⊗N ′. �

Corollary 3.6.2.
If M is a self-dual, V -endotrivial kG-module, then [M ] has order one or two in TV (G). Moreover
[M ] has order one if and only if M ∼= k.

Proof. By assumption M ⊗M ∼= M∗ ⊗M ∼= k ⊕ (V − proj) so that 2[M ] = [k]. �

Example 3.6.3.
To give a first example, this simple observation can be applied at once to the concrete case of a
cyclic p-group Cpn , n ≥ 1. Indeed, all the indecomposable kCpn-modules are self-dual. There-
fore, whatever the choice of the absolutely p-divisible module V , it can be deduced that the group
TV (Cpn) is an elementary abelian 2-group. We shall give a complete description of all the different
groups of relative endotrivial modules for cyclic p-groups in Chapter 5.

Categorical setting 3.6.4.
The group TV (G) of V -endotrivial modules may as well be considered as the group T (G) of V -stable
isomorphism classes of V -endotrivial modules. Furthermore, following the ideas of [Bal10], from the
point of view of a ⊗-triangular geometer, TV (G) is nothing but the Picard group Pic(stmodV (kG))
of the ⊗-triangulated category (stmodV (kG),⊗k, k).

We further note that here the terminology Picard group does not designate the group of self-
equivalences of stmodV (kG) as it would for some authors in representation theory. Here, if (K,⊗,1)
is a ⊗-triangulated category, then Pic(K) designates the abelian group of isomorphism classes [x]
of ⊗-invertible objects, with addition [x] + [y] = [x ⊗ y] and zero 0 = [1]. Hence the equivalence
above.
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3.7. Some subgroups of TV (G)

Lemma 3.7.1.
Let U, V ∈ mod(kG) be absolutely p-divisible modules such that Proj(V ) ⊆ Proj(U). Then:

(a) Every V -endotrivial kG-module is U -endotrivial.
(b) If M and N are V -endotrivial modules such that M ∼V N , then M ∼U N as well. In

consequence, TV (G) can be identified with a subgroup of TU (G) via the injective group
homomorphism

ı : TV (G) −→ TU (G)
[M ]V 7−→ [M ]U

By abuse of notation, we shall simply write TV (G) ≤ TU (G) .

Proof.
(a) Let M be a V -endotrivial module, then Endk(M) ∼= k⊕ (V − proj) = k⊕ (U − proj), i.e.

M is U -endotrivial.
(b) Write M ∼= M0 ⊕ (V − proj) and N ∼= N0 ⊕ (V − proj) with M0, N0 indecomposable

and V -endotrivial. Then M ∼V N implies that M0
∼= N0. By (a), M0 and N0 are U -

endotrivial, so that M ∼U N . In consequence ı is a well-defined group homomorphism.
The injectivity follows from the uniqueness of the indecomposable summand M0.

�

The study of relative endotrivial modules for the Klein Group C2 × C2 will show that it
is possible to have a strict inclusion Proj(V ) ( Proj(U) but an isomorphism TV (G) ∼= TU (G).
Nevertheless, a strict inclusion Proj(V ) ( Proj(U) implies that the class of V -endotrivial modules
is strictly contained in the class of U -endotrivial modules. Indeed, if M ∈ Proj(U) \ Proj(V ),
then, on the one hand, L := k ⊕M is U -endotrivial, since

Endk(L) ∼= k ⊕M ⊕M∗ ⊕ (M ⊗M∗) = k ⊕ (U − proj),

but on the other hand it is not V -endotrivial, otherwise M would be V -projective. Besides, this
argument shows that there are more modules belonging to the class [k] in TU (G) than in TV (G).

Consequence 3.7.2.
The group T (G) of ordinary endotrivial modules is a subgroup of TV (G) for every absolutely p-
divisible V ∈ mod(kG). For Proj ⊆ Proj(V ), thus Lemma 3.7.1 yields T (G) ≤ TV (G).

One-dimensional representations.
If G is a finite group, we shall follow the notation of [MT07] and denote by X(G) the abelian group
of all isomorphism classes of one-dimensional kG-modules endowed with the group law induced by
⊗k, which can also be identified with the group Hom(G, k×) of k-linear characters of G. It is a
p′-group, isomorphic to the p′-part of the abelianization G/[G,G] of G.

As mentioned before in Section 3.3, a one-dimensional module χ is V -endotrivial for every
absolutely p-divisible kG-module V , because χ∗ ⊗ χ ∼= k. Therefore there is an embedding

X(G) −→ TV (G)
χ 7−→ [χ] .

mapping a one-dimensional module to its class in TV (G). Formalism would require to denote by
XV (G) the image of X(G) in TV (G), where the law is written additively, nonetheless, in order to
keep light notation, we shall simply use X(G) instead of XV (G) and, in addition, consider it as a
subgroup of TV (G). Thus there is always a chain of subgroups:

X(G) ≤ T (G) ≤ TV (G)
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3.8. Computing with relative syzygies.

Notation.
Let V ∈ mod(kG). For simplicity of notation, in the sequel of this text, we shall denote by ΩV
the class of the relative syzygy module ΩV (k) in any group of relative endotrivial modules TW (G)
such that V ∈ Proj(W ).

The following formulae are basic rules for computations with relative syzygies in groups of
relative endotrivial modules:

Lemma 3.8.1.
Let n ≥ 2 be an integer and V1, . . . , Vn ∈ mod(kG) be pairwise non isomorphic absolutely p-divisble
modules.

(a) In TV1(G), for any indecomposable V1-endotrivial kG-module N :

[ΩV1(N)] = [Ω̃V1(N)]

(b) In TV1⊕V2
(G):

ΩV1
+ ΩV2

= [ΩV1
◦ ΩV2

(k)]

(c) In TV1⊕V2
(G):

ΩV1⊕V2
= ΩV1

+ ΩV2
− ΩV1⊗V2

(d) More generally, in TV1⊕...⊕Vn(G):

ΩV1⊕...⊕Vn =

n∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n

ΩVi1⊗···⊗Vis )

Proof.

(a) Ω̃V1
(N) is a notation for any module of the form ΩV1

(N) ⊕ (V1 − proj), thus, in any

case, ΩV1
(N) is the unique V1-endotrivial summand in Ω̃V1

(N). Hence the equality

[ΩV1
(N)] = [Ω̃V1

(N)] ∈ TV1
(G) follows.

(b) By definition of the addition [ΩV1
(k)]+[ΩV2

(k)] = [ΩV1
(k)⊗ΩV2

(k)]. Moreover by Lemma
2.12.1, ΩV1

(k)⊗ΩV2
(k) ∼= ΩV1

(ΩV2
(k))⊕(V1−proj), hence the equality [ΩV1

(k)⊗ΩV2
(k)] =

[ΩV1 ◦ ΩV2(k)] in TV1⊕V2(G) since Proj(V1) ⊆ Proj(V1 ⊕ V2).

(c) Let us compute:

ΩV1
+ ΩV2

= [ΩV1
◦ ΩV2

(k)] by part (b)

= [ΩV1⊕V2 ◦ ΩV1⊗V2(k)] by Proposition 2.12.5

= ΩV1⊕V2
+ ΩV1⊗V2

by part (b) again.

Whence the formula ΩV1⊕V2
= ΩV1

+ ΩV2
− ΩV1⊗V2

.

(d) By part (c), the formula holds for n = 2. Thus we can proceed by induction on the
integer n. Let n ≥ 3 and assume as induction hypothesis that the formula holds for every
(n − 1)-tuple of absolutely p-divisible modules V1, . . . Vn−1 ∈ mod(kG). Then, applying
part (b) to the modules V1 ⊕ . . .⊕ Vn−1 and Vn yields:

ΩV1⊕...⊕Vn = ΩV1⊕...⊕Vn−1
+ ΩVn − Ω(V1⊕...⊕Vn−1)⊗Vn

=

n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

ΩVi1⊗···⊗Vis ) + ΩVn − Ω(V1⊕...⊕Vn−1)⊗Vn
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by the induction hypothesis. Moreover, applying the induction hypothesis a second time
to the class Ω(V1⊕...⊕Vn−1)⊗Vn yields:

Ω(V1⊕...⊕Vn−1)⊗Vn = Ω(V1⊗Vn)⊕...⊕(Vn−1⊗Vn)

=

n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

Ω(Vi1⊗Vn)⊗···⊗(Vis⊗Vn))

=

n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

ΩVi1⊗···⊗Vis⊗Vn)

since Proj((Vn)⊗(n−1)) = Proj(Vn) by Proposition 2.2.2. As a result

ΩV1⊕...⊕Vn =

n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

ΩVi1⊗···⊗Vis ) + ΩVn − Ω(V1⊕...⊕Vn−1)⊗Vn

=

n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

ΩVi1⊗···⊗Vis ) + ΩVn

−
n−1∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n−1

ΩVi1⊗···⊗Vis⊗Vn)

=

n∑
s=1

(−1)s+1(
∑

1≤i1<...<is≤n

ΩVi1⊗···⊗Vis ) .

�

Remark 3.8.2.
Depending on the situation it can be interesting to use the following more manageable form for
formula (d) of the lemma:

ΩV1⊕...⊕Vn =

n∑
i=1

ΩVi −
n∑
j=2

Ω⊕j−1
r=1Vr⊗Vj

In particular, ifH := {H1, . . . ,Hn} is a family of subgroups of the group G such that the kG-module
V (H) is absolutely p-divisible, then by Corollary 2.12.6 the latter formula reads

ΩH =

n∑
i=1

Ω{Hi} −
n∑
j=2

ΩG{H1,...,Hj−1}∩{Hj} in TV (H)(G) .

3.9. Standard homomorphisms.

In order to make further links between different groups of relative endotrivial modules, we
define group homomorphisms and actions induced by group operations.

Restriction. Let H be a subgroup of G and let V an absolutely p-divisible kG-module such that
V ↓GH is absolutely p-divisible too. Then both the groups TV (G) and TV↓GH (H) are well-defined. If

M is a V -endotrivial kG-module, then M ↓GH is a V ↓GH -endotrivial kH-module. Therefore, in this
case restriction to a subgroup induces a well-defined group homomorphism:
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ResGH : TV (G) −→ TV↓GH (H)

[M ] 7−→ [M ↓GH ]

Indeed, ResGH is a group homomorphism since restriction and ⊗k commute. Furthermore, by

Lemma 2.6.3, the map ResGH is independent of the choice of the generator V for Proj(V ).

Inflation. Let N be a normal subgroup of a group G such that p | |G/N |. If V is an absolutely
p-divisible k[G/N ]-module, then both the groups TV (G/N) and TInfG

G/N
(V )(G) are well-defined. In

addition, if M is a V -endotrivial k[G/N ]-module, then InfGG/N (M) is InfGG/N (V )-endotrivial. Thus
inflation induces an injective group homomorphism:

InfGG/N : TV (G/N) ↪→ TInfG
G/N

(V )(G)

[M ] 7−→ [InfGG/N (M)]

Indeed, inflation and ⊗k commute. Furthermore, by Lemma 2.6.6, the map InfGG/N is independent

of the choice of the generator V for Proj(V ).

Isomorphism. Let ϕ : G1 −→ G2 be a group isomorphism. If M is a kG1-module, then it can be
seen as a kG2-module, denoted by Iso(ϕ)(M), the action of G2 being given via ϕ−1. Furthermore, if
V is an absolutely p-divisible kG1-module, then Iso(ϕ)(V ) is an absolutely p-divisible kG2-module,
and if M is a V -endotrivial kG1-module, then M becomes an Iso(ϕ)(V )-endotrivial kG2-module.
This operation induces a group isomorphism:

Iso(ϕ): TV (G1) −→ TIso(ϕ)(V )(G2)

[M ] 7−→ [Iso(ϕ)(M)]

A concrete example of such an isomorphism between groups of relative endotrivial modules is
provided below by conjugation.

Remark 3.9.1.
It should be noted that the three cases of restriction, inflation, and isomorphism can be unified in
the single case of restriction along a group homomorphism G1 −→ G2. Nonetheless, we do not
do it in these terms because of restriction for which we need to require that the module V ↓GH is
absolutely p-divisible. This shows that an arbitrary group homomorphism, and in particular an
inclusion of subgroups, would not necessarily induce a well-defined group homomorphism between
the corresponding groups of relative endotrivial modules.

Conjugation. Let H E G be a normal subgroup and V be an absolutely p-divisible G-invariant
kH-module. Then, for all g ∈ G, gProj(V ) = Proj(V ) and gH = H. Therefore, conjugation
induces a well-defined action of G (or rather G/H), on the group TV (H) given by:

G× TV (H) −→ TV (H)

(g, [M ]) 7−→ [ gM ]

In case the subgroup H and the module V are not assumed to be normal nor G-invariant, then
the above assignment does not yield a group action. Nevertheless, for any element g ∈ G, the
conjugation isomorphism γg : H −→ gH induces a group isomorphism

γg: TV (H) −→ T gV ( gH)

[M ] 7−→ [ gM ]

In particular, if H E G, then TV (H) ∼= T gV (H).



CHAPTER 4

Restriction Maps

The purpose of this chapter is to relate groups of relative endotrivial modules for a group G to
those for a Sylow p-subgroup P of G or a subgroup H containing P . In particular, links between
endotrivial modules for G and the normaliser NG(P ) of the Sylow subgroup can be obtained by
Green correspondence. Most of the results presented in this chapter are generalisations of results
concerning ordinary endotrivial modules which can be found in [MT07], [CMN06] and [Maz07].

4.1. Restriction to a Sylow p-subgroup

To begin with, we describe restrictions to a Sylow p-subgroup. The following easy properties
generalise [CMN06, Prop. 2.6].

Lemma 4.1.1.
Let P be a Sylow p-subgroup of G and H a subgroup of G containing P . Let V be an absolutely
p-divisible kG-module.

(a) Let M be a V -endotrivial kG-module. Then M is a direct summand of a V ↓GH-endotrivial
module induced from H to G, namely the module M ↓GH↑GH .

(b) Let M be a kG-module such that M ↓GH is V ↓GH-endotrivial, then M is V -endotrivial.

Proof.
(a) Since H ≥ P , by H-projectivity M |M ↓GH↑GH where M ↓GH is V ↓GH -endotrivial by 3.3.4.

(b) As M ↓GH is V ↓GH -endotrivial and V ↓GH is absolutely p-divisible,

(dimkM)2 = (dimkM ↓GH)2 ≡ 1 mod p .

In consequence both the trace map and its restriction to H split, so that

M∗ ⊗M ∼= k ⊕ ker(Tr)

and

(M ↓GH)∗ ⊗M ↓GH∼= k ⊕ ker(Tr)↓GH
where ker(Tr) ↓GH has to be V ↓GH -projective by the assumption that M ↓GH is V ↓GH -
endotrivial. Besides, by H-projectivity, ker(Tr) | ker(Tr)↓GH↑GH ∈ Proj(V ) by 2.6.4.
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Therefore ker(Tr) is a V -projective module as well and M∗ ⊗ M ∼= k ⊕ (V − proj)
as required.

�

We now treat the special case of a normal Sylow p-subgroup. The next proposition and its
corollary partly generalise [CMN06, Prop. 2.6, (d)] and [Maz07, Cor. 2.7].

Proposition 4.1.2.
Let P be a normal Sylow p-subgroup of G. Let V be an absolutely p-divisible kG-module. Then, an
indecomposable kG-module M is V -endotrivial if and only if its restriction to P is an indecompos-
able V ↓GP -endotrivial module.

Proof. Suppose M is an indecomposable V -endotrivial module. Let M ↓GP ∼= N1 ⊕ · · · ⊕Ns,
s ∈ N, be a decomposition into indecomposable summands. Since P is a vertex of M (see 3.5.1),
one may assume, without loss of generality, that N1 is a source for M , so that M |N1 ↑GP as well.
Thus, given that P is normal in G, the Mackey formula yields

M ↓GP |N1 ↑GP↓GP ∼=
⊕

g∈[G/P ]

gN1 .

Now, on the one hand M ↓GP is V ↓GP -endotrivial, which is more accurately the direct sum of an
indecomposable V ↓GP -endotrivial module, whose k-dimension is coprime to p, and a V ↓GP -projective
module, all of whose indecomposable summands have k-dimension divisible by p. On the other hand
the G-conjugates gN1 of N1 are all indecomposable with k-dimension equal to that of N1. Therefore,
this forces M ↓GP to be indecomposable (V ↓GP -endotrivial). Conversely, let M be such that M ↓GP is
an indecomposable V ↓GP -endotrivial module. Firstly the fact that M ↓GP is indecomposable forces
M to be indecomposable as well, and secondly it follows from part (b) of Lemma 4.1.1 that M is
V -endotrivial. �

As a consequence, when the Sylow p-subgroup P is normal in the group G, then the V -
endotrivial modules are detected upon restriction to P . Since the restriction of a V -endotrivial
module is G-invariant, at the level of groups of relatively endotrivial modules, there is an inclusion

Im(ResGP ) ≤ TV↓GP (P )NG(P )/P .

A natural question is to ask when this inclusion is indeed an equality, that is when the restriction
map is actually surjective onto the NG(P )/P -fixed points of TV↓GP (P ). We shall see further in

Chapter 5 that, for instance, it is always the case for groups with cyclic Sylow p-subgroups.

Corollary 4.1.3.
Let P be a normal Sylow p-subgroup of G. Let V be an absolutely p-divisible kG-module, M be an
indecomposable V -endotrivial module and (X∗, ∂∗) be a V -projective resolution of M . Then:

(a) (X∗, ∂∗) is minimal if and only if (X∗ ↓GP , ∂∗ ↓GP ) is a minimal V ↓GP -projective resolution
of M ↓GP ;

(b) in particular, ΩnV (M)↓GP ∼= Ωn
V↓GP

(M ↓GP ) for all integers n.

Proof. Given that (X∗, ∂∗) is a minimal V -projective resolution, for each integer n ≥ 0 there
is a V -split short exact sequence

0 // Ωn+1
V (M) // Xn

∂n // ΩnV (M) // 0 .
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Restricting it from G to P yields a V ↓GP -projective presentation of Ωn
V↓GP

(M)↓GP :

0 // Ωn+1
V (M)↓GP // Xn ↓GP

∂n↓GP // ΩnV (M)↓GP //// 0

although, it is not necessarily minimal. However, by 2.12.1,

Ωn+1
V (M)↓GP∼= Ωn+1

V (M ↓GP )⊕ (V ↓GP −proj) and ΩnV (M)↓GP∼= ΩnV (M ↓GP )⊕ (V ↓GP −proj) .

Besides, by the proposition, both these modules are indecomposable so that the V ↓GP -projective
factors are zero. Therefore the above short exact sequence is indeed

0 // Ωn+1
V (M ↓GP ) // Xn ↓GP

∂n↓GP // ΩnV (M ↓GP ) // 0 .

Hence the minimality of (X∗ ↓GP , ∂∗ ↓GP ). The converse is trivial. �

4.2. Restriction to the normaliser of a Sylow p-subgroup

The goal is now to figure out the behaviour of restriction maps from a group G to the normaliser
of a Sylow p-subgroup P or a subgroup H containing NG(P ). The picture to keep in mind is the
following:

G

H

NG(P )

P

It follows from Theorem 2.9.3 and Section 3.9 that for every absolutely p-divisible kG-module V
there is a well-defined restriction map

ResGH : TV (G) −→ TV↓GH (H) .

The following statement generalises [CMN06, Prop. 2.6.(a)].

Lemma 4.2.1.
Let P be a Sylow p-subgroup of G and let H be a subgroup of G containing NG(P ). Let V ∈ mod(kG)

be an absolutely p-divisible module. Then both the restriction maps ResGH : TV (G) −→ TV↓GH (H)

and ResHNG(P ) : TV↓GH (H) −→ TV↓H
NG(P )

(NG(P )) are injective.

Proof. Since NH(P ) = NG(P ), it suffices to show that ResGH is injective. Let M be an

indecomposable V -endotrivial kG-module. By Lemma 3.5.2, P is a vertex of M . Then, on the one
hand, the Green correspondence for the triple (G,H;P ) yields:

M ↓GH ∼= Gr(M)⊕X
where Gr(M) is an indecomposable kH-module with vertex P and X ∈ Proj(Y) with
Y = {xP ∩ H |x ∈ G \ H}. But xP ∩ H � xP for all x ∈ G \ H, otherwise xP would be a
Sylow p-subgroup of H which is not possible, since then there would be h ∈ H such that hxP = P ,
that is hx ∈ NG(P ) ⊆ H and x ∈ H. Therefore all the direct summands of X have a vertex strictly
smaller than P . On the other hand, M ↓GH is a V ↓GH -endotrivial module, that is:

M ↓GH ∼= M0 ⊕ (V ↓GH −proj)
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with M0 an indecomposable V ↓GH -endotrivial module, thus with vertex P by 3.5.2. In consequence,
the Krull-Schmidt theorem implies that M0

∼= Gr(M), the kH-Green correspondent of M , whose

uniqueness yields the injectivity of ResGH . �

Remark 4.2.2.
As a scholium, note that in particular an indecomposable V -endotrivial module restricts to NG(P )
as

M ↓GNG(P )
∼= M0 ⊕ (V ↓GNG(P ) −proj)

where the V ↓GNG(P )-projective part is actually projective relatively to the family of subgroups

Y = {xP ∩NG(P ) |x ∈ G\NG(P )}.

4.3. Cases in which restriction maps are isomorphisms

.

Knowing that the restriction map ResGH : TV (G) −→ TV↓GH (H) is injective for every subgroup

H containing the normaliser NG(P ) of a Sylow p-subgroup P , the next question that arises is
to understand when this map is an isomorphism. The last section on groups with cyclic Sylow
p-subgroup shall provide us with examples in which the answer depends on the module V to which
relative projectivity is considered. Notwithstanding, one can show that in case the subgroup H is
strongly p-embedded in G, then ResGH is always an isomorphism, however the choice of the module
V . This result generalises the similar result for ordinary endotrivial modules that can be found, for
instance, in [MT07, Lem. 2.7]. Furthermore, the proof of this result provides us with the following
more general sufficient condition on the module V for the restriction map to be an isomorphism.

Lemma 4.3.1.
Let P be a Sylow p-subgroup of G and H ≤ G a subgroup containing the normaliser NG(P ) of
P . Let V be an absolutely p-divisible kG-module. If Proj(V ↓GH) ⊇ Proj(Y), where Y is the
family of subgroups {gP ∩H | g ∈ G \H} involved in the Green correspondence, then the restriction

map ResGH : TV (G) −→ TV↓GH (H) is an isomorphism. Furthermore, the inverse map is induced by

induction, so that

TV (G) = {[M ↑GH ] | [M ] ∈ TV↓GH (H)} ∼= TV↓GH (H)

More accurately, on indecomposable V ↓GH-endotrivial modules, the inverse map is induced by the
Green correspondence, that is, if Γ(M) denotes the Green correspondent of an indecomposable
kH-module M , then

TV (G) = {[Γ(M)] |M is an indecomposable V ↓GH -endotrivial kH-module} .

Proof. By 4.2.1, the map ResGH is one-to-one, therefore it only remains to show that it is
onto as well. Let L be an indecomposable V ↓GH -endotrivial module. The Mackey formula yields
the isomorphism.

L↑GH↓GH∼= L⊕
⊕

g∈[H\G/H]
g∈G−H

(gL)↓
gH
gH∩H↑HgH∩H=: L⊕ L′ ,

where, by the proof of the Green correspondence, L′ ∈ Proj(Y), so that

L↑GH↓GH∼= L⊕ (Y − proj) = L⊕ (V ↓GH −proj)
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by assumption. In other words, L↑GH↓GH is V ↓GH -endotrivial and consequently L↑GH is V -endotrivial

by 4.1.1. Therefore, ResGH([L ↑GH ]) = [L ↑GH↓GH ] = [L]. Hence the surjectivity of ResGH . Moreover,

the proof of the injectivity of ResGH shows that the unique indecomposable V -endotrivial summand
of L↑GH has to be isomorphic to the kG-Green correspondent of L.
It follows from the proof of the injectivity (Lemma 4.2.1) that the inverse map is induced by
Green correspondence on the indecomposable modules. To see that, alternatively, it is induced by
induction, let [M ] ∈ TV↓GH (H) and write M ∼= M0 ⊕ (V ↓GH −proj) with M0 an indecomposable

V ↓GH -endotrivial module. Then,

M ↑GH ∼= M0 ↑GH ⊕(V ↓GH −proj)↑GH∼= Γ(M0)⊕ (X − proj)⊕ (V − proj)
where X is the familly of subgroups involved in the Green correspondence, as described in section 2,
and Proj(V ↓GH)↑GH⊆ Proj(V ) by Lemma 2.6.3. As just mentioned above, Γ(M0) is V -endotrivial,
therefore it remains to check that Proj(X ) ⊆ Proj(V ). But this is a consequence of the hypothesis
that Proj(V ↓GH) ⊇ Proj(Y). Indeed, at the level of kH-modules, Proj(Y) ⊇ Proj(X ) by definition
of the families X and Y, thus Proj(V ↓GH) ⊇ Proj(X ). Inducing toG yields in mod(kG) the required
inclusions

Proj(V ) ⊇ Proj(V ↓GH)↑GH ⊇ Proj(X )↑GH= Proj(X ) .

�

Corollary 4.3.2.
If the subgroup H is strongly p-embedded in G, then ResGH : TV (G) −→ TV↓GH (H) is an isomorphism.

Proof. If H is strongly p-embedded in G, then for any g ∈ G \H the subgroup gH ∩H has

order coprime to p, thus Y = {{1}}. Therefore ResGH is an isomorphism, regardless of the module
V , since then Proj(V ↓GH) ⊇ Proj(Y) = Proj for any kG-module V .

�

For instance, if the Sylow p-subgroup P is a trivial intersection subgroup (TI), then NG(P ) is
strongly p-embedded in G. Moreover, any strongly p-embedded subgroup contains the normaliser
of some Sylow p-subgroup of G.

Remark 4.3.3.

(a) The first explicit example that springs to mind for a module satisfying the hypotheses of
the lemma is the absolutely p-divisible module

V :=
⊕
Q∈FG

k↑GQ

where FG := {Q � P} is the family of all proper p-subgroups of the Sylow p-subgroup P .
Indeed, for any p-subgroup Q � P ≤ G it results from the Mackey formula that k↑HQ is a

direct summand of k↑GQ↓GH , thus

Proj(V ↓GH) ⊇ Proj(FH) = Proj(FH) ⊇ Proj(Y) ,

where the middle equality was established in Remark 2.5.3.
(b) Finally, it is also worth emphasizing that in general the kG-Green correspondent Γ(L)

of an indecomposable V ↓GH -endotrivial module L might or might not be a V -endotrivial
module. Again, the section on groups with cyclic Sylow p-subgroups shall provide us with
a handful of examples illustrating this phenomenon. Nonetheless, whenever the lemma
applies Γ(L) is always V -endotrivial.
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4.4. On the kernels of the restriction maps

The next result gives conditions on the module V under which the kernel of the restriction
map ResGQ : TV (G) −→ TV↓GQ(P ) is exactly X(G). This generalises [MT07, Lem. 2.6]. The proof is

the same, it is only analysed more deeply in order to state the results in terms of V -projectivity,
which is less restricting than ordinary projectivity. This criterion shall be especially useful in the
forthcoming chapters dealing with groups having a cyclic Sylow p-subgroup and the Dade group of
a finite group.

Lemma 4.4.1.
Let G be a finite group and P be a Sylow p-subgroup of G. Let V be an absolutely p-divisible
kG-module.

(a) Let Q be any p-subgroup of G such that the restriction map ResGQ : TV (G) −→ TV↓GQ(Q)

is well-defined, that is such that V ↓GQ is absolutely p-divisible. Then X(G) ≤ ker(ResGQ).

(b) If all the direct summands of V ↓GP have a vertex strictly included in xP ∩ P for every

x ∈ G \ NG(P ), then X(G) = ker(ResGP ). In particular, if P is normal in G, then

X(G) = ker(ResGP ).

Proof.
(a) This is clear since the only one-dimensional kQ-module is the trivial module.
(b) It remains to show the reverse inclusion. So let M be an indecomposable V -endotrivial

kG-module such that [M ] ∈ ker(ResGP ), i.e. M ↓GP∼= k ⊕ (V ↓GP −proj). Thus, by P -
projectivity, we have:

M |M ↓GP↑GP ∼= k↑GP ⊕(V ↓GP −proj)↑GP= k↑GP ⊕(V − proj)
where by 2.6.1 and 2.6.3 Proj(V ↓GP ) ↑GP⊆ Proj(V ↓GP↑GP ) = Proj(V ). Now, since by
assumption M is indecomposable and V -endotrivial, that is V -projective-free, M must
be a direct summand of k↑GP , therefore restricting to P and applying the Mackey formula
yields:

M ↓GP | k↑GP↓GP ∼= k⊕|NG(P ):P | ⊕
⊕

x∈[P\G/P ]
x/∈NG(P )

k↑PxP∩P

Each summand k ↑PxP∩P has a vertex equal to xP ∩ P . Write V ↓GP∼=
⊕m

i=1 Vi, m ∈ N, as
a sum of indecomposable modules, and for all 1 ≤ i ≤ n let Qi be a vertex of Vi, then

Proj(V ↓GP ) =

m⊕
i=1

Proj(Vi) ⊆
m⊕
i=1

Proj(k↑GQi) .

Assume then that k↑PxP∩P∈ Proj(V ↓GP ), thus k↑PxP∩P∈ Proj(k↑GQi) for some 1 ≤ i ≤ m.
However, Qi �G xP ∩ P by assumption, contradicting the fact that xP ∩ P is a vertex.
Therefore, none of the summands k ↑PxP∩P belongs to Proj(V ↓GP ), which forces M ↓GP
to be a direct summand of k⊕|NG(P ):P |. Using once more that M ↓GP is V ↓GP -endotrivial
allows us to deduce that M ↓GP∼= k, for V ↓GP being absolutely p-divisible, k /∈ Proj(V ↓GP ).
Hence [M ] ∈ X(G).

�

In case V = kG, that is if we consider ordinary endotrivial modules, then condition (b) is
equivalent to requiring that xP ∩ P is non trivial for all x ∈ G, as is stated in [MT07, Lem. 2.6].



CHAPTER 5

Groups With Cyclic Sylow p-Subgroups

Part A: Cyclic p-groups

Let G := Cpn be a cyclic p-group of order pn, n ≥ 1 and k an algebraically closed field of

characteristic p. Then kCpn ∼= k[X]/(X−1)p
n

as k-algebras and Mi := k[X]/(X−1)i is the unique
indecomposable kCpn -module of dimension i, up to isomorphism, for each 1 ≤ i ≤ pn. Moreover,
for 1 ≤ i ≤ pn this provides a complete list of indecomposable kCpn -modules, up to isomorphism.
In particular, M1 = k, the trivial module, and Mpn = kCpn is the indecomposable projective
module. (See [Thé95, Exercises 5.4, 17.2 and 28.3] for details.) Besides, for all 1 ≤ i ≤ pn, a simple
comparison of dimensions yields Ω(Mi) ∼= Mpn−i. Also note that the indecomposable absolutely
p-divisible modules are the Mi’s with p dividing their dimension i. Finally, according to notation
used in [MT07], for all integers 0 ≤ r ≤ n, we shall denote by Zr the unique cyclic subgroup of
P of order pr, with Z0 = 1, Z1 =: Z and Zn = P . Thus there are isomorphisms Mpr

∼= k ↑GZn−r
and we keep in mind that projectivity relative to Mpr is the same thing as projectivity relative to
the subgroup Zn−r. In part A of this chapter we give a classification of the endotrivial modules
relatively to any absolutely p-divisible kG-module V . In part B, we shall use this classification to
treat the case of groups that are not necessarily cyclic p-groups any more, but have a cyclic Sylow
p-subgroup.

5.1. Relative projectivity to modules

The goal of this chapter is first to describe all the absolutely p-divisible modules V for which
the subcategories Proj(V ) are strictly different and secondly to describe explicitly all the modules
they contain (up to isomorphism).

Lemma 5.1.1.
For every integer 1 ≤ r ≤ n, IProj(Mpr ) = {Mαpr |α ∈ N, 1 ≤ α ≤ pn−r}.

Proof. Let 1 ≤ r ≤ n and 1 ≤ α ≤ pn−r be integers. Consider the subgroup Zn−r ≤ Cpn of
index pr. By 2.2.2 (c), mod(kZn−r) = Proj(k). In particular, the kZn−r-module Mα ∈ Proj(k)

67
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thus, by Lemma 2.6.1, we get

Mα ↑
Cpn

Zn−r
∈ Proj(k ↑CpnZn−r

) .

In addition, by Green’s indecomposability theorem, both Mα ↑
Cpn

Zn−r
and k ↑CpnZn−r

are indecom-

posable. Because for every 1 ≤ i ≤ pn, there is a unique indecomposable kCpn -module with k-

dimension i, it is necessary that Mα ↑
Cpn

Zn−r
∼= Mαpr and k ↑CpnZn−r

∼= Mpr , so that Mαpr ∈ Proj(Mpr ).

This yields the inclusion

{Mαpr | 1 ≤ α ≤ pn−r} ⊆ IProj(Mpr ) .

On the other hand, projectivity relative to the module Mpr is exactly the same thing as projectivity
relative to the subgroup Zn−r of Cpn . Therefore, if M is projective relatively to Zn−r, then by
3.1.3 the index pr = |Cpn : Zn−r| divides dimk(M), which proves the second inclusion. �

Corollary 5.1.2.
For every integer 1 ≤ r ≤ n, the collection of kCpn-modules projective relatively to the kCpn-module
Mpr is given as follows:

Proj(Mpr ) = {
⊕

I finite

Mαipr |αi ∈ N and 1 ≤ αi ≤ pn−r ∀i ∈ I}

Lemma 5.1.3.
Let Mi be an indecomposable kCpn-module such that pr, with 1 ≤ r ≤ n − 1, is the largest power
of p dividing dimk(Mi) = i. Write i := αip

r with 1 ≤ αi ≤ p − 1 an integer. Then Proj(Mi) =
Proj(Mpr ).

Proof. By Lemma 5.1.1, Mi = Mαipr ∈ IProj(Mpr ). In consequence,

Proj(Mi) ⊆ Proj(Mpr ) .

In order to show the reverse inclusion, consider again the subgroup Zn−r. Since p - αi, by 2.2.2
(c), Proj(Mαi) = mod(kZn−r). In particular, the trivial kZn−r-module k ∈ Proj(Mαi), hence

Mpr = k ↑CpnZn−r
∈ Proj(Mαi ↑

Cpn

Zn−r
) = Proj(Mαipr )

by Green’s indecomposability theorem again. Thus Proj(Mi) ⊇ Proj(Mpr ). �

We shall now show that in mod(kCpn) projectivity relative to modules is indeed reduced to
projectivity relative to subgroups. In other words:

Proposition 5.1.4.
Let V be an absolutely p-divisible kCpn-module. Then, there exists a subgroup Zn−r of Cpn , with
r ≥ 1, such that

Proj(V ) = Proj(Mpr ) = Proj(k ↑CpnZn−r
) .

Proof. If V is indecomposable then V ∼= Mi for some i divisible by p, and the result has been
shown in the preceding lemma. If V is decomposable, write V :=

⊕s
j=1Mj , s ∈ N. Factor every

1 ≤ j ≤ s, as j := αjp
rj with 1 ≤ αj ≤ p− 1 and 1 ≤ rj ≤ n− 1. Let m := min

j
{rj}. Then, using

Proposition 2.2.2, compute:

Proj(V ) = Proj(

s⊕
j=1

Mj) =

s⊕
j=1

Proj(Mj) =

s⊕
j=1

Proj(Mprj ) =

s⊕
j=1

Proj(Mpm) = Proj(Mpm)
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where clearly Proj(Mprj ) ⊆ Proj(Mpm) either by a classical argument on projectivity relative to
subgroups or by Lemma 5.1.1. �

In particular, note that for G = Cp a cyclic group of prime order, there is no relative projectivity
to modules other than ordinary projectivity. More generally, we note that there is a unique chain
of strict inclusions of subcategories of relatively projective kCpn-modules given as follows:

Proj = Proj(Mpn) ( Proj(Mpn−1) ( · · · ( Proj(Mp2) ( Proj(Mp) ( Proj(k) = mod(kG) .

5.2. Structure of the groups of relatively endotrivial modules

Since there are exactly n different proper subcategories of relatively projective modules in
mod(kCpn), given by Proj(Mpr ) for 0 ≤ r ≤ n, there are also n different groups of relatively
endotrivial modules TMpr

(Cpn) for 0 ≤ r ≤ n. Besides, since there is a unique indecomposable
kCpn-module for each k-dimension between 1 and pn, it is clear that every such module is self-dual.
Therefore, Corollary 3.6.2 ensures that any group TMpr

(Cpn) is an elementary abelian 2-group (or
trivial). It remains to figure out their respective ranks.

In order to figure out which indecomposable kCpn -modules are relative endotrivial modules,
we shall divide them into 3 parts of interest as pictured below:

M1 · · · Mpn−1︸ ︷︷ ︸
part A

···︸ ︷︷ ︸
part B

Mpn−pn−1 · · · Mpn︸ ︷︷ ︸
partΩA

Part A : is made of the indecomposable modules Mi such that 1 ≤ dimk(Mi) ≤ pn−1. The
subgroup Cp of Cpn acts trivially on any such module, therefore these modules can be

seen as inflationed from the subgroup Cpn−1
∼= Cpn/Cp : Mi = Inf

Cpn

Cpn−1
(Mi) for all

1 ≤ i ≤ pn−1.

Part B : pn−1 < dimk(Mi) < pn − pn−1.
Part ΩA : pn−pn−1 ≤ dimk(Mi) ≤ pn. Furthermore, any such module is the Heller translate

of some module in part A, or 0: Mi
∼= Ω(Mpn−i) for all pn − pn−1 ≤ i ≤ pn. This

symmetry shall allow us to reduce the problem to the case of modules with dimensions
less or equal to pn−1 and proceed by induction.

To start with, we show that there is no relative endotrivial kCpn -module in part B.

Lemma 5.2.1.
Let Cpn be a cyclic p-group with n ≥ 2 and let 1 ≤ r ≤ n be an integer. Then, there is
no indecomposable kCpn-module, whose k-dimension lies between pn−1 and pn − pn−1, which is
Mpr -endotrivial.

The main idea of the proof is based on the following restriction formula (see [Thé95, Exercise
28.3 (a)]):

(1) Mi ↓
Cpn

Z
∼= sMa+1 ⊕ (pn−1 − s)Ma

with i = apn−1 + s, 0 ≤ s < pn−1 and 0 ≤ a < p, for all 1 ≤ i ≤ pn.

Proof. The case p = 2 is trivial since 2n−1 = 2n − 2n−1, therefore, we may assume that p
is odd. Furthermore, an Mpr -endotrivial module is necessarily Mp-endotrivial since Proj(Mpr ) ⊆
Proj(Mp), hence we may also asume that r = 1. The indecomposable modules, candidates to be
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Mp-endotrivial are the indecomposable modules of the form Mβp±1 for some 1 ≤ β ≤ pn−1. We
claim that, if pn−1 < βp± 1 < pn − pn−1, then Mβp±1 is not Mp-endotrivial.

First note that the symmetry given by the Heller operator Ω allows us to consider only the
case βp+1. Then, the proof proceeds ab absurdo: let us assume that Mβp+1 is Mp-endotrivial and

compute Endk(Mβp+1)↓CpnZ . Since pn−1 < βp+ 1 < pn − pn−1, we have pn−2 ≤ β < pn−1 and we
can write β := γpn−2 +σ with γ and σ integers such that 1 ≤ γ < p−1 and 0 ≤ σ < pn−2. So that

βp+ 1 = (γpn−2 + σ)p+ 1 = γpn−1 + σp+ 1.

Now, Mβp+1 is Mp-endotrivial, thus

Endk(Mβp+1) ∼= k ⊕ (Mp − proj)
and

Endk(Mβp+1) ↓CpnZ
∼= k ⊕ (Mp ↓

Cpn

Z −proj) .
Let us count the number of trivial summands on both sides of this isomorphism. On the right-
hand side, there is one modulo p by formula (1) (this easily follows from the fact that Mp-projective
modules have dimension divisible by p by 2.8.4). On the left-hand side formula (1) yields:

Endk(Mβp+1) ↓CpnZ
∼= (Mβp+1 ↓

Cpn

Z )⊗ (Mβp+1 ↓
Cpn

Z )

∼= ((σp+ 1)Mγ+1 ⊕ (pn−1 − σp− 1)Mγ)⊗2

∼= (σp+ 1)2(Mγ+1)⊗2 ⊕ 2(pn−1 − σp− 1)(σp+ 1)(Mγ+1 ⊗Mγ)

⊕ (pn−1 − σp− 1)2(Mγ)⊗2

Since 1 ≤ γ < p − 1, p - dimkMγ and p - dimkMγ+1, but by 2.8.1 there is exactly one trivial
summand k in Mγ ⊗Mγ as well as in Mγ+1 ⊗Mγ+1 and, moreover, k is not a direct summand
of Mγ+1 ⊗Mγ . Therefore, altogether there are (σp + 1)2 + (pn−1 − σp − 1)2 ≡ 2 mod p trivial

summands in Endk(Mβp+1) ↓CpnZ , which is a contradiction. Hence the result. �

For simplicity of notation, we shall, from now on, denote by ΩMps
the class of the relative

syzygy module ΩMps
(k) in TMpr

(Cpn) for each r ≤ s ≤ n and simply use Ω := ΩMpn
. The

classification theorem is the following.

Theorem 5.2.2.
Let G := Cpn with n ≥ 1 be a cyclic p-group and Mpr with 1 ≤ r ≤ n be an absolutely p-divisible
kCpn-module.

(a) If p is odd, or if p = 2 and r ≥ 2, then

TMpr
(Cpn) =<{ΩMps

| r ≤ s ≤ n}> ∼=
n−(r−1)∏
j=1

C2 .

(b) If p = 2 and r = 1, then

TM2
(C2n) =<{ΩMps

| 1 < s ≤ n}> ∼=
n−1∏
j=1

C2 .

To begin with, the following lemma on the structure of TMpr
(Cpn) shall enable us to prove the

theorem by induction on the integer n.

Lemma 5.2.3.
Assume G = Cpn with n ≥ 2 and write Cpn−1 = Cpn/Z. Then for every integer 1 ≤ r ≤ n,

TMpr
(Cpn) = Inf

Cpn

Cpn−1
(TMpr

(Cpn−1))×<Ω> ∼= TMpr
(Cpn−1)× C2 .
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Proof. Inflation induces an injective group homomorphism

Inf
Cpn

Cpn−1
: TMpr

(Cpn−1) ↪→ TMpr
(Cpn) .

The indecomposable representatives for the classes in the image subgroup Inf
Cpn

Cpn−1
(TMpr

(Cpn−1))

are kCpn-modules whose k-dimension is less than or equal to pn−1. Moreover, as inflation com-

mutes with direct sums, it is clear that Mi = Inf
Cpn

Cpn−1
(Mi) is Mpr -endotrivial if and only if Mi,

seen as a kCpn−1 -module, is an Mpr -endotrivial kCpn−1 -module. As seen in Lemma 5.2.1 there is
no indecomposable Mpr -endotrivial module with k-dimension between pn−1 and pn − pn−1. Fur-
thermore, for all pn − pn−1 ≤ i ≤ pn, Mi

∼= Ω(Mpn−i) is Mpr -endotrivial if and only if Mpn−i is
and for such a module in TMpr

(Cpn) we have [Mi] = [Ω(Mpn−i)] = Ω+[Mpn−i]. Whence the direct
product

TMpr
(Cpn) = Inf

Cpn

Cpn−1
(TMpr

(Cpn−1))×<Ω> .

�

Proof of Theorem 5.2.2.
(a) The proof proceeds by induction on n. First, the cyclic p-group of smallest order for which

projectivity relative to an indecomposable module of dimension pr can be considered is
Cpr , in which case Proj(Mpr ) = Proj as Mpr

∼= kCpr . Therefore, using the assumption
that pr > 2 we get TMpr

(Cpr ) = T (Cpr ) =< Ω >∼= C2 by the classification made in
[Dad78b]. Then by the lemma and the induction hypothesis we get:

TMpr
(Cpn) = Inf

Cpn

Cpn−1
(TMpr

(Cpn−1))×<Ω>

= Inf
Cpn

Cpn−1
(<{ΩMps

| r ≤ s ≤ n− 1}>)×<Ω>

=<{ΩMps
| r ≤ s ≤ n− 1}> ×<Ω>=<{ΩMps

| r ≤ s ≤ n}>

∼=
n−(r−1)∏
j=1

C2

since by Corollary 3.6.2 any element of TMpr
(Cpn) has order 2.

(b) If p = 2 and r = 1, then TM2
(C2) = T (C2) = {[k]} is trivial. Hence the missing factor C2

in the product. Notice that ΩM2
(k) ∼= k. Nonetheless, the set of generators is obtained

in like manner as it was in part (a).

�

Corollary 5.2.4.
Let Cpn with n ≥ 1 be a cyclic p-group. Then the Dade group D(Cpn) ∼= TMp

(Cpn).

Proof. By the description of the Dade group for cyclic p-groups made in [Dad78b], any
indecomposable Mp-endotrivial kCpn-module is an endo-permutation module, therefore there is an
isomorphism ψ : D(Cpn) −→ TMp(Cpn) : [M ] 7−→ [Cap(M)]. (The injectivity of ψ will be proved
in general in Theorem 7.4.1 for an arbitrary p-group P and a module V dependending on P such
that Proj(V ) = Proj(Mp) when P = Cpn .) �

Remark 5.2.5.
Even though we showed that for cyclic p-groups projectivity relative to modules is reduced to
projectivity relative to subgroups, we kept notation using modules rather than subgroups because
it was more manageable firstly in the description of relatively projective modules, secondly in
computations and thirdly in arguments involving inflation. Nevertheless in the next sections,
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treating the case of groups having a cyclic Sylow p-subgroup, it will be easier to think in terms of
subgroups. In this system of notation the groups of relatively endotrivial modules are generated as
follows:

TMpr
(Cpn) = T

k↑
Cpn

Zn−r

(Cpn) =<{Ω
k↑
Cpn

Zs

| 0 ≤ s ≤ n− r}> if Mpr 6= M2 ,

TM2(C2n) = T
k↑
Cpn

Zn−1

(C2n) =<{Ω
k↑C2n
Zs

| 0 ≤ s < n− 1}> otherwise.

Part B: Groups with cyclic Sylow p-subgroups

For the remainder of this chapter G shall denote a finite group having a non-trivial cyclic Sylow
p-subgroup P ∼= Cpn , n ≥ 1. We shall sometimes refer, in all generality, to this kind of groups as the
“cyclic case”. Analogously to Part A, for all 0 ≤ r ≤ n, Zr shall denote the unique cyclic subgroup
of P of order pr. Now, before setting foot in detailed computations, it can be worth keeping in
mind that the general situation we are about to work with is best sketched by the following chain
of inclusions of subgroups of G (for 0 ≤ r ≤ n− 1):

G

NG(Zr)

NG(Zr+1)

NG(P )

P

Zr+1

Zr

1

5.3. Determination of the different types of V -projectivities

To begin with we show that the only types of relative projectivity that occur are again the
projectivities relative to subgroups.

Proposition 5.3.1.
Let G be a finite group with a cyclic Sylow p-subgroup P ∼= Cpn with n ≥ 1.

(a) Let V ∈ mod(kG). Then Proj(V ) = Proj(k↑GQ) for some subgroup Q of P . In particular,
V is absolutely p-divisible if and only if Q is a proper subgroup of P .

(b) There is a unique chain of proper inclusions of subcategories of relatively projective kG-
modules:

Proj ( Proj(k↑GZ1
) ( Proj(k↑GZ2

) ( · · · ( Proj(k↑GZn−1
) ( Proj(k↑GP ) = mod(kG)
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Proof.
(a) Recall that, by Lemma 2.6.5, subcategories of relatively projective modules are determined

upon restriction to P in the sense that for all U,W ∈ mod(kG), Proj(U ↓GP ) = Proj(W ↓GP )
if and only if Proj(U) = Proj(W ). First of all, by 5.1.4 there exists a subgroup Q of P
such that

Proj(V ↓GP ) = Proj(k↑PQ) .

(Q = P in case V ↓GP is not absolutely p-divisible.) Therefore, by the above remark, in
order to show that Proj(V ) = Proj(k ↑GQ), it is enough to check that Proj(k ↑GQ↓GP ) =

Proj(k↑PQ). Indeed, applying the Mackey formula yields

k↑GQ↓GP ∼=
⊕

x∈[P\G/Q]

k↑PxQ∩P

where the subgroups xQ ∩ P form a chain of subgroups of Q =1Q ∩ P , since P is cyclic.
Hence Proj(k↑PxQ∩P ) ⊆ Proj(k↑PQ) for all x ∈ [P\G/Q] so that

Proj(k↑GQ↓GP ) =
⊕

x∈[P\G/Q]

Proj(k↑PxQ∩P ) = Proj(k↑PQ) .

Now, the module V is absolutely p-divisible if and only if Proj(V ) 6= mod(kG) = Proj(k),
if and only if Proj(V ↓GP ) = Proj(k ↑PQ) 6= Proj(k ↓GP ) = Proj(k). Thus by the charac-
terization given in 5.1.4, V is absolutely p-divisible if and only if Q is a proper subgroup
of P .

(b) For G = P , we have shown in a previous section that there is a unique chain of inclusions
of subcategories of relatively projective kP -modules given by

Proj ( Proj(k↑PZ1
) ( Proj(k↑PZ2

) ( · · · ( Proj(k↑PZn−1
) ( Proj(k↑PP ) = mod(kP ) .

But we proved in (a) that Proj(k ↑GQ↓GP ) = Proj(k ↑PQ) for all subgroup Q ≤ P , therefore
another application of Lemma 2.6.5 yields the result.

�

Scholium 5.3.2.
For all 0 ≤ r ≤ n, projectivity relative to the p-subgroup Zr of G restricted to a subgroup H of G
such that either P ≤ H or Zr � H ≤ P remains projectivity relative to Zr, i.e.

Proj(k↑GZr↓
G
H) = Proj(k↑HZr ) .

Proof. For, we showed in the proof of the proposition that Proj(k↑GZr↓
G
P ) = Proj(k↑PZr ), but

the argument remains true if P is replaced with a subgroup H as given above. �

Groups of relatively endotrivial modules are defined only for absolutely p-divisible modules V ,
in consequence and in view of Proposition 5.3.1, we shall assume for the remainder of the chapter
that V = k↑GZr for some proper subgroup Zr of P . The remainder of the section is devoted to the
determination of the structure of the groups Tk↑GZr

(G) with 0 ≤ r < n.

Remark 5.3.3.
By Proposition 5.3.1 the restriction of an absolutely p-divisible kG-module V remains absolutely
p-divisible whenever either P ≤ H or Zr � H ≤ P . Indeed, we have Proj(V ) = Proj(k ↑GZr ) for
some Zr � P then, by Lemma 2.6.3 and the above remarks

Proj(V ↓GH) = Proj(k↑GZr↓
G
H) = Proj(k↑HZr ) 6= modkH .
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Hence V ↓GH is an absolutely p-divisible kH-module. In consequence, for all subgroups H as above,

the restriction maps ResGH from the group Tk↑GZr
(G) are well-defined and all have the form

ResGH : Tk↑GZr
(G) −→ Tk↑HZr

(H) .

5.4. The structure theorem

First we develop a few more properties of the restriction maps. We shall then use them to
deduce the structure of the groups of relatively endotrivial modules Tk↑GZr

(G) from our knowledge

of the structure of Tk↑PZr
(P ).

In order to ease up notation we simply use the symbole ΩV to denote the class [ΩV (k)] in TV (G)
and k ↑Q instead of k ↑HQ in indices when it is clear to which subgroup H ≤ G induction goes. We
avoid to use a simpler notation like ΩQ because it has been widely used to denote the class of
the ordinary syzygy Ω(k) in mod(kQ) in articles concerned with endotrivial and endo-permutation
modules.

Lemma 5.4.1.
Let H ≤ G be a subgroup such that either P ≤ H or Zr � H ≤ P . Then, the restriction map
ResGH : Tk↑Zr (G) −→ Tk↑Zr (H) has the following properties:

(a) ResGH(Ωk↑Zs ) = Ωk↑Zs for all Zs ≤ Zr so that 〈{Ωk↑Zs | 0 ≤ s ≤ r}〉 ≤ Im(ResGH) ;

(b) if Zr � H ≤ P , then ResGH is surjective.

Proof.

(a) By 2.12.2, Ωk↑Zs (k)↓GH∼= Ωk↑Zs (k)⊕ (k↑HZs −proj). Hence ResGH(Ωk↑Zs ) = Ωk↑Zs .

(b) Follows from (a) since by 5.2.2 the group Tk↑Zr (H) is generated by the set of all relative

syzygies Ωk↑Zs (k) such that Zs ≤ Zr.

�

Corollary 5.4.2.
Let P be a cyclic p-group and Zr a proper subgroup of P . Then, the restriction maps
ResPH : Tk↑PZr

(P ) −→ Tk↑HZr
(H) are isomorphisms for all Zr � H ≤ P .

Proof. By the previous lemma ResPH is surjective and, by Theorem 5.2.2 and Remark 5.3.3,
|Tk↑Zr (P )| = |Tk↑Zr (H)|. �

Using the criterion described in Lemma 4.3.1, we can show that the group Tk↑Zr (G) is indeed

entirely determined by restriction to NG(Zr+1).

Proposition 5.4.3.
Let G be a finite group with a non-trivial cyclic Sylow p-subgroup P and Zr be a proper subgroup
of P . Then, the restriction map

ResGNG(Zr+1) : Tk↑Zr (G) −→ Tk↑Zr (NG(Zr+1))
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is an isomorphism, with inverse map induced by Green correspondence or alternatively by induction:

Tk↑Zr (G) = {[Γ(M)] |M is an indecomposable k↑Zr -endotrivial kNG(Zr+1)-module}

= {[M ↑GNG(Zr+1)] | [M ] ∈ Tk↑Zr (NG(Zr+1))}

Proof. The isomorphism and both the descriptions of Tk↑Zr (G) using Green correspondence

and induction follow from Lemma 4.3.1. In fact, in order to invoke 4.3.1 it suffices to check that

Proj(k↑NG(Zr+1)
Zr

) ⊇ Proj(Y),

where Y = { gP ∩ NG(Zr+1) | g ∈ G \ NG(Zr+1)}. For all g ∈ G \ NG(Zr+1), the subgroup
gP ∩ NG(Zr+1) is a p-subgroup of gP , hence of the form gZl for some l ∈ Nn since P ∼= Cpn is
cyclic. Besides, gZl ≤ NG(Zr+1) as well, thus contained in some Sylow p-subgroup of NG(Zr+1),
say hP with h ∈ NG(Zr+1), so that by uniqueness of the subgroup of order pl in hP , we have
gZl = hZl. Hence h−1g normalizes Zl and

g ∈ hNG(Zl) ⊆ NG(Zr+1)NG(Zl) 
 NG(Zr+1)

since g does not normalize Zr+1. This forces NG(Zl) to contain strictly NG(Zr+1), because the
subgroups NG(Zi) are totally ordered by inclusion, hence Zl ≤ Zr. As a consequence,

Proj( gP ∩NG(Zr+1)) = Proj(Zl) ⊆ Proj(k↑NG(Zr+1)
Zr

)

and as required:

Proj(Y) =
⊕

g∈G\NG(Zr+1)

Proj( gP ∩NG(Zr+1)) ⊆ Proj(k↑NG(Zr+1)
Zr

)

�

In view of the proposition we can restrict our attention to the groups Tk↑Zr (NG(Zr+1)). First

of all, computing the kernel of the restriction map Res
NG(Zr+1)
P : Tk↑Zr (NG(Zr+1)) −→ Tk↑Zr (P )

provides us with a set of generators.

Lemma 5.4.4.

(a) There is an exact sequence

0 −→ X(NG(Zr+1)) ↪−→ Tk↑Zr (NG(Zr+1))
Res

NG(Zr+1)

P−−−−−−−−−−� Tk↑Zr (P ) −→ 0 .

(b) The group Tk↑Zr (NG(Zr+1)) is a finite abelian group generated by X(NG(Zr+1)) and the

r + 1 relative syzygy modules Ω = Ωk↑1 ,Ωk↑Z , . . . ,Ωk↑Zr .

Proof.
(a) The map Res

NG(Zr+1)
P is surjective by 5.4.1. In addition, V := k ↑NG(Zr+1)

Zr
fulfills the

hypotheses of Lemma 4.4.1. Indeed, recall from the proof of Proposition 5.3.1 that

k↑NG(Zr+1)
Zr

↓NG(Zr+1)
P

∼=
⊕

g∈[P\NG(Zr+1)/Zr]

k↑PgZr∩P

where each indecomposable summand k ↑PgZr∩P has a vertex equal to gZr ∩ P ≤ Zr,
which is strictly contained in xP ∩ P for all x ∈ NG(Zr+1) \NG(P ). Indeed, any such x
normalizes Zr+1, thus Zr � Zr+1 ≤ xP ∩ P . Therefore 4.4.1 yields

ker(Res
NG(Zr+1)
P ) = X(NG(Zr+1)) .
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(b) By Theorem 5.2.2, Tk↑Zr (P ) = 〈{Ωk↑Zs | 0 ≤ s ≤ r}〉 . Now, by 5.4.1, Ωk↑Zs is a preimage

by Res
NG(Zr+1)
P for the generator Ωk↑Zs of Tk↑Zr (P ) for all 0 ≤ s ≤ r. Thus X(NG(Zr+1))∪

{Ωk↑Zs | 0 ≤ s ≤ r} is a set of generators for Tk↑Zr (NG(Zr+1)). Lastly, the finiteness of

Tk↑Zr (NG(Zr+1)) follows from both that of Tk↑Zr (NG(P )) and of X(NH(Zr+1)).

�

Our main purpose is to work out the structure of the groups Tk↑GZr
(G). At this stage, we know

that there is a group isomorphism Tk↑Zr (G) ∼= Tk↑Zr (NG(Zr+1)). Besides, we have a surjective

group morphism induced by restriction

Res
NG(Zr+1)
P : Tk↑Zr (NG(Zr+1))� Tk↑Zr (P )

which provides us with a set of generators for the group Tk↑Zr (NG(Zr+1)) made up of the kernel

ker(Res
NG(Zr+1)
P ) = X(NG(Zr+1)) and the classes of the r+1 relative syzygy modules of the trivial

module: Ω,Ωk↑Z1
, . . . ,Ωk↑Zr . The latter being preimages for the generators Ωk↑PZs

, 0 ≤ s ≤ r, of

Tk↑Zr (P ) which all have order 2, it remains to identify 2Ωk↑Zs , for all 0 ≤ s ≤ r, with an element

of the kernel, that is a one-dimensional representation of NG(Zr+1).

These identifications will follow from an induction argument and use the structure of the group
of endotrivial modules T (G) described in [MT07, Thm. 3.2]. This result makes use of a distin-
guished element of X(NG(Z)), which we need to describe and understand before use.

For Z the unique subgroup of P of order p, let H := NG(Z) be its normaliser in G. As H acts
by conjugation on Z, the quotient H/CG(Z) embeds as a subgroup of Aut(Z) ∼= (Z/pZ)×, thus
given c ∈ H, for all u ∈ Z we have

cu = uν(c) for some ν(c) ∈ (Z/pZ)×

where in addition ν(c) can be considered as an element of k× via the canonical embedding
Z/pZ ↪→ k. In consequence, the composition H −→ H/CG(Z) −→ Aut(Z) ∼= Z/pZ× −→ k×

defines a linear character of H. For simplicity, ν is then identified with a one-dimensional module
in X(H).
In fact, a similar construction can be applied to any subgroup of G which normalizes Z. Further-
more, a Frattini argument applied to H and its normal subgroup CG(Z) yields the decomposition
H = NH(P )CG(Z) = NG(P )CG(Z), therefore as CG(Z) acts trivially on Z, ν is entirely defined by
its value on NG(P ). In other words, ν can be viewed as a kNG(P )-module which can be extended

in a kH̃-module for all subgroup H̃ such that H ≥ H̃ ≥ NG(P ), and for ease of notation, we also
denote these modules by ν, so that:

ResH̃1

H̃2
(ν) = ν whenever H ≥ H̃1 ≥ H̃2 ≥ NG(P ) .

In particular, we are interested in the subgroup Hr+1 := NG(Zr+1). Our aim will be to apply
an induction argument to its quotient Hr+1/Zr. In this respect, note that P/Zr is a cyclic Sylow
p-subgroup of Hr+1/Zr, Zr+1/Zr its unique cyclic p-subgroup of order p, moreover Hr+1/Zr =
NHr+1/Zr (Zr+1/Zr) and NHr+1/Zr (P/Zr) = NG(P )/Zr. Moreover, a Frattini argument yields
more precisely

Hr+1/Zr = NG(P )/Zr · CHr+1/Zr (Zr+1/Zr) .

Therefore, there is also a corresponding kNG(P )/Zr-module ν = νNG(P )/Zr which extends to
Hr+1/Zr. Finally, the following technical result computes the inflation of νNG(P )/Zr to a kNG(P )-
module.
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Lemma 5.4.5.
With the notation above we have Inf

NG(P )
NG(P )/Zr

(νNG(P )/Zr ) = νNG(P ), that is, by abuse of notation,

Inf
NG(P )
NG(P )/Zr

(ν) = ν.

Proof. Write P :=< u |upn = 1 >. Then Z =< up
n−1

>, Zr =< up
n−r

> and thus

Zr+1/Zr =< up
n−r−1

Zr >. Let d ∈ NG(P ), we have du = uj for some integer j such that

1 ≤ j ≤ pn. Then d(ux) = (ux)j for all 1 ≤ x ≤ n. Therefore d(up
n−1

) = (up
n−1

)j so that

ν(d) ≡ j mod p. Likewise dZr(up
n−r−1

Zr) = (( du)Zr)
pn−r−1

= (ujZr)
pn−r−1

= (up
n−r−1

Zr)
j ,

hence Inf
NG(P )
NG(P )/Zr

(ν)(d) ≡ j mod p. Hence the result. �

Theorem 5.4.6.
Let G be a finite group with a non trivial cyclic Sylow p-subgroup P ∼= Cpn . For all 0 ≤ r � n, let
Zr be the unique proper p-subgroup of P of order pr and Hr+1 be its normaliser in G. Let ν be as
above. Then

Tk↑Zr (Hr+1) = 〈X(Hr+1), {Ωk↑Zs | 0 ≤ s ≤ r} 〉

∼=
(
X(Hr+1)⊕ 〈 {Ωk↑Zs | 0 ≤ s ≤ r} 〉

)/(
[ν]− 2Ωk↑Zs , 0 ≤ s ≤ r

)
.

Proof. We need to identify each class 2Ωk↑Zs with an element of X(Hr+1). We claim that

2Ωk↑Zs = [ν] for all 0 ≤ s ≤ r. The proof proceeds by induction on r. The case r = 0 holds by

[MT07, Thm 3.2], because projectivity relative to Z0 = {1} is ordinary projectivity, thus r = 0 is
the ordinary endotrivial case. So we may assume that r > 0 and as Tk↑Zr−1

(Hr+1) can be seen as a

subgroup of Tk↑Zr (Hr+1), by induction hypothesis, we may assume that the relations 2Ωk↑Zs = [ν]

hold for all 0 ≤ s ≤ r − 1. Thus it remains to show that 2Ωk↑Zr = [ν].

Factoring out Hr+1 = NG(Zr+1) by its normal subgroup Zr enables us to apply the induction
hypothesis again to the group

Tk↑
Zr/Zr

(Hr+1/Zr) = T (Hr+1/Zr) ,

for which [MT07, Thm. 3.2] provides the relation

2Ω = [ν] in T (Hr+1/Zr), that is, 2Ωk↑
Zr/Zr

= [ν] in Tk↑
Zr/Zr

(Hr+1/Zr) .

The following commutative square yields the desired relation for Tk↑Zr (Hr+1):

Tk↑Zr (Hr+1)

	

� � Res // Tk↑Zr (NG(P ))

Tk↑
Zr/Zr

(Hr+1/Zr)
� �

Res
//

Inf
Hr+1
Hr+1/Zr

OO

Tk↑
Zr/Zr

(NG(P )/Zr)

Inf
NG(P )

NG(P )/Zr

OO

By Lemma 2.12.2, Inf
Hr+1

Hr+1/Zr
(Ωk↑

Zr/Zr
) = Ωk↑Zr , therefore, inflationing the above relation to

Tk↑Zr (Hr+1) yields

2Ωk↑Zr = [Inf
Hr+1

Hr+1/Zr
(ν)] in Tk↑Zr (Hr+1) .

By the previous lemma [Inf
NG(P )
NG(P )/Zr

(ν)] = [ν], so that the result follows from the injectivity of

Res
Hr+1

NG(P ) (Lemma 4.2.1). �

Remark 5.4.7.
Since 2Ωk↑Zs = [ν] = 2Ω for all 0 ≤ s ≤ r the generators Ωk↑Z , . . . ,Ωk↑Zr can be replaced with



78 5. GROUPS WITH CYCLIC SYLOW p-SUBGROUPS

the generators Ω − Ωk↑Z , . . . ,Ω − Ωk↑Zr , all of which have order 2. Thus the abelian group

Tk↑Zr (NG(Zr+1)) contains a direct sum of r copies of Z/2Z.

Finally, using the isomorphism of Proposition 5.4.3, the description by generators and relations
of Tk↑Zr (NG(Zr+1)) extends to Tk↑Zr (G) which is a finite abelian group generated by the relative

syzygy modules Ω = Ωk↑G1 ,Ωk↑GZ , . . . ,Ωk↑GZr
and an isomorphic copy of X(NG(Zr+1)), made up of

all the classes of the Green correspondents of the one-dimensional kNG(Zr+1)-modules, with the

relations 2Ωk↑GZs
= [Γ(ν)] for all 0 ≤ s ≤ r.



CHAPTER 6

About p-Nilpotent Groups

The aim of this short chapter is mainly to generalise part of the results of [CMT11a, Sect. 3]
concerning the group of endotrivial modules of a p-nilpotent group. Throughout the chapter G is
a p-nilpotent group, that is, G has a normal p-complement, or in other words, there is a normal
subgroup N of G of order coprime to p such that G/N is a p-group. Equivalently, G is a semidirect
product G = N o P , with N = Op′(G) and P a Sylow p-subgroup of G. Moreover G = NP ,

N ∩ P = {1} and we shall denote by ϕ : P = P/N ∩ P
∼=−→ NP/N = G/N the isomorphism

provided by the second isomorphism Theorem. It follows that any kP -module L can be seen as a
kG-module via ϕ followed by inflation from G/N to G, which we shall still denote by L instead of

InfGG/N ◦ Iso(ϕ)(L). We shall keep this notation throughout the chapter and the following ones.

6.1. Preliminaries

To begin with, relative projectivity for p-nilpotent groups is well-behaved with respect to group
operations in the following sense:

Lemma 6.1.1.
Let G = N o P be a p-nilpotent group.

(a) ResGP ◦ InfGG/N ◦ Iso(ϕ)(M) ∼= M for every kP -module M .

(b) Proj(V ) = Proj(InfGG/N ◦ Iso(ϕ) ◦ ResGP (V )) for every kG-module V .

Proof.
(a) Let L be a k[G/N ]-module. Using formula (f) of Proposition 1.1.2 with H = P we get:

ResGP ◦ InfGG/N (L) ∼= InfPP/P∩N ◦ Iso(ϕ−1) ◦ Res
G/N
PN/N (L)

Since G is p-nilpotent this formula reads ResGP ◦ InfGG/N (L) ∼= Iso(ϕ−1)(L) . Replacing L

with Iso(ϕ)(M) where M is a kP -module yields the result.

(b) It follows from part (a) that

ResGP ◦ InfGG/N ◦ Iso(ϕ) ◦ ResGP (V ) = ResGP (V ) .
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Therefore Proj(ResGP ◦ InfGG/N ◦ Iso(ϕ) ◦ ResGP (V )) = Proj(ResGP (V )) and Lemma 2.6.5
yields

Proj(V ) = Proj(InfGG/N ◦ Iso(ϕ) ◦ ResGP (V )) .

�

Most of the results in this chapter rely upon the following facts concerning blocks of p-nilpotent
groups, recalled and proved in [CMT11a].

Proposition 6.1.2 ([CMT11a], Prop. 3.1 ).
Let G = N oP be a p-nilpotent group. Let Z be a simple kN -module, let e be the central primitive
idempotent of kN corresponding to Z, and H be the inertial subgroup of Z. Then:

(a) The idempotent e is a block idempotent of kH and f :=
∑
g∈[G/H] geg

−1 is a block idem-

potent of kG. Moreover induction induces a Morita equivalence between mod(kHe) and
mod(kGf).

(b) If H � G, then every module in mod(kGf) has dimension divisible by p.

(c) If H = G, then there is a kG-module structure on Z, still written Z, that extends the
initial kN -module structure, and this extension is unique. Moreover, Z ↓GP is an endo-
permutation module and Z has vertex P .

(d) If H = G, then Z is the unique simple module in the block kGe and, for any kGe-module
Y , the restriction Y ↓GN is isomorphic to a direct sum of copies of the simple module Z ↓GN .

(e) If H = G, then mod(kGe) is Morita equivalent to mod(kP ) via the functor

Φ : mod(kP ) −→ mod(kGe)
X 7−→ Z ⊗X

where X is seen as a kG-module via ϕ and inflation, and where G acts diagonally on the
tensor product.

6.2. First Properties of the groups of relative endotrivial modules

Lemma 6.2.1 (Generalisation of [CMT11a], Lem. 3.2).
Let G = N o P be a p-nilpotent group, let V ∈ mod(kG) be an absolutely p-divisible module, and
let M ∈ mod(kG) be an indecomposable V -endotrivial module. Let Z be the unique simple module
in the block containing M . Then Z ↓GN is a simple kN -module.

Proof. Let W be a simple summand Z ↓GN and let H be its inertial subgroup. Since the block
containing Z also contains the V -endotrivial M , which has k-dimension coprime to p, part (b) of
Lemma 6.1.2 implies that H = G, so that by part (c) of the same lemma, W extends uniquely to
G. This forces W = Z ↓GN . �

Next we state two first results about the structure of the groups TV (N o P ). They generalise
[CMT11a, Thm. 3.3, Cor. 3.4]. From now on, if V is an absolutely p-divisible kG-module, we let

KV (G) denote the kernel of the restriction map ResGP : TV (G) −→ TV↓GP (P ).

Theorem 6.2.2.
Let G = N o P be a p-nilpotent group and V be an absolutely p-divisible kG-module. Then, the
restriction map ResGP : TV (G) −→ TV↓GP (P ) is split surjective. A section is provided by the map

InfGG/N ◦ Iso(ϕ). In other words, there is an isomorphism

TV (G) ∼= KV (G)⊕ TV↓GP (P ) .



6.2. FIRST PROPERTIES OF THE GROUPS OF RELATIVE ENDOTRIVIAL MODULES 81

Proof. By part (b) of Lemma 6.1.1 there is a diagram

TV (G)
ResGP // TV↓GP (P )

∼= Iso(ϕ)

��
TIso(ϕ)◦ResGP (V )(G/N) .

InfGG/N

ggNNNNNNNNNNNNNNNNN

furthermore, part (a) of Proposition 6.1.1 implies that the homomorphism InfGG/N ◦ Iso(ϕ) is a

section for the restriction map ResGP . �

Proposition 6.2.3.
Let G = N o P be a p-nilpotent group and let V be an absolutely p-divisible kG-module. Let M
be an indecomposable V -endotrivial kG-module. Let Z be the unique simple module in the block B
containing M . Then:

(a) M admits a decomposition M ∼= Z ⊗ U , where U is an indecomposable kP -module. In
particular, Z is V -endotrivial and U is V ↓GP -endotrivial.

(b) [M ] ∈ KV (G) if and only if M has a decomposition M ∼= Z ⊗ S∗, where S ∈ mod(kP ) is
a source for Z.

Proof.
(a) Because the functor Φ : mod(kP ) −→ modB defines a Morita equivalence, there exists an

indecomposable kP -module U such that M = Z ⊗ U (with U seen as a kG-module). By
Lemma 3.3.3, both Z and U are V -endotrivial modules, so that Z ↓GP and U , regarded as
a kP -module, are both V ↓GP -endotrivial (U ↓GP= U by Lemma 6.1.1).

(b) Let S ∈ mod(kP ) be a source for Z. By Lemma 3.5.1 S is also V ↓GP -endotrivial and we
can write Z ↓GP= S ⊕ (V ↓GP −proj). Then

M ↓GP = (Z ⊗ U)↓GP ∼= Z ↓GP ⊗U
∼= (S ⊕ (V ↓GP −proj))⊗ U ∼= (S ⊗ U)⊕ (V ↓GP −proj)

Now, [M ] ∈ KV (G) if and only if [M ↓GP ] = [k], if and only if k |S ⊗ U . But, by the
Benson-Carlson Theorem (2.8.1), this happens if and only if U ∼= S∗. (For U being
V ↓GP -endotrivial, its k-dimension is coprime to p.)

�

Corollary 6.2.4.
Let G = NoP be a p-nilpotent group with N abelian. Let V be an absolutely p-divisible kG-module.
Then KV (G) = X(G).

Proof. The inclusion KV (G) ⊇ X(G) is always true. We need to show that KV (G) ⊆ X(G).
Let [M ] ∈ KV (G) with M indecomposable. Then by Proposition 6.2.3, M has a decomposition
M ∼= Z⊗S∗, where Z is the unique simple module in the block B containing M and S ∈ mod(kP )
is a source for Z. In addition Z is V -endotrivial, so that dimk(Z) is coprime to p, thus its inertial
subgroup is G by part (b) of Lemma 6.1.2. Moreover by part (c) and (d) of the same lemma
Z ↓GN is simple, hence one-dimensional since N is abelian. It follows that S is trivial and that
M ∼= Z ∈ X(G). �





CHAPTER 7

The Dade Group of a Finite Group

We come in this chapter to a chief reason of interest in relative endotrivial modules: it provides
a way to define a group structure on collections of representations of an arbitrary finite group G
which gives a natural generalisation for the Dade Group D(P ) of a finite p-group P . In particular,
the purpose of the chapter is to shed new light on the class of endo-p-permutation modules studied
in [Urf06] and [Urf07]. We shall use endotrivial modules relatively to a well-chosen family of
subgroups to provide a definition of the Dade group of a finite group G in general, which coincides
with the Dade group when G is a p-group. To achieve this goal, our first task is to understand
better the links between permutation, p-permutation modules and relative projectivity to modules
and subgroups. Likewise, it is necessary to understand endo-permutation and endo-p-permutation
modules in terms of relatively endotrivial modules.

Unless otherwise specified, throughout the chapter G shall denote a finite group, P a Sylow
p-subgroup of G and NG(P ) its normaliser in G. Furthermore, we assume that the reader is
acquainted with endo-permutation modules, the Dade group and endo-p-permutation modules.
We refer to the first chapter for basic definitions and further references.

7.1. Preliminaries on projectivity relative to families of subgroups

A natural module to use to manufacture relative endotrivial modules would be the module
V (H) =

⊕
H∈H k ↑GH associated with the family H := {H ≤ G} of all subgroups of a given group

G. However, this module is not absolutely p-divisible and in consequence there is no well-defined
group of V (H)-endotrivial modules in the sense of definition 3.6. Hence arises the question of
finding the largest possible family F of subgroups of G which would provide us with a well-defined
group structure TV (F)(G). Remembering Remark 2.5.3, it becomes easy to see that the right family
to look at is the family of all proper subgroups of a given Sylow p-subgroup P of the group G.

Lemma 7.1.1.
Let P be a Sylow p-subgroup of G. Let H be a subgroup of G and Q be a Sylow p-subgroup of H.
Let H = {X ≤ G}. Then,

(a) Proj(k↑GH) = Proj(k↑GQ) ;

(b) The permutation module k↑GH is absolutely p-divisible if and only if Q �G P .
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(c) An indecomposable p-permutation module L ∈ mod(kG) is absolutely p-divisible if and
only if it has a vertex R �G P .

(d) Proj(H) = Proj({R ≤ P}) = mod(kG).

Proof.

(a) Since Q is a Sylow p-subgroup of H, k ∈ Proj(k↑HQ ), so that by Lemma 2.6.1

k↑GH∈ Proj(k↑HQ↑GH) = Proj(k↑GQ)

and therefore Proj(k ↑GH) ⊆ Proj(k ↑GQ). Moreover, k ↑HQ∈ mod(kH) = Proj(k), hence,

again by Lemma 2.6.1,

k↑GQ= k↑HQ↑GH∈ Proj(k↑GH) ,

which proves the reverse inclusion Proj(k↑GQ) ⊆ Proj(k↑GH).

(b) By (a), Proj(k ↑GH) = Proj(k ↑GQ). Therefore by Proposition 2.8.3 the module k ↑GH is

absolutely p-divisible if and only if Proj(k↑GQ) 6= mod(kG), that is if and only if Q �G P .

(This is well-known from the theory of vertices and sources.)
(c) The sufficient condition is a particular case of Lemma 3.5.1. The necessary condition is

easier proven by contraposition. Indeed, if R =G P , the trivial kP -module is a source
of L, therefore k |L ↓GP . In consequence mod(kP ) = Proj(k) ⊆ Proj(L ↓GP ) and so
Proj(L↓GP ) = mod(kP ). Therefore L↓GP is not absolutely p-divisble and by 2.9.3 neither
is L.

(d) First by the omnibus properties of relative projectivity we have:

Proj(H) = Proj(
⊕
X∈H

k↑GX) =
⊕
X∈H

Proj(k↑GX) =
⊕
X∈H

Proj(k↑GQ(X))

where for all X ∈ H, Q(X) is a Sylow p-subgroup of X, and where the penultimate
equality follows from part (a). In consequence Proj(H) = mod(kG) by Proposition 2.8.3
because Proj(k↑GP ) = mod(kG) by (b). Moreover Proj(H) = Proj({R ≤ P}) by Remark
2.5.3.

�

As a consequence we can restrict our attention to the family of subgroups of a fixed Sylow
p-subgroup P of G. According to the above proof, in order to obtain an absolutely p-divisible
family of subgroups, it is necessary to remove P itself from this family {Q ≤ P}.

Notation.
ForG a finite group, fix a Sylow p-subgroup P . Then set FG := {Q � P} and V (FG) :=

⊕
Q∈FGk↑

G
Q.

Then Proj(V (FG)) corresponds to projectivity relative to the family of all non maximal p-subgroups
of G and it does not depend on the choice of the Sylow p-subgroup P .

Lemma 7.1.2.
Let P be a Sylow p-subgroup of G, H be a subgroup of G such that P ≤ H ≤ G. Then:

(a) Proj(V (FG)↓GH) = Proj(V (FH)).
(b) V (FH) is absolutely p-divisible.

Proof.
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(a) The Mackey formula yields

V (FG)↓GH =
⊕
Q∈FG

k↑GQ↓GH ∼=
⊕
Q∈FG

⊕
x∈[H\G/Q]

k↑HxQ∩H =
⊕
Q�P

k↑HQ︸ ︷︷ ︸
V (FH)

⊕X

where X is a direct sum of modules of the form k ↑HS with S � P . Thus by Proposition
2.2.2 (b), (c) and (h) we conclude that Proj(V (FG)↓GH) = Proj(V (FH)).

(b) By Green’s indecomposability Criterion, the direct sum decomposition

V (FP ) =
⊕
Q∈FP

k↑PQ

is a decomposition into indecomposable modules, all of which have dimension divisible by
p. In other words, V (FP ) is absolutely p-divisible and, therefore by part (a) and Lemma
2.9.1 so are the modules V (FH) for every P ≤ H ≤ G.

(c)/(d) A module L is a p-permutation kG-module if and only if there exists a subgroup R ≤ G
such that L | k↑GR. Therefore by the previous lemma

Proj(L) ⊆ Proj(k↑GR) = Proj(k↑GQ) = Proj(k↑GgQ)

where Q is a Sylow p-subgroup of R and g ∈ G such that gQ � P . Then (c) and (d) are
consequences of Theorem 2.9.3 and the fact that Proj(k ↑GgQ) = mod(kG) if and only if
gQ = P . Indeed, in case gQ = P then any kG-module is P -projective and conversely, if
gQ � P then k↑GgQ |V (FG) which is absolutely p-divisible by part (b).

�

Lemma 7.1.3.
Let N be a normal subgroup of the group G such that p | |G/N |.Then

Proj(InfGG/N (V (FG/N ))) ⊆ Proj(V (FG)) .

Proof. Let P be a Sylow p-subgroup of G and PN/N the corresponding Sylow p-subgroup
of G/N . By definition,

V (FG/N ) =
⊕

R�PN/N

k↑G/NR .

Moreover, if R � PN/N , there exists a subgroup Q such that P ∩ N ≤ Q � P and R = QN/N .
Whence

InfGG/N (V (FG/N )) =
⊕

P∩N≤Q�P
InfGG/N (k↑G/NQN/N ) =

⊕
P∩N≤Q�P

k↑GQN .

Now, since Q is a Sylow p-subgroup of QN , by Lemma 7.1.1 Proj(k↑GQN ) = Proj(k↑GQ). Whence

Proj(InfGG/N (V (FG/N ))) = Proj(
⊕

P∩N≤Q�P
k↑GQN )

=
⊕

P∩N≤Q�P
Proj(k↑GQ) ⊆ Proj(V (FG)) .

�
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7.2. V (FG)-endotrivial modules

Having proven that the module V (FG) is absolutely p-divisible, it makes sense to consider
V (FG)-endotrivial modules since then we obtain a well-defined associated group structure
TV (FG)(G). To start with, here is a short summary of elementary properties of this group that can
easily be deduced from the general theory of relative endotrivial modules that has been developed
in the preceding chapters.

Lemma 7.2.1.
Let P be a Sylow p-subgroup of G and H be a subgroup of G such that P ≤ H ≤ G.

(a) There is a well-defined restriction map

ResGH : TV (FG)(G) −→ TV (FH)(H)

[M ] 7−→ [M ↓GH ] .

(b) If H contains NG(P ), then the restriction map ResGH : TV (FG)(G)
∼=−→ TV (FH)(H) is an

isomorphism, whose inverse is induced by the Green correspondence on the indecomposable
V (FH)-endotrivial modules.

(c) ker(Res
NG(P )
P ) = X(NG(P )).

(d) If Γ denotes the Green correspondence and Γ(X(NG(P ))) denotes the subgroup of
TV (FG)(G) made up of the classes of the kG-Green correspondents of the modules in
X(NG(P )), then

ker(ResGP ) = Γ(X(NG(P ))) .

Moreover Γ(X(NG(P ))) ∼= X(NG(P )) via restriction and is a finite group.

Proof.

(a) This follows from the definition of a restriction map and parts (a) and (b) of Lemma 7.1.2.

(b) This is a consequence of Lemma 4.3.1 and the remarks in section 4.3.

(c) This follows from part (a) of Lemma 7.1.2 and Lemma 4.4.1.

(d) Since ResGNG(P ) is an isomorphism, (d) is a straightforward consequence of (c). The group

is finite because X(NG(P )) is the p′-part of the abelianization of NG(P ).

�

Occurences of V (FG)-endotrivial modules.

Thus far, we have essentially two families of examples of V (FG)-endotrivial modules at our disposal.

1. The kG-Green correspondents of the one-dimensional representations of the normaliser
NG(P ), provided by part (d) of the above lemma.

2. The relative syzygies ΩnW (M) with W ∈ Proj(V (FG)), n ∈ Z and M a V (FG)-endotrivial
module as described in Lemma 3.3.1.

Anyhow, a profusion of examples are given by the relative syzygies ΩnH(k) of the trivial
module, where H is a family of subgroups of G such that the associated module V (H) is
absolutely p-divisible. (According to the previous section, H might as well be assumed to
be a family of proper p-subgroups of a given Sylow p-subgroup P of G.) Then Proj(H) ⊆
Proj(V (FG)) and so

TV (H)(G) ≤ TV (FG)(G) .
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Furthermore, TV (FG)(G) admits the subgroups TΩ(G) := 〈ΩV (k) |V ∈ Proj(FG)〉 and

DΩ(G) := 〈ΩH(k) |H ⊆ FG〉.

It is known from Alperin [Alp01] that the relative syzygies ΩnH(k) are endo-permutation mod-
ules in the case that G is a p-group. In similar manner, it can be seen that they are endo-p-
permutation modules when G is arbitrary (see [Urf06, Prop. 5.8]). We shall show in section 7.7
that the same is true for the modules in Γ(X(NG(P ))). Therefore there are strong connections
between V (FG)-endotrivial modules and endo-permutation modules as well as endo-p-permutation
modules. Our task for the next sections is to understand more precisely these connections.

7.3. Preliminaries on endo-permutation modules

Let P be a p-group. The Dade Group of P is constructed by E. Dade in [Dad78a] as described
below. It relies essentially on the following proposition:

Proposition 7.3.1 ([Dad78a], Thm. 3.8).
If M is an endo-permutation kP -module, then any two indecomposable direct summands of M with
vertex P are isomorphic.

Thus, if M is an arbitrary endo-permutation kP -module, it has at most one isomorphism class
of indecomposable direct summands with vertex P . If such direct summands exist, then their
isomorphism class is denoted by Cap(M) and M is called capped. We note that the class of all
capped endo-permutation kP -modules is closed under taking direct summands, duals and tensor
products.

Furthermore, this class can be endowed with the following equivalence relation: two capped
endo-permutation kP -modules are said to be equivalent if their caps are isomorphic. We shall write
[M ] for the equivalence class of the endo-permutation module M and let D(P ) denote the resulting
set of equivalence classes. It is an abelian group for the composition law:

([M ], [N ]) 7−→ [M ] + [N ] := [M ⊗N ]

The zero element is the class [k] of the trivial module, while the opposite of a class [M ] is the class
[M∗] of the dual module. The group D(P ) is called the Dade group of P .

As Dade notices, there is another useful way of thinking of the group D(P ). In every equiv-
alence class, there is, up to isomorphism, a unique indecomposable module, namely the cap of

any module in the class. Therefore, if D̂(P ) is the set of isomorphism classes of indecomposable
endo-permutation kP -modules with vertex P , then there is a bijection

D(P ) −→ D̂(P )
[M ] 7−→ [Cap(M)] .

In consequence, D̂(P ) is an abelian group for the operation [M ] + [N ] := [Cap(M ⊗N)], where the
square brackets are also used to denote the isomorphism class of a module.

Yet another way of thinking about the group D(P ), the one we are interested in, is an inter-
mediary version of the two previous ones. An endo-permutation kP -module M is called capped
in the strong sense if Cap(M) has multiplicity one as a direct summand of M . The class of all
such kP -modules is a subclass of that of capped endo-permutation kP -modules to which the above

equivalence relation can be restricted and following the above process it induces a third group D̂(P )
isomorphic to D(P ).
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7.4. Relative endotrivial modules as a generalisation for the Dade group

The above construction of the Dade group D(P ) is valid only in case the group P is a
p-group. This is linked to the facts that kP -permutation modules are indecomposable, whereas
kG-permutation modules are not in general for an arbitrary group G, and moreover that their
direct summands are not permutation modules.

Notwithstanding, one way to obtain a similar notion to that of the Dade Group for arbitrary
groups is to consider endo-p-permutation modules as described by Urfer in [Urf06]. He shows that
if P is a p-subgroup of a group G, this notion induces a group structure, denoted by DP (G), on a
set of equivalence classes of indecomposable endo-p-permutation kG-modules with vertex P . (The
equivalence relation is a generalisation of Dade’s compatibility relation.) However, the main draw-
back of this approach resides in the fact that there is not a unique indecomposable representative,
up to isomorphism, for the classes in DP (G).

Our notion of relative endotrivial modules can generalize the Dade group in a more natural
way. Let us fix P a finite p-group. The first observation to make is that an indecomposable capped
endo-permutation kP -module M (i.e. with vertex P ) is always a relative endotrivial module, that
is relatively to some intrinsincally defined kP -module VM . Indeed, it is an elementary fact about
capped endo-permutation modules that the trivial kP -module k has to be a direct summand of
Endk(M) ([Dad78a, Prop. 3.7]), while by 2.8.1 it is clear that the multiplicity of k is exactly one.
It yields the characterization:

Endk(M) = (permutation module) ∼= k ⊕ k↑PQ1
⊕ · · · ⊕ k↑PQs

for some subgroups Q1, . . . , Qs � P , s ∈ N. Thus one can set VM :=
⊕s

i=1 k ↑PQi , which is clearly
absolutely p-divisible by 7.1.2. Then, by very definition, M becomes a VM -endotrivial module.
Besides, VM |V (FG) and so M is also V (FP )-endotrivial.

In other words, the module V (FP ) is a universal module relatively to which any indecomposable
capped endo-permutation module is endotrivial. This construction leads to the following natural
embedding of D(P ) in TV (FG)(P ), in which the equivalence classes do have a unique indecomposable
representative, up to isomorphism.

Theorem 7.4.1.
The Dade group D(P ) can be identified with a subgroup of TV (FP )(P ) via the canonical injective
homomorphism

D(P ) −→ TV (FP )(P )

[M ] 7−→ [Cap(M)] .

Proof. If [M ] is a class in D(P ), then Cap(M) is the unique indecomposable representative
of this class. Moreover, according to the above construction, any indecomposable capped endo-
permutation module is V (FP )-endotrivial. Hence, since both in D(P ) and in TV (FP )(P ) there is a
unique indecomposable representative for the classes, the map [M ] 7−→ [Cap(M)] of the statement
is a well-defined, injective group morphism. �

Remark 7.4.2.
We shall see that if P = Cpn , a cyclic p-group, or if p = 2 and P = C2×C2, then D(P ) ∼= TV (FG)(P ).
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7.5. Endo-p-permutation modules and the Dade group of a finite group

With the classical case of endo-permutation modules in mind we can pass to the case of endo-p-
permutation modules. To begin with, let us recall a few facts about this class of modules. An endo-
p-permutation kG-module is defined to be a module M ∈ mod(kG) whose endomorphism algebra
Endk(M) is a p-permutation1 kG-module. In other words, if Endk(M) ∼=

⊕
i∈I Ni where each Ni

is indecomposable, then for every i ∈ I, Ni | k↑GQi for some p-subgroup Qi of G. Equivalently, M is

endo-p-permutation if M ↓GQ is an endo-permutation kQ-module for every p-subgroup Q of G. In
fact, since p-permutation modules are preserved under conjugation and restriction, it is enough to
check that M ↓GP is an endo-permutation kP -module for P a fixed Sylow p-subgroup of G. A few
other elementary properties of this class of modules are the following:

Lemma 7.5.1.
Let M ∈ mod(kG) be an indecomposable endo-p-permutation module with vertex P . Then:

(a) M ↓GP is capped endo-permutation.
(b) p - dimkM .
(c) k | Endk(M) with multiplicity 1.

Proof.

(a) It is easy to see that M ↓GP is forced to have a summand with vertex P , thus it is capped
endo-permutation. See [Urf06, Chapter 2] for details.

(b) Assume M were an indecomposable kG-module with k-dimension divisible by p, that is
absolutely p-divisible. Then, by Theorem 2.9.3, so would be M ↓GP , which contradicts
statement (a). Indeed, M ↓GP being capped, it has got at least one direct summand with
k-dimension not divisible by p, for according to the previous section, Cap(M ↓GP ) is an
indecomposable endo-permutation module, hence V (FP )-endotrivial and thus by Lemma
3.1.3 we have dimk Cap(M ↓GP ) ≡ ±1 mod (p).

(c) This is a consequence of (b) and the Benson-Carlson Theorem (2.8.1).

�

It can be seen from the work of [Urf06] that setting an equivalence relation on the whole class
of endo-p-permutation modules with vertex P given by a generalisation of Dade’s compatibility
relation (cf [Dad78a]) does not lead to a group structure induced by tensor product on the set
of isomorphism classes of indecomposable endo-p-permutation modules with vertex P . The idea
is then to find a subclass of this class which has more similarities with that of capped endo-
permutation modules for a p-group and obtain a group structure induced by tensor product which
embeds naturally in TV (FG)(G), generalising the embedding D(P ) ≤ TV (FP )(P ) of Theorem 7.4.1.
In this respect we shall focus on endo-p-permutation modules which are V (FG)-endotrivial at the
same time.

Proposition 7.5.2.
Let M ∈ mod(kG) be an endo-p-permutation module. The following conditions are equivalent:

(a) M is V (FG)-endotrivial;
(b) M ↓GP is V (FP )-endotrivial;
(c) M has a unique indecomposable summand with vertex P , say M0 and, in addition, if

S ∈ mod(kP ) is a source for M0, then the multiplicity of S as a direct summand of M ↓GP
is one;

1In English, a p-permutation module is also often termed a trivial source module.
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(d) Endk(M) ∼= k ⊕N where N is a p-permutation kG-module, all of whose indecomposable
summands have a vertex strictly contained in P .

Proof.

(a)⇔(b): By Lemma 7.1.2, Proj(V (FG)) ↓GP ) = Proj(V (FP )), therefore statements (a) and (b)
are equivalent by Lemmas 3.3.4 and 4.1.1. As a matter of fact, this equivalence is independent of
the initial assumption that M is endo-p-permutation.

(a)⇒(c): This implication does not need either the assumption that M is endo-p-permutation.
Indeed, assuming (a) yields a decomposition:

M ∼= M0 ⊕ (V (FG)− proj)

where M0 is the unique indecomposable V (FG)-endotrivial summand of M . By Lemma 3.5.1, M0

has vertex P , whereas all the other summands of M have a vertex strictly smaller than P by
definition of Proj(V (FG)). Furthermore, still by Lemma 3.5.1, if S ∈ mod(kP ) is a source for M0,
then S has multiplicity one in M0 ↓GP . In consequence, since M ↓GP is V (FP )-endotrivial we have

M ↓GP∼= M0 ↓GP ⊕(V (FP )− proj) ∼= S ⊕ (V (FP )− proj)

where the Krull-Schmidt Theorem forces S to be isomorphic to the unique V (FP )-endotrivial
summand of M ↓GP . Thus S has multiplicity one in M ↓GP as well.

(c)⇒(b): Write M = M0⊕L with M0 indecomposable with vertex P and L a module all of whose
indecomposable summands have a vertex strictly smaller than P . Thus L ∈ Proj(V (FG)) and
restricting M to P yields

M ↓GP∼= M0 ↓GP ⊕(V (FP )− proj) .
Now M0 is endo-p-permutation as a direct summand of an endo-p-permutation module, therefore
M0 ↓GP is capped endo-permutation by Lemma 7.5.1. Moreover S |M0 ↓GP and because S has vertex
P too, we must have S ∼= Cap(M0 ↓GP ), so that the fact that the multiplicity of S is one forces all
the remaining direct summands of M0 ↓GP to have a vertex strictly smaller than P , that is to be
V (FP )-ptojective. Hence M ↓GP is V (FP )-endotrivial.

(a)⇔(d): Given that M is endo-p-permutation, then Endk(M) is a p-permutation module. Thus
M satisfies condition (d) if and only if it is V (FG)-endotrivial, by definition of the family FG. �

Definition 7.5.3.
An endo-p-permutation kG-module M is said to be strongly capped if it satisfies the equivalent
conditions of Proposition 7.5.2. Moreover, the unique summand of M with vertex P given by
condition (c) is called the cap of M and denoted by Cap(M).

Remarks 7.5.4.

(a) The cap of a strongly capped endo-p-permutation module is its unique indecomposable
direct summand which is itself strongly capped.

(b) A strongly capped endo-p-permutation kG-module has a direct sum decomposition of the
form

M ∼= Cap(M)⊕ (V (FG)− proj) .
where the V (FG)-projective part is also an endo-p-permutation module.

Lemma 7.5.5.
The class of strongly capped endo-p-permutation kG-modules is closed under taking duals, tensor
products and restrictions to a subgroup containing a Sylow p-subgroup of G.
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Proof. Taking duals and tensor products are stable operations for both the classes of endo-
p-permutation modules and of V (FG)-endotrivial modules, therefore they are stable for strongly
capped endo-p-permutation modules too. Moreover, the restriction of an endo-p-permutation mod-
ule to a subgroup containing a Sylow p-subgroup is an endo-p-permutation module and the re-
striction of a V (FG)-endotrivial module to a subgroup H containing a Sylow p-subgroup is a
V (FH)-endotrivial module by Lemma 7.2.1. Thus the restriction to H of a strongly capped endo-
p-permutation module is strongly capped. �

Using a similar approach to that used by Dade for endo-permutation modules, one can define an
equivalence relation ∼ on the class of all strongly capped endo-p-permutation modules by setting:

M ∼ N ⇔ Cap(M) ∼= Cap(N)

We shall write [M ] for the equivalence class of the module M and let D(G) denote the resulting
set of equivalence classes.

Observe that this equivalence relation is the restriction to the class of strongly capped endo-p-
permutation of the equivalence relation ∼V (FG) on V (FG)-endotrivial modules of Definition 3.6. In
consequence, if M and N are two strongly capped endo-p-permutation kG-modules, then M ∼ N
if and only if M ∼V (FG) N . Therefore, the reader should be aware that the classes do not mean the
same thing in TV (FG)(G) and in D(G), and moreover that in general there are more representatives
for a given class in TV (FG)(G) than in D(G).

Corollary-Definition 7.5.6.
The set D(G) is an abelian group for the composition law

([M ], [N ]) 7−→ [M ] + [N ] := [M ⊗N ] ,

called the generalized Dade group of G, or simply the Dade group of G. Moreover, D(G) can be
identified with a subgroup of TV (FG)(G) through the natural embedding

ı : D(G) −→ TV (FG)(G)
[M ] 7−→ [M ] .

Proof. Lemma 7.5.5 and the uniqueness of the caps ensure that the assignment

([M ], [N ]) 7−→ [M ⊗N ]

of the statement is a well-defined composition law for D(G). The zero element is the class [k] of
the trivial module, while the opposite of a class [M ] is the class [M∗] of the dual module.

Now ı is well-defined by the above observation on ∼ and ∼V (FG) and it is a homomorphism
because the addition is induced by ⊗k on both sides. Finally, it is injective because ker(ı) = {[k]}.
Indeed, if ı([M ]) = [k], then M ∼V (FG) k which is equivalent to M ∼ k because both M and k are
strongly capped endo-p-permutation modules. �

For the sake of simplicity, we shall from now on identify D(G) with its image ı(D(G)) and
therefore view D(G) as a subgroup of TV (FG)(G).

Remark 7.5.7.
Notice that any ordinary endotrivial module is strongly capped, and in particular, so is any one-
dimensional kG-module. Therefore, up to identifications, the groups T (G) and X(G) can also be
viewed as subgroups of D(G) and we have a series of subgroup inclusions:

X(G) ≤ T (G) ≤ D(G) ≤ TV (FG)(G)

The group DΩ(G) = 〈ΩH(k) |H ⊆ FG〉 is also a subgroup of D(G) because of the next Lemma.
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Lemma 7.5.8.
Let H be a subfamily of FG. If M is a strongly capped endo-p-permutation module, then ΩV (H)(M)
is a strongly capped endo-p-permutation kG-module.

Proof. Since M is assumed to be strongly capped, it is both endo-p-permutation and V (FG)-
endotrivial. In consequence, on the one hand ΩV (H)(M) is V (FG)-endotrivial by Lemma 3.3.1,
hence V (H)-endotrivial and on the second hand, it is shown in [Urf06, Proposition 5.8] that it is
endo-p-permutation, hence strongly capped, as required. �

To end up the section we note that D(G) can be identified with two other groups of endo-p-
permutation modules.

The first one is the set of isomorphism classes of indecomposable strongly capped endo-p-
permutation kG-modules endowed with an abelian group structure induced by tensor product in

the same way as the group D̂(P ) is for a p-group P . More accurately, observe that in every
equivalence class in D(G) there is a unique indecomposable module, namely the cap of any module

in the class, therefore, if D̂(G) denotes the set of isomorphism classes of strongly capped endo-p-
permutation modules, then there is a bijection

D(G) −→ D̂(G)
[M ] 7−→ [Cap(M)]

and D̂(G) endowed with the operation [M ] + [N ] := [Cap(M ⊗ N)] becomes an abelian group
(where the square brackets are also used, in a non-misleading way, to denote the isomorphism class
of a module).

The second one is based on Dade’s construction for endo-permutation modules and the idea
of allowing endo-p-permutation modules to have caps with a multiplicity. We shall momentarily
say that an endo-p-permutation module M is weakly capped if it has, up to isomorphism a unique
indecomposable summand with vertex P , denoted by Cap(M), and which is moreover strongly
capped. Such a module M has a direct sum decomposition of the form

M ∼= Cap(M)⊕r ⊕ (V (FG)− proj)
with r ≥ 1 an integer. Then we can set an equivalence relation on the class of weakly capped
endo-p-permutation kG-modules by setting M ∼ N ⇔ Cap(M) ∼= Cap(N). Then, this class is
closed under taking duals and tensor products. Indeed, for tensor products, consider two modules
M = Cap(M)⊕r(M)⊕ (V (FG)−proj) and N = Cap(N)⊕r(N)⊕ (V (FG)−proj) with r(M), r(N) ∈
N. Then

M ⊗N ∼= (Cap(Cap(M)⊗ Cap(N)))⊕r(M)·r(N) ⊕ (V (FG)− proj) .
In consequence, if D̃(G) denotes the resulting set of equivalence classes, it can be endowed with an
abelian group structure for the operation ([M ], [N ]) 7−→ [M ] + [N ] := [M ⊗N ]. Furthermore, the
map

D̃(G) −→ D(G)
[M ] 7−→ [Cap(M)]

is a group isomorphism.

The three groups D(G), D̂(G) and D̃(G) all have the property to have a unique indecomposable

representative in their classes. The main drawback of D̃(G) in our vision resides in the fact the
representatives in the classes are not relatively endotrivial modules as soon as their cap has a
multiplicity greater or equal to 2. In consequence, we favour the approach of D(G) and we may

also identify D(G) and D̂(G) without further mention.



7.6. GROUP OPERATIONS 93

7.6. Group operations

The operations of restriction and inflation induce group homomorphisms between the gener-
alised Dade groups, whereas we will provide a counterexample to show that tensor induction does
not.

1. Restriction.

Lemma 7.6.1.
Let P be a Sylow p-subgroup of G and let H be a subgroup of G such that P ≤ H ≤ G. Then
restriction induces a group homomorphism

ResGH : D(G) −→ D(H)

[M ] 7−→ [M ↓GH ] .

Furthermore, if H contains the normaliser NG(P ), then the map ResGH is injective.

Proof. As seen in 7.2.1, there is a restriction homomorphism for groups of relative endotrivial
modules

ResGH : TV (FG)(G) −→ TV (FH)(H)

[M ] 7−→ [M ↓GH ] ,

which is, furthermore, an isomorphism if H contains NG(P ). In consequence, it suffices to check
that this maps D(G) to a subgroup of D(H). In fact, if [M ] ∈ D(G), then, M ↓GH is clearly both
V (FH)-endotrivial and endo-p-permutation, hence it is strongly capped and [M ↓GH ] ∈ D(H), as

required. Consequently, set ResGH : D(G) −→ D(H) to be the restriction of map

ResGH : TV (FG)(G) −→ TV (FH)(H)

to D(G). It is injective if H ≥ NG(P ). �

Remark 7.6.2.
In particular, the injectivity of the restriction map ResGNG(P ) : D(G) −→ D(NG(P )) allows us to

identify the Dade group D(G) of a group G with a subgroup of the Dade group D(NG(P )) of the
normaliser NG(P ) of its Sylow p-subgroup P .

2. Inflation.

Lemma 7.6.3.
Let N be a normal subgroup of the group G such that G/N has order divisible by p. Then inflation
induces a group homomorphism

InfGG/N : D(G/N) −→ D(G)

[M ] 7−→ [InfGG/N (M)] .

Proof. Let M be a strongly capped endo-p-permutation k[G/N ]-module. Then so is

InfGG/N (M). Indeed, on the one hand it is V (FG)-endotrivial, because it is InfGG/N (V (F(G/N)))-

endotrivial by Section 3.9 and moreover Proj(InfGG/N (V (FG/N ))) ⊆ Proj(V (FG)) by Lemma 7.1.3.

On the second hand it is an endo-p-permutation module as well, for if ϕ : P/P ∩ N
∼=−→ PN/N

denotes the canonical group morphism, then

ResGP ◦ InfGG/N (M) = InfPP/P∩N ◦ Iso(ϕ−1) ◦ Res
G/N
PN/N (M)
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is endo-permutation because both isomorphism and inflation preserve endo-permutation modules.
In consequence, there is a group homomorphism InfGG/N : D(G/N) −→ D(G) defined by the
following diagram

TV (FG/N )(G/N)
InfGG/N // TInfG

G/N
V (FG/N )(G)

i // TV (FG)(G)

D(G/N)
InfGG/N //____________________

i

OO

D(G)

i

OO

as the restriction of the top map i ◦ InfGG/N . �

3. Tensor induction.

Although the tensor induction of an endo-p-permutation module is an endo-p-permutation
module (see [Urf06, Prop. 2.5]), the tensor induction of a strongly capped endo-p-permutation
module is not necessarily a strongly capped endo-p-permutation module. We provide here an even
more interesting counterexample in which the tensor induction of an endotrivial module is not even
endotrivial relatively to any kG-module. It will show at the same time that the tensor induction of

a V -endotrivial module is not necessarily a V ↑⊗
G

H
-endotrivial module. We refer to Section 1.1 and

[CR90, §13] for a careful construction and description of the tensor induced module.

Counterexample 7.6.4.
Consider the 3-nilpotent groupG := C7oC3 in characteristic 3. Write C7 :=< a > and C3 :=< u >.
The action of C3 on C7 is given by uau−1 = a2. Consider the module Ω(k) ∈ mod(kC3). It is an

endotrivial module of dimension 2. However the module Ω(k)↑⊗
G

C3
is neither an endotrivial module

nor a strongly capped endo-3-permutation module. In fact, we have the following:

Lemma 7.6.5.
There exists no absolutely 3-divisible kG-module V such that the tensor induced module Ω(k)↑⊗

G

C3

is V -endotrivial.

Proof. Write M := Ω(k). Then M∗ ⊗M ∼= k ⊕ kC3, so that

(M ↑
⊗
G

C3
)∗ ⊗M ↑

⊗
G

C3

∼= (k ⊕ kC3)↑⊗
G

C3

∼= k ⊕N

for some kG-module N and we need to show that N is not an absolutely 3-divisible module. The
module L := k ⊕ kC3 is a permutation kC3-module, so let X := {x0, x1, x2, x3} with x0 ∈ k and
x1, x2, x3 ∈ kC3 form a C3-invariant k-basis for L. Without loss of generality we may assume that
ux1 = x2, ux2 = x3 and ux3 = x1. Moreover, choose {a0, a1, a2, a3, a4, a5, a6} as a set of coset
representatives for the subgroup C3 in G. Then

L↑⊗
G

C3

∼=
6⊗
i=0

(ai ⊗ L)

is also a permutation module with a G-invariant k-basis given by

{(a0 ⊗ xj0)⊗ · · · ⊗ (a6 ⊗ xj6) |xj0 , . . . , xj6 ∈ X} .

Let us compute fixed points under the action of the Sylow 3-subgroup C3 of G. Of course,
(a0 ⊗ x0) ⊗ · · · ⊗ (a6 ⊗ x0) is fixed under the action of C3. This basis element corresponds to
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the trivial summand in (k ⊕ kC3)↑⊗
G

C3

∼= k ⊕N . Moreover, the element

b := (a0 ⊗ x0)⊗ (a1 ⊗ x1)⊗ (a2 ⊗ x2)⊗ (a3 ⊗ x3)⊗ (a4 ⊗ x3)⊗ (a5 ⊗ x2)⊗ (a6 ⊗ x1)

is also fixed under the action of C3, for

u · b = u(a0 ⊗ x0)⊗ u(a1 ⊗ x1)⊗ u(a2 ⊗ x2)⊗ u(a3 ⊗ x3)⊗ u(a4 ⊗ x3)⊗ u(a5 ⊗ x2)⊗ u(a6 ⊗ x1)

= (a0 ⊗ ux0)⊗ (a2 ⊗ ux1)⊗ (a4 ⊗ ux2)⊗ (a6 ⊗ ux3)⊗ (a1 ⊗ ux3)⊗ (a3 ⊗ ux2)⊗ (a5 ⊗ ux1)

= (a0 ⊗ x0)⊗ (a2 ⊗ x2)⊗ (a4 ⊗ x3)⊗ (a6 ⊗ x1)⊗ (a1 ⊗ x1)⊗ (a3 ⊗ x3)⊗ (a5 ⊗ x2)

= (a0 ⊗ x0)⊗ (a1 ⊗ x1)⊗ (a2 ⊗ x2)⊗ (a3 ⊗ x3)⊗ (a4 ⊗ x3)⊗ (a5 ⊗ x2)⊗ (a6 ⊗ x1) = b

after identification of (a0 ⊗ L) ⊗ (a2 ⊗ L) ⊗ (a4 ⊗ L) ⊗ (a6 ⊗ L) ⊗ (a1 ⊗ L) ⊗ (a3 ⊗ L) ⊗ (a5 ⊗ L)

with
⊗6

i=0(ai ⊗ L).

In consequence, (k⊕ kC3)↑⊗
G

C3

∼= k⊕N must contain at least a second direct summand, apart from

k, with vertex the Sylow 3-subgroup C3 of G. Such a summand is then a 3-permutation module,

but is not absolutely p-divisible by part (d) of Lemma 7.1.2. This prevents (M ↑
⊗
G

C3
)∗⊗M ↑

⊗
G

C3
from

being of the form k ⊕ (V − proj) for any absolutely 3-divisible kG-module V . �

This counterexample easily generalises to groups of the form G := Cq o Cp with p, q odd primes
and p | q − 1, char(k) = p. In characteristic 2, it generalises to groups of the form G := Cq o C4

with q a prime such that 4 | q − 1.

7.7. Towards the structure of D(G)

We aim to determine the structure of the group D(G). To begin with we recall some more
results on endo-p-permutation modules. A first key tool is provided by the following theorem
proven by Dade and never published.

Theorem 7.7.1 (Theorem 7.1, [Dad82]).
Let G be a finite group having a normal Sylow p-subgroup P . Let M be an endo-permutation
kP -module. Then M extends to a kG-module if and only if M is G-stable.

In order to set up notation, let us recall that ifM is a Mackey functor, H a subgroup of a group
G and if Res denotes the restriction and cg denotes the conjugation by g ∈ G, then an element
m ∈M(H) is called G-stable iff:

(Res
gH
gH∩H ◦cg)(m) = ResHgH∩H(m), ∀ g ∈ G.

Moreover, M(H)G−st denotes the subgroup of all G-stable elements of M(H). In particular, it
follows easily from this definition that D(P )NG(P )−st = D(P )NG(P ), that is the subgroup of fixed
points of D(P ) under the action of the normaliser NG(P ) by conjugation.

A second key tool is provided by the following characterisation of endo-p-permutation modules
by J.-M. Urfer:

Theorem 7.7.2 (Theorem 1.5, [Urf07]).
Let G be a finite group. Let M ∈ mod(kG) be an indecomposable module with vertex P and source
S ∈ mod(kP ). Then M is an endo-p-permutation module if and only if S is an endo-permutation
module whose class [S] in the Dade group D(P ) belongs to D(P )G−st.
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Notation.
For ease of notation, we write X := X(NG(P )) for the group of one-dimensional representations
of NG(P ), identified with a subgroup of D(NG(P )) as noticed in Remark 7.5.7. Likewise we write
Γ(X) := Γ(X(NG(P ))) for the subgroup of TV (FG)(G) made up of the classes of the kG-Green
correspondents of the modules in X(NG(P )) defined in Lemma 7.2.1.

Theorem 7.7.3.
Let G be a finite group with a non-trivial Sylow p-subgroup P .Then,

(a) restriction from NG(P ) to P yields an exact sequence

0 −→ X ↪−−→ D(NG(P ))
Res

NG(P )

P−−−−−−−−� D(P )NG(P ) −→ 0 ;

(b) restriction from G to P yields an exact sequence

0 −→ Γ(X) ↪−−→ D(G)
ResGP−−−−−� D(P )G−st −→ 0 .

In order to avoid confusion, and for the purpose of the following proof only, we shall mo-
mentarily denote by RGH the restriction maps ResGH : TV (FG)(G) −→ TV (FH)(H) at the level of

V (FG)-endotrivial modules and keep the notation ResGH : D(G) −→ D(H) for the restriction maps
at the level of the Dade groups.

Proof.

(1) First, it follows from Theorem 7.7.2 that Im(ResGP ) ≤ D(P )G−st. In particular,

Im(Res
NG(P )
P ) ≤ D(P )NG(P )−st = D(P )NG(P ) .

(2) We claim that indeed Im(ResGP ) = D(P )G−st.
Let [S] ∈ D(P )G−st with S indecomposable. Notice that D(P )G−st ⊆ D(P )NG(P ), so

that by Dade’s Theorem S ∈ mod(kP ) extends to a kNG(P )-module S̃. In other words,

S̃ ↓NG(P )
P

∼= S and S is a source for S̃. By construction S̃ is strongly capped endo-p-
permutation because its source is endo-permutation and has multiplicity 1 in its restric-

tion. Hence [S̃] ∈ D(NG(P )) and Res
NG(P )
P ([S̃]) = [S]. In particular, this argument

proves the surjectivity of the map Res
NG(P )
P onto D(P )NG(P ).

Now if Γ(S̃) is the kG-Green correspondent of S̃, then it has source S as well. There-

fore Γ(S̃) is endo-p-permutation by Theorem 7.7.2. It is moreover V (FG)-endotrivial
by Lemma 7.2.1 because the restriction map RGNG(P ) is an isomorphism whose inverse

is induced by Green correspondence on indecomposable kNG(P )-modules. Consequently

[Γ(S̃)] ∈ D(G) and ResGP ([Γ(S̃)]) = [S] ∈ D(P )G−st, as required.

(3) We claim that the kernel of the restriction map ResGP : D(G) −→ D(P ) is Γ(X).

First, it was established in Lemma 7.2.1 that ker(R
NG(P )
P ) = X. Therefore

ker(Res
NG(P )
P ) = ker(R

NG(P )
P ) ∩D(NG(P )) = X ∩D(NG(P )) = X

because X ≤ D(NG(P )) as noticed in Remark 7.5.7. Furthermore,

ker(ResGP ) = (ResGNG(P ))
−1
(

ker(Res
NG(P )
P )

)
= (ResGNG(P ))

−1(X)

= (RGNG(P ))
−1(X) ∩D(G) = Γ(X) ∩D(G) .

It remains to show that Γ(X) ≤ D(G). By the very definition of Γ(X), the indecomposable
representatives of the classes in Γ(X) are V (FG)-endotrivial modules. Besides, they
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are also endo-p-permutation modules, thus strongly capped. Indeed, if χ ∈ X, then
its kG-Green correspondent Γ(χ) has the same source as χ, that is the trivial module
k ∈ mod(kP ). Therefore Γ(χ) | k↑GP , or in other words, it is a p-permutation module and
thus an endo-p-permutation module.

�

Corollary 7.7.4.
The generalized Dade group D(G) of a finite group G is finitely generated.

Proof. The group Γ(X) ∼= X is finite. The groupD(P )G−st is finitely generated as a subgroup
of D(P ), which is finitely generated by [Pui90]. Thus the exact sequence

0 −→ Γ(X) ↪−−→ D(G)
ResGP−−−−−� D(P )G−st −→ 0 .

of the Theorem implies that D(G) is finitely generated too. �

7.8. The generalized Dade group and control of p-fusion

The Dade group D(G) may always be identified with a subgroup of the Dade group D(NG(P ))
of the normaliser of a Sylow p-subgroup P of G. Then we may naturally ask when these groups
are equal. The control of p-fusion in G by a subgroup H gives a partial answer to this question.

Proposition 7.8.1.
Let H be a subgroup of G such that NG(P ) ≤ H ≤ G. Then, up to identification via restriction,
D(G) ∼= D(H) if and only if D(P )G−st = D(P )H−st.

Proof. Since H ≤ G, D(P )G−st ≤ D(P )H−st. Thus, there is a commutative diagram with
exact rows given by Theorem 7.7.3

0 // ΓG(X)

∼=
��

// D(G)
ResGP //

� _

ResGH

��

D(P )G−st //
� _

i

��

0

0 // ΓH(X) // D(H)
ResHP // D(P )H−st // 0

where ΓG(X) and ΓH(X) denote the subgroups made of the classes of the Green correspondents
of the one-dimensional kNG(P )-modules for G and H respectively. Furthermore, ΓG(X) ∼= X ∼=
ΓH(X). In consequence, it follows from the five-lemma (or the 2/3-lemma) that the map ResGH
is surjective if and only if the map i is. Thus, up to identification, D(G) = D(H) if and only if
D(P )G−st = D(P )H−st. �

Then, we recall that Urfer has already established links between control of p-fusion and the
G-stable points of the Dade group of a p-group:

Proposition 7.8.2 ([Urf06], Prop. 2.22).
Let P be a p-subgroup of G and assume that p-fusion in G is controlled by H ≤ G. Then
D(P )G−st = D(P )H−st. In particular, if H = NG(P ), then D(P )G−st = D(P )NG(P ) is the
subgroup of fixed points of D(P ) under the action of NG(P ) by conjugation.
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Corollary 7.8.3.
Assume that the p-fusion of G is controlled by a subgroup H ≤ G.

(a) If G ≥ H ≥ NG(P ), then D(G) = D(H).
(b) If NG(P ) ≥ H ≥ P , then D(G) = D(NG(P )).

Proof.

(a) is a straightforward consequence of the above Propositions 7.8.1 and 7.8.2.
(b) If NG(P ) ≥ H ≥ P , then NG(P ) certainly controls p-fusion as well and part (a) yields

the result.

�

Example 7.8.4.
For instance, it follows from the corollary that any finite group G belonging to one of the following
families of groups is such that D(G) ∼= D(NG(P )) via restriction:

- G is a group with an abelian Sylow p-subgroup P . Indeed, in this case NG(P ) controls
p-fusion in G by Burnside’s Theorem.

- G is p-nilpotent. Indeed, in this case P controls p-fusion.
- p is odd and G is a group with a metacyclic Sylow p-subgroup P . Then NG(P ) controls
p-fusion in G because such p-groups are resistant to fusion. (See [Sta02].)

- G is a group with a generalised extraspecial Sylow p-subgroup P , excepting the case when
P = E × A where A is elementary abelian and E is dihedral of order 8 (when p = 2) or
extraspecial of order p3 and exponent p (when p is odd). Such p-groups are also resistant
by [Sta02], therefore NG(P ) controls p-fusion in G.

Example 7.8.5.
An example in which D(G) � D(NG(P )) is provided by G := GL3(F3) and its extraspecial Sylow
3-subgroup P of order 27 which consists of the upper unitriangular matrices. This subgroup P is
generated by the matrices:

x :=

 1 0 1
0 1 1
0 0 1

 , y :=

 1 1 1
0 1 0
0 0 1

 and z :=

 1 0 1
0 1 0
0 0 1


Then it is proven in [Urf07, Section 4] that the class inD(P ) of the relative syzygy module Ωk↑P<x>(k)

is NG(P )-stable but not G-stable. Thus D(P )G−st � D(P )NG(P ) and it follows from Proposition
7.8.1 that D(G) � D(NG(P )).

7.9. The p-nilpotent case

Let G = N oP be a p-nilpotent group as in Chapter 6, so that P controls p-fusion in G. Thus
Corollary 7.8.3 yields D(G) = D(NG(P )), up to identification via restriction.

Theorem 7.9.1.
Let G = N o P be a p-nilpotent group. The restriction map ResGP : D(G) −→ D(P ) is split
surjective. In consequence there is an isomorphism

D(G) ∼= X(NG(P ))⊕D(P ) .
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Proof. Theorem 6.2.2 states that the restriction map ResGP : TV (FG)(G) −→ TV (FP )(P ) is
split surjective and moreover that a section is provided by the map

TV (FP )(P )
Iso(ϕ)−−−−→ TV (FG/N )(G/N)

InfGG/N−−−−→ TV (FG)(G) .

Restricting these maps to the Dade groups imply that InfGG/N ◦ Iso(ϕ) : D(P ) −→ D(G) is a

section for ResGP : D(G) −→ D(P ). In other words, ResGP is surjective with kernel is Γ(X) (by
Theorem 7.7.3) so that D(G) decomposes as a direct sum D(G) ∼= Γ(X) ⊕ D(P ) . Moreover,
Γ(X) ∼= X(NG(P )) by 7.2.1. The result follows. �

7.10. The cyclic case

Before going back to more general considerations, we shortly investigate the case of a group G
with a non-trivial cyclic Sylow p-subgroup P ∼= Cpn , n ≥ 1. In this case the classification provided
in Chapter 5 for the groups of relative endotrivial modules allows us to determine the generalised
Dade group D(G) with ease.

Proposition 7.10.1.
Let G be a group with a non-trivial cyclic Sylow p-subgroup P ∼= Cpn , n ≥ 1. Then

D(G) = TV (FG)(G) .

Proof. Since P is cyclic, it is abelian, thus NG(P ) =: N controls p-fusion as noticed in 7.8.4.
Therefore D(G) ∼= D(N). Next we show that D(N) = TV (FN )(N). Write Zr for the unique cyclic

subgroup of P of order pr, then V (FN ) =
⊕n−1

s=0 k↑NZs so that

Proj(V (FN )) =

n−1⊕
s=0

Proj(k↑NZs) = Proj(k↑NZn−1
)

because Proj(k ↑NZs) ⊆ Proj(k ↑NZn−1
) for every s ≤ n − 1 as is well-known from the theory of

vertices and sources (otherwise see Proposition 5.3.1). Therefore

TV (FN )(N) = Tk↑NZn−1

(N) .

In addition, by Theorem 5.4.6, we have

Tk↑NZn−1

(N) =<X(N), {Ωk↑NZs | 0 ≤ s ≤ n− 1}>

where all the generators, that is more precisely their indecomposable representatives, are not only
k ↑NZn−1

-endotrivial modules but also endo-p-permutation modules. Indeed X(N) ≤ D(N) and

the relative syzygy modules Ωk↑NZs
(k) are endo-p-permutation modules by Lemma 7.5.8. Whence

D(N) = TV (FN )(N). Finally, recall that , TV (FG)(G) ∼= TV (FN )(N) via restriction, by Lemma
7.2.1. Consequently, we are in the following situation:

0 // TV (FG)(G)
ResGN
∼=

// TV (FN )(N) // 0

0 // D(G)
?�

OO

ResGN
∼=

// D(N) // 0

where the left-hand side vertical arrow is the inclusion of D(G) as a subgroup of TV (FG)(G). Thus,
the equality D(G) = TV (FG)(G) follows by diagram chasing. �
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Remark 7.10.2.
In characteristic 2, if the Sylow p-subgroup is not cyclic but isomorphic to a Klein group C2 ×C2,
then the situation is similar and it is also easy to show that D(G) = TV (FG)(G). We shall treat
this case in details in Chapter 8.

7.11. The group DΩ(G)

A main source of examples of strongly capped endo-p-permutation modules is provided by the
H-relative syzygy modules ΩH(k) of the trivial module, where H is a family of subgroups of G such
that Proj(H) ⊆ Proj(V (FG)). Indeed, as already noticed in section 7.2, these modules are both
V (FG)-endotrivial and endo-p-permutation, hence strongly capped.

If P is a p-group, with p odd, then one of the main results of the classification of endo-
permutation modules asserts that D(P ) = DΩ(P ). Therefore one might naturally ask whether or
not a similar result holds for the generalised Dade group.

Notation.
Set DΩ(G) to be the subgroup of D(G) generated by all the relative syzygies ΩV (H) where H runs
over all the subfamilies of subgroups of FG.

Lemma 7.11.1.
The group DΩ(G) is generated by the relative syzygies Ωk↑GQ , where Q runs over the proper subgroups

of P :

DΩ(G) = 〈{Ωk↑GQ |Q ∈ FG}〉 .

Proof. If H ⊆ FG is a family of subgroups, set nH := max{|H| |H ∈ H}. We claim that
ΩH ∈ 〈{Ωk↑GQ |Q ∈ FG}〉 for every H ⊆ FG and the proof proceeds by induction on the natural

number nH.
First, if nH = 1, then Proj(H) = Proj is ordinary projectivity, so that

ΩH = Ω = Ω{1G} ∈ 〈{Ωk↑GQ |Q ∈ FG}〉 .

Then, let H := {H1, . . . ,Hn} be a subfamily of FG such that nH ≥ 2 and assume as induction
hypothesis that ΩF ∈ 〈{Ωk↑GQ |Q ∈ FG}〉 for every subfamily F ⊆ FG such that 1 ≤ nF < nH.

Furthermore, we may assume that Hi �G Hj ∀ i 6= j, 1 ≤ i, j ≤ n since conjugate subgroups
generate the same relative projectivity (cf. Remark 2.5.3). Then, according to Remark 3.8.2 we
can write

ΩH =

n∑
i=1

Ω{Hi} −
n∑
j=2

ΩG{H1,...,Hj−1}∩{Hj} in TV (H)(G) .

The sum
∑n
i=1 Ω{Hi} ∈ 〈{Ωk↑GQ |Q ∈ FG}〉, clearly. Besides, for every 2 ≤ j ≤ n, the family of

subgroups G{H1, . . . ,Hj−1} ∩ {Hj} is made up of the subgroups of the form gHi ∩Hj with g ∈ G
and 1 ≤ i ≤ j − 1, which all satisfy gHi ∩ Hj � Hj by the above assumption. In consequence,
the sum

∑n
j=2 ΩG{H1,...,Hj−1}∩{Hj} belongs to 〈{Ωk↑GQ |Q ∈ FG}〉 by induction hypothesis, and the

result follows. �

Scholium 7.11.2.
Let H be a subfamily of FG. Then ΩH ∈ 〈{Ωk↑GQ |Q ≤ H for some H ∈ H}〉 .
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We recall that in case G = P is a p-group and p is odd, then the Dade group of P is
D(P ) = DΩ(P ) (see [Bou06]).

Question: Does a similar result hold in general for D(G) when G is an arbitrary finite group?

Non-answer: Because the one-dimensional representations are always in D(G) this result ob-
viously has to be adapted when G is not a p-group anymore. Nonetheless, we claim that in
the forthcoming cases, D(G) is DΩ(G) modulo the group of Green correspondents Γ(X) of one-
dimensional representations of NG(P ) (with P a Sylow p-subgroup of G):
(a) when G has a cyclic Sylow p-subgroup;
(b) when p is odd, then we shall prove that D(NG(P )) is DΩ(NG(P )) modulo X(NG(P ));
(c) when NG(P ) controls p-fusion in the Sylow p-subgroup P ;
(d) it is also true for G = GL3(Fp) with p odd.
We leave open the question of determining if this result holds in general.

(a) The cyclic case. In case the group G has a cyclic Sylow p-subgroup P , then it was proven
in Proposition 7.10.1 that D(G) ∼= TV (FG)(G). In addition, the structure Theorem 5.4.6 implies
that

TV (FG)(G) = Tk↑GZn−1

(G) =<Γ(X(NG(P ))), {Ω
k↑NG(P )

Zs

| 0 ≤ s ≤ n− 1}> .

Hence D(G) is indeed DΩ(G) modulo Γ(X).

(b) The normal odd case (!): In order to prove (b), we first recall that a set of generators
for D(P )G−st is provided by Urfer in [Urf06] in the following form:

Proposition 7.11.3 ([Urf06], Cor. 3.7).
Suppose that p is an odd prime and P is a Sylow p-subgroup of the group G. Then the abelian
group D(P )NG(P ) is spanned by the elements

fQ :=
∑

g∈[NG(P )/PNG(P,Q)]

Ωk↑PgQ

where NG(P,Q) = {g ∈ NG(P ) | gQ = Q} and Q runs over FG.

In what follows, we shall consider that P E G, then we note that in this caseNG(P,Q) = NG(Q)
for every subgroup Q ≤ P . We still need another technical result on projectivity relative to
p-subgroups.

Lemma 7.11.4.
Let G be a group with a normal Sylow p-subgroup P and R be a proper subgroup of P . Then

Proj(k↑GR↓GP ) = Proj(
⊕

x∈[G/PNG(R)]

k↑PxR) .

Proof. The Mackey formula yields

Proj(k↑GQ↓GP ) = Proj(
⊕

x∈[G/P ]

k↑PxQ) .

Now, in order to obtain the equality of the statement, recall from the omnibus properties of
relative projectivity (Proposition 2.2.2) that if V,W ∈ mod(kG) and Proj(V ) = Proj(W ) then
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Proj(V ⊕W ) = Proj(V ). Therefore, in

Proj(
⊕

x∈[G/P ]

k↑PxQ) =
⊕

x∈[G/P ]

Proj(k↑PxQ)

it is enough to keep only one copy of the summands generating the same relative projectivity. Let
x, y ∈ G and compute:

Proj(k↑PxQ) = Proj(k↑PyQ)⇐⇒ ∃ p ∈ P such that pxQ = yQ

⇐⇒ y−1x ∈ PNG(Q) since P / G

⇐⇒ y ≡ x mod PNG(Q).

Whence Proj(k↑GQ↓GP ) = Proj(
⊕

x∈[G/PNG(Q)] k↑PxQ). �

Proposition 7.11.5.
Let p be an odd prime and P be a normal Sylow p-subgroup of G. Then the restriction map

ResGP : DΩ(G) −−� D(P )G

is surjective.
More accurately, if Q � P , then any generator fQ of D(P )G described in proposition 7.11.3 can be
expressed as

fQ =
∑

g∈[G/PNG(Q)]

Ωk↑PxQ = ResGP (Ωk↑GQ) +X

where X ∈ 〈{fR ∈ D(P )G |R � P and |R| < |Q|}〉.

Proof. The proof proceeds by induction on the order of the subgroup Q.

Case |Q| = 1: Ω(k)↓GP= Ω(k)⊕ (proj) (by 2.12.2), hence f{1} = Ω = ResGP (Ω) ∈ ResGP (DΩ(G)).

Induction step: Let Q � P such that |Q| > 1 and assume as induction hypothesis that for every
subgroup S � P such that |S| < |Q|, the generator fS =

∑
x∈[G/PNG(S)] Ωk↑GxS of D(P )G belongs

to ResGP (DΩ(G)). Now, in D(P ), we have

ResGP (Ωk↑GQ) = Ωk↑GQ↓GP = ΩV

where V :=
⊕

x∈[G/P ] k↑PxQ, so that the second equality follows from the Mackey formula whereas

the first equality follows from Lemma 2.12.2. In fact, in this situation it shall be more fruitful to
take the vision of P -sets in which ΩV = ΩY for Y the P -set defined by Y :=

⊔
x∈[G/P ] P/

xQ. Then

[Bou00, Lem. 5.2.3] provides us with the formula

ΩY =
∑

U,V ∈[sP ]

U≤PV
Y V 6=∅

µP (U, V )ΩP/U

where [sP ] is a set of representatives of conjugacy classes, under the action of P , of subgroups in
P and µP is the Möbius function of the poset ([sP ],≤P ). Translating this in terms of kP -modules
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yields:

ΩV =
∑

U∈[sP ]

U≤GQ

( ∑
V ∈[sP ]

U≤PV≤GQ

µP (U, V )
)

Ωk↑PU

=
∑

U∈[sP ]

U=GQ

Ωk↑PU +
∑

U∈[sP ]

U�GQ

( ∑
V ∈[sP ]

U≤PV≤GQ

µP (U, V )
)

Ωk↑PU

=
∑

x∈[G/PNG(Q)]

Ωk↑PxQ︸ ︷︷ ︸
fQ

+
∑

U∈[G\[sP ]]

U<GQ

(( ∑
V ∈[sP ]

U≤PV≤GQ

µP (U, V )
) ∑
x∈[G/PNG(U)]

Ωk↑PxU︸ ︷︷ ︸
fU

)

= fQ +
∑

U∈[G\[sP ]]

U<GQ

( ∑
V ∈[sP ]

U≤PV≤GQ

µP (U, V )
)
fU

where [G\[sP ]] denotes a set of representatives of conjugacy classes of classes of subgroups in [sP ]
under the left action of G. Then set

−X :=
∑

U∈[G\[sP ]]

U<GQ

( ∑
V ∈[sP ]

U≤PV≤GQ

µP (U, V )
)
fU ∈ 〈{fR ∈ D(P )G |R � P, |R| < |Q|}〉 .

Thus X ∈ ResGP (DΩ(G)) by induction hypothesis and so fQ = ResGP (Ωk↑GQ) + X ∈ ResGP (DΩ(G))

as required. �

Theorem 7.11.6.
Let p be an odd prime and G a finite group having a normal Sylow p-subgroup. Then

D(G) = X(G) +DΩ(G) .

Proof. This is a direct consequence of the previous proposition together with Theorem 7.7.3
since the latter states that the map ResGP induces an isomorphism D(G)/X(G) ∼= D(P )G and the
former that its restriction to DΩ(G) is surjective. �

Remark 7.11.7.
Notice that the sum D(G) = X(G) +DΩ(G) of Theorem 7.11.6 need not be direct. A counterex-
ample is provided by taking G to be a group with a normal Sylow p-subgroup isomorphic to a
cyclic p-group Cpn with p, n ≥ 3. Indeed, we have shown, on the one hand, in Theorem 7.10.1 that
D(G) = TV (FG)(G) = Tk↑GZn−1

(G), and, on the the other hand, in Theorem 5.4.6 that there are

relations

2Ωk↑GZs
= [ν] ∀ 0 ≤ s ≤ r .

Thus [ν] belongs to both X(G) and DΩ(G). (Notation is that of Chapter 5.)

(c) DΩ and control of fusion.

Lemma 7.11.8.
Let H be a subgroup of G containing the Sylow p-subgroup P and assume moreover that H controls
p-fusion. Then:
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(a) The restriction map ResGH : DΩ(G) −→ DΩ(H) is surjective.

(b) If NG(P ) ≤ H ≤ G, then restriction induces an isomorphism DΩ(G) ∼= DΩ(H).

Proof.
(a) The proof is similar to that of Proposition 7.11.5. We claim that for every Q � P ,

ResGH(Ωk↑GQ) = Ωk↑HQ +X

with X ∈ 〈{ΩR ∈ DΩ(H) |R � P, |R| < |Q|}〉. Again we proceed by induction on the
order of the subgroup Q.

Case |Q| = 1 : Ωk↑GQ = Ω so that ResGH(Ωk↑GQ) = Ω = Ωk↑H{1}
∈ ResGH(DΩ(G)).

Induction step: Let Q � P be a subgroup such that |Q| ≥ 2 and assume that

ResGH(Ωk↑GS ) has the required form for every subgroup S � P such that |S| < |Q|. Com-

pute, by 2.12.2, that

ResGH(Ωk↑GQ) = Ωk↑GQ↓GH = ΩV ,

where by the Mackey Formula one can set V :=
⊕

x∈[H\G/Q] k↑HxQ∩H . Then decompose

V =
⊕

x∈[H\G/Q]

k↑HxQ∩H =
⊕

x∈[H\G/Q]
xQ≤H

k↑HxQ

︸ ︷︷ ︸
=:V1

⊕
⊕

x∈[H\G/Q]
xQ�H

k↑HxQ∩H

︸ ︷︷ ︸
=:V2

.

Then, by formula (c) of Lemma 3.8.1, ΩV = ΩV1 + ΩV2 − ΩV1⊗V2 .

Now, firstly, since H controls fusion, for every x ∈ [H\G/Q] such that xQ ≤ H, there ex-
ists h ∈ H, such that xQ = hQ. As a consequence Proj(V1) = Proj(k↑HQ ) = Proj( x{Q})
by 2.2.2 and thus, by 2.11.14, ΩV1

= Ωk↑HQ .

Secondly, Proj(V2) corresponds to projectivity relative to the family of subgroups H :=
{ xQ∩H |x ∈ [H\G/Q], xQ � H}, all of whose elements have order stricltly smaller than
|Q|. Therefore Scholium 7.11.2 states that

ΩV2 = ΩH ∈ 〈{Ωk↑GS |S � P, |S| < |Q|}〉 .

Thirdly, according to Corrollary 2.12.6, ΩV1⊗V2
= ΩH∩H{Q}. Since H consists of sub-

groups all of order strictly smaller than |Q|, so does the family H∩ H{Q}. Thus, the same
argument as above yields

ΩV1⊗V2
= ΩH∩H{Q} ∈ 〈{Ωk↑GS |S � P, |S| < |Q|}〉 .

Therefore, to sum up, if we set X := −ΩV2
+ ΩV1⊗V2

, we get

Ωk↑HQ = ResGH(Ωk↑GQ) +X

with X ∈ 〈{ΩR ∈ DΩ(H) |R � P, |R| < |Q|}〉, as required. Then, by induction hypoth-

esis, X ∈ ResGH(DΩ(G)) and thus so does Ωk↑HQ . Therefore, all the generators of DΩ(H)

are in ResGH(DΩ(G)) and the surjectivity of ResGH : DΩ(G) −→ DΩ(H) follows.

(b) Since NG(P ) ≤ H ≤ G, the map ResGH : D(G) −→ D(H) is injective by 7.6.1. Thus part
(a) yields the required isomorphism.

�

Corollary 7.11.9.
Let p be an odd prime. If NG(P ) controls p-fusion, then the Dade group decomposes as

D(G) = DΩ(G) + Γ(X) .



7.11. THE GROUP DΩ(G) 105

Proof. Theorem 7.7.3 provides us with the exact sequence

0 −→ Γ(X) ↪−−→ D(G)
ResGP−−−−−� D(P )G−st −→ 0 .

Thus it suffices to prove that the map ResGP : DΩ(G) −→ D(P )G−st is surjective. Indeed, since
NG(P ) controls p-fusion, D(P )NG(P ) = D(P )G−st by 7.8.2. Therefore,

ResGP : DΩ(G) −→ D(P )G−st is equal to the composition

DΩ(G)
ResGNG(P )

−−−−−−−−� DΩ(NG(P ))
Res

NG(P )

P−−−−−−−−� D(P )NG(P ) = D(P )G−st

where ResGNG(P ) is surjective by Lemma 7.11.8 and Res
NG(P )
P is surjective by Proposition 7.11.5.

Hence the result. �

(d) The example of GL3(Fp). In this subsection, we let G := GL3(Fp) for an odd prime p.
This group has a Sylow p-subgroup P isomorphic to an extraspecial group of order p3 and consisting
of the upper unitriangular matrices. Let

x :=

 1 0 1
0 1 1
0 0 1

 , y :=

 1 1 1
0 1 0
0 0 1

 and z :=

 1 0 1
0 1 0
0 0 1

 .

Then the subgroup P is generated by x, y and z.

The G-stable points of D(P ) were computed in [LM09, Example 6.6], and in what follows we
use their notation. As a matter of fact, the computation is made for PSL3(Fp). However,
since the fusion in P is the same under the action of GL3(Fp) or under the action of PSL3(Fp),
D(P )GL3(Fp)−st = D(P )PSL3(Fp)−st.

First, by [BM04], D(P ) = 〈Ωk↑PQ | 1 ≤ Q � P 〉 ∼= Zp+2 ⊕ (Z/2Z)p+2. To simplify let

e0 := Ω,

e1 := Ωk↑P<x> , e2 := Ωk↑P<y> ,

e3 := Ωk↑P<xy> , · · · , ep+1 := Ωk↑P
<xyp−1>

,

ep+2 := Ωk↑P<z> ,

ep+3 := Ωk↑P<x,z> , ep+4 := Ωk↑P<y,z> ,

ep+5 := Ωk↑P<xy,z> , · · · , e2p+3 := Ωk↑P
<xyp−1,z>

.

In addition, these generators are subject to the following relations: 2e0 =
∑p+1
i=1 2ei and 2ei = 0,

for all p+ 3 ≤ i ≤ 2p+ 3.

Then D(P )G−st is described in [LM09, Example 6.6] as the group generated by the following
elements:

f0 := e0, f1 := ep+4 + e1, f2 := ep+3 + e2, f3 :=

p+1∑
i=3

ei, f4 :=

2p+3∑
i=p+5

ei

We claim that this list is not a set of generators for D(P )G−st, or more precisely that it misses one
element to be a set of generators. Set f5 := e2 +ep+2 +ep+4 = Ωk↑P<y> +Ωk↑P<z> +Ωk↑P<y,z> ∈ D(P ).

We claim that

D(P )G−st = 〈 f0, f1, f2, f3, f4, f5 〉 .
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We will not show in details that this list forms a complete set of generators, because this is quite
tedious. The method is explained in [LM09]:

D(P )G−st = D(P )NG(P ) ∩
⋂
E≤P

E p-essential

D(P )NG(E)−st.

In the current case GL3(Fp) has exactly two p-essential subgroups, namely E1 :=< x, z > and
E2 :=< y, z >, both of which contain NG(P ).

D(P )G−st = D(P )NG(E1)−st ∩D(P )NG(E2)−st

Now let

Hp := NG(E1) =

 GL2(Fp)
∗
∗

0 0 F∗p

 and Kp := NG(E2) =

 F∗p ∗ ∗
0
0

GL2(Fp)

 .

which are the two maximal parabolic subgroups in GL3(Fp). The group D(P )Hp−st is generated
by:

ΩP ,ΩP/<y>,ΩP/<xy> + . . .+ ΩP/<xyp−1>

ΩP/<x,z>,ΩP/<xy,z> + . . .+ ΩP/<xyp−1,z>

ΩP/<z> + ΩP/<y,z>

ΩP/<x> + ΩP/<y,z>

And the group D(P )Kp−st is generated by:

ΩP ,ΩP/<x>,ΩP/<xy> + . . .+ ΩP/<xyp−1> ,

ΩP/<y,z>,ΩP/<xy,z> + . . .+ ΩP/<xyp−1,z> ,

ΩP/<z> + ΩP/<x,z> ,

ΩP/<y> + ΩP/<x,z> ,

Taking the intersection yields that D(P )G−st is generated by:

ΩP = f0

ΩP/<x> + ΩP/<y,z> = f1 ,

ΩP/<y> + ΩP/<x,z> = f2 ,

ΩP/<xy> + . . .+ ΩP/<xyp−1> = f3 ,

ΩP/<xy,z> + . . .+ ΩP/<xyp−1,z> = f4 ,

ΩP/<y> + ΩP/<z> + ΩP/<y,z> = f5 ,

The fact that f5 is G-stable will follow from the result we are interested in:

Lemma 7.11.10.
Let p be an odd prime and let G := GL3(F3). Then ResGP (DΩ(G)) = D(P )G−st.

Proof. Exempla gratia, we compute explicitly ResGP (Ωk↑G<x>). First by Lemma 2.12.2, we

have ResGP (Ωk↑G<x>) = Ωk↑G<x>↓GP . By the Mackey Formula

k↑G<x>↓GP ∼=
⊕

g∈[P\G/<x>]

k↑Pg<x>∩P .
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Therefore Proj(k ↑G<x>↓GP ) = Proj(kP ⊕ k ↑P<x> ⊕k ↑P<y> ⊕k ↑P<z>) by Proposition 2.2.2. Thus
using 2.11.14 and applying formula (c) of Lemma 3.8.1 we get

Ωk↑G<x>↓GP = ΩkP⊕k↑P<x>⊕k↑P<y>⊕k↑P<z>
= Ωk↑P<x>⊕k↑P<y>⊕k↑P<z> + Ω− Ω

= Ωk↑P<x> + Ωk↑P<y> + Ωk↑P<z> − Ω− Ω = f1 + f5 − 2f0 .

The last equality follows from the fact that ΩP/<y,z> = ep+4 has order 2 in D(P ).
Similarly, using the Mackey formula, the formulae of Lemma 3.8.1, the fact that Proj(V ) =

Proj(V ⊕V ) (Proposition 2.2.2), the fact that ΩV = ΩW if Proj(V ) = Proj(W ) (Lemma 2.11.14),
it is easy to compute the following restrictions. Details of the computations are left to the reader.

ResGP (Ωk↑G{1}
) = Ωk↑P{1}

= f0

ResGP (Ωk↑G<x,z>) = f2 − f0

ResGP (Ωk↑G<y,z>) = f1 − f0

ResGP (Ωk↑G<xy>) = f3 − (p− 2)f0

ResGP (Ωk↑G<xy,z>) = f4 + f1 + f5 − p−1
2 (2Ωk↑P<z>) = f4 + f1 + f5 − p−1

2 (2f5 − 2f2)

It follows that all the generators f0, f1, f2, f3, f4, f5 belong to ResGP (DΩ(G)). Hence the result.

We leave the details of the computations to the reader. �

Corollary 7.11.11.
D(G) = DΩ(G) + Γ(X) .

Proof. Similarly to 7.11.9, this is a straightforward consequence of the surjectivity of the
restriction map ResGP : DΩ(G) −→ D(P )G−st. �

Corollary 7.11.12.
The element f5 ∈ D(P ) is G-stable but does not belong to 〈 f0, f1, f2, f3, f4 〉 .

Proof. Since f5 has ep+2 = Ωk↑P<z> as a summand, and in view of the relations in D(P ), it

is clear that f5 is not spanned by f0, f1, f2, f3 and f4. However, according to the proof of Lemma
7.11.10:

f5 = ResGP (Ωk↑G<x>)− f1 + f0 = ResGP (Ωk↑G<x>)− (ResGP (Ωk↑G<y,z>) + f0) + f0

= ResGP (Ωk↑G<x> − Ωk↑G<y,z>) ∈ ResGP (DΩ(G)) = D(P )G−st

by the previous corollary. �

Remark 7.11.13.
Using the above data, it is also easy to compute that the maps Res

Hp
P : DΩ(Hp) −→ D(P )Hp−st

and Res
Kp
P : DΩ(Hp) −→ D(P )Kp−st are surjective.





CHAPTER 8

The Klein Case

The aim of this short chapter is to compute the groups of relative endotrivial modules and
the Dade group for the very particular case of groups G having a Sylow 2-subgroup P isomorphic
to the Klein group C2 × C2. Throughout the chapter k denotes an algebraically closed field of
characteristic 2.

As a matter of fact, we shall soon realise that nothing much exciting happens and that relative
endotrivial modules are not of much interest in this case. For a first intuition, consider the case
G = C2 × C2, then everyone knows that the complete list of odd-dimensional indecomposable
k[C2 × C2]-modules is given by the relative syzygies Ωn(k) (n ∈ Z) of the trivial module. In other
words, the only candidates to be V -endotrivial are indeed already ordinary endotrivial modules.
This fact allows us to deduce with ease that in case P is normal in G, any group of relative
endotrivial modules turns out to be isomorphic to the group T (G) of ordinary endotrivial modules,
whose structure is made explicit in [Maz07]. Nonetheless the Klein case is still worth considering
because it is a nice source of examples and counter-examples for general behaviours of the groups
of relative endotrivial modules.

In case P is not normal in G, we do not have in this text a general answer to provide the
reader with for the structure of the group TV (G) for an arbitrary kG-module V , nevertheless it
is not very difficult to show that any such group can be identified with a subgroup of the group
T (NG(P )). Moreover, some special cases can be deduced from other properties we have developed
in the previous chapters.

8.1. Relative endotrivial modules

Theorem 8.1.1.
Let G be a finite group with a normal Sylow 2-subgroup P ∼= C2 × C2. Let V be any absolutely
2-divisible kG-module. Then there is a group isomorphism

ϕ: TV (G) −→ T (G)
[M ]V 7−→ [M0]

where M ∼= M0 ⊕ (V − proj) with M0 the unique indecomposable and V -endotrivial summand of
M . In particular, if G = C2 × C2, then TV (G) =< [Ω(k)]V >∼= Z.

109
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Proof. To begin with, consider the case G = C2 × C2 itself. The Klein group is a 2-group,
therefore the indecomposable modules that bear chances to be V -endotrivial must have odd k-
dimension. By the classification of indecomposable k[C2×C2]-modules, the odd-dimensional inde-
composable modules are precisely the modules Ωn(k), n ∈ Z, which are all endotrivial modules in
the usual sense. In consequence, on the one hand, < [Ω(k)]V >∼=< [Ω(k)]>= T (G) ∼= Z and on the
other hand, TV (G) ∼= T (G) via ϕ. Hence

TV (G) =< [Ω(k)]V >∼= Z

although the classes in TV (G) may contain more modules than the classes in T (G). Now, let G be
an arbitrary group with a normal Sylow 2-subgroup isomorphic to C2×C2. By 4.1.2, a kG-module
M is indecomposable V -endotrivial if and only if its restriction M ↓GC2×C2

is indecomposable and

V ↓GC2×C2
-endotrivial. But we have just shown that any such k[C2 × C2]-module is in fact an

ordinary endotrivial module hence, by the same criterion, M is endotrivial. In consequence, ϕ
is a well-defined group homomorphism. Then, the uniqueness of the summand M0 yields the
bijection. �

Remark 8.1.2.
Note that in the normal case, that is G D P , the structure of T (G) is described more accurately in
[Maz07, Thm. 2.6] as follows

T (G) = X(G)⊕ <Ω(k)>∼= X(G)⊕ Z

with X(G) denoting the group of one-dimensional representations of G. In terms of modules
Corollary 4.1.3 tells us that the indecomposable endotrivial kG-modules consist of all the extensions
to G of the k[C2×C2]-modules Ωn(k), n ∈ Z, which are given by the family of modules Ωn(k)⊗kω
such that n ∈ Z and kω is a one-dimensional kG-module.

Corollary 8.1.3.
Let G be a finite group with a Sylow 2-subgroup P ∼= C2 × C2.

(a) For any absolutely 2-divisible kG-module V , the group TV (G) identifies with a subgroup
of TV (FG)(G) ∼= T (NG(P )).

(b) Moreover D(G) = TV (FG)(G), up to identification. And, in particular, in the normal case
D(NG(P )) = T (NG(P )) .

Proof. Set N := NG(P ).

(a) Let V ∈ mod(kG) be absolutely 2-divisible. The map ResGN : TV (G) −→ TV↓GN (N) is in-

jective by Lemma 4.2.1. By Lemma 7.2.1, the map ResGN : TV (FG)(G) −→ TV (FN )(N) is
an isomorphism whose inverse is induced by Green correspondence on the indecompos-
able V (FN )-endotrivial modules. Furthermore TV (FN )(N) ∼= T (N) ∼= TV↓GN (N) by the

preceding theorem. Therefore, the situation is as described in the following diagram:

TV (FG)(G)

ResGN
∼=
��

TV (G)� _

ResGN

��

? _oo_ _ _ _ _ _ _ _ _ _ _ _

TV (FN )(N)

Green
corresp.

OO

oo ∼= // T (N) oo
∼= // TV↓GN (N)

Thus, if L denotes an indecomposable V -endotrivial module, then we can define an injec-
tive group homomorphism TV (G) −→ TV (FG)(G) : [L]V 7−→ [L]V (FG).

(b) We treat first the normal case. The series of embeddings

T (N) ≤ D(N) ≤ TV (FN )(N)
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and Theorem 8.1.1, which identifies T (N) with TV (FN )(N), allow us to conclude that

T (N) = D(N) = TV (FN )(N) .

Secondly, for the general case, the fact that C2 × C2 is abelian implies that N controls
p-fusion in G so that D(G) ∼= D(N) via restriction, by Corollary 7.8.3. Therefore we are
in a similar situation to that of the proof of Proposition 7.10.1 in the cyclic case and have
again a commutative diagram of the form:

0 // TV (FG)(G)
ResGN
∼=

// TV (FN )(N) // 0

0 // D(G)
?�

OO

ResGN
∼=

// D(N) // 0

Whence D(G) = TV (FG)(G).

�

Remarks 8.1.4.

(a) The theorem and its corollary could have been merged in one unique statement saying
that the group TV (G) identifies with a subgroup of the group TV (FG)(G), which, moreover,
is isomorphic to the Dade group D(G). Nevertheless, we thought it was worth separating
the normal and non normal cases, since in the normal case the description of the structure
of TV (G) is complete however the module V , but not in the non normal case.

(b) As shows the proof of the corollary, in the non normal case, the only remaining prob-
lem to provide a complete description of the structure of the group TV (G) for an arbi-
trary module V , is the question of determining whether or not the Green correspondents
of the ordinary endotrivial kNG(P )-modules are V -endotrivial modules. Indeed, since
T (NG(P )) = X(NG(P ))⊕ <Ω(k)> and the kG-Green correspondent of Ω(k) is Ω(k), the
real question is to determine which one-dimensional kNG(P )-modules have V -endotrivial
kG-Green correspondents.

(c) Nevertheless, if the Sylow 2-subgroup C2×C2 is strongly 2-embedded in G, as for instance
if G = A5, then Corollary 4.3.2 ensures that the restriction map

ResGNG(P ) : TV (G) −→ TV↓G
NG(P )

(NG(P ))

is an isomorphism for any absolutely 2-divisible V . Thus in this case, again there are only
endotrivial modules, that is: TV (G) ∼= T (G) ∼= T (NG(P )).

(d) If G is a 2-nilpotent group, then Theorem 6.2.2 establishes that there is an isomorphism

TV (G) ∼= KV (G)⊕ TV↓GP (P ) .

Furthermore, as just proven TV↓GP (P ) ∼= T (P ) ∼= Z and by Corollary 6.2.4 KV (G) = X(G).

Thus in conclusion,

TV (G) ∼= X(G)⊕ T (C2 × C2) ∼= X(G)⊕ Z

for any absolutely 2-divisible kG-module V . As a result TV (G) ∼= T (G) for any absolutely
2-divisible kG-module V , again.
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8.2. Relative projectivity to modules

Although, in the “normal Klein case”, there is, up to isomorphism, only one group of relatively
endotrivial kG-modules, there are infinitely many different subcategories of V -projective modules,
which, in particular, do not correspond to projectivity relative to a subgroup.

We give here a complete description of these subcategories for G = C2 × C2. Recall that
the algebra k[C2 × C2] has domestic representation type and, moreover, that a complete set of
representatives of isomorphism classes of indecomposable k[C2 × C2]-modules was provided by
Bašev, Heller and Reiner. We refer to [Ben98a, section 4.3] for a detailed description. The Green
ring structure on k[C2×C2] is also known and was computed by Bašev [Baš61] and later corrected
by Conlon [Con65].

First notice that an indecomposable k[C2×C2]-module is absolutely 2-divisible if and only if it
is even-dimensional. Furthermore, these modules are parametrised by P1(k) in the following sense:
let λ ∈ P1(k) and n ≥ 1 be an integer, then there is a unique 2n-dimensional indecomposable
k[C2 × C2]-module with projective variety {λ}, which we denote by M2n(λ). (cf. [Ben98a, Thm.
4.3.3] and [Ben98b, Section 5.13].)

Lemma 8.2.1.
The indecomposable modules projective relative to M2n(λ) are:

(a) IProj(M2n(λ)) = {M2m(λ) | 1 ≤ m ≤ n} ∪ {k[C2 × C2]} if λ = 0, 1,∞;
(b) IProj(M2(λ)) = {M2(λ),M4(λ), k[C2 × C2]} if λ 6= 0, 1,∞;
(c) IProj(M2n(λ)) = {M2m(λ) | 1 ≤ m ≤ n} ∪ {k[C2 × C2]} if λ 6= 0, 1,∞ and n ≥ 2.

Proof. This follows from the Green ring structure on k[C2 ×C2] and this proof only consists
in reading the ⊗k-multiplication table for k[C2×C2]-indecomposable modules given in [Con65]. �



CHAPTER 9

More Endotrivial-like Modules

In this closing chapter we introduce more endotrivial-like modules, which we have not deeply
investigated, but that we introduce as possible developments of the research presented in this text
and could lead to a different approach to the subject.

9.1. A giant group

Due to the facts that, but for exceptions, the group algebra kG has wild representation type
and that almost nothing is known about the structure of the Green ring A(kG), it is, at this stage,
virtually impossible to compute the structure of the group TV (G) for an arbitrary finite group G
and an arbitrary absolutely p-divisible kG-module V . Hence a need for new methods to treat the
subject.

One approach, differing from the ones used thus far is the following: instead of fixing the module
V , one could start with an indecomposable kG-module M such that dimk(M) ≡ ±1 (mod p),
consider its endomorphism algebra, which has the form Endk(M) ∼= k⊕X for some X ∈ mod(kG).
If X is absolutely p-divisible then M is X-endotrivial and gives rise to an element of the group
TX(G). Similarly, starting with another indecomposable module M ′ ∈ mod(kG), with dimension
equal to ±1 (mod p), such that Endk(M) ∼= k⊕X ′ with X ′ absolutely p-divisible, yields an element
[M ′] ∈ TX′(G). The groups TX(G) and TX′(G) might not have much in common, but one possibility
to connect them is to view them as subgroups of the larger group of relative endotrivial modules
TX⊕X′(G).

This procedure leads to the idea of stopping to specify a module V , but building a much larger
group that contains all the groups TV (G) for every absolutely p-divisible module V ∈ mod(kG).

Let I denote the set of isomorphism classes of indecomposable modules with k-dimension
divisible by p and let P(I)<∞ := {I ⊂ I | |I| ≤ ∞} denote the set of finite families of modules in I.
The set P(I)<∞ is in bijection with the set of isomorphism classes of finite-dimensional absolutely
p-divisible kG-modules whose indecomposable direct summands all have multiplicity 1. Then, let
E :=

⊕
V ∈I V ∈ Mod(kG) and if I ∈ P(I)<∞, let VI :=

⊕
V ∈I V . Notice that if I, J ∈ P(I)<∞,

then Proj(VI∪J) = Proj(VI ⊕ VJ) by the omnibus properties of relative projectivity.
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Definition 9.1.1.
A kG-module M ∈ mod(kG) is called E-endotrivial if and only if its endomorphism algebra has
the form

Endk(M) ∼= k ⊕X
where X is an absolutely p-divisible kG-module.

If M and N are V -endotrivial and V ′-endotrivial, respectively, for two absolutely p-divisible
kG-modules V and V ′, then M⊗N is certainly a V ⊕V ′-endotrivial module. Thus, if TE(G) denotes
the set of isomorphism classes of indecomposable E-endotrivial modules, it can be endowed with
the following group law:

[M ] + [N ] := [(M ⊗N)0]

where (M ⊗ N)0 is the unique (V ⊕ V ′)-endotrivial summand of M ⊗ N . In other words, if we
consider TV (G) and TV ′(G) as subgroups of the group TV⊕V ′(G), then the class [M ] ∈ TV (G) and
the class [N ] ∈ TV ′(G) can be added in TV⊕V ′(G):

[M ] + [N ] = [M ⊗N ] ∈ TV⊕V ′(G)

For I, J ∈ P(I)<∞, I ⊆ J , set fIJ : TVI (G) ↪−→ TVJ (G) to be the canonical inclusions of Lemma
3.7.1. Then P(I)<∞ ordered by inclusion is a directed set and (TVI (G))I∈I and the morphisms
(fIJ)I,J∈P(I)<∞ form a directed system of groups. For every I ∈ P(I)<∞, define an injective
homomorphism

ϕI : TVI −→ TE(G)
[M ] 7−→ [M0]

where M0 is the unique VI -endotrivial indecomposable summand of M . This leads to the following
description of TE(G) as a direct limit:

Proposition 9.1.2.
Let E and I be as above. Then

TE(G) ∼= lim−→
I∈P(I)<∞

TVI (G) .

Proof. By the above construction TE and the homomorphisms ϕI , I ∈ P(I)<∞ satisfy the
universal property of the direct limit . �

Example 9.1.3.
Two first examples, not so interesting, are given by the Klein and cyclic cases:

(a) If G is a finite group having a cyclic Sylow p-subgroup, then

TE(G) ∼= D(G) .

For, by Proposition 7.10.1, TV (FG)(G) ∼= D(G) and moreover, by Proposition 5.3.1, for

any absolutely p-divisible module V , Proj(V ) = Proj(k ↑GQ(V )) for some p-subgroup

Q(V ) < G so that TV (G) ≤ TV (FG)(G) by Lemma 3.7.1.

(b) A similar isomorphism holds in characteristic 2 if G has a Sylow 2-subgroup isomorphic
to C2 × C2. Indeed, then by Corollary 8.1.3 for any absolutely p-divisble module V ,
TV (G) ≤ TV (FG)(G) ∼= D(G). Whence

TE(G) ∼= TV (FG)(G) ∼= D(G) .
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9.2. Inspiration from the dihedral 2-groups D4q

The reason why we became interested in a group such as TE(G) is linked to the dihedral 2-groups
D4q, with q ≥ 2 a power of 2. For a complete description of the indecomposable kD4q-modules, we
refer the reader to [Ben98a, Section 4.11].

In contrast with the cyclic and Klein cases, very little is known about the structure of the
Green ring A(kD4q), and in particular, there is no description of how tensor products of kD4q-
modules decompose, which makes it difficult to compute the subcategories of relative projective
modules Proj(V ) for absolutely 2-divisible V ’s and in consequence to compute the associated
groups TV (D4q). However, indecomposable odd-dimensional kD4q-modules have remarkable prop-
erties proved by L. Archer in [Arc08].

First, for dimensional reasons, the candidates to be indecomposable relative endotrivial modules
(that is relatively to a non specified absolutely 2-divisible module) are all the odd-dimensional
indecomposable kD4q-modules (which are all string modules). Moreover:

Lemma 9.2.1 ([Arc08], Lem. 3.1).
Let M,N be two odd-dimensional indecomposable kD4q-modules. Then, the tensor product M ⊗N
decomposes into a direct sum of exactly one odd-dimensional indecomposable summand and even-
dimensional summands.

As a consequence the set of isomorphism classes of indecomposable odd-dimensional kD4q-
modules can be endowed with an abelian group structure induced by the tensor product by setting:

[M ] + [N ] 7→ [the unique odd-dimensional summand of M ⊗N ]

This group is denoted Γ(kD4q) by Archer and it is isomorphic to the group TE(D4q).

Furthermore Γ(kD4q) is torsion-free by [Arc08, Thm. 3.4] and it is not finitely generated by [Arc08,
Thm. 3.5], whence an indication that the group TE(G) is not finitely generated in general.

9.3. Endotrivial modules relative to module varieties

Let G be a finite group and let V be a closed homogeneous proper subvariety of VG.

Call V-endotrivial a module M ∈ mod(kG) such that

Endk(M) ∼= k ⊕X

with X ∈ mod(kG) a module such that VG(X) ⊆ V.

It follows at once that any V-endotrivial has k-dimension coprime to p (by the Benson-Carlson
Theorem) and also that its variety is VG. Also, any module X such that VG(X) ⊆ V has to be
absolutely p-divisible (otherwise its variety would be VG.)

Adapting the proofs of Chapter 3, sections 3.3 and 3.6, it is easy to show that:
- the tensor product of two V-endotrivial modules is again V-endotrivial ;
- any V-endotrivial module M decomposes as M ∼= M0 ⊕ Y , where M0 is indecomposable and
V-endotrivial, and Y is such that VG(Y ) ⊆ V.
(Here the condition that V is a proper subvariety of VG plays the role that absolute p-divisibility
played for V -endotrivial modules.)
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Thus there is an equivalence relation ∼V on the class of V-endotrivial kG-modules given by

M ∼V N if and only if M0
∼= N0 ,

where M0 and N0 are the unique V-endotrivial indecomposable summands of M and N , respec-
tively. Then let TV(G) denote the resulting set of equivalence classes. It follows that the tensor
product ⊗k induces an abelian group structure on the set TV(G) defined as follows:

[M ] + [N ] := [M ⊗k N ]

The zero element is [k] and the opposite of a class [M ] is the class [M∗].
Let I(V) denote the set of isomorphism classes of modules V in mod(kG) such that VG(V ) ⊆ V. If
V ∈ I(V), then all the modules in Proj(V ) also have a variety contained in V (see Lemma 2.10.1)
and thus there is a canonical inclusion TV (G) −→ TV(G) : [M ] −→ [M ]. In consequence, it is also
possible to describe the group TV(G) as a direct limit:

Lemma 9.3.1.
Let V be as above. Then

TV(G) ∼= lim−→
V ∈mod(kG)
VG(V )⊆V

TV (G) ∼= TE(V)(G)

where E(V) :=
⊕

V ∈I(V) V ∈ Mod(kG) and TE(V)(G) is defined analogously to TE(G).

Remark 9.3.2.
As noticed in part (c) of Lemma 2.10.1, there exist indecomposable absolutely p-divisible modules
V such that VG(V ) = VG. Therefore there are also groups of relative endotrivial modules TV (G)
which cannot be seen as subgroups of a group TV(G) for some variety V.

To be continued...
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