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Abstract
Vision sensor networks and video cameras find widespread usage in several applications that rely on effective
representation of scenes or analysis of 3D information. These systems usually acquire multiple images of
the same 3D scene from different viewpoints or at different time instants. Therefore, these images are
generally correlated through displacement of scene objects. Efficient compression techniques have to exploit
this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that
requires communication between the cameras, in this thesis we concentrate on distributed representation,
where the captured images are encoded independently, but decoded jointly to exploit the correlation between
images. One of the most important and challenging tasks relies in estimation of the underlying correlation
from the compressed correlated images for effective reconstruction or analysis in the joint decoder.

This thesis focuses on developing efficient correlation estimation algorithms and joint representation of
multiple correlated images captured by various sensing methodologies, e.g., planar, omnidirectional and
compressive sensing (CS) sensors. The geometry of the 2D visual representation and the acquisition com-
plexity vary for each sensor type. Therefore, we need to carefully consider the specific geometric nature
of the captured images while developing distributed representation algorithms. In this thesis we propose
robust algorithms in different scene analysis and reconstruction scenarios.

We first concentrate on the distributed representation of omnidirectional images captured by catadioptric
sensors. The omnidirectional images are captured from different viewpoints and encoded independently with
a balanced rate distribution among the different cameras. They are mapped on the sphere which captures
the plenoptic function in its radial form without Euclidean discrepancies. We propose a transform-based
distributed coding algorithm, where the spherical images initially undergo a multi-resolution decomposition.
The visual information is then split into two correlated partitions. The encoder transmits one partition after
entropy coding, as well as the syndrome bits resulting from the Slepian-Wolf encoding of the other partition.
The joint decoder estimates a disparity image to take benefit of the correlation between views and uses the
syndrome bits to decode the missing information. Such a strategy proves to be beneficial with respect to the
independent processing of images and shows only a small performance loss compared to the joint encoding
of different views.

The encoding complexity in the previous approach is non-negligible due to the visual information pro-
cessing based on Slepian-Wolf coding and its associated rate parameter estimation. We therefore discard the
Slepian-Wolf encoding and propose a distributed coding solution, where the correlated images are encoded
independently using transform-based coding solutions (e.g., SPIHT). The central decoder now builds a cor-
relation model from the compressed images, which is used to jointly decode a pair of images. Experimental
results demonstrate that the proposed distributed coding solution improves the rate-distortion performance
of the separate coding results for both planar and omnidirectional images. However, this improvement is
significant only at medium to high bit rates. We therefore propose a rate allocation scheme that identi-
fies and transmits the necessary visual information from each image to improve the correlation estimation
accuracy at low bit rate. Experimental results show that for a given bit budget the proposed encoding
scheme permits to compute an accurate correlation estimation comparing to the one obtained with SPIHT,
JPEG 2000 or JPEG coding schemes. We show however that the improvement in the correlation estima-
tion comes at the price of penalizing the image reconstruction quality; therefore there exists an interesting
trade-off between the accurate correlation estimation and image reconstruction as encoding optimization
objectives are different in both cases.
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Next, we further simplify the encoding complexity by replacing the classical imaging sensors with the
simple CS sensors, that directly acquire the compressed images in the form of quantized linear measurements.
We now concentrate on the particular problem, where one image is selected as the reference and it is used
as a side information for the correlation estimation. We propose a geometry-based model to describe the
correlation between the visual information in a pair of images. The joint decoder first captures the most
prominent visual features in the reconstructed reference image using geometric functions. Since the images
are correlated, these features are likely to be present in the other images too, possibly with geometric
transformations. Hence, we propose to estimate the correlation model with a regularized optimization
problem that locates these features in the compressed images. The regularization terms enforce smoothness
of the transformation field, and consistency between the estimated images and the quantized measurements.
Experimental results show that the proposed scheme is able to efficiently estimate the correlation between
images for several multi-view and video datasets. The proposed scheme is finally shown to outperform DSC
schemes based on unsupervised disparity (or motion) learning, as well as independent coding solutions based
on JPEG 2000.

We then extend the previous scenario to a symmetric decoding problem, where we are interested to
estimate the correlation model directly from the quantized linear measurements without explicitly recon-
structing the reference images. We first show that the motion field that represents the main source of
correlation between images can be described as a linear operator. We further derive a linear relationship
between the correlated measurements in the compressed domain. We then derive a regularized cost function
to estimate the correlation model directly in the compressed domain using graph-based optimization algo-
rithms. Experimental results show that the proposed scheme estimates an accurate correlation model among
images in both multi-view and video imaging scenarios. We then propose a robust data fidelity term that
improves the quality of the correlation estimation when the measurements are quantized. Finally, we show
by experiments that the proposed compressed correlation estimation scheme is able to compete the solution
of a scheme that estimates a correlation model from the reconstructed images without the complexity of
image reconstruction.

Finally, we study the benefit of using the correlation information while jointly reconstructing the im-
ages from the compressed linear measurements. We consider both the asymmetric and symmetric scenarios
described previously. We propose joint reconstruction methodologies based on a constrained optimization
problem which is solved using effective proximal splitting methods. The constraints included in our frame-
work enforce the reconstructed images to satisfy both the correlation and the quantized measurements
consistency objectives. Experimental results demonstrate that the proposed joint reconstruction scheme
improves the quality of the decoded images, when compared to a scheme where the images are handled
independently.

In this thesis we build efficient distributed scene representation algorithms for the multiple correlated
images captured in planar, omnidirectional and CS cameras. The coding rate in our symmetric distributed
coding solution stays balanced between the encoders and stays close to the joint encoding solutions. Our
novel algorithms lead to effective correlation estimation in different sensing and coding scenarios. In ad-
dition, we provide innovative solutions for robust correlation estimation from highly compressed images in
simple sensing frameworks. Our CS-based joint reconstruction frameworks effectively exploit the inter-view
correlation, that permits to achieve high compression gains compared to state-of-the-art independent and
distributed coding solutions.

Keywords: Distributed scene representation, multi-view images, video images, correlation estimation,
random projections, joint reconstruction, quantization.



Résumé
De nombreuses applications actuelles s’appuient sur des systèmes comme les réseaux de capteurs et les
caméras vidéos, et visent à élaborer des représentations efficaces des scènes ou l’analyse de scènes 3D. Ces
systèmes effectuent généralement l’acquisition de plusieurs images d’une même scène 3D depuis différents
points de vue ou à différents instants. Ainsi, les images capturées se retrouvent corrélées par les déplacements
des objets de la scène. Les images corrélées ne peuvent cependant pas être transmises directement, cela serait
trop coûteux en terme de taille et de ressource de communication. Il est ainsi nécessaire de faire appel à
des techniques efficaces de compression afin de transmettre l’information de la scène 3D en profitant de la
corrélation. Dans cette thèse, au lieu d’envisager un encodage conjoint qui nécessiterait une communication
entre les caméras, nous nous focalisons sur une représentation distribuée, où les images capturées sont
encodées indépendamment, mais décodées conjointement afin d’exploiter leur corrélation. Un des défis les
plus importants est celui qui consiste à estimer le modèle de corrélation sous-jacent à partir des images
compressées, afin que de garantir un traitement ou un codage efficace de la scène 3D.

Les travaux de cette thèse s’attèlent à développer des algorithmes efficaces d’estimation de la corrélation
et des reconstructions jointes des différentes images capturées par des technologies de capteurs variées, p.ex.,
plans, omnidirectionnels, basés compressive sensing (CS). La géométrie de la représentation visuelle 2D ainsi
que la complexité d’acquisition varient en fonction du type de capteur. Ainsi, nous devons considérer de
manière attentive la nature géométrique spécifique des images capturées pour développer des algorithmes
de représentation distribuée. Nous proposons dans cette thèse des algorithms robustes pour l’analyse et la
représentation distribuée d’images multiples dans différents scénarios.

Nous nous concentrons d’abord sur une représentation distribuée des images omnidirectionnelles dont
l’acquisition est effectuée par des capteurs catadioptriques. En particulier, nous supposons que les images
capturées à partir de différents points de vues sont encodées indépendamment avec un partage du débit
équilibré entre les différentes caméras. Les images omnidirectionnelles sont représentées sur la sphère, où
la fonction plénoptique est décrite en coordonnées radiales plutôt qu’euclidiennes. Nous proposons un algo-
rithme de codage distribué, où les images sphériques subissent d’abord une décomposition multi-résolution.
L’information visuelle est ainsi divisée en deux partitions corrélées. L’encodeur transmet une partition après
un codage entropique, ainsi que des bits de syndromes résultant du codage Slepian-Wolf de l’autre partition.
Le décodeur conjoint utilise une estimation de la disparité afin d’exploiter la corrélation entre les vues, et
utilise également les bits de syndromes pour décoder l’information manquante. Une telle stratégie se montre
plus performante que celle consistant à traiter les images indépendamment, et n’occasionne qu’une faible
perte de performance par rapport à un encodage conjoint des différentes vues.

La complexité d’encodage de l’approche précédente est non négligeable à cause du traitement de l’infor-
mation visuelle par le codage Slepian-Wolf et du paramétrage des débits associés. Nous abandonnons ainsi
l’encodage Slepian-Wolf et proposons une solution de codage distribué, dans laquelle les images corrélées
sont compressées indépendamment en utilisant des solutions de codage classiques à base de transformées
(e.g., SPIHT). Le décodeur central construit désormais lui-même un modèle de corrélation pour les images
compressées, qui est utilisé pour décoder conjointement les deux images. Les résultats expérimentaux ont dé-
montré que la solution proposée de codage distribué améliore les performances débit-distorsion par rapport
aux résultats du décodage disjoint pour le cas des images planes et omnidirectionnelles. Cependant, cette
amélioration est significative seulement à moyen et haut débit. Nous proposons ainsi un schéma d’allocation
de débit qui identifie et transmet l’information visuelle nécessaire pour chaque image afin d’améliorer la
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précision de l’estimation de la corrélation à bas débit. Les résultats expérimentaux montrent que, pour un
débit donné, le schéma d’encodage proposé permet d’effectuer une estimation de la corrélation plus précise
que celle obtenue avec des schémas de codage classique comme SPIHT, JPEG 2000, et JPEG. Nous mon-
trons cependant que l’amélioration de l’estimation de la corrélation s’effectue au détriment de la qualité de
reconstruction des images, et ainsi qu’il existe un compromis intéressant entre la précision de l’estimation
de la corrélation et la qualité de la reconstruction des images.

Par la suite, nous simplifions encore plus la complexité d’encodage en remplaçant les capteurs d’image
classiques par de simples capteurs CS, qui capturent directement les images compressées par des mesures
linéaires quantifiées. Nous nous concentrons maintenant sur le problème où une image est désignée comme
référence et est utilisée comme une information adjacente pour l’estimation de la corrélation. Nous proposons
un modèle fondé sur la géométrie afin de décrire la corrélation entre l’information visuelle de deux images.
Le décodage conjoint capture dans un premier temps les caractéristiques visuelles les plus proéminentes dans
l’image de référence reconstruite en utilisant des fonctions géométriques. Comme les images sont corrélées,
ces caractéristiques ont de grandes chances d’être présentes dans les autres images aussi, avec de possibles
transformations géométriques. Ainsi, nous proposons d’estimer le modèle de corrélation par le biais d’un
problème d’optimisation régularisé qui localise ces caractéristiques dans l’image compressée. Les termes de
régularisation renforcent l’aspect lisse du champ de transformation, et la consistance entre l’image prédite et
les mesures quantifiées. Les résultats expérimentaux montrent que le schéma proposé est capable d’estimer
efficacement la corrélation entre les images de plusieurs bases de données vidéo et multi-vues. Le schéma
proposé améliore de plus les résultats des schémas de codage de source distribué fondés sur un apprentissage
non supervisé de la disparité (ou du mouvement), ainsi que ceux des solutions de codage indépendant basées
sur JPEG 2000.

Nous étendons ensuite le scénario précédent à un problème de décodage symétrique, où nous nous attelons
à estimer le modèle de corrélation directement depuis les mesures linéaires quantifiées sans reconstruire
explicitement les images de référence. Nous montrons d’abord que le champ de mouvement qui représente la
source principale de corrélation entre les images peut être efficacement décrit comme un opérateur linéaire.
Nous en tirons une relation linéaire entre les mesures corrélées dans le domaine compressé. Nous obtenons
alors une fonction de coût régularisée qui permet d’estimer le modèle de corrélation directement dans le
domaine compressé en utilisant des algorithmes d’optimisation par graphes. Les résultats expérimentaux
montrent que le schéma proposé estime un modèle de corrélation précis entre les images dans les scénarios
multi-vue et vidéo. Nous proposons aussi un terme de fidélité qui améliore la qualité de l’estimation de
la corrélation quand les mesures sont quantifiées. Enfin, nous montrons par les expériences que le schéma
proposé pour l’estimation de la corrélation est compétitif par rapport à la solution d’un schéma qui estimerait
un modèle de corrélation à partir des images reconstruites, mais qui nécessiterait une étape coûteuse de
reconstruction des différentes images.

Enfin, nous étudions l’intérêt d’utiliser l’information de corrélation, durant la reconstruction conjointe
des images à partir des mesures linéaires compressées. Nous considérons les scénarios asymétriques et symé-
triques décrits précédemment. Nous proposons des méthodologies de reconstruction conjointe fondées sur un
problème d’optimisation avec contrainte, qui est résolu par des méthodes efficaces de séparation proximale.
Les contraintes inclues dans notre système forcent les images reconstruites à satisfaire à la fois des objectifs
de corrélation et de consistance entre les mesures quantifiées. Les résultats expérimentaux démontrent que
le schéma de reconstruction conjointe améliore la qualité des images décodées, lorsqu’on les compare à un
schéma où les images sont traitées indépendamment.

En résumé, dans cette thèse, nous construisons des algorithmes efficaces de représentation distribuée
de scène pour des nombreuses images corrélées capturées avec des caméras planes, omnidirectionnelles ou
CS. Les débits de codage dans notre solution symétrique de codage distribué restent équilibrés entre les
différents encodeurs et sont proches de ceux obtenus par des solutions d’encodage conjoint. Notre nouveau
schéma d’allocation de débit a prouvé qu’il parvenait à calculer une information de corrélation précise à
partir de vues fortement compressées. Nos nouveaux algorithmes offrent la possibilité d’estimer efficacement
la corrélation entre des images dans différents scenarios à vues multiples ou video. En plus, nous proposons
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des solutions novatrices pour une analyse d’image efficace à partie d’images fortement compressées dans des
schémas de capture trés simples. Notre système de reconstruction conjointe basée CS exploite efficacement
les corrélations inter-vues, ce qui permet d’atteindre d’importants gains de compression par rapport aux
solutions de codage indépendant et de codage distribué de l’état de l’art.

Mots clefs : représentation distribuée de scène, image multi-vues, image vidéo, estimation de corrélation,
reconstruction conjointe, quantification.
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Chapter 1

Introduction

1.1 Motivation

Camera vision sensor is a device that captures the visual information from the real world physical environ-
ments. Such sensors usually collect the intensity and color light field information of objects in the scene.
These vision sensors however provide only a 2D view of the scene information, and hence the visual infor-
mation acquired by a single camera cannot provide the complete knowledge of the scene, as well as the 3D
position of the objects. However, in numerous image analysis applications, it is beneficial to have the 3D
structural information of the scene. In this context, more details of the scene can be provided by using a
single moving camera or multiple cameras which sample the same 3D scene at different time instants or
different viewpoints respectively. The multiple images captured by these cameras carry enough information
for an accurate representation of the 3D information. The 3D information is usually extracted by processing
the correlated multiple images based on the fundamental principles of structure from motion or multi-view
geometry [1, 2, 3].

The multiple images acquired by vision sensor networks or by moving cameras are highly correlated.
In particular, there exists a geometrical relationship among images as the same scene objects are observed
in different viewpoints or at different time instants. Due to the enormous volume of visual information
these images cannot be transmitted directly, as it could quickly exceed the available bandwidth resources.
Therefore, it is necessary to build an efficient compression scheme that exploits the inter-view redundancies
in order to reduce the bandwidth and communication resources. In the literature, efficient coding strategies
for compressing the multi-view images have been proposed, e.g., [4, 5]. These conventional methods are
based on joint encoding, that processes all the visual information at a central encoder in order to exploit
the correlation between images. Unfortunately, such an approach demands bulk computing resources at the
encoder that further translates into significant power consumption. Also the inter-sensor communication is
undesirable due to the limited availability of communication and bandwidth resources or due to network
topology for example. Due to the high power consumption and encoding complexity, the joint encoding
approaches are not attractive for compressing the correlated images captured in a low power vision sensor
network and a video camera.

The distributed coding paradigm becomes particularly attractive in such settings as it involves a low
complexity encoding stage that further permits to get rid of inter-sensor communication. In this case,
the images captured by one or several image sensors are encoded independently but decoded jointly by
a central decoder that exploits the underlying correlation between views, as illustrated in Fig. 1.1. The
computational complexity of the visual information in this representation is thus shifted from the encoder
to the joint decoder. The joint decoder eventually reconstructs the visual information from the compressed
images by exploiting the correlation between the samples, which permits to achieve a good rate-distortion
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Figure 1.1: Distributed compression of multiple images acquired in a vision sensor network. The images are encoded
independently by the respective cameras, but decoded jointly at a central decoder.

trade-off in the representation of video or multi-view information.
In general, one can use different vision sensors to acquire the visual information from the 3D scene. For

example, it could be a perspective planar sensor, an omnidirectional sensor and a compressive sensor (CS).
The main difference among these vision sensors are the complexity and the geometrical representation of
the acquired visual information. Now, the interesting and challenging task is to distributively compress
the multiple images captured by these different cameras by properly considering the specific geometry of
the imaging system. The scope of this thesis is to design such distributed coding architectures in order to
efficiently communicate the 3D scene information provided by the different imaging cameras.

1.2 Challenges
The theory behind the distributed compression was postulated by Slepian and Wolf in 1970’s [6]. Though
the theory exists for more than four decades, the application of distributed compression for the multi-view
and time varying images has not been fully matured yet, due to the lack of accurate correlation modeling
and estimation. The rate-distortion (RD) performance in the distributed coders is highly sensitive to the
incorrect correlation modeling and estimation. Therefore, it is desirable to estimate an accurate correlation
information at the joint decoder, so that the visual information can be efficiently processed, coded or
rendered.

In distributed compression framework, the captured images are compressed independently due to the
limited availability of bandwidth and communication resources. The joint decoder therefore has access to
the compressed images and not the original images, as shown in Fig. 1.1. Now, the decoder is in a situation
where it has to estimate the underlying 3D scene geometry from the multiple compressed views, in order
to perform the joint reconstruction of multiple images. In the literature, plethora of tools are available
to estimate the underlying geometrical relationship between images [7, 8]. However, these state-of-the-art
techniques cannot efficiently handle the compressed images and often fail to capture the actual correlation
from compressed views, which results in rate-distortion penalization in distributed scenarios.

In this thesis, we need to consider the different geometrical and representation challenges related to
the processing of visual information collected by different sensors that include planar, omnidirectional and
compressive sensing (CS) sensors. It should be noted that in order to provide an accurate representation of
a 3D scene, we need to efficiently account the geometry of the particular imaging system while processing
the visual information. This thesis hence addresses the following issues.

1. How to properly consider the compression artifacts and to build a robust correlation model that
estimates an accurate scene geometry from the compressed images ?
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2. How to properly take advantage of the appropriate geometrical structure and the visual representation
of a particular sensor in order to build an efficient distributed scene representation ?

In this thesis, we propose a novel distributed coding solution that processes the omnidirectional images on
the sphere in order to take advantage of the geometry of the imaging system. Also, we propose a novel rate
allocation methodology to compress the correlated images (e.g., planar and omnidirectional) that facilities
to estimate an accurate correlation information at the decoder from highly compressed images. Finally, our
novel CS-based distributed joint representation framework estimates the underlying 3D geometry directly
in the compressed domain by enforcing quantization consistency constraint; this provides robust correlation
estimation from the compressed measurements.

1.3 Thesis organization
This thesis focuses on developing distributed scene representation algorithms in different multi-view sensing
scenarios. We perform correlation estimation and joint reconstruction for different types of sensor networks
and video cameras. This thesis is organized as follows.

In Chapter 2, we provide the background theory on the projective geometry and processing of the
visual information acquired using perspective, omnidirectional and compressive sensing cameras. We also
highlight the geometrical properties of the visual information captured by these sensors. We then describe
the geometrical relationship between multiple images captured in multi-view and video imaging scenarios.
Finally, we review the state-of-the-art distributed image representation and compression techniques for
encoding the correlated images acquired in both video and multi-view imaging frameworks. At last, we
summarize the drawbacks in the existing distributed coding frameworks.

In Chapter 3, we propose a distributed scene representation algorithm where a central decoder recon-
structs the 3D scene information from the distributively encoded two omnidirectional images. In particular,
we concentrate on the problem where the bandwidths between the sensors and the joint decoder are con-
strained with balanced rate allocation. The distributed coding is built on a multi-resolution representation
and partitioning of the visual information in each camera. The encoder then transmits one partition after
entropy coding, as well as the syndrome bits resulting from the channel encoding of the other partition.
The decoder exploits the intra-view correlation and attempts to reconstruct the source images by combining
the entropy-coded partition and the syndrome information. At the same time, it exploits the inter-view
correlation using disparity estimation between the views from different cameras. Experiments demonstrate
that the proposed distributed coding solution performs better than a scheme where the images are handled
independently.

In Chapter 4, we seek a distributed coding paradigm, where the acquired planar or omnidirectional
images are progressively encoded (e.g., SPIHT) and are further transmitted to the joint decoder without
Slepian-Wolf coding which might necessitate complex channel estimation. We propose to first estimate the
underlying correlation model from the indepedently compressed images. Then, the estimated correlation
information is used for the joint signal recovery. The joint reconstruction is cast as a convex optimization
problem that enhances the quality of the reconstructed image pairs that have been compressed independently.
We show by experiments that the joint reconstruction enhances the quality of the indepedently compressed
images only at medium bit rates and not at low bit rates; this is due to the poor correlation information
estimated from the highly compressed images. In the sequel, we propose a smart encoder that identifies
and encodes the visual information such that it leads to a better correlation estimation for a given target
bit rate. We finally show by experiments that there exists an actual trade-off between the quality of image
reconstruction and the correlation estimation due to the encoding of different image characteristics.

We then replace the traditional imaging cameras in the previous distributed scheme with the low cost
CS-based imaging cameras. The CS-based cameras directly acquire the compressed image in the form
of quantized linear measurements using simple inner product operations, and therefore they permit low
complexity encoding. In Chapter 5, we focus on the problem of estimating the correlation information from
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one reference image and highly compressed images given in the form of random projections, that are further
quantized and entropy coded. We propose a geometry-based model to describe the correlation between
images, which is mostly driven by the translational motion of objects or vision sensors. We first estimate
prominent visual features by computing a sparse approximation of a reference image with a dictionary of
geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding
features in correlated images given by quantized linear measurements. Eventually, a dense depth or motion
field is generated from the local transforms of the geometric features. Experimental results show that
the proposed algorithm effectively estimates the depth and optical flow between images, respectively in
multi-view and video datasets. In addition, when the depth or motion field is used for image prediction,
the resulting rate-distortion performance becomes better than the independent coding solutions, as well as
state-of-the-art distributed coding schemes based on disparity learning.

In Chapter 6, we concentrate on the correlation estimation between images, where all the images are
represented in the form of quantized linear measurements with simple CS sensors. This scenario therefore
provides a low complexity encoding compared to the previous scenarios and the entire computational com-
plexity is shifted to the joint decoder. In these settings, we propose to estimate a dense depth or optical flow
model directly in the compressed domain by jointly processing the quantized linear measurements without
explicit image reconstruction. We first show that the correlated images can be efficiently related using a
linear operator. Using this linear relationship, we then describe the dependencies between images in the
compressed domain. We further cast a regularized optimization problem where the correlation is estimated
in order to satisfy both data consistency and motion smoothness objectives. Extensive experiments in
multi-view and video imaging applications show that our novel solution stays competitive with methods
that implement complex image reconstruction steps prior to correlation estimation. In addition to this, we
experimentally show that the accuracy of the correlation estimation can be improved by properly handling
the measurement quantization noise.

In Chapter 7, we propose joint image reconstruction algorithms for decoding images based on the cor-
relation estimation results in Chapters 5 and 6. The joint reconstruction is cast as a convex optimization
problem where the reconstructed images have to satisfy either total variation (TV) or sparsity priors, as
well as consistency with both the quantized measurements and the correlation estimates. We solve this joint
reconstruction problem by effective proximal methods. We show experimentally that the accurate correla-
tion estimation in distributed image representation permits to outperform independent decoding solutions
in terms of reconstructed image quality.

In Appendix A.1, we present our framework that estimates a dense transformation field from the sets of
geometrically transformed atoms, i.e., the local transforms between geometric atoms are fused to estimate
the correlation between pixels in the images. We propose to estimate the underlying dense transformation
field based on a regularized optimization framework that is solved using Graph Cuts. The data fidelity term
finds a solution that best fits with the local transforms between the corresponding atoms. We also penalize
the transformations among the neighboring pixels in order to ensure consistency. We show experimentally
that the proposed solution estimates an accurate transformation field when compared to the one that finds
a dense field based on most confident mapping.

Finally, in Chapter 8, we draw conclusions and the future directions of research related to this thesis.

1.4 Thesis contributions
The contributions in this thesis are listed as follows,

• We propose a novel rate balanced distributed coding scheme for compressing the correlated spherical
images captured in omnidirectional sensor networks.

• We propose a novel joint reconstruction algorithm that enhances the quality of the distributively
compressed images by effectively exploiting the inter-view correlation. We show that our reconstruction
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algorithm is convex, which is further effectively solved using proximal methods.

• We propose a novel rate allocation scheme that permits to estimate an accurate disparity information
from the highly compressed planar or omnidirectional images.

• We propose a novel algorithm to compute the geometrical relationship between correlated images from
a reference image and highly compressed linear measurements. We further propose a methodology to
efficiently handle the measurement quantization noise.

• We propose a new optimization algorithm based on Graph Cuts that estimates a dense correlation
model between images from sets of geometrically transformed atoms.

• We propose a new algorithm to estimate the correlation model directly from the set of compressed
images that are given in the form of quantized linear measurements. Furthermore, we propose a robust
correlation estimation scheme that properly handles the non-linearities of measurement quantization.

• We propose novel joint reconstruction algorithms based on a convex optimization framework for de-
coding correlated images from the quantized linear measurements. Our joint reconstruction solution
is applied to both asymmetric and symmetric distributed coding frameworks.
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Chapter 2

Related Work

This chapter summarizes state-of-the-art works from the literature that are closely related to the problems
addressed in this thesis. First, in Section 2.1 we give a brief overview of the general imaging sensors that
include perspective, omnidirectional, and compressed sensing (CS) cameras. Next, in Section 2.2 we present
the image representation and coding tools to encode the visual information captured from various imaging
sensors. We then move from the single imaging to multi-imaging frameworks, where the multiple images
are captured by a video camera or a vision sensor network. In the sequel, in Section 2.3, we present various
correlation models that describe the geometrical relationship among images, followed by a brief review of
joint encoding schemes in Section 2.4. The rest of this chapter focuses on distributed coding. In Section 2.5,
we first introduce the theory behind the distributed compression of correlated sources proposed by Slepian-
Wolf and Wyner-Ziv. Then, we present the methodologies proposed in the literature for the distributed
compression of correlated sources and images. Finally, in Section 2.6 we summarize the drawbacks in the
existing distributed representation schemes.

2.1 Camera models

In this section, we give a brief overview of the projective geometry for three common camera models namely
perspective, omnidirectional and compressive sensing sensors.

2.1.1 Perspective vision sensors

The perspective imaging system is based on the pinhole camera model [1, 2] and it is widely used in several
imaging applications. The geometric model of a pinhole camera is shown in Fig. 2.1 and it consists of an
image plane I and a point C. The point C is known as the optical center or the focal point of the camera.
The line from the camera center C that is perpendicular to the image plane is known as the principal axis,
and it intersects with the image plane I at the principal point p. The distance between the principal point p
and camera center C represents the focal length f of the camera. In this scenario, the rays of light reflected
or emitted from the objects pass through the camera center C and intersect at the image plane I to form
an image. As shown in Fig. 2.1, a point in the 3D space with coordinates M = (X,Y, Z) is projected to a
point z = (m,n) on the image plane I. The scene point M = (X,Y, Z) and the image point z = (m,n) can
be related as

m =
fX

Z
, n =

fY

Z
. (2.1)

From Eq. (2.1), we observe a non-linear relationship between the 3D scene point M and its corresponding
2D projected point z. To avoid this non-linearity, one could represent both the scene and the image points
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Figure 2.1: Pinhole camera model that describes the relationship between a 3D point (X,Y, Z) and its corresponding
2D projection (m,n) onto the image plane I [1, 2].

in homogeneous coordinates. The latter leads to a linear relationship between the 3D and 2D points, thus
making the image projection process much easier to handle mathematically. Using homogenous vector
representation, Eq. (2.1) can be rewritten as

λ

⎡
⎣
m
n
1

⎤
⎦ =

⎡
⎣
f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ , (2.2)

where λ �= 0 is the homogenous scaling factor.
In essence, the perspective pinhole camera model projects the 3D scene points onto a 2D rectangular

sensor grid to form the image. Despite its wide availability, such camera models provide only a limited view
of the 3D scene due to the parallel ray assumption. Furthermore, rectangular sampling grid is not ideal
for image representation, as the photoreceptors in our human fovea is organized on the non-planar surfaces
considering the radial form of light.

2.1.2 Omnidirectional vision sensors

The plenoptic function [9] provides a mathematical model for early vision that measures the visual infor-
mation from every possible position and direction in the 3D space. By dropping the chromatic and time
components in the function, the viewing angle at a given position is represented in two dimensions. In
particular, due to its radial form, the viewed intensity distribution is best described on the sphere S2 and
not in the rectangular grid. Therefore, the plenoptic function can be considered as a perfect model for a
vision sensor, and hence the spherical image formation is interesting for 3D scene representation. In this
context, we describe the omnidirectional cameras whose output can be uniquely mapped on the sphere.

Omnidirectional cameras typically use catadioptric system in order to capture 3600 view of the scene
[11]. Such a camera system contains a mirror (e.g., parabolic, elliptical) placed in front of a perspective
camera, where the optic axis of the lens is aligned with the mirror’s axis [10, 12]. The catadioptric camera
systems constructed using quadratic mirror are of particular interest, as they acquire images with a single
center of projection. Such systems are also known as central catadioptric systems. The mirrors satisfying
this property are parabolic, hyperbolic and elliptical.

Fig. 2.2(a) shows a central catadioptric system with a parabolic mirror. In such a case, the ray of light
incident with the focus of the parabola is reflected in a ray of light parallel to the parabola’s axis. This
construction is equivalent to a purely rotating perspective camera. A typical omnidirectional image captured
by this system is shown in Fig. 2.2(b). We observe from Fig. 2.2(b) that the vertical straight lines of the
3D objects form radial lines or conic surfaces in the catadioptric plane [10, 13, 14]. This indicates that it
is not straightforward to analyze the omnidirectional images, and one has to take into account the inherent
imaging geometry while processing such data. However, due to the single centre projection property of
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Figure 2.2: (a) Central catadioptric system with a parabolic mirror [10]. The parabolic mirror is placed at the
parabolic focus F1 and the other focus F2 is at infinity. (b) An omnidirectional image captured by such a system.
(c) The captured image is mapped on the sphere.

the central catadioptric cameras, it is possible to map the catadioptric images on the sphere and process
these spherical images efficiently. In particular, Geyer et al. [10] showed that the central catadioptric
system which captures the omnidirectional images is composed of two mappings on the sphere. The first
mapping represents spherical projection, where the center of the sphere coincides with the focal point of
the mirror; the second mapping represents the projection of a point on the sphere’s principal axis to the
plane perpendicular to that axis. It should be noted that the first mapping is independent of the mirror’s
shape. On the other hand, the second mapping depends on the mirror’s shape which changes the projection
point on the sphere’s axis as a function of the eccentricity ε of the conic. Using the equivalence between the
composite mapping on the sphere and the catadioptric projection, the catadioptric images can be mapped
on the sphere through inverse stereographic projection [10]. For example, Fig. 2.2(c) shows the spherical
representation of the catadioptric image in Fig. 2.2(b).

2.1.3 Compressive sensing camera

In the standard imaging sensors, i.e., perspective and omnidirectional, the images are usually acquired, and
compression is performed later in order to reduce the transmission rate. Instead of acquiring the entire
image, it is possible to directly acquire the compressed image in the form of linear measurements using
compressed sensing (CS) cameras [15, 16]. Such cameras compute only few linear projections of the visual
information and thereby significantly reduces the computational cost at the sensor nodes.

In more details, standard imaging sensors measure the per-pixel brightness and chromatic values of the
scene objects. The measured brightness and chromatic values form an image that usually has some typical
structure, e.g., piecewise smooth. This structural information can be exploited by an encoder that efficiently
compresses the data without significant distortion. Though these sensors finally store or transmit only the
most important visual information, they acquire and process the entire data. As a result, the number of
samples they need to capture and process grows linearly with the resolution of the image.

Instead, the compressed sensing (CS) cameras simultaneously acquire and compress the scene view. That
is, they directly acquire the compressed scene information without explicit image sampling or acquisition
stage [15, 16]. Unlike standard imaging sensors, the CS sensors provide a representation of the image
or signal data in the form of linear measurements, which are usually of lower dimension than the image
resolution. These small number of linear measurements, that represent the compressed image contain enough
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information for the image reconstruction. In more words, let Y be the linear measurements computed from
the image I by projecting on a random set of coding vectors {φi}. In matrix notation, these measurements
are computed as

Y = ΦI, (2.3)

where Φ is the measurement matrix formed as Φ = [φ1|φ2| . . . |φK ]T . This set of measurement vectors {φi}
can be constructed using random realizations of Gaussian or Bernoulli random variables. The compressed
data is directly acquired in the form of linear measurements that are computed using simple inner product
operations, i.e., Yi = 〈I, φi〉. Therefore, the encoder stage becomes computationally cheap which further
translates into power saving. For example, Mamaghanian et al. [17] have developed a compressed sensing
based acquisition system that is shown to have low power consumption and low complexity compared to
the systems that implement transform-based image/signal compression.

While the encoding is very simple, efficient reconstruction strategies have to be activated at decoder
to recover the visual information. Donoho [15] and Candes et al. [16] showed that a sparse signal in a
particular basis Ψ can be recovered from a small number of linear measurements taken on the measurement
basis Φ, if Φ and Ψ are incoherent. Especially, if the signal is K sparse then one need approximately βK
linear measurements (typically β = 3 or 4) to reconstruct the signal with high probability [18]. The sparse
coefficients c = Ψ∗I of the underlying image can be estimated as a solution to the following optimization
problem:

ĉ = argmin
c
‖c‖1 s.t. ‖Y − ΦΨc‖2 = 0. (2.4)

The estimated coefficient vector ĉ is used to reconstruct the underlying image as Î = Ψĉ. Instead of using
a sparsity prior, Candes et al. [18] proposed an alternative recovery model that estimates a smooth image
based on solving the following optimization problem:

Î = argmin
I
‖I‖TV s.t. ‖Y − ΦI‖2 = 0, (2.5)

where ‖I‖TV represents the sum of magnitudes of the discrete gradients of I(m,n) computed as

‖I‖TV =
∑
m,n

√
(I(m+ 1, y)− I(m,n))2 + (I(m,n+ 1)− I(m,n))2. (2.6)

In the literature, plethora of tools are available to solve the optimization problems given in Eq. (2.4) and
Eq. (2.5). We refer the reader to the overview papers [19, 20, 21] that summarize various optimization
methodologies.

In rest of this section, we briefly explain some of the CS hardwares available in the literature. The
first CS imaging sensor was developed in Rice and it uses optical principles to directly compute the linear
measurements [22, 23]. The block diagram is shown in Fig. 2.3, where the light field from the object is
focused on a digital micro-mirror device (DMD) that consists of several tiny mirrors. Each tiny mirror
corresponds to a particular pixel in the image that can be further independently oriented in one of two
directions. In one of the directions, there is another photodetector that collects the reflected light from the
DMD, as shown in Fig. 2.3. Therefore, depending on the random configuration of the DMD mirrors, the
photodetector actually measures the linear combinations of the image intensity values with the binary basis
vectors {φi}. Before computing the next measurements, the configuration of the DMD mirror pattern is
varied based on the random generator RNG. The measurements are therefore computed serially by adapting
the DMD mirror patterns.

In the MIT random lens imaging camera [24], the usual lens is replaced by a random lens using reflective
or refractive elements. The random lens distributes the light intensity of a particular pixel to several pixel
locations of the measurement array. Contrary to the single pixel camera, the random lens imaging system
allows to record all the measurements simultaneously. However, the main drawback of this approach is that
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Figure 2.3: Block scheme of the single pixel camera developed in Rice [22].

the random lens requires pre-calibration to find out the measurement matrix Φ. Following similar ideas,
Marcia et al. [25] have proposed a compressive imaging architecture based on coded aperture imaging. In
this imaging architecture, a binary aperture is used to modulate the light field emitted from the source.
The aperture pattern can be conveniently represented by a binary matrix whose value is 1 if that particular
aperture element is transparent, and 0 if it is opaque. The resulting modulated intensity that represents the
weighted linear combinations of image intensity values are measured by a photo detector.

The compressive sensing imagers in [26, 27] are based on Random convolution that first convolves the
underlying image with a random pulse and then sub-samples the set of results at random locations [28].
Romberg has proposed an optical CS imager [26] that implements Random convolution in the focal plane
using lens and spatial modulators. The equivalent electronic implementation has also been proposed in
[29, 27]. In [26], the light field from the source with unknown distribution first passes through a lens that
computes the spatial Fourier transform of the incoming light. The resulting Fourier coefficients are spatially
modulated using a random mask and the inverse Fourier transform is eventually computed. Finally, the
measurements are taken at random sample points using individual photo detectors; it actually represents
the weighted linear combinations of the light distribution emanating from the objects in the scene.

Finally, CMOS convolution electronic imager has been proposed in [27] to compute linear measurements
of visual information, where the convolution is performed electronically using flip-flop memory and shift
registers. The imaging architecture consists of a CMOS pixel array and a one-bit flip-flop memory per pixel
that stores the binary filter coefficients. The input and the output of the flip-flop memories of the neighboring
pixels are connected to form a shift register that circularly shifts the binary filter coefficients. Initially, the
flip-flop memories are set to random binary values that are driven by a pseudo-random generator. The net
effect is that the binary weight available in the flip-flop memory is convolved with the analog image data
that is available in the CMOS array to provide a measurement value. The second measurement value is
computed by adapting the binary coefficients in the flip-flop memory, which can be easily done by shifting the
contents in the shift register. Therefore, the measurements are computed serially by appropriately varying
the memory contents. The main shortcoming of this camera is that it can compute the measurements only
with the binary coefficients, but not with the analog weighted coefficients. The latter representation permits
to compute the measurements using FFT or block-based DCT basis vectors to speed-up the sampling process
[30, 31]. In this context, Robocci et al. [29] have proposed a CS camera based on CMOS architecture that
can perform measurement operations with both binary and analog weights. Additionally, it can be used for
block-based sensing to speed-up the sampling process. In essence, the CS imagers permit to directly capture
the compressed information in the form of linear measurements with a reduced power consumption and low
complexity compared to the traditional imaging systems.
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2.2 Image representation and coding

The visual information acquired from these sensors cannot be efficiently stored in raw format due to high
redundancy in the visual information. In this section, we provide an overview of the image coding tools that
reduce the storage and transmission costs of the three systems described in the previous section.

Coding of Planar Images

For decades, the problem of coding planar images has been widely studied in the literature. Earlier attempts
on image compression are based on vector quantization (VQ) that quantizes group of pixels together [32].
Despite its optimal compression performance, VQ suffers from high computational cost and delay that grows
exponentially with the image dimensions. Due to these difficulties, practical coding algorithms have been
designed based on transform coding. These algorithms reduce the redundancy among the samples by first
representing the signal in a different domain followed by a scalar quantization. The rate-distortion perfor-
mance of transform-based coding approaches competes with the VQ scheme with the additional advantage
of low computational complexity.

The coding efficiency of the transform-based solutions depends on the ability of the basis functions
{ψi} to sparsely represent the features of the image or signal. In this context, the two most successful
representations are the Discrete Cosine Transform (DCT) and the Wavelet Transform [33] that have been
used for building JPEG [34] and JPEG 2000 [35] image coding standards respectively. In these standards,
the image I is represented as a linear combination of basis functions decomposed as

I =

K∑
i=1

ψici = Ψc, (2.7)

where Ψ is an orthonormal basis function (e.g., DCT, Wavelets), and c is the coefficient vector. The
computed coefficient vector c is then quantized and entropy coded. At the decoder, the quantized coefficient
ĉ is finally used to reconstruct an image by inverting the transform given as Î = Ψ∗ĉ, where Ψ∗ represents
the conjugate transpose of the matrix Ψ. More details are available in [34, 35]. The orthonormal basis
vectors however, are inefficient in sparsely approximating the edges or singletons in the images, because
they cannot deal with the image geometrical regularities. These features can be sparsely represented by
including anisotropy and orientation in the basis vectors, e.g., bandelets [36], curvelets [37] or over-complete
dictionaries [38]. By including directionality and orientation properties, the orthogonality condition among
the basis functions might be relaxed. Non-orthogonal or redundant transforms provide a richer image
representation that captures most of the signal or image energy in few coefficients and leads to good coding
performance [38].

Coding of Omnidirectional Images

Coding of omnidirectional images has been largely overlooked in the literature. One simple solution is to
consider the omnidirectional image as a planar image, and then the unwrapped images can be processed
using the planar transformation tools (e.g., Wavelet). Such an approach however fails to take advantage
of the geometry of the imaging system and therefore results in degraded performance. Instead, by using
the equivalence between the catadioptric projection and composite mapping onto the sphere (described in
Section 2.1), the omnidirectional images can be mapped on the sphere. This mapping is equivalent to
an inverse stereographic projection, and the resulting image lies on the sphere. The compression of the
spherical images can be then carried out using transform-based coding approaches, in which the images
are transformed using spherical decomposition tools (e.g., Spherical Laplacian Pyramid [39] or Spherical
Wavelet Transform [40, 41, 42]) followed by scalar quantization. However, as described previously, these
decomposition techniques fail to capture efficiently the edges in the spherical images. To overcome this
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difficulty, Tosic et al. [43] have proposed a spherical compression framework using a structured over-complete
dictionary that leads to redundant representation of the images.

Coding of Linear measurements

As discussed above, the recovery of an underlying image from the respective low dimensional linear mea-
surements is highly complex and non-linear. This is contrary to the transform-based image coding schemes
described earlier, where an image is reconstructed by simply inverting the transform matrix Ψ. Therefore, it
is clear that in CS frameworks the encoder is very simple and the entire computational complexity is shifted
to the decoder.

Though the CS camera directly acquires the compressed image in the form of linear measurements,
the linear measurements cannot be transmitted directly due to high entropy. It is necessary to quantize
and entropy code the measurements in order to reduce the transmission or storage costs. In this context,
few works have been presented in the literature that study the rate-distortion performance of the linear
measurements, where the encoding of measurements is carried out using quantization and entropy coder
[44, 45, 46]. Their results show that the RD performance of linear measurement is inferior to the RD
performance of state-of-the-art image coding solutions, e.g., JPEG, JPEG 2000 [46]. This is because the
linear measurements are highly sensitive to quantization noise. Moreover, the reconstructed signal from
quantized measurements fail to satisfy the consistent reconstruction property [47]. Hence, it is essential to
develop adapted quantization techniques and reconstruction algorithms that reduce the distortion in the
reconstructed signal, such as [48, 49]. The authors in [44, 50] have also studied the asymptotic reconstruction
performance of the signal under uniform and non-uniform quantization schemes, and they have shown that
the non-uniform quantization schemes usually give smaller distortion in the reconstructed signal, comparing
to uniform quantization schemes. An optimal quantization strategy for the random measurements has been
designed based on distributed functional scalar quantizers [51]. Recently, Wang et al. have proposed a
progressive scalar quantization technique for lossy compression of linear measurements that exploits the
hidden correlation between the linear measurements [52]. These frameworks however mostly concentrate on
decoding an image from the quantized measurements and have not been extended to the joint decoding or
scene analysis tasks. In this thesis, we propose to properly handle the non-linearities of the measurement
quantization for the latter scenarios.

2.3 Correlation models

Now, we shift our attention from single to multiple image scenarios where the J images Ij , j ∈ {1, 2, . . . , J}
represent the same scene acquired at different time instants or viewpoints. In such scenarios, one of the key
characteristics is the high correlation between multi-view images or successive images in a video sequence.
The correlation between images can be exploited for effective reconstruction of image sets or for joint analysis
tasks. However, in practical applications the correlation model among multiple images is not known a priori;
it has to be estimated from the correlated images. Therefore, the first step in the joint representation or
joint analysis tasks is to accurately model and estimate the actual correlation among multiple images. In
the rest of this section, we describe few correlation models that are commonly used in the literature.

In this context, Duarte et al. [53, 54] proposed three joint sparsity models (JSM) that define the inter-
signal correlation between sources. We briefly describe here the three JSM’s.

• JSM-1: This sparsity model assumes that all the correlated signals share a common sparse component
with each signal containing a sparse innovative component. The signal at sensor j is represented as

Ij = z + zj , j ∈ {1, 2, . . . , J}, (2.8)
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with
z = Ψc and zj = Ψcj,

where Ψ is an orthonormal basis, ‖c‖0 = K and ‖cj‖0 = Kj. Thus, the signal z = Ψc is common
to all J signals with sparsity K in basis Ψ. The innovation signal zj = Ψcj is unique to the specific
signal Ij with sparsity Kj in basis Ψ. This sparsity model holds well in a practical scenario where
a group of sensors measure a physical phenomenon such as temperature, humidity in a given region.
The global effect in the region could have the same effect on all the sensors which is captured by the
common part. On the other hand, the local factors attributed to the particular sensor is reflected in
the innovative component.

• JSM-2: This model assumes that all the signals share a common sparse support, but with different
coefficients. The signal at sensor j is represented as

Ij = Ψcj , j ∈ {1, 2, . . . , J}, (2.9)

where the number of non-zero coefficients in vector cj is K, i.e., ‖cj‖0 = K. This sparsity model holds
well in a practical scenario where a set of sensors (e.g., acoustics) acquire replicas of a same signal,
but with different amplitudes and phases caused by different attenuations due to signal path effects.

• JSM-3: This model assumes that all the signals have a non-sparse common signal with an individual
sparse innovation associated with each signal. Mathematically, it is represented as

Ij = z +Ψcj, j ∈ {1, 2, . . . , J}, (2.10)

where Ψ is an orthonormal basis, ‖cj‖0 = Kj and the signal z is the common part that is not necessarily
sparse in the basis Ψ. Therefore, JSM-3 model is an extension of the JSM-1 model, where the common
part z is not sparse. A practical situation well-modeled by JSM-3 is where different sensors record
the static or dynamic scenes. In such scenarios, the signal captured by each sensor is not necessarily
sparse, while the ensemble of images captured by different sensors is highly correlated with sparse
variations. For example, in a given video sequence each video frame may not be sparse, but the
differences between the video frames can be sparse in some basis Ψ.

These three sparsity models however are not ideal in modeling the correlation between multi-view images
and successive images in a video sequences due to the large motion. In such scenarios, the inter-pixel
geometrical relation between frames is given by the epipolar and optical flow constraints respectively. In the
next paragraphs, we review both constraints starting with the epipolar geometrical constraint in multi-view
imaging systems.

Epipolar geometry constraint

When a 3D scene is viewed from several angles, the geometrical relationship between multiple images and
the observed 3D scene is provided by the epipolar geometry. In particular, it establishes a geometrical
relationship between a 3D point and its corresponding projection onto the 2D image plane. The epipolar
geometry for two cameras is illustrated in Fig. 2.4, where a 3D point M ∈ R

3, their respective projected
points z1 ∈ R

2 and z2 ∈ R
2 (in the views I1 and I2) and the cameras C1 and C2 are coplanar and lie in the

same plane [1, 2]. More formally, the epipolar constraint is given by the following mathematical equation:

zT2 T̂Rz1 = 0, (2.11)
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Figure 2.4: Epipolar geometry for the perspective cameras C1 and C2 [1, 2]. The relative pose between cameras
C1 and C2 is represented by a rotation matrix R and a translation vector T .

where R and T respectively represent the rotation and translations between cameras C1 and C2. Given the
translation vector T = [t1 t2 t3], the skew symmetric matrix T̂ can be expressed as

T̂ =

⎛
⎝

0 −t3 t2
t3 0 −t1
−t2 t1 0

⎞
⎠ . (2.12)

The difference between the two projected points z1 and z2 corresponding to the same scene point M is
usually denoted as disparity. It should be noted that, by knowing the relative pose (R, T ) between cameras
and the two projected points z1, z2 that satisfy Eq. (2.11), the 3D coordinates of the scene point can
be calculated by triangulation [1, 2]. Therefore, the correlation estimation problem in multi-view imaging
networks consists in finding the corresponding projection points between images. In other words, we need
to estimate the difference between the pixel coordinates z1 and z2 corresponding to the same scene point.
Finally, the epipolar equation given in Eq. (2.11) can be used to describe the relationship between spherical
images, by defining the projected points z1 ∈ S2 and z2 ∈ S2 in the Spherical coordinate system rather in
Euclidean coordinates [55, 56].

Optical flow constraint

The optical flow constraint describes the geometrical relationship between time varying images acquired by a
video camera, that is, the relationship between pixels in successive images when a dynamic scene is captured
by a camera. Let us assume that two images I1 and I2 are sampled at time t and t + 1 respectively. We
assume that the position of a 3D point at time t is M ∈ R

3 and it is projected at a 2D position z1 = (m,n)
in view I1. Due to the motion of scene objects, the same scene point is moved to the position M′ ∈ R

3

at time t + 1, and therefore it is projected at location z2 = (m + u, n+ v) in the image I2, where u and v
represent the horizontal and vertical displacement components respectively. The relationship between the
points z1 and z2 is given by the following optical flow constraint equation [57, 58] that is formally expressed
as

u
∂I

∂m
+ v

∂I

∂n
+
∂I

∂t
= 0, (2.13)

where ∂I
∂m = I1(m,n)− I1(m+1, n), ∂I

∂n = I1(m,n)− I1(m,n+1) and ∂I
∂t = I1(m,n)− I2(m,n). Eq. (2.13)

says that the temporal intensity variation is explained by the spatial intensity variation multiplied by the
velocity or displacement of the scene point moving with respect to the camera. Moreover, Eq. (2.13) is
derived by assuming that the rate of change of intensity along the motion trajectory is null. In other words,
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it is derived based on the constant brightness assumption, expressed as I1(z1, t) = I2(z2, t). The difference
between the pixel coordinates z1 and z2 corresponding to the same scene point is usually called motion or
optical flow. The motion field can also be used to estimate the underlying 3D scene geometry with structure
from motion principles [3]. The same analogy also applies for the motion field estimation to omnidirectional
images, where we need to find the correspondences between images defined on the sphere rather on the
rectangular grid [39].

Finally, in both multi-view and video imaging scenarios, the correlation estimation problem boils down in
finding the differences between corresponding pixels in different images. In other words, we need to solve the
correspondence problem that finds the patches or pixels in multiple images corresponding to the projection
of the same scene element. The correspondence problem can be solved either pixel-wise or block-wise, where
the former representation provides an accurate model at the expense of computational complexity. For more
details, we refer the reader to the overview papers on correlation estimation [7, 8]. In the next section, we
describe the usage of these correlation models for encoding multiple images.

2.4 Joint encoding of correlated images

In this section, we briefly review the joint coding approaches for encoding sets of correlated images that
are captured by a video camera or multiple cameras. This compression problem is quite different from the
independent image coding schemes described in Section 2.2, due to the presence of correlation components
between the sets of images. Therefore, one has to take benefit of both the intra- and inter-view redundancies
in order to maximize the RD performance. In the joint encoding approach, the central encoder usually
collects the multiple images and it removes the inter-view redundancy between images based on disparity
or optical flow models, as described in Section 2.3. This problem has been widely studied in the literature.

In this context, several joint encoding frameworks for compressing stereo image pairs have been proposed,
e.g., [59, 60, 61, 62], where the underlying correlation between images is exploited using a block-based
disparity estimation and compensation. These schemes attempt to minimize the mean-square error (MSE)
between the original stereo image pair and the reconstructed stereo image pair for a given target bit rate.
Contrary to this, Perkins [63] studied the effect of stereo image compression on the user’s ability to perceive
the disparity. In particular, he has proposed a multi-resolution coding algorithm that is perceptually justified
when the compressed stereo pair is viewed by a human.

Few coding standards have been proposed for compressing the time varying images based on block-based
motion estimation and compensation, e.g., H.264 [64]. Recently, multi-view video coding schemes based on
H.264 standards have been proposed in [4, 65], where the inter-view correlation is exploited using block-
based disparity models. Later, similar ideas have been used for the compressive video acquisition based on
linear measurements [66, 67, 68, 69], in effort to reduce the sampling rate of the video acquisition. Rather
than encoding all the images independently, these frameworks employ block-based motion compensation and
estimation techniques to improve the sparse representations of the images. However, block-based translation
models that are commonly used for correlation estimation fail to efficiently capture the geometry of scene
objects. A better correlation model can be estimated by comparing the most prominent features in different
images, where the most prominent features are captured by dictionary functions in a redundant dictionary
[70].

The joint coding frameworks however, necessitate communication among sensors that is highly unde-
sirable or expensive for low power applications. Furthermore, the complexity at the encoder is high, as
it computes motion or disparity at the central encoder. In addition, communication between cameras is
often highly undesirable due to power constraints or due to network topology (for example). We therefore
focus from now on distributed coding solutions where the correlated sources are encoded independently, but
decoded jointly.
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Figure 2.5: Two different coding methods to compress the correlated sources X and Y , where the dependency
between sources is given p.d.f. p(x, y). (a) Joint encoding. (b) Distributed coding. In both cases, the encoded
sources are jointly decoded to exploit the correlation between the samples X and Y .

2.5 Distributed coding
Distributed source coding (DSC) refers to the independent coding of two or more physically separated
correlated sources that are not communicating with each other; the compressed streams are sent to a central
unit and decoded jointly. The distributed compression finds its theoretical foundation in two papers, the
first one by Slepian and Wolf [6] and second one by Wyner and Ziv [71]. We briefly state the Slepian-Wolf
and Wyner-Ziv thereoms without any mathematical proof. For more details we refer the reader to [6, 71],
and to the introductory articles on distributed coding [72, 73].

2.5.1 Theoretical foundations of distributed coding
Consider {(Xi, Yi)}ni=1 as the sequence of independent drawings of a pair of correlated random variablesX,Y
from a given distribution p(x, y). The sequences X and Y are statistically dependent and the dependency
between them can be described by the conditional probability mass function P (X |Y ). Let us first consider
the joint encoding and joint decoding of the correlated sources X and Y as shown in Fig. 2.5(a). The
question to ask is: what is the minimum encoding rate R required to perfectly recover (without any errors)
the two sources X and Y at the joint decoder ? The answer to this question derived from information
theory is the joint entropy R = H(X,Y ) = H(Y ) +H(X |Y ) = H(X) +H(Y |X), where H(.) is the entropy
function. For example, this can be achieved by encoding Y at a rate RY = H(Y ) and based on the complete
knowledge of Y at both the encoder and the decoder, the source X is encoded at a rate RX = H(X |Y )
where H(X |Y ) is the conditional entropy of X given Y . Next, we consider the distributed compression of
sources X and Y as shown in Fig. 2.5(b), where the correlated sources X and Y are separately encoded but
the decoding process is performed jointly. Certainly, encoding the sources X and Y at rates RX � H(X)
and RY � H(Y ) guarantees error free reconstruction at the joint decoder. However, for the correlated
sources X and Y , the total rate R � H(X) + H(Y ) is greater than the joint entropy H(X,Y ). The real
question is: is it possible to perfectly recover the sequences at the decoder, by encoding them at a total rate
smaller than the sum of individual entropies ?

In 1970’s, Slepian and Wolf studied this distributed coding problem and showed that a total rate R =
H(X,Y ) is sufficient to perfectly reconstruct the sources. In particular, they showed that there is no loss in
coding efficiency in separate encoding compared to joint encoding, as long as joint decoding is performed.
More specifically, for the two correlated sources X and Y the achievable rate region is given by

RX � H(X |Y ), RY � H(Y |X), RX +RY � H(X,Y ). (2.14)

The achievable rate region or the Slepian-Wolf region for two correlated sources X and Y is shown in
Fig. 2.6. The corner points U and V in the Slepian-Wolf region represent a special case of the distributed
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Figure 2.6: Achievable Slepian-Wolf rate region for the two correlated sources X and Y .

source coding, often referred as coding with side information or asymmetric coding. For this special case,
Pradhan et al. [74] proposed a practical and constructive design approach to realize Slepian-Wolf theorem
based on channel codes. We illustrate the relationship between the channel codes and the Slepian-Wolf
theorem for the corner point U in Fig. 2.7, where the source X is compressed based on the knowledge of Y
that is available at the decoder. In a channel coding framework, in order to recover the sequence X from
the noisy observation Y one has to do channel coding for X . The encoder therefore transmits parity bits
that are used by the decoder to perfectly recover X from its noisy observation Y . From the Slepian-Wolf
coding point of view the correlated sources X and Y can be modeled by a virtual dependency channel with
X as the channel input and Y as the noisy output. The virtual dependency channel motivates the authors
in [74] to employ channel coding techniques in DSC. Therefore, the error between sources X and Y can be
corrected by applying channel coding to the source X . Hence, the encoder shown in Fig. 2.7 is actually a
channel encoder that generates the parity bits from source X . The transmitted parity bits are later used
by the decoder to reconstruct X from Y .

Therefore, it is clear that the Slepian-Wolf encoding problem is actually a channel coding problem, and
the Slepian-Wolf bounds can be achieved by using capacity approaching channel codes. Practical DSC
schemes have been first designed by establishing a relation between the Slepian-Wolf theorem and channel
coding [74]. They brought channel coding ideas in the Slepian-Wolf source coding problem and they used
Trellis channel code to yield a practical Slepian-Wolf system. This further motivated a lot of researchers
to use better channel codes. In this context, systems with better compression performance were developed
using Turbo codes [75, 76]. Liveris et al. [77] introduced the encoding strategy with LDPC codes and
they showed that the LDPC code is a better alternative to the Turbo code. However, both the LDPC and
Turbo codes reach the channel capacity asymptotically, and therefore it requires large block sizes in order
of 105 to reach the Slepian-Wolf bound. In practice, the source lengths are usually small in the order of
few hundreds to few thousands. Recently, M. Grangetto et al. [78] built an asymmetric distributed coding
scheme using the Arithmetic codes that provide a good performance at small block lengths compared to
LDPC and Turbo codes. For more details, we refer the reader to the overview articles [72, 73].

In 1976, Wyner and Ziv extended the problem of coding with side information to the lossy coding scenario
[71]. It is the problem of lossy compression of one source (e.g., source X) when the other source (e.g., source
Y ) is available at the decoder, as shown in Fig. 2.8. Wyner and Ziv considered an average distortion D
between the originalX and the decoded X̂ versions, and they computed the minimum rate RWZ(D) required
to encode X under the constraint that the average distortion between X and X̂ is E{d(X, X̂)} � D. In
this scenario, Wyner and Ziv proved that the transmission rate increases, when the statistical dependency
between sources is exploited only at the decoder compared to the case where the dependency is exploited
at both the encoder and the decoder. Mathematically, the Wyner-Ziv theorem is stated by the following
equation,

RWZ(D) � RX|Y (D), D � 0, (2.15)
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Figure 2.8: Wyner-Ziv coding scheme: Lossy compression of source X with side information Y available at the
decoder [71].

where RWZ(D) and RX|Y (D) are rate-distortion functions with the average distortion D. RWZ(D) repre-
sents the minimum encoding rate for X when Y is available only at the decoder, and RX|Y (D) represents
the minimum encoding rate for X when Y is simultaneously available at both the encoder and the decoder.
They also showed that the equality sign in Eq. (2.15) holds when X and Y are jointly Gaussian. Finally,
as a special case when D = 0, Eq. (2.15) becomes RWZ(0) = RX|Y (0), i.e., the Slepian-Wolf theorem is a
special case of the Wyner-Ziv theorem. This shows that it is possible to reconstruct X with an arbitrarily
small probability of error, when the side information Y is available only at the decoder. For more details,
we refer the reader to [71].

2.5.2 DSC for traditional imaging systems

The Slepian-Wolf and Wyner-Ziv theorems show that the correlated sources can be distributively compressed
with a minimum coding loss when compared to the joint encoding. However, it is not straightforward to apply
these theoretical results for multi-view or video compression. One has to solve the following issues in order
to design a practical distributed coding system. The statistical dependency between sources given in terms
of conditional mass function P (X |Y ) is not an ideal model for describing the correlation between multi-view
images and video sequences. In such scenarios, as described in Section 2.3, the correlation model for accurate
scene representation is effectively described by the disparity or motion models. Furthermore, the Slepian-
Wolf and Wyner-Ziv results come under the assumption that the statistical dependency (or equivalently the
correlation model parameters) between the Wyner-Ziv encoded source and the side information is perfectly
known at the encoder. In practical distributed scenarios, the side information is available only at the
decoder and not at the encoder. Therefore, while designing a practical distributed coding solution, one has
to accurately model the characteristics of the channel and estimate the channel model parameters at the
encoder for controlling the Slepian-Wolf coding rate.

The first practical distributed coding scheme for compressing the time varying images captured by
a video camera has been proposed in [79, 80], where the video frames are independently encoded and
jointly decoded by exploiting the correlation between images using block-based motion compensation. In
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[79], the video frames are categorized into key frames and Wyner-Ziv frames with a GOP size of 2, i.e.,
Ij , j ∈ {1, 3, . . . , (2�J/2�)− 1} represent the key frames and Ij , j ∈ {2, 4, . . . , 2	J/2
} represent the Wyner-
Ziv frames, where J represents the number of frames in the video sequence. The key frames are encoded
independently using standard coding solutions, e.g., JPEG 2000 or H.264. The Wyner-Ziv frames are
first transform coded (e.g., DCT) followed by a scalar quantization with 2M levels. Then, the quantized
coefficients are represented in M bitplanes, and each bitplane is finally channel coded (e.g., Turbo codes).
The resulting parity bits are stored in the buffer and transmitted to the joint decoder upon request. The
joint decoder first estimates a side information Ĩj using block-based motion compensation and interpolation
from the decoded key frames, denoted as Îj−1 and Îj+1. The side information Ĩj efficiently captures the
low frequency components, but not the high frequency components, as the motion compensation usually
fails to efficiently capture the visual information along the edges and in texture regions. Therefore, the
side information can be considered as a noisy version of the original Wyner-Ziv frame, and the noise can
be corrected using the parity bits transmitted from the encoder. Using a feedback channel, the decoder
then requests the encoder to transmit the parity bits, and this process is repeated until the error in the
side information is corrected. The Slepian-Wolf encoding rate in this scenario is controlled in an accurate
manner by exchanging the channel statistics using the feedback messages.

The PRISM architecture [80] is very similar to the previous one, except that it has no feedback channel.
Instead, the rate control is achieved at the encoder by allowing limited communication between the encoders.
Furthermore, in addition to the parity bits, the encoder also transmits a cyclic redundancy check word (CRC)
computed from the quantized Wyner-Ziv frames in order to assist the motion estimation/compensation at
the decoder. The decoder first selects a set of candidate motion compensated side information blocks from
the previously decoded reference frames. The transmitted CRC is then compared with the CRC generated
from the decoded block. If there is no deviation, the decoding is reported as successful, otherwise the
decoder chooses another candidate block. This process is repeated until successful decoding is achieved.
Inspired by these frameworks [79, 80], significant research efforts have been carried out in the past decade in
order to improve the compression performance. In particular, a lot of research has been focused on the side
information improvement and on the accurate correlation noise modeling ([81, 82]). More details related to
recent advances in distributed video coding can be found in the overview articles [83, 84].

Now, we discuss few studies reported in the literature about the application of distributed coding prin-
ciples to camera networks. The works reported in the literature are generally based on coding with side
information, where one camera is used as a reference to decode the information from the other cameras. For
example, in [85, 86] the cameras are categorized into reference and Wyner-Ziv cameras and the correlation
among views is exploited at the joint encoder using disparity estimation based on epipolar geometry, which
usually requires camera parameters. When camera parameters are not available and calibration is not pos-
sible, the joint decoder can rather use block-based disparity estimation to exploit the redundancy between
images [87, 88]. Gehrig et al. [89, 90] have proposed a geometry-based distributed coding scheme for com-
pressing the multi-view images. The authors proposed to represent each view using a piecewise polynomial
model. Using this polynomial representation of image, the correlation model is built by relating the locations
of discontinuities among different views. However, they consider a special camera arrangement where all
the cameras are placed in a straight line. Super-resolution techniques have been applied for the distributed
coding in camera networks in [91]. In their framework, each sensor transmits a low resolution image to the
decoder. At the decoder, these low resolution images are registered with respect to a reference image, where
the image registration is performed by shape analysis and image warping. The registered images are then
jointly processed to decode a high resolution image. Distributed compression has also been applied for the
multiple images captured in omnidirectional sensor networks [92]. The correlation between omnidirectional
images is first estimated that is modeled using the local transformations of the sparse features captured by
an over-complete structured dictionary. Then, the estimated correlation model is used for Wyner-Ziv image
coding based on partitioning the dictionary into several cosets.

Most of state-of-the-art schemes reported in the literature are based on coding with side information,
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i.e., they target the corner points U or V in the Slepian-Wolf rate region shown in Fig. 2.6. It is clear that
these frameworks do not balance the transmission rate between the encoders. In practice, it may however
be desirable to have more flexibility in the transmission rate among the encoders. The first work that
addresses balanced rate allocation in distributed coding is based on time sharing mechanism [93], which is
however hard to implement, due to node synchronization issues. The first practical scheme for symmetric
coding based on channel code partitioning has been proposed in [94]. This scheme has been later extended
to multiple sources using systematic channel codes [95]. It is based on splitting the generator matrix of
the channel code into sub-generator matrices. Codewords are then generated using the sub-matrices, and
are assigned to each encoder. The compression rate of each encoder is determined by the number of rows
retained in the corresponding sub-matrix. The advantage of this system is the need for only one channel
code. However, this framework is limited to systematic channel codes. The authors in [96] have developed a
symmetric DSC solution using a general linear channel code framework based on algebraic binning concept.
Simulation results have shown that almost the entire Slepian-Wolf region can be covered with this coding
algorithm. Symmetric distributed coding can also be achieved by information partitioning. In this context,
Sartipi et al. [97] have considered the compression of two sources by information partitioning, where half of
the source bits are transmitted directly, while the corresponding syndrome bits are generated on the other
half (complementary part) of the source bits. Similar to [96], the authors show that they can approach the
entire Slepian-Wolf region, and thus the decoding error becomes insensitive to an arbitrary rate allocation
among the encoders. However, both schemes are based on capacity approaching channel codes, which usually
approach the Slepian-Wolf bound only for long source length (typically 104). Grangetto et al. [98] have
proposed a balanced coding scheme for small block length binary sources. The algorithm is based on a time
sharing version of distributed Arithmetic codes, which performs better than the Turbo code solution in the
considered framework.

DSC with rate allocation has also been considered in imaging applications. The authors in [99] proposed
a rate balanced DSC scheme for video sequences. In this scheme, each frame is divided into two partitions
and one partition is then transmitted directly. In addition, each frame is Wyner-Ziv encoded and the side
information is eventually generated using motion estimation. This scheme permits to avoid hierarchical
relations between frames. However, it results in high coding rates, since one of the partitions in each frame
is encoded using both Wyner-Ziv and independent coding. Finally, a balanced distributed coding scheme for
camera networks has been proposed in [100], based on linear channel code construction that can achieve any
point in the Slepian-Wolf region. The proposed linear codes have however not been applied to the actual
coding of images in camera networks.

2.5.3 DSC in CS framework
In Section 2.1, we have already described that the CS-based image acquisition provides a low complexity en-
coding, since it computes the linear measurements with simple inner products. Therefore, it is advantageous
to merge the distributed coding and CS-based image acquisition, so that the encoder becomes simple with
the entire complexity shifted to the joint decoder. Distributed compressive schemes for the time varying
images have been proposed in [101, 102, 103]. Similar to the DVC scheme [79] described in the previous
section, these schemes split the video sequences into key frames and compressed sensing frames (instead of
Wyner-Ziv frame) with a GOP size 2. The linear measurements computed from the key frames are intra-
coded and the respective images are reconstructed at the decoder by solving an optimization problem of
the form of Eq. (2.4). The side information Ĩj is then generated from the reconstructed reference images
using block-based motion compensation and interpolation. The procedure to estimate the side information
Ĩj is summarized in Algo. 1, where the reference images Ij+1 and Ij−1 are reconstructed from the respective
linear measurements Yj+1 and Yj−1 by solving an l2-l1 minimization problem. The reconstructed images
are then used to build a side information Ĩj by linearly interpolating the motion vectors computed between
images Îj+1 and Îj−1. However, the generated side information Ĩj fails to efficiently represent the visual
information along the edges and texture regions. An additional joint reconstruction stage is therefore nec-
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essary to estimate the missing details in the side information, in order to reconstruct the CS frame Ij . It
should be noted that in DVC schemes the error in the side information is usually corrected using the parity
bits. In the distributed compressive framework the quality of the side information is improved by estimating
the missing details from the visual information provided by the linear measurements.

Algorithm 1 Correlation Estimation algorithm proposed in [101, 102, 103]

1: c̃ = arg min‖c‖1 s.t. Yj−1 = ΦΨc

2: Îj−1 = ΨT c̃
3: c̃ = arg min‖c‖1 s.t. Yj+1 = ΦΨc

4: Îj+1 = ΨT c̃

5: Ĩj = Motion compensation(Îj+1, Îj−1)

In [102], the joint reconstruction model assumes that the error between the original CS image Ij and the
side information Ĩj is sparse in an orthonormal basis Ψ (e.g., DCT). The authors propose to reconstruct the
residual error image Ie = Ij − Ĩj by solving the following optimization problem:

c̃ = argmin
c
‖c‖1 s.t. Ye = ΦΨc, (2.16)

where Ye represents the error between the measurements generated from the original CS frame and the
corresponding side information, i.e., Ye = Φ(Ij − Ĩj). Once the residual image Ie = ΨT c̃ is estimated, it is
added to the side information Ĩj in order to reconstruct the CS frame denoted as Îj .

In [103], the CS frame is reconstructed by assuming that it can be sparsely represented in a block-based
adaptive dictionary Ψb constructed using the side information. The CS image is reconstructed by solving
the following optimization problem:

c̃ = argmin
c

(λ‖c‖1 + ‖Yj − ΦΨbc‖22), (2.17)

where Yj = ΦIj , and λ is the regularization constant. Kang et al. [101] proposed to reconstruct the CS
frame by solving Eq. (2.17) under the assumption that the frame to be reconstructed is sparse in a DCT
basis rather than a block-based adaptive dictionary.

Distributed compressive solution have also been proposed in multi-view framework [104, 105]. The
linear measurements are computed independently from each view and they are transmitted to joint decoder.
The joint decoder first reconstructs all the views by solving an l2-l1 optimization problem of the form of
Eq. (2.4), assuming that the images are sparse in a particular basis Ψ, e.g., Dual-tree Wavelet, Contourlet.
The joint decoder then attempts to improve the reconstruction quality of the independently decoded images
by exploiting the underlying correlation between views.

In more details, the authors propose to predict the current view by bi-directionally interpolating the
two neighboring reconstructed views Îj−1 and Îj+1. The generated predicted image is denoted as Ĩj . The
residual image Ie between the original view Ij and the predicted view Ĩj is then estimated by solving an l2-l1
optimization problem in an assumption that the residual error Ie is sparse in Dual-tree Wavelet or Contourlet
basis Ψ. Once the residual image is estimated, it is added to the predicted view Ĩj to reconstruct Îj . These
steps are summarized in lines 1 − 4 of Algo. 2. The authors further propose to improve the reconstruction
quality of Îj using the disparity vectors estimated from the left and right reference images, denoted as Îj−1

and Îj+1 respectively. The estimated disparity vectors are further used to generate the predicted image Ĩj
based on disparity compensation. The residual image Ie is then estimated by solving an l2-l1 optimization
problem, and it is further used to update the prediction results. The disparity compensation, residual image
estimation and update steps are repeated till convergence or a predefined number of iterations is reached.

Wakin [106] has proposed an image registration and joint reconstruction algorithm for multi-view images
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Algorithm 2 Distributed multi-view compression from linear measurements [104, 105]

1: Ĩj = Image Interpolation(Îj+1, Îj−1)

2: Ye = Φ(Ij − Ĩj)
3: c̃ : arg min‖c‖1 s.t. Ye = ΦΨc
4: Update: Îj = Ĩj +ΨT c̃ = Ĩj + Ie
5: repeat
6: Ĩj = Disparity compensation(Îj , Îj+1, Îj−1)

7: Ye = Φ(Ij − Ĩj)
8: c̃ : arg min‖c‖1 s.t. Ye = ΦΨc
9: Update: Îj = Ĩj +ΨT c̃ = Ĩj + Ie

10: until k times

based on manifold lifting. The underlying correlation among multiple views is exploited by constructing
an image appearance manifold, where the images represent sample points on the manifold; these points
are controlled by a few camera parameters (e.g., rotation, translation). By knowing the initial camera
positions, the images are jointly reconstructed based on an l2-l1 optimization framework. The reconstructed
scene is then used to refine the camera parameters, and thus both the camera positions and the scene
are jointly estimated using alternating minimization techniques. In another framework [107], the authors
proposed a joint reconstruction algorithm that exploits the underlying correlation model while reconstructing
a pair of images. However, in their framework the disparity-based correlation model is estimated from the
reconstructed reference images. Further, they failed to consider the effect of measurement quantization in
the correlation estimation and the joint reconstruction stages. Therefore, this framework cannot be applied
in practical applications. Recently, the authors in [108] have proposed a joint reconstruction scheme based
on a regularized optimization framework. The two regularization terms encourage sparse priors of multi-
view images and the difference between images. However, this framework is not well suited for practical
multi-view and video imaging scenarios, as the correlation among images is usually given in the form of
disparity or motion vectors and not as a sparsity prior of the signal differences.

2.6 Concluding remarks
Based on the facts described in this chapter, we would like to address the following points:

• State-of-the-art symmetric encoding schemes [95, 96, 97, 98] assume that the binary sources X and Y
are correlated as X = Y ⊕ Z, where Z is the additive binary noise. The binary correlation model is
certainly not an ideal one for the multi-view images captured in sensor networks, since the correlation
model in such scenarios is described by a disparity model and not as the image differences. Therefore,
efficient compression techniques are required to distributively encode the images captured in sensor
networks. In Chapter 3 we propose a rate-balanced distributed coding scheme for encoding the multi-
view omnidirectional images.

• State-of-the-art distributed coding schemes (e.g., [79, 80]) usually rely on Slepian-Wolf and Wyner-Ziv
results that exploit the statistical correlation between sources using channel codes. The computational
complexity at the encoder certainly becomes important due to the channel rate estimation. Therefore,
we propose a distributed coding scheme in Chapter 4 that provides an efficient joint representation di-
rectly from the independently compressed images. Hence, our framework neither requires an additional
encoder rate control module nor a feedback channel.

• Most of the CS-based distributed schemes estimate a correlation model after reconstructing the ref-
erence images that is often based on solving a complex optimization problem of the one given in
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Eq. (2.4). Also, the current CS-based distributed representation schemes often fail to estimate an ac-
curate correlation model when the measurements are quantized. In Chapter 5, we present our robust
algorithms that estimate a correlation model among multiple images using one compressed reference
image; while the remaining compressed images given in the form of quantized linear measurements are
directly used in the correlation estimation algorithm without priori reconstruction. In Chapter 6, we
go one step further and present our robust correlation estimation algorithm that builds the correlation
model among multiple images directly from the compressed quantized linear measurements without
explicit image reconstruction steps.

• Distributed joint reconstruction of multiple correlated images from linear measurements has not been
addressed thoroughly in the literature, especially when the measurements are quantized. Therefore,
state-of-the-art schemes cannot be used in practical coding applications, since the measurements are
usually quantized in order to limit the bandwidth resources. In Chapter 7, we present our distributed
joint image reconstruction algorithms that efficiently handle the non-linearities of measurement quan-
tization.



Chapter 3

Symmetric Distributed Coding of
Omnidirectional Images

3.1 Introduction

In this chapter, we present a rate balanced distributed coding scheme1 for the representation of 3D scenes
captured by multiple omnidirectional cameras, as shown in Fig. 3.1. Each catadioptric camera samples the
plenoptic function that represents the entire visual information available to the observer [9]. The catadioptric
projective geometry theory described in Chapter 2 shows that these sensors capture the light field in the
radial form. Therefore, in order to preserve the geometry of the captured light information, we propose to
work directly in the spherical domain by appropriately mapping the omnidirectional images on the sphere.

We design a distributed coding scheme based on the Wyner-Ziv results presented in Chapter 2, where
the images are encoded using a transform-based coding solution followed by a Slepian-Wolf encoding. In
more words, the spherical images initially undergo a multi-resolution decomposition based on the Spherical
Laplacian Pyramid (SLP) that provides shift invariance. The resulting sets of coefficients are quantized and
then split into two correlated partitions. The quantized coefficients of the first partition are entropy coded,
and sent to the decoder. The second partition is encoded using Nested Scalar Quantization (NSQ) [109],
which is a binning scheme that encompasses a scalar quantizer and a coset encoder. It outputs the coset
bin indexes and permits to reduce the coding rate compared to the direct encoding of quantized coefficients.
The coset bin indexes are further encoded using a Slepian-Wolf encoder based on multi-level LDPC codes
[110, 111], in order to achieve further compression of the distributed coded images. The resulting syndrome
bits are finally transmitted to the joint decoder.

The joint decoder estimates the quantized coefficients of the second partition from the quantized coeffi-
cients of the first partition by exploiting intra-view correlation. Furthermore, the joint decoder takes benefit
of the correlation between views by performing block-based disparity estimation on the sphere [39], which
matches similar blocks of solid angles from two omnidirectional images in the spherical domain. There-
fore, the proposed scheme efficiently combines the intra and inter Wyner-Ziv image coding, which allows
for a balanced coding rate between cameras. Such a strategy proves to be beneficial with respect to the
independent processing of omnidirectional images and shows only a small performance loss compared to
the joint encoding of different views. Moreover, we exploit the inter-view correlation by block-based dis-
parity estimation without using epipolar geometry constraints. Hence, our scheme does not require any
camera parameters which are usually required in the techniques based on epipolar geometry to perform
the correspondence matching (e.g., [112]). This is certainly advantageous in camera networks where the

1Part of this work has been published in: V. Thirumalai, I. Tosic and P. Frossard, “Symmetric Distributed Coding of Stereo
Omnidirectional Images,” Signal Processing: Image Communication, vol. 23(5), pp. 379-390, 2008.
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Figure 3.1: Distributed coding of the 3D scenes. The correlated images are compressed independently and are
decoded jointly.

MULTI-
RESOLUTION 

DECOMPOSTION
QUANTIZER INFORMATION 

PARTITIONING

ENTROPY 
CODER

COSET 
CODER

SLEPIAN-
WOLF 

ENCODER

SYNDROMES
JOINT DECODER 
(PREDICTION + 

DISPARITY 
ESTIMATION + SW 

DECODER) 

MULTI-
RESOLUTION 

DECOMPOSTION
QUANTIZER INFORMATION 

PARTITIONING

ENTROPY 
CODER

COSET 
CODER

SLEPIAN-
WOLF 

ENCODER

SYNDROMES

1I

2I

1U

1V

2U

2V

21
ˆ,ˆ II

Figure 3.2: Overview of the proposed symmetric distributed coding scheme.

camera parameters are not given or when camera network calibration is not achievable in practice. The
proposed scheme therefore provides a low complexity coding solution for the representation of 3D scenes,
which neither requires complex setup nor hierarchical organization between vision sensors.

The rest of this chapter is organized as follows. Section 3.2 presents the distributed coding algorithm
adapted to omnidirectional images. Section 3.3 presents in more details the Wyner-Ziv coding strategy,
while Section 3.4 describes the joint decoding scheme. Section 3.5 finally presents the experimental results
that demonstrate the benefits of the proposed solution. Section 3.6 concludes this chapter.

3.2 Distributed coding scheme

3.2.1 Overview

This section presents the overview of the symmetric distributed coding scheme, illustrated in Fig. 3.2.
We consider omnidirectional images that can be exactly mapped on the sphere, as those captured by
the catadioptric cameras [113]. The captured omnidirectional images I1 and I2 undergo multi-resolution
decomposition based on Spherical Laplacian Pyramid (SLP), which handles the images directly on the
sphere; this properly considers the geometry of the omnidirectional cameras. The computed Spherical
Laplacian Pyramid coefficients are then quantized. As we target a balanced rate allocation between cameras,
the information of both images is partitioned in a similar way. The quantized coefficients are split into two
subsets or partitions: U1 and V1 from image I1, and U2 and V2 from image I2, as shown in Fig. 3.2. These
partitions are generally correlated due to the simple partitioning process, which puts quantized coefficients
alternatively in both partitions. The first partitions from both images (e.g., partitions U1 and U2) are
transmitted directly to the joint decoder after entropy coding. The second partitions V1 and V2 are coset
encoded and the resulting coset indexes are Slepian-Wolf encoded with a multilevel LDPC code. Hence,
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each encoder transmits one half of the quantized coefficients, and only the syndrome bits for the quantized
coefficients of the second partition.

The joint decoder tries to exploit intra- and inter-view correlation for improved decoding performance. It
estimates the quantized coefficients of the partitions V1 and V2 by using the coefficients of the partitions U1

and U2 respectively. Under the assumption that the images I1 and I2 are correlated, the predicted result is
further refined using block-based disparity estimation on the sphere. Disparity estimation (DE) permits to
compensate for the displacement of the objects captured from different viewpoints. Prediction and disparity
estimation together lead to effective side information, which permits to reduce the channel rate of the
Slepian-Wolf encoder. The coset indexes corresponding to the partitions V1 and V2 are further recovered
after correcting the virtual channel noise in the side information using the corresponding syndromes. The
SLP coefficients are then estimated from the recovered coset index, and the images are finally reconstructed
by inverting the SLP transform.

3.2.2 Spherical Laplacian pyramid
Multi-resolution analysis is an efficient tool that permits to decompose a signal at successive resolutions and
perform coarse to fine computations on the data. The two most successful embodiments of this paradigm are
the Wavelet decompositions [33] and the Laplacian Pyramid (LP) [114]. As the shift invariance represents an
interesting property for distributed coding in camera networks, we have chosen to use the Laplacian Pyramid
in our scheme. It proves to be beneficial for predictive coding based on disparity estimation. Furthermore,
since we work with omnidirectional images, we propose to use the Laplacian Pyramid on the sphere which
is well suited to analyze the spherical data. In the rest of this section, we briefly describe SLP.

Let L2(S2, dμ) denote the Hilbert space of the square integrable signals on the 2D sphere S2, where
dμ(θ, ϕ) = sinθ dθ dϕ represents the rotation invariant Lebesgue measure on S2. Any spherical signal
F ∈ L2(S2) can be expanded using the spherical harmonics Yp,q [115], whose Fourier coefficients are given
by

F̌ (p, q) =

∫

S2

dμ(θ, ϕ)Y ∗
p,q(θ, ϕ)F (θ, ϕ) , (3.1)

where Y ∗
p,q is the complex conjugate of the spherical harmonic of order (p, q). The omnidirectional images

are sampled on the nested equi-angular grids on the sphere described as

Gv = {(θvm, ϕvn) ∈ S2 : θvm = (2m+1)π
4Wv

, ϕvn = nπ
Wv
}, (3.2)

m,n ∈ Nv ≡ {q ∈ N : q < 2Wv}, for a range of bandwidth W = {Wv ∈ 2N, v ∈ Z}. These grids
permit to perfectly sample any band-limited function F ∈ L2(S2) of bandwidth Wv, such that F̌ (p, q) = 0
for all p > Wv. This class of sampling grids are advantageously associated to a Fast Spherical Fourier
Transform [116], which permits rapid transformation of images.

Similar to the classical Laplacian Pyramid decomposition [114], the Spherical Laplacian Pyramid (SLP)
proceeds first by low pass filtering the spherical signal in the Fourier domain for speeding up the compu-
tations. Let us assume that the original data F is bandlimited, i.e, F̌ (p, q) = 0, ∀p > W0 and sampled on
grid G0. We capture the low frequency information by using a half-band axisymmetric filter Ȟ. A spherical
function is said to be axisymmetric if it is invariant to rotation with respect to the principal spherical axis.
Such a function is independent of q and is represented by Ȟ(p). The bandwidth of the filter Ȟ(p) is chosen
such that it is numerically close to a perfect half band filter. The signal F is low pass filtered using Ȟ(p),
and the filtered data is then downsampled on the nested sub-grid G1, which gives the low-pass channel F1

of our spherical laplacian pyramid. The high-pass channel of the pyramid F0 is computed as usual, that
is by first up-sampling F1 on the finer grid G0, low-pass filtering it with Ȟ and taking the difference with
F . Coarser resolutions are computed by iterating this algorithm on the low-pass channel F1. By repeating
this step k times, the original spherical signal F can be decomposed into the LL subband Fk and detailed
subbands Fk−1, Fk−2, . . . , F0. The parameter k denotes the level of decomposition used to process the image
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Figure 3.3: Detailed block scheme of the Wyner-Ziv encoder with correlation estimation.

F .
The coefficients of the SLP need to be quantized with an efficient rate distribution among the subbands.

We follow the algorithm proposed for the Laplacian Pyramid in [117]. The rate allocation can be computed
by Lagrange’s multipliers method when the quantizers are uniform. Unsurprisingly, the rate in the different
subbands is chosen to be proportional to the variance of the coefficients.

3.3 Slepian-Wolf encoder

We describe now in more details the proposed Wyner-Ziv encoding scheme illustrated in Fig. 3.3. The om-
nidirectional images I1 and I2 undergo multiresolution decomposition based on SLP using k decomposition
levels. The generated subband coefficients are represented by {Ij,v}, ∀j = {1, 2}, v = {0, . . . , k}, where j
represents the image (view) index and k represents the corresponding subband index. For example, Ij,v
represents the set of coefficients in the vth subband of the image Ij . The generated subband coefficients are
then quantized uniformly with optimal rate allocation among the subbands, as described above.

Coefficient partitioning

The quantized coefficients of each image are then distributed alternatively into two correlated partitions that
form a kind of a checkerboard pattern. Let (m,n) denote the position indexes of a point (θvm, ϕvn) on the
equi-angular spherical grid Gv, as defined in Eq. (3.2). The quantized coefficient Ij,v at a point (θvm, ϕvn)
on the spherical grid is put in the partition Uj,v if ((m mod 2) XOR (n mod 2)) = 0. Otherwise it is put
in the partition Vj,v. For illustration, Fig. 3.4 shows the partitioning strategy used in our scheme for the
subband Ij,v of the bandwidth Wv = 2 (this subband is of the size 4× 4). It is clear that the coefficients at
positions marked in white and black color belong to the partitions Uj,v and Vj,v respectively. Finally, the
quantized coefficients from each subband v = {0, . . . , k} of the pyramid are split into two partitions Uj,v

and Vj,v, following the same partitioning strategy.
The quantized coefficients in the partitions {Uj,v}, ∀j = {1, 2}, v = {0, . . . , k} are compressed using

the Arithmetic encoder and the compressed bits {Dj,v} are transmitted directly to the joint decoder. The
partitions {Vj,v} however further undergo coset and Slepian-Wolf coding to save bit rate in the distributed
coding scheme. The quantized coefficients in partition Vj,v are put in different cosets. The cosets group
coefficients from Vj,v that are separated by a distance dj,v. Only the coset indexes are eventually encoded,
which provides some significant rate savings. The coset distance is estimated as dj,v = 2�log2(2Ej,v+1)�, where
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Figure 3.5: Block scheme of the LDPC encoder bank, where the bitplanes are encoded starting from b0. Each bit
plane bl (0 ≤ l ≤ L− 1) is encoded based on the previously encoded l − 1 bitplanes and the side information Ĩj,v.

Ej,v is the maximum error between the original and the side information images in the vth subband. Scalar
quantization and coset encoding together behave similarly to nested scalar quantization.

Multilevel LDPC coding

Even after coset encoding, some correlation still exists between the coefficients and the side information
available at the decoder. We propose to achieve further compression by encoding the coset indexes with
multilevel LDPC codes [118]. In other words, instead of sending the coset indexes to the decoder, the
encoder only transmits the syndrome bits {Sj,v} resulting from the LDPC encoding. We propose to use
irregular LDPC codes and we follow the procedure described in [111, 119] in order to construct the parity
check matrix. We describe now in more details the multilevel LDPC coding, and the channel rate estimation.

For the image Ij , the coset indexes generated from each subband v are first decomposed into L bit
planes b0, b1, . . . , bL−1, where b0 represents the most significant bit plane (MSB) and bL−1 represents the
least significant bit plane (LSB). Each bitplane bl (0 ≤ l ≤ L− 1) is encoded by the LDPC encoder, starting
from the bit plane b0, as illustrated in Fig. 3.5. The LDPC encoding rate is chosen by assuming that the
error between the SLP subbands and the corresponding side information follows a Laplacian distribution.
The subsequent bitplanes are also encoded with LDPC codes, where the code rate is however adapted based
on the previously encoded bitplanes.

In more details, the coding rate for encoding the lth bitplane of the subband Ij,v is estimated as follows.
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First, the conditional probability P (i) = Pr(bl(i) = 1|Ĩj,v(i), b0(i), b1(i), . . . , bl−1(i)) is calculated for each
bit i, where Ĩj,v denotes the side information for decoding the subband Ij,v. The rate of the LDPC encoder
is then chosen to be equal to the following conditional entropy,

H(bl|Ĩj,v, b0, b1, . . . , bl−1) �
1

M

M∑
i=1

H(P (i)), (3.3)

where M denotes the number of bits in the bit plane [120]. Unfortunately, the side information is not
available at the encoder, and the conditional probability P generally has to be estimated as described
below.

Channel rate estimation

One of the main difficulties in distributed coding is the estimation of the correlation between sources, or
equivalently the construction of noise models at the encoder for the proper design of the Slepian-Wolf
encoder. Our encoder has to estimate the noise distribution in order to determine the coset distance and
the LPDC coding rate. Unfortunately, the side information that is used for joint decoding is only present
at the decoder, and the encoder can only predict the noise distribution.

We assume that the error Ej,v between the SLP subband Ij,v and the corresponding side information
subband Ĩj,v follows a Laplacian distribution, of the form fEj,v (e) = 1

2λj,v
exp(− |e|

λj,v
). The Laplacian

distribution is a common assumption in such a scenario, and it provides a good approximation of the actual
distribution of the error. In this case, the rate Rj,v necessary to code the error Ej,v is equivalent to the
conditional entropy H(Ij,v|Ĩj,v). When the quantization is uniform with step size δj,v for the subband Ij,v,
the rate depends only on the variance of the Laplacian distribution [121]. It can be written as

Rj,v = H(Ij,v|Ĩj,v) = αv log2(
λj,v
δj,v

) + βv, (3.4)

where αv and βv are constants that can be estimated offline on test image sets, and therefore are not
dependent of the image Ij . The construction of the noise model for a proper choice of the coding parameters
therefore consists in estimating the parameters {λj,v} of the Laplacian distribution, for all j = {1, 2} and
v = {0, . . . , k}.

In our scheme, the side information is actually built on prediction and disparity estimation steps. We
can thus model separately the effect of spatial prediction of the coefficients and the benefit of disparity
estimation. In the first case, the encoder can estimate the rate R′

j,v that is necessary to correct the error
due to spatial prediction of the coefficients. The encoder can implement the coefficient prediction step, since
it does not depend on the information from the other sensors. The residual error between the coefficients
in the subband Ij,v and the corresponding subband computed by coefficient prediction Īj,v can then be
modeled with a Laplacian distribution. The parameter of the distribution λ′j,v is finally estimated from the
prediction error. The rate R′

j,v needed to code the prediction error can also be computed by the conditional
entropy as

R′
j,v = H(Ij,v|Īj,v) = αv log2(

λ′j,v
δj,v

) + βv. (3.5)

However, the side information is not only built on coefficient prediction; disparity estimation is used at
the decoder in order to exploit the correlation between images from different sensors. We propose to compute
a conservative approximation of the gain due to disparity estimation, expressed as γv = R′

j,v/Rj,v. It can be
computed by offline encodings of several test images, where the complete side information is made available
at the encoder. The offline estimation of γv finally permits to estimate at the encoders the parameter of the
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Figure 3.6: Detailed block scheme of the Wyner-Ziv decoder.

complete noise model. The parameter λj,v of the Laplacian distribution can be expressed as

λj,v = λ′j,v 2(−
R′

j,v(1− 1
γv

)

αv
), (3.6)

by combinations of Eq. (3.4) and Eq. (3.5). As we have now an approximation of the distribution of the
error induced by the side information, we can estimate the side information for subband Ĩj,v at the encoder.
It permits to estimate the error Ej,v and hence the coset distance dj,v for coding the quantized coefficients.
Finally, we can estimate the LDPC coding rate by computing the probability P (i), and the conditional
entropy given in Eq. (3.3). The complete encoding scheme is illustrated in Fig. 3.3.

3.4 Joint decoding

3.4.1 Overview

The joint decoder exploits the correlation between images in order to reconstruct the views of the 3D
scenes. The decoding scheme is illustrated in Fig. 3.6. The quantized coefficients from the partitions {Uj,v},
∀j = {1, 2}, v = {0, . . . , k}, are easily recovered by arithmetic decoding and inverse quantization. The
quantized coefficients of the partitions {Vj,v}, ∀j = {1, 2}, v = {0, . . . , k}, however, have to be reconstructed
by Slepian-Wolf decoding. These missing quantized coefficients are first predicted in each subband Vj,v, with
the help of the coefficients from the corresponding partition Uj,v. They are simply predicted by interpolation
from the four nearest neighbors in the partition Uj,v. This simple spatial prediction exploits the correlation
among neighbor coefficients and the vth predicted subband is denoted by Īj,v. The side information is then
built by refining the value of the predicted coefficients by disparity compensation between the approximations
of the different images. The decoder implements disparity estimation on the sphere to exploit the redundancy
between the omnidirectional images from different cameras. Next, the coset indexes that correspond to the
coefficients in partitions {Vj,v} are recovered by using the syndrome bits of the LDPC code, as well as the
side information created by prediction and disparity estimation. Finally, the SLP coefficients are recovered
by coset decoding with the help of side information, and the images are reconstructed after inverting the
SLP. The main steps of the joint decoder algorithm are detailed in the rest of this section.

3.4.2 Side information generation

The subbands built on the spatial prediction of the missing coefficients are refined by the multi-resolution
block-based disparity estimation on the sphere. We summarize here the key ideas of the disparity estimation
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on the sphere, while more details are available in [39]. The low resolution subband Ī1,k is divided into
blocks of uniform solid angles. For each block in Ī1,k, a best matching block in the mean square sense is
selected in Ī2,k. The displacement between the corresponding blocks represents the disparity vector. The
generated disparity vectors from the lower resolution are upsampled and are used as the initial estimate
for the higher resolution. The initial estimate is further refined using the subband coefficients at higher
resolution. This process is iterated up to the finest resolution and eventually outputs the disparity vectors.
The resulting disparity vectors are then used for constructing an estimate Ĩ1 of the image I1 that serves as
side information for decoding the image I1. In particular, the side information image is first constructed
by applying disparity compensation from the image Ī2. It then undergoes a SLP decomposition, similar
to the transform implemented at the encoder. The coefficients corresponding to the partition {U1,v} for
v = {0, . . . , k} are then substituted by the coefficients that have been correctly received from the encoder,
in order to reduce the estimation error. The same process is implemented to generate the side information
image Ĩ2 with disparity compensation based on the predicted image Ī1.

The exploitation of the correlation between images by disparity estimation permits to refine the values
of the predicted result from the partition Vj,v. The disparity estimation process can be repeated on the
images Ĩ1 and Ĩ2 in order to further improve the image approximation. We have observed empirically that
it is advantageous to repeat the disparity compensation a second time. This step is represented with a
dashed line on the block scheme in Fig. 3.6. Further iterations however, do not improve significantly the
side information. The resulting side information subbands {Ĩj,v}, ∀j = {1, 2}, v = {0, . . . , k} form a side
information that are used for decoding the coset indexes.

3.4.3 Coefficient decoding

The coefficients from partition {Vj,v}, ∀j = {1, 2} and v = {0, . . . , k}, are recovered by Slepian-Wolf
decoding. The side information Ĩj,v is used by the LDPC decoder together with the syndromes bits Sj,v to
decode the coset indexes in each subband Ij,v. A LDPC decoder bank uses L LDPC decoders to decode
each bit plane successively, starting from the MSB bitplane. While decoding the bitplane bl (0 ≤ l ≤ L− 1),
the previously decoded l − 1 bitplanes b0, b1, . . . , bl−1 are used as side information by the LDPC decoder.
LDPC decoding is implemented with a Belief propagation algorithm, where the confidence level is initialized
at the variable node using the following log likelihood ratio (LLR),

LLR = log

(
P (bl = 0|Ĩj,v, b0, b1, . . . , bl−1)

P (bl = 1|Ĩj,v, b0, b1, . . . , bl−1)

)
. (3.7)

The coset indexes of each vth subband Ij,v are reconstructed when all the bit planes are decoded. The
coefficients in each subband are finally computed by decoding the coset indexes. The decoded coefficient
corresponds to the coefficient in the coset that is one closest to the side information Ĩj,v. Once all the
subband coefficients are decoded, the image is reconstructed by inverting the SLP transform.

3.5 Experimental results

3.5.1 Setup

We evaluate the performance of our system on both synthetic and natural spherical images. Synthetic
spherical image set Room is shown in Fig. 3.7 and the natural spherical image set Lab is shown in Fig. 3.8.

The SLP is implemented using an axisymmetric filter Ȟ(p) constructed from a 7-tap digital filter h(s) =
{−0.0625 0 0.5625 1 0.5625 0 − 0.0625}. The filter Ȟ(p) is constructed by computing the Fourier
transform of h(s) and replicating it for each q such that Ȟ(p, 1) = Ȟ(p, q), ∀q. Obviously such a construction
results in an axisymmetric filter that is independent of the variable q, and is completely determined by Ȟ(p).
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(a) I1 (b) I2

Figure 3.7: Room spherical dataset: (a) original left view I1; (b) original right view I2.

(a) I1 (b) I2

Figure 3.8: Lab spherical dataset: (a) original left view I1; (b) original right view I2.

The SLP decomposition is further carried out in the Fourier domain in order to speed up the computations.
The SLP is implemented with four levels of decomposition (k = 4) in the results presented below. The multi-
resolution block-based disparity estimation at the decoder is carried out on blocks of size 4 × 4. Finally,
the performance is measured in terms of PSNR, where the mean square error is evaluated using the inner
product on the sphere.

3.5.2 Channel model evaluation

Before analyzing the performance of the distributed coding scheme, we propose to evaluate the channel
model that is used for designing the Slepian-Wolf encoder. We first show in Fig. 3.9, the distribution of the
error between the subband I2,3 and the corresponding side information subband Ĩ2,3 in the Room image
dataset. The error is computed only on the coefficients of the partition V2,3. We can see that the error
follows zero mean Laplacian distribution with λ2,3 = 0.0178, as expected.

Then, we estimate the constants αv and βv that are used to compute the conditional entropy in Eq. (3.4)
for both Room and Lab image sets. These constants are the same for all image sets and differ only in the
respective subbands. We have obtained α4 = 1.04 and β4 = 2.44 for the LL subband and αv = 0.54 and
βv = 1.92 (0 ≤ v ≤ 3) for the detail subband.

Finally, we evaluate the constant γj for all the subbands (0 ≤ j ≤ 4) that captures the benefit of the



34 Chapter 3. Symmetric Distributed Coding of Omnidirectional Images

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

 

 

Error

P
ro

b
ab

ili
ty

PMF (error)

Laplacian Distribution �
2,3

 = 0.0178

Figure 3.9: Distribution of the error E2,3 computed on the partition V2,3 between the detail subbands I2,3 and Ĩ2,3
of the Room dataset. The fitting curve shows a zero-mean Laplacian distribution with λ2,3 = 0.0178.

disparity estimation. We have obtained a value of γ4 = 1.25 for the LL subband in both image sets. For
the detail subbands the parameter γj is found to be 1.6, 1.4, 1.2 and 1.1 starting from the lowest to the
highest resolution subbands, respectively. The value of γj is decreasing when the resolution increases, since
the disparity estimation is mostly efficient in capturing the correlation in the low frequency subbands.

3.5.3 Coding performance

We first compare the performance of the proposed DSC solution (using estimated correlation model) with
an independent coding scheme and a joint encoding scheme. In the independent coding scheme, the images
I1 and I2 are encoded independently using a SLP-based strategy. The images I1 and I2 are transformed
using four SLP decomposition levels. Compression is achieved by first quantizing the coefficients [117] and
further the quantized coefficients are entropy coded (i.e., arithmetic coding), similarly to the coefficients of
the partition Uj,v in the distributed coding scheme. Next, the joint encoding scheme is based on disparity
compensated predictive coding. One image is selected as the reference and it is encoded independently,
whereas the other image is predicted from the reference image. In our scheme, the image I2 is selected
as the reference image and I1 is predicted from I2. The reference image I2 is encoded using four SLP
decomposition levels. Multi-resolution disparity estimation that is used to predict the image I1 is performed
with blocks of size 8 × 8. The residual error after disparity estimation is also encoded using a SLP based
strategy. The disparity vectors of the successive resolution levels are differentially encoded. Finally, the rate
allocation between the reference and the predicted images is chosen such that the rate-distortion performance
is maximized. The corresponding rate distributions are given in Tables 3.1 and 3.2, where the bits used for
the disparity vectors are included in the budget of the predicted frames.

The comparison between the distributed, independent and joint coding schemes are given in Fig. 3.10
in terms of rate-distortion performance. We observe that the distributed coding scheme performs close to
joint encoding algorithm that is based on the same representation and coding strategy. We also see that our
proposed DSC scheme clearly outperforms independent coding scheme. In particular, the gain reaches 1.5
dB for the Room image set and 1.3 dB for the Lab image set. We further compute the rate savings between
DSC and independent coding schemes for the same reconstruction quality. Tables 3.3 and 3.4 tabulate the
percentage of rate saving at different reconstructed qualities for the Room and Lab images respectively. We
could see that bit saving is approximately 25%, for both image sets. The reconstructed Room image Î1 is
finally shown in Fig. 3.11 for two sample bit rates. The reconstructed images are shown as planar images
in the (θ, ϕ) coordinates to show all parts of the spherical images.



3.5 Experimental results 35

Table 3.1: Distribution of bits between the reference image and the predicted image in joint encoding of the Room
dataset.

Reference Image (I2) Predicted Image (I1) Total Rate (bpp) Mean PSNR (dB)
Bits PSNR (dB) Bits PSNR (dB)
5293 23.8 297 23.19 0.0853 23.47
13161 26.11 864 25.93 0.214 26
37694 30.5 1887 28.12 0.604 29.15
37694 30.5 5197 28.8 0.6545 29.57

Table 3.2: Distribution of bits between the reference image and the predicted image in joint encoding of the Lab
dataset.

Reference Image (I2) Predicted Image (I1) Total Rate (bpp) Mean PSNR (dB)
Bits PSNR (dB) Bits PSNR (dB)
3742 25.26 219 24.11 0.0604 24.64
7759 28.06 707 26.37 0.1292 27.13
11469 29.73 1528 28.02 0.1983 28.79
11469 29.73 3274 29.1 0.2250 29.40
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Figure 3.10: Rate-distortion performance comparison between the proposed DSC scheme, joint and independent
coding strategies for (a) Room dataset and (b) Lab dataset.

Table 3.3: Bit rate savings for the Room Image I2.

PSNR (dB) Bits Bits saved % Bit saving
DSC Independent

23.8 3928 5293 1365 25.8
26.1 9526 13161 3635 27.6
30.5 28166 37694 9528 25.3
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Table 3.4: Bit rate savings for the Lab Image I1.

PSNR (dB) Bits Bits saved % Bit saving
DSC Independent

25.26 2852 3797 945 24.9
28.06 6214 8179 1965 24
29.73 9542 11920 2378 20

(a) Rate: 0.14 bpp, PSNR: 26.1 dB (b) Rate: 0.43 bpp, PSNR: 30.5 dB

Figure 3.11: Reconstructed image Î1 in the Room scene. The images are represented as planar images in (θ, ϕ)
coordinates.

Finally, we compare in Fig. 3.12 the average performance of the distributed coding scheme with inde-
pendent coding implemented by the JPEG compression standard, for the Room image set. The equiangular
grid of the spherical image is represented as a 2D planar image. A baseline JPEG coding scheme2 is used to
encode the unwrapped images I1 and I2 independently. We can see that both independent and distributed
coding schemes based on the SLP decomposition outperform JPEG at low coding rates, thanks to efficient
data processing on the sphere. At higher rates, the mode of representation of the information becomes
less critical, and JPEG provides improved performance. The degradation of the RD performance of our
scheme with respect to JPEG at higher rates could be explained by the use of a simple encoding scheme of
the overcomplete Spherical Laplacian Pyramid, which is based on adaptive quantization. Employing more
efficient coding methods for LP, like the one proposed in [122], could result in improved RD performance of
the proposed scheme, also at higher rates.

3.5.4 DSC scheme analysis

We finally analyze in more details the behavior of the distributed coding scheme. We first examine the rate
balance between the two encoders, by comparing the RD performance of the images I1 and I2. Fig. 3.13
shows the RD curves for the test images. As expected, the DSC scheme balances the encoding rates, since
the encoding rates between the images I1 and I2 are quite similar at a given reconstruction quality.

Next, we study the effect of imprecise estimation of the coding rate in the Slepian-Wolf encoder. For

2implemented using VcDemo toolbox available at: http://siplab.tudelft.nl/content/image-and-video-compression-learning-
tool-vcdemo
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Figure 3.12: Average rate-distortion performance for encoding the Room image set using the distributed coding
scheme and independent coding with JPEG.

both image sets, we compare the rate-distortion characteristics between the estimated correlation model
described in this paper, and an exact oracle model where the Laplacian distribution parameters {λj,v} are
known a priori at the encoder for all v, j. The comparison is presented in Fig. 3.14 for the image I1 of
the Room and Lab datasets. We can see that the methodology proposed in this paper for estimating the
channel rate performs very similar to the exact model. The performance degradation due to inexact rate
estimation stays smaller than 0.2 dB.
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Figure 3.13: Rate-distortion comparison between the images I1 and I2 to examine the rate balance among the
encoders: (a) Room dataset; (b) Lab dataset.

3.6 Conclusions

In this chapter we have contributed a rate balanced distributed source coding scheme for the effective
representation of 3D scenes captured by stereo omnidirectional cameras. The proposed coding framework
processes the visual information on the 2D sphere in order to preserve the intrinsic geometry information of
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Figure 3.14: Rate-distortion comparison between estimated correlation model vs exact correlation model: (a)
Room image I1; (b) Lab image I1.

the catadioptric imaging systems. The correlated spherical images are decomposed by a Spherical Laplacian
Pyramid and coefficients are partitioned and Slepian-Wolf encoded at independent encoders. The joint
decoder efficiently exploits both the intra- and inter-view correlation by coefficient prediction and disparity
estimation respectively. Our scheme outperforms independent coding and performs close to a joint encoding
solution based on similar coding principles. The channel rate parameters has been estimated at the encoder
based on a conservative estimation on sets of images; it however shows only a negligible degradation in rate-
distortion performance with respect to the oracle based scheme. For a given target bit rate, we have shown
experimentally that the image reconstruction qualities are similar between the images. Finally, it should be
noted that the ideas presented in this chapter can be adapted for building a rate balanced distributed coding
scheme for compressing the stereo planar images; it could be one of the interesting future perspectives of
this thesis. In the next chapter, we omit the Slepian-Wolf encoder and propose a joint representation scheme
that processes directly the compressed images.



Chapter 4

Distributed Joint Representation from
Compressed Images

4.1 Introduction

In the previous chapter, we have proposed a rate balanced distributed coding based on Wyner-Ziv results,
where the images are compressed using a multi-resolution partition and Slepian-Wolf encoding. Also, we
have proposed a methodology to estimate the channel rate parameters at the encoder. The encoding rate
is controlled using an additional rate control module. The overall computational complexity at the encoder
becomes important due to this Slepian-Wolf rate control module. One solution to reduce the encoding
complexity is to use a feedback channel in order to precisely control the Slepian-Wolf coding rate [79, 82].
This however results in high latency and bandwidth usage due to the multiple requests from the joint
decoder, and therefore can hardly be used in real time applications. Hence, we propose to omit the Slepian-
Wolf encoder and we present now a rate balanced distributed coding scheme, where the compressed images
are directly transmitted to the joint decoder. Due to the absence of Slepian-Wolf encoding, the framework
presented in this chapter neither requires an encoder rate control module nor a feedback channel; it therefore
reduces the complexity at the encoder. In this context, Schenkel et al. [123] have proposed a distributed
joint representation of image pairs from the JPEG compressed images. However, this scheme is built on
asymmetric frameworks, where one image is considered as the reference for decoding the second image.

In this chapter, we rather propose a symmetric distributed joint scene representation for a pair of
correlated images captured in perspective or omnidirectional camera networks. We consider a scenario,
where the captured images are compressed independently using standard encoding solutions (e.g., SPIHT)
and are transmitted to a central decoder (see Fig. 4.1). The central decoder jointly processes the compressed
images and reconstructs an image pair by exploiting the correlation between images. The joint reconstruction
is cast as a constrained optimization problem that reconstructs an image pair that satisfies the estimated
correlation model. At the same time, we add constraints that force the reconstructed images to be as close
as possible to the compressed views. We show by experiments that the proposed joint reconstruction scheme
outperforms independent reconstruction in terms of image quality for both planar and spherical datasets.
We further observe that the joint reconstruction is effective only at medium bit rates and not at low bit
rates due to the significant distortion in the disparity image or the correlation information. In particular,
we observe that the disparity values are not precisely estimated in the low rate regime.

In the literature, the effect of compression distortion introduced due to the encoding of images on the
quality of disparity estimation has not been studied yet. On the other hand, most of the research works
have focussed on studying the effect of geometric distortions in the compressed disparity image on the
image prediction quality, e.g., [124, 125, 126, 127]. However, these works fail to consider the effect of image
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Figure 4.1: Schematic representation of the proposed scheme. The images I1 and I2 are correlated through
displacement of scene objects due to viewpoint change. The cameras C1 and C2 can be either perspective or
omnidirectional imaging sensors.

compression on the disparity estimation. In the second part of this chapter, we therefore consider the problem
of estimating an accurate disparity image from the low bit rate compressed images. We propose here a rate
allocation scheme based on a modified SPIHT algorithm that gives importance to the reconstruction of the
visual information in the low contrast regions, and at the same time it controls the penalty of reconstruction
in other regions, e.g., texture and strong edges. Such a rate allocation scheme leads to an accurate disparity
estimation compared to the one that is estimated from the traditional coding schemes based on JPEG 2000,
SPIHT or JPEG. We show experimentally that at low bit rates, the joint reconstruction is effective in
improving the quality of the compressed images due to accurate disparity estimation. Finally, we compare
the joint reconstruction performance between the distributed coding schemes implemented with SPIHT and
modified SPIHT encoding principles. Despite improved correlation estimation with the modified SPIHT
coding scheme, we observe that the image reconstruction quality is significantly penalized compared to
the one obtained with SPIHT-based joint decoding schemes. This is due to the encoding of different image
characteristics for optimizing the image reconstruction and disparity estimation. Therefore, optimizing both
the image reconstruction and the disparity estimation are not possible under fixed bit budget.

In summary, the contributions in this chapter are: (1) proposed a distributed joint representation al-
gorithm that exploits the correlation between compressed images captured in perspective or catadioptric
cameras; (2) proposed a rate allocation methodology that allows to estimate an accurate disparity model
from the compressed images. The rest of this chapter is organized as follows. In Section 4.2, we describe
our distributed coding framework and the novel joint reconstruction algorithm based on an optimization
framework. Section 4.3 reports the distributed coding performance for both planar and omnidirectional
images. Section 4.4 describes the proposed rate allocation methodology and its performances are analyzed
in details in Section 4.5. Section 4.6 concludes this chapter.

4.2 Joint reconstruction of compressed images

4.2.1 Framework

In this section, we give an overview of our distributed coding framework. We consider the scenario shown
in Fig. 4.1, where a pair of cameras C1 and C2 sample a 3D scene in different viewpoints; the cameras can
be either perspective or catadioptric sensors. Without loss of generality, we assume that the images I1 and
I2 (with resolution N = N1 ×N2) are rectified, so that correlation between images is effectively described
by a disparity field. However, our framework can also be extended to estimate a motion field between
the time varying images captured by a video camera. The captured images I1 and I2 are compressed
independently with b bits per view using transform-based coding solutions (e.g., SPIHT [128]). Balanced
rate allocation allows us to share the transmission and computational cost equally among the sensors, and
thus advantageously avoids any hierarchical relationship among the sensors. The compressed information
is transmitted to a central decoder that exploits the underlying correlation between views for improved
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decoding quality. In particular, as shown in Fig. 4.1, the joint decoder estimates correlation between images
in terms of dense disparity image mh from the compressed images Ĩ1 and Ĩ2. A joint reconstruction stage
eventually uses the correlation estimation mh and enhances the quality of the independently compressed
views Ĩ1 and Ĩ2. The main steps of the joint decoding algorithm are detailed in the rest of this section.

4.2.2 Disparity models

The first task is to estimate the correlation between images which typically consists in a pixel-wise disparity
image. The disparity models are estimated by matching the corresponding pixels between images (see
Eq. (2.11)). Several algorithms have been proposed in the literature to compute dense disparity images.
For more details, we refer the reader to [7]. In this work, we estimate a dense disparity image mh from the
compressed images in a regularized energy minimization framework, where the energy model is given as

E(mh) = Ed(m
h) + λEs(m

h). (4.1)

Ed(m
h) and Es(m

h) represent the data and smoothness terms respectively, and λ balances these two terms.
The data cost is used to match the pixels across views by assuming that the 3D scene surfaces are Lambertian,
i.e., the intensity is consistent irrespective of the viewpoints. In this work, we match the pixels across views
using a sampling insensitive Birchfield-Tomasi (BT) cost function [129]. We first measure the disagreement
of assigning the real range of disparities (mh(z) − 1/2,mh(z) + 1/2) to the pixel z = (m,n) by

Cfwd(z,m
h(z)) = min

mh(z)−1/2≤x≤mh(z)+1/2
|Ĩ1(m,n)− Ĩ2(m+ x, n)|. (4.2)

For symmetry, we also measure

Crev(z,mh(z)) = min
m−1/2≤x≤m+1/2

|Ĩ1(x, n) − Ĩ2(m+mh(z), n)|. (4.3)

Then, the cost of assigning the disparity mh to the pixel z = (m,n) is measured by

C(z,mh(z)) = min{Cfwd(z,m
h(z)), Crev(z,mh(z), z)}. (4.4)

Finally, the data cost Ed(m
h) is computed as the cumulative sum of the cost C(z,mh(z)), ∀z, i.e.,

Ed(m
h) =

N1∑
m=1

N2∑
n=1

C(z,mh(z)), (4.5)

where N1 and N2 represent the image dimensions.
The smoothness term Es is used to enforce consistent disparity among the neighboring pixels z and z′.

It is measured as
Es(m

h) =
∑

z,z′∈N
Vz,z′ , (4.6)

where N represents the usual four-pixel neighborhood. The term V (z, z′) is given as

V (z, z′) = min(|mh(z) −mh(z′)|, τ), (4.7)

where τ sets an upper level on the smoothness penalty that helps preserving the discontinuities [130]. Several
minimization algorithms exist in the literature for solving Eq. (4.1), and they are naturally formulated
in the Bayesian framework using MRF, e.g., Simulated annealing [131], Belief Propagation [132], Graph
Cuts [133, 134]. Among them, optimization techniques based on Graph Cuts compute the minimum E in
polynomial time and they generally give better results compared to the other techniques [7].
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Finally, it should be noted that the disparity between spherical images can also be computed by min-
imizing the energy given in Eq. (4.1). In this case, the disparity is computed as differences between the
spherical coordinates of the corresponding pixels, after mapping the omnidirectional images on the sphere.
For more details, we refer the reader to [112].

4.2.3 Joint reconstruction

Our novel joint reconstruction algorithm takes benefit of the estimated correlation information in order
to reconstruct the images. The joint reconstruction of compressed images has been considered in other
applications such as super-resolution, where multiple compressed images are fused to enhance the resolution.
Such techniques usually target reconstruction of a high resolution image from multiple images. However,
our main target in this chapter is to improve the quality of the compressed views and not to increase the
spatial resolution of the reconstructed images.

We propose to reconstruct an image pair (Î1, Î2) as a solution to the following optimization problem:

(Î1, Î2) = argmin
I1,I2

(‖I1‖TV + ‖I2‖TV ) s.t. ‖I1 − Ĩ1‖2 ≤ ε1, ‖I2 − Ĩ2‖2 ≤ ε1,
‖I2(m,n)− I1(m+mh(m,n), n)‖22 ≤ ε2,

(4.8)

where Ĩ1 and Ĩ2 represent the compressed views and ‖.‖TV represents the total-variation norm defined in
Eq. (2.6). From Eq. (4.8) it is clear that we are interested to reconstruct a pair of smooth images that satisfy
consistency with both the compressed images and the correlation information mh. In our framework, we
use the total variation (TV) prior, however one could also use a sparsity prior that minimizes the l1 norm
of the coefficients in a sparse representation of the images.

Before solving the optimization problem given in Eq. (4.8), we represent the last constraint ‖I2(m,n)−
I1(m+mh(m,n), n)‖22 in the matrix format as ‖I2−AI1‖22. That is, we represent the disparity compensation
I2(m,n) = I1(m+mh(m,n), n) as a linear transformation I2 = AI1 given as

⎡
⎢⎢⎢⎣

IT2,1
IT2,2
...

IT2,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I2

=

⎡
⎢⎢⎢⎣

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

IT1,1
IT1,2
...

IT1,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I1

, (4.9)

where the I1,m represents the mth row of image I1. The sub-matrix Am used in Eq. (4.9) is of dimensions
N2 ×N2 that relates the mth row of images.

For planar datasets, the sub-matrix Am is computed as

Am(p,min(p+ β,N2)) =

{
1 mh(m, p) = β,
0 otherwise. (4.10)

where mh(m, p) represents the disparity value at the pth location in the mth row. If the value of p+β > N2

(which might happen at the boundaries) we replace p+ β = N2, so that the dimensions of the matrix Am is
N2 ×N2. It is easy to check that the matrix Am formed using Eq. (4.10) contains only one non-zero value
in each row. For example, the matrix Am corresponding to mh(m, .) = [2 2 1 1] is given by

Am =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦ . (4.11)
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Since the matrix Am contains only one non-zero value in each row it is evident that I2(m, i) = I1(m, j) if
Am(i, j) = 1. Thus, it is clear that the matrix Am shifts the pixels in I1,m by the corresponding disparity
vector mh(m, .), to form I2,m.

The disparity compensation between spherical images can also be represented as I2 = AI1, by adapting
the construction of the matrix A. One of the main differences with the perspective cameras is that there is no
boundary in the spherical images; instead there exists periodicity in the azimuthal direction. Therefore, we
need to consider this periodicity while constructing the matrix A. This can be easily achieved by replacing
the boundary condition min(p+β,N2) in Eq. (4.10) with mod(p+β,N2), where mod represents the modulo
operator. The sub-matrix Am for the spherical signals can be constructed as

Am(p,mod(p+ β,N2)) =

{
1 mh(m, p) = β,
0 otherwise. (4.12)

Using this linear relationship of disparity compensation, Eq. (4.8) can be rewritten as

(Î1, Î2) = argmin
I1,I2

(‖ I1 ‖TV + ‖ I2 ‖TV ) s.t. ‖I1 − Ĩ1‖2 ≤ ε1, ‖I2 − Ĩ2‖2 ≤ ε1, ‖I2 −AI1‖22 ≤ ε2. (4.13)

4.2.4 Optimization methodology
We propose now a solution for the joint reconstruction problem of Eq. (4.13). We first show that the
optimization problem is convex. Then, we propose a solution based on proximal methods.

Proposition 1. The optimization problem described in Eq. (4.13) is convex.

Proof: Our objective is to show that all the functions in Eq. (4.13) are convex. However, it is quite easy
to check that the functions ‖Ij‖TV and ‖Ij − Ĩj‖2, ∀j ∈ {1, 2} are convex [135]. So, we have to show that
the last constraint ‖I2 − AI1‖22 is a convex function. Let g(I1, I2) = ‖I2 − AI1‖22. The function g can be
represented as

g(I1, I2) = ‖I2 −AI1‖22
= (I2 −AI1)T (I2 −AI1)
= IT2 I2 − IT2 AI1 − IT1 AT I2 + IT1 A

TAI1. (4.14)

The first derivative ∇g and the second derivative ∇2g of the function g are given as

∇g = (−2AT I2 + 2ATAI1, 2I2 − 2AI1)

∇2g =

[
2AAT −2A
−2AT 2

]

= 2CTC (4.15)
� 0,

where C = [AT − I] and 2CTC � 0 follows from 2xTCTCx = 2‖Cx‖22 ≥ 0 for any x. This means that
the Hessian function ∇2g is positive semi-definite and thus g(I1, I2) is convex. �

We now describe the proposed optimization methodology to solve the convex problem in Eq. (4.13) based
on proximal splitting methods [136]. We first describe our solution for planar images. Later, we explain
how to adapt the solution in order to perform joint reconstruction for spherical images. For mathematical
convenience, we rewrite the optimization problem given in Eq. (4.13) as

min
X
{‖ E1X ‖TV + ‖ E2X ‖TV } s.t. ‖E1(Y −X)‖2 ≤ ε1, ‖E2(Y −X)‖2 ≤ ε1, ‖[−A �]X‖22 ≤ ε2,

(4.16)
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where X =

[
I1
I2

]
, Y =

[
Ĩ1
Ĩ2

]
, E1 =

[
� 0

]
, E2 =

[
0 �

]
. The optimization problem given in

Eq. (4.16) can be visualized as a special case of general convex problem given as

min
X∈H
{f} = min

X∈H
{f1(X) + f2(X) + f3(X) + f4(X) + f5(X)}, (4.17)

where H = R
2N is the Hilbert space, and the functions f1, f2, f3, f4, f5 ∈ Γ0(R

2N ) [48, 136]. Γ0(R
2N ) is the

class of lower semicontinuous convex functions from R
2N to ]−∞ +∞] such that the convex function g is

not infinity everywhere, i.e., dom g �= ∅. For the optimization problem given in Eq. (4.16) the functions in
the representation of Eq. (4.17) are

1. f1(X) = ‖E1X‖TV

2. f2(X) = ‖E2X‖TV

3. f3(X) = ic(X) =

{
0 X ∈ c
∞ otherwise

i.e., f3(X) represents the indicator function of the closed convex set c given as
c = {X ∈ R

2N : ‖E1(Y −X)‖2 ≤ ε1}

4. f4(X) = ic(X) =

{
0 X ∈ c
∞ otherwise

where c is the closed convex set given as c = {X ∈ R
2N : ‖E2(Y −X)‖2 ≤ ε1}

5. f5(X) = id(X) =

{
0 X ∈ d
∞ otherwise

where d is the closed convex set given as d = {X ∈ R
2N : ‖[−A �]X‖22 ≤ ε2}.

The solution to the problem of Eq. (4.17) can be found by generating the recursive sequence X(t+1) =
proxβf (X

(t)), β > 0, where the function f is given as f = f1 + f2 + f3 + f4 + f5. The proximity operator is
defined as the proxf (X) = minX∈H f(Z) + 1

2‖X − Z‖2. The main difficulty with these iterations are the
computations of the proxβf (X) operator, as there is no closed form expression to compute the proxf (X)
especially when the function f is the cumulative sum of two or more functions. In such cases, instead of the
computing the proxf (X) directly for the combined function f one can perform a sequence of calculations
involving separately the individual operators proxf1 (X), proxf2 (X), proxf3 (X), proxf4 (X) and proxf5 (X).
These class of algorithms are popularly known as splitting methods as these methods proceed by splitting
the combined function f into f1, f2, f3, f4 and f5, and hence allows an easily implementable algorithm [136].

We describe in more details the methodology to compute the prox for the functions f1, f2, f3, f4 and f5.
For the function f1(X) = ‖E1X‖TV the operator proxf1 (X) can be computed iteratively using Chambolle’s
algorithm [137]. A similar approach can be used to compute the proxf2 (X). The function f3 can be
represented as f3 = F ◦G, where F = iD2(ε1) and G = E1X − E1Y . The set D2(ε1) represents the l2 ball
defined as D2(ε) = {y ∈ R

2N |‖y‖2 ≤ ε1}. The proxf3 can be computed using the following closed form
expression given as

proxf3 (X) = proxF◦G(X) = X + (E1)
∗(proxF − �)(G(X)) (4.18)

[138], where (E1)
∗ represents the conjugate transpose of E1. The proxF (y) with F = iD2(ε1) can be computed

using radial projection [136] as

proxF (y) =

{
y ‖y‖2 ≤ ε1

y
‖y‖2

otherwise. (4.19)

The prox for the function f4 can also be solved using Eq. (4.18) with F = iD2(ε1) and G = E2X − E2Y .
Finally, the function f5 can be represented with F = iD2(

√
ε1) and an affine operator G = [−A �]X = ΩX ,

i.e., f5 = F ◦ G. As the operator Ω is not a tight frame, the proxf5 can be computed using an iterative
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scheme [138]. Let μt ∈ (0, 2/c2), and c1 and c2 be the frame constants with c1� ≤ ΩΩ∗ ≤ c2�. The proxf5
can be calculated iteratively as

u(t+1) = μt(�− proxμ−1
t F )(μ

−1
t u(t) +Gp(t)) (4.20)

p(t+1) = X − Ω∗u(t+1), (4.21)

where u(t) → u and p(t) → proxF◦G = proxf5 = X − Ω∗u. It has been shown that both u(t) and p(t)

converges linearly and the best convergence rate is attained when μt = 2/(c1 + c2) [138].

In our work, we use the parallel proximal algorithm (PPXA) proposed by Combettes et al. [136] to
solve Eq. (4.17), as the algorithm can be easily implementable on multicore architectures due to its parallel
structure. The PPXA algorithm starts with an initial solution X(0) and computes the proxf1 , proxf2 ,
proxf3 , proxf4 and proxf5 in each iteration, and the result is used to update the current solution X(0).
The iterative procedure of computing the prox for functions f1, f2, f3, f4 and f5, and the updating steps are
repeated until convergence is reached. The authors have shown that the sequence (X(l))l≥1 generated by the
PPXA algorithm is guaranteed to converge to the solution of problems such as the one given in Eq. (4.17).

So far, we have described the prox computations for solving Eq. (4.17) on planar images. For spherical
images we have to consider the specific geometry on the sphere. The prox operator for minimizing the total
variation norm ‖.‖TV of the functions f1 and f2 can be solved with the modified Chambolle’s algorithm by
defining the spherical signal on a weighted graph [139, 140]. In more words, a weighted graph is constructed
with vertices corresponding to the image pixels and edges corresponding to the connections between adjacent
pixels. Such a graph-based representation allows us to compute effectively the gradient and divergence
differential operators. For more details, we refer the reader to [141]. The prox computations for the
functions f3, f4 and f5 are obtained by adapting the proxF operator given in Eq. (4.19) using the l2 norm
definition on the sphere. The l2 norm for a spherical signal h is defined as

‖h‖2,s =
√∫

θ

∫

ϕ

h2(θ, ϕ)sinθdθdϕ. (4.22)

In the above expression, we use subscript s to denote the norm definition on sphere. Using this definition,
the proxF operator for the spherical signal is computed as

proxF (y) =

{
y ‖y‖2,s ≤ ε1,

y
‖y‖2,s

otherwise. (4.23)

Using the modified proxF computation given in Eq. (4.23), the prox of the functions f3, f4 and f5 are
computed with Eq. (4.18) and Eqs. (4.20)-(4.21). Finally, the joint reconstruction problem for the spherical
images can be solved using the PPXA algorithm described above, by plugging the adapted prox functions
in order to cope with the spherical image geometry.

4.3 Joint reconstruction performance

In this section, we verify the performance of our proposed joint reconstruction algorithm on correlated
planar and spherical images. We also analyze the effect of image compression on the correlation estimation
performance.
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4.3.1 Planar images
For the planar images, we carry out experiments on two natural datasets (Tsukuba and Venus1 [7]), and one
synthetic dataset (Object shown in Fig. 4.2). A wavelet transform is applied on the luminance component
of the images I1 and I2 using Daub-9/7 filter [142], followed by the encoding of wavelet coefficients based
on SPIHT algorithm [128]. We solve the disparity estimation optimization problem given in Eq. (4.1) using
α-expansion algorithm in Graph Cuts [133, 130, 134]. In our experiments, the parameter λ in Eq. (4.1) is
heuristically selected such that the disparity error (DE) is minimized, where the DE is computed as

DE =
1

N1 ×N2

∑
z=(m,n)

{
|Mh(z)−mh(z)| > 1

}
, (4.24)

where Mh represents the groundtruth disparity image [7]. It should noted that one could also estimate
the parameter λ in Eq. (4.1) using the automated method proposed in [143], i.e., parameter λ is estimated
without the knowledge of the groundtruth information. However, for simplicity, in our experiments we
select the best parameter λ based on trial and error experiments using the groundtruth information. The
estimated disparity result is then used to decode an image pair by solving Eq. (4.13). In our experiments,
we fix the parameters ε1 = 2 and ε2 = 3 that are selected based on trial and error methods such that it
maximizes the quality of the reconstructed images.

(a) I1 (b) I2 (c) Mh

Figure 4.2: Object planar dataset: (a) original left view I1; (b) original right view I2; (c) groundtruth disparity
image Mh.

Fig. 4.3(a) and Fig. 4.3(b) compare the overall quality of the decoded images between the independent
and joint decoding solutions, for Tsukuba and Venus datasets respectively. For total bit rates > 0.6, we see
from Fig. 4.3 that the proposed joint reconstruction scheme outperforms the independent reconstruction by
a margin of about 0.9 and 1.3 dB for both datasets. This confirms that the proposed joint reconstruction
framework effectively exploits the correlation between images. While carrying out the experiments we have
also observed that the reconstruction quality of the images Î1 and Î2 are quite similar for a given target bit
rate. From Fig. 4.3, we further see that the joint reconstruction fails to improve the quality of the compressed
images at low rate due to the poor quality of the disparity estimation. In the coming paragraphs, we focus
on studying the impact of the compression algorithms on the performance of the disparity estimation.

For the sake of clarity, we first study this impact in the Object dataset shown in Fig. 4.2. In particular,
we carry out detailed analysis on the disparity results estimated from the compressed images encoded at
a bit rate of 0.1 bpp. The compressed views are available in Fig. 4.4(a) and Fig. 4.4(b) respectively, and
Fig. 4.4(c) shows the disparity error, where the white pixels denote an error larger than 1. From Fig. 4.4(c),
we observe that the disparity value corresponding to the big object is recovered correctly, but not for the
small object. The reason is that, from the compressed images given in Figs. 4.4(a) and 4.4(b), we see that
the contrast or intensity differences in the proximity of the small object is not high enough to detect the
disparity activity. It can be further noted that the intensity difference in the proximity of the big object is

1available at http://vision.middlebury.edu/stereo/data/
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(a) (b)

Figure 4.3: Comparison of the RD performances between the independent and joint decoding schemes: (a) Tsukuba
dataset; (b) Venus dataset.

(a) Ĩ1 (b) Ĩ2 (c) |Mh −mh| > 1

Figure 4.4: Disparity estimation from the SPIHT-based encoded images at a bitrate of 0.1 bpp in the Object
dataset. (a) Compressed left view Ĩ1; (b) compressed right view Ĩ2; (c) error in the disparity map, with DE=4.32%.
The white pixels denote an error larger than one.

Table 4.1: Disparity error for the Tsukuba and Venus datasets at various bit rates. Results are tabulated using
k = 4 and k = 5 wavelet decomposition levels respectively.

Bit rate (bpp) 0.4 0.5 0.6 0.7 0.8

DE(%)
Tsukuba 9.4 7.94 7.52 7.04 6.2
Venus 10.4 9.26 8.5 8.1 7.7

sufficiently large; this leads to the correct disparity estimation. Fig. 4.5 illustrates the intensity distribution
in the proximity of the big and small objects with and without compression of the images used in the
disparity estimation. In our experiments, the histogram is generated on a small patch taken around the
objects. From Fig. 4.5(a) and Fig. 4.5(c), we see that the intensity distribution generated from the original
image I1 is bimodal, i.e., there exists two peaks separated with a cliff. However, after compression we see
that the bimodal distribution is preserved only for the big object and not for the small object, as shown in
Fig. 4.5(b) and Fig. 4.5(d) respectively. This is because, the rate allocation scheme used in SPIHT or in
any coding standards allocate more bits to encode the texture and strong edges than the weak edges and
smooth regions.

We now carry out similar experiments on the Tsukuba and Venus natural datasets. Table 4.1 tabulates
the disparity error for both datasets at various bit rates. As expected, we see in Table 4.1 that there is
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Figure 4.5: Comparison of the intensity distribution in the proximity of the big and small objects with and without
compression in the Object dataset. Intensity distribution in the proximity of the big object generated from the (a)
original image I1, and (b) SPIHT-based compressed image Ĩ1 at a rate of 0.1 bpp. Intensity distribution in the
proximity of the small object generated from the (c) original image I1, and (d) SPIHT-based compressed image Ĩ1
at a rate of 0.1 bpp.

(a) |Mh −mh| > 1 (b) |Mh −mh| > 1

Figure 4.6: Error between the estimated and groundtruth depth image at bit rates (a) 0.4 bpp and (b) 0.6 bpp
in the Tsukuba dataset. The images are encoded using SPIHT-based rate allocation scheme. The white pixels
correspond to a disparity error larger than 1. The disparity error is (a) 9.52% and (b) 7.52%.

an overall improvement in the quality of the disparity image as the bit rate increases. However, we have
observed that the quality of the disparity image is improved only in the regions close to the strong edges,
but the disparity value remains unchanged in regions close to the weak edges or in low contrast regions.
For example, in Fig. 4.6(a) and Fig. 4.6(b) we show the disparity error for the Tsukuba dataset generated
from the compressed images at bit rates 0.4 and 0.6 bpp (per view) respectively. Comparing Fig. 4.6(a) and
Fig. 4.6(b) we see that the quality of the disparity value is improved only in the regions close to the strong
edges (e.g., structure of the lamp, head) and not in the low contrast regions (e.g., between the table leg
and the background at the bottom most right corner). This is because the SPIHT codec [128] minimizes
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Figure 4.7: Effect of compression on the bimodal intensity distribution in the Tsukuba dataset. (a) Image patch
(marked in white) on which the histogram is generated. (b) Intensity distribution in the original image I1. (c)
Intensity distribution generated from SPIHT-based compressed image Ĩ1 encoded at a bit rate of 0.4 bpp.

the MSE in the reconstructed image, which obviously allocates more bits to the strong edges (high contrast
regions) comparing to weak edges (low contrast regions). As a result of insufficient bits allocated to the
low contrast regions (e.g., between the table leg and the background at the bottom most right corner)
the bimodal intensity distribution is not preserved in such regions, as demonstrated in Fig. 4.7. Similar
observations are made with other standard encoding schemes like JPEG 2000, JPEG which also minimize
the average MSE for a given target bit rate. Therefore, the standard rate allocation schemes fail to provide
a compressed representation that could lead to efficient estimation of the disparity between images.

4.3.2 Spherical images
We now carry out similar experiments on spherical images that are captured by a pair of omnidirectional
cameras. We study the performance on two synthetic spherical datasets, Oval and Room shown in Fig. 4.8
and Fig. 4.9 respectively. The spherical images are first transformed using a multi-resolution representa-
tion (i.e., the Spherical Laplacian Pyramid (SLP) described in Section 3.2.2), followed by the encoding of
transform coefficients based on SPIHT [128]. Then, a disparity image is estimated from the compressed
spherical images Ĩ1 and Ĩ2 using the spherical Graph Cut algorithm proposed by Arican et al. [112]. The
joint reconstruction experiments are carried out using the parameter set (ε1, ε2) = (1, 3).

(a) I1 (b) I2 (c) Mh

Figure 4.8: Oval Spherical dataset: (a) original left view I1; (b) original right view I2; (c) groundtruth disparity
image Mh.

Fig. 4.10(a) and Fig. 4.10(b) compare the reconstruction image quality between the proposed and inde-
pendent decoding schemes for the Oval and Room datasets respectively. We see that the proposed scheme
outperforms the independent reconstruction results for total bit rates larger than 0.6, which is consistent
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(a) I1 (b) I2 (c) Mh

Figure 4.9: Room Spherical dataset: (a) original left view I1; (b) original right view I2; (c) groundtruth disparity
image Mh.
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Figure 4.10: Comparison of the RD performances between the independent and joint decoding schemes. (a) Oval
dataset; (b) Room dataset.

with our earlier observations in the planar datasets. Also, we again see that the benefit of joint reconstruc-
tion is not noticeable at low bit rates. Even the quality of the reconstructed images could be lower compared
to the quality of the compressed images (see Fig. 4.10(a)). This is due to the poor disparity estimation from
the highly compressed images (0.1 bpp per view in this case). In Figs. 4.11(a) and (c) we show the disparity
images estimated from the compressed images encoded at bit rates 0.1 and 0.4 bpp (per view) respectively.
The corresponding disparity errors are shown in Figs. 4.11(b) and (d). From Fig. 4.11(b) and Fig. 4.11(d)
we see that at low rates the disparity image is poor, with DE=78% and DE=49% respectively. From the
above experiments, it is clear that the standard rate allocation schemes are not good at detecting the dis-
parity activity in the regions where the intensity variation is small. We need to preserve sufficient intensity
variations (i.e., bimodal intensity distribution), to be able to detect the disparity activity in the low contrast
regions.

4.4 Rate allocation for improved disparity estimation

In the previous section, we have seen that the underlying disparity structure of the scene is not precisely
estimated in the low contrast regions, when the stereo image pair is encoded using traditional coding schemes.
In order to improve the quality of the disparity image estimation at the joint decoder, we propose here a
rate allocation scheme that preserves the weak edges (i.e., low contrast regions) in the compressed views Ĩ1



4.4 Rate allocation for improved disparity estimation 51

(a) mh (b) |Mh −mh| > 1 (c) mh (d) |Mh −mh| > 1

Figure 4.11: Comparison of the disparity images estimated from the SPIHT-based compressed images at rates of
0.1 bpp and 0.4 bpp (per view) in the Oval spherical dataset. (a) and (c) disparity images estimated from rates of
0.1 bpp and 0.4 bpp respectively. (b) and (d) respective disparity errors; DE = 78% and 49% respectively.

and Ĩ2, at the cost of a marginal penalization in the quality of the background.

4.4.1 General principle

In this section, we outline the general principles of our rate allocation scheme, while the actual coding scheme
built on these principles is described in the next section. Let Ǐ denote the transform coefficients computed
by applying a linear transform (e.g., wavelet, SLP) to the image I ∈ {II , I2} using k decomposition levels.
For the sake of clarity, we assume that Ǐr and Ǐb denote the coefficients corresponding to the low contrast
and the background (i.e., texture) spatial regions respectively, such that Ǐ = Ǐb

⋃
Ǐr. We describe later

how the transform coefficients Ǐr and Ǐb corresponding to the low contrast and the background regions
can be identified from the coefficient image Ǐ. In the previous section, we have seen that the disparity
activity in the low contrast region is not detected as the standard rate allocation schemes fail to encode the
corresponding transform coefficients Ǐr with sufficient bits. For better understanding, we explain this using
an example shown in Fig. 4.12(a); it shows the bitplane representation of the coefficients Ǐ with M bits where
M = �log2(max(Ǐ))� (M = 8 in the case). The left shaded region represents the background coefficients
Ǐb and right shaded region represents the coefficients Ǐr. The bits in the top row represent the signs of the
coefficients. In standard rate allocation schemes [144, 128, 145], the coefficients in Fig. 4.12(a) are encoded
progressively starting from MSB to LSB (i.e., from left to right and top to bottom). From Fig. 4.12(a), it is
clear that such coding approaches fail to encode the region Ǐr at low bit rates as the position of the first 1
appears deep in the bit plane representation (marked in red). Therefore, it is clear that we need to allocate
sufficient bits to encode the coefficients Ǐr in order to the preserve the visual information in low contrast
regions. At the same time, we should not penalize the reconstruction quality in the background region.
In essence, we need to allocate sufficient bits to encode the coefficients Ǐr and Ǐb, so that an accurately
disparity image can be estimated from the compressed views.

The key idea of our approach is to scale the low contrast coefficients Ǐr, so that the scaled low contrast
coefficients are placed in the higher bitplanes. We propose to calculate the scale as f = 2d, where d =
	S(M −Mr)
, Mr = �log2(max(Ǐr))� < M and S > 0 is a constant. When the coefficients Ǐr are scaled
by f = 2d, the bits in the bitplane Mr = �log2(max(Ǐr))� associated to the low contrast coefficients Ǐr are
shifted up by d positions. For example, in Fig. 4.12(b) we show the effect of scaling the coefficients Ǐr when
the parameter S is set to 1; therefore d = 2 in this case as Mr = 6 and M = 8. After scaling, we see that
the bits in the bitplane Mr = �log2(max(Ǐr))� (marked in red in Fig. 4.12(a)) associated to Ǐr are shifted to
the MSB bitplane (marked in green in Fig. 4.12(b)). Also, one can easily check that selecting S > 1 shifts
the bits in the bitplane Mr = �log2(max(Ǐr))� associated to Ǐr above the MSB bitplane. This can be easily
understood from Fig. 4.12 by setting f = 8 (i.e., d = 3) for example. Therefore, the coefficients belonging
to low contrast regions Ǐr can be shifted up to desired bitplane by controlling the parameter S.

We now discuss the influence of parameter S for encoding the low contrast Ǐr and background Ǐb



52 Chapter 4. Distributed Joint Representation from Compressed Images

Ǐb Ǐr

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

0

0

1

0

1

1

0

0

1

1

1

1

1

1

0

0

1

0

1

1

0

1

0

1

0

1

0

1

1

1

1

0

1

0

0 0

0 0

0 0

0

1

0 0

0 1

1 0

0

0

0 0

0 0

0 1

0

1

0 0

0 0

1 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

1 0

0 1

1 0

0 1

0 1

1 0

0

0

0

0

1

1

0

1

s s s s s s s s s s s s s s s

MSB

LSB

Sign

bitplane 1

bitplane 8

bitplane 6

Ǐb
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Figure 4.12: General principle of the proposed rate allocation scheme. Ǐb and Ǐr represents the transform coefficients
computed from image I . (a) Bitplane representation of original transform coefficients Ǐ = Ǐb

⋃
Ǐr. The bits in the

top row represent the signs of the coefficients, and the number of bitplanes M = 8. (b) The coefficients Ǐr is scaled
by f = 2 so that it shifts the bits in the bitplane Mr = �log2(max(Ǐr))� = 6 (marked in red) associated to Ǐr are
shifted to the MSB bitplane M = 8 (marked in green).

coefficients. First of all, it is clear that selecting S = 0 (i.e., no scaling since f = 0) results in the standard
encoding functionality. Then, selecting S = 1 results in shifting the bits in the bitplane Mr associated
to the coefficients Ǐr to the MSB bitplane M . When the coefficients are progressively coded from MSB
to LSB, we see that the bits corresponding to Ǐr are placed along with the bits corresponding to Ǐb (see
Fig. 4.12(b)). Therefore, it is clear that S = 1 distribute the bits in equal proportions to the low contrast
and background coefficients. Then, selecting S > 1 shifts the bits in the bitplane Mr associated to Ǐr above
the MSB bitplane; this eventually allocates more bits to the low contrast coefficients than to the background
coefficients. Finally, by following similar ideas, it is easy to check that S < 1 allocates more bits to the
strong edges than to the smooth regions. Therefore, it is clear that the number of bits allocated to the low
contrast and background regions could be controlled using the parameter S.

Based on the ideas discussed here, we build a practical encoding scheme in the following section for
improving the quality of the disparity information estimated from the compressed images. In particular, we
need to answer following questions:

1. How to identify the positions of the low contrast and background (i.e., texture) coefficients from the
coefficient image Ǐ ?

2. How to find the parameter S for an improved disparity estimation ?

4.4.2 SPIHT-based rate allocation algorithm
In this section, we describe the proposed encoding scheme constructed using SPIHT-based coding principles.
In particular, our goal is to identify the position of coefficients corresponding to the low contrast regions
(i.e., smooth regions) in the image I ∈ {I1, I2}. Once the coefficient positions are known we scale them
prior to encoding with an appropriate S, as discussed in the previous section.

We denote Ǐ as the transform coefficient image and we split the coefficient image into two partitions:
(1) LL subband coefficients; (2) detail subband coefficients. It is well known that there exists a spatial
relationship [128] among the LL subband and detail subbands coefficients; this is shown in Fig. 4.13. The
coefficients in LL subband form the tree root (marked in red) in a spatial tree (say i). The set of coefficients Ǐ li
in the detail subband corresponding to the same spatial location is usually called as descendants or offspring
in the ith spatial tree. In more words, due to the compact support of the decomposition filters (e.g., wavelets,
SLP), the coefficients Ǐ li represent a particular spatial region in the image. Furthermore, the magnitude of the
transform coefficients Ǐ li depends on the particular image characteristics in the corresponding spatial region
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Ǐ lj
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LL subband

Detail subbands

(a) (b)

Figure 4.13: Spatial orientation tree of the transform coefficients in SPIHT [128]. The coefficients in the LL band
denote the tree root in a spatial tree i (marked in red). The set of coefficients Ǐ li corresponding to the same spatial
location is called as descendants or offsprings in the ith spatial tree. (a) Illustration for the planar images using a
wavelet decomposition with two levels. (b) Illustration for the spherical images using a SLP decomposition with two
levels.

of the image. In other words, in multi-resolution representations, the coefficients are magnitude ordered
based on the spatial characteristics in the image; for strong edges and texture regions Mi ≈M , and for low
contrast and smooth regions Mi < M , where Mi = �log2(max(Ǐ li ))� and M = �log2(max(Ǐ))�. Therefore,
the spatial location of the low contrast regions can be identified directly from the magnitude of the transform
coefficients Ǐ li . We then calculate the scale fi = 2di for each ith spatial tree, where di = 	S(M −Mi)
. It is
easy to check that the scale parameter fi ≈ 1 for those spatial trees which represent texture spatial regions
and close to 2SM for smooth spatial regions. Once the scale fi is computed, the corresponding coefficients
Ǐ li are scaled accordingly, which shifts the bits in the bitplane Mi associated to Ǐ li to the higher bitplane
position.

We now discuss the rate allocation between coefficients in the low frequency LL subband and high
frequency subbands. Let bp and bd denote the bits allocated to encode the coefficients in the LL band and
detailed subbands respectively, such that the total bit rate b = bp + bd. As most of the signal energy is
compacted in the highest level of the pyramid (i.e., the LL band) enough bits must be spent to encode the
coefficients in the LL band, otherwise it degrades the image quality. Based on experiments, we heuristically
select bp = 0.2b to encode the coefficients in the LL band. However, the total number of bits required to
faithfully represent the LL band coefficients are N1

2k
× N2

2k
× (M + 1), where k denotes the decomposition

levels and the one extra bit plane M + 1 is accounted to encode the sign of the coefficients. Therefore, the
number of bits allocated to the LL band is given as bp = min(0.2b, N1

2k
× N2

2k
× (M + 1)).

The modified SPIHT-based rate allocation methodology is summarized in Algorithm 3. As shown in
Algorithm 3, we first compute the number of bit planes M and the number of bits to encode the LL and
detailed subbands, denoted as bp and bd respectively. We then compute the shift or scale parameter di (see
lines 4-7) and it is used to scale the coefficients Ǐ li by fi = 2Sdi . The set of scale parameters {di} are entropy
coded (e.g., arithmetic encoder) and placed in the header of the final bit stream (denoted as H in line 9).
We then progressively encode the low frequency LL band coefficients, that is denoted as Lo in line 14. Then,
the scaled detail subband coefficients are progressively encoded (denoted as Ho in line 19) until the final
length of the bit stream reaches b bits. Finally, the encoder transmits the header information H and the
encoded LL and detail subband coefficients, respectively Lo and Ho. The decoder can reverse the encoding
operations, and the image is finally reconstructed after inverting the linear transform (e.g., wavelet, SLP).

Finally, we describe the effect of parameter S on the encoding of low contrast (i.e., smooth) and back-
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Algorithm 3 Proposed rate allocation scheme

1: Input: coefficients Ǐ, parameter S and bit rate b.
2: Output: BS
3: Calculate M = �log2(max(Ǐ))�, bp = min(0.2b, N1

2k ×
N2

2k × (M + 1)) and bd = b− bp
4: Initialize bit counter sd = 0
5: for each ith spatial tree do
6: Compute Mi = �log2(max(Ǐ li)) and di = S(M −Mi)
7: Multiply Ǐ li with fi = 2di

8: end for
9: H ← arithmetic encoder({di})

10: Update bit counter: sd ← sd + length(H)
11: Encoding of the LL band
12: Initialize bit counter sp = 0
13: if sp < bp then
14: Lo ← encode progressively the LL subband coefficients
15: Update bit counter: sp ← sp + length(Lo)
16: end if
17: Encoding of the detail bands
18: if sd < bd then
19: Ho ← encode progressively the detail subband coefficients
20: Update bit counter: sd ← sd + length(Ho)
21: end if
22: Transmit BS← [H Lo Ho]

ground (i.e., texture) coefficients. Clearly, S = 0 corresponds to traditional coding scheme, that allo-
cates more bits to the texture regions compared to the smooth regions. Then, when S is set to one (i.e.,
di = (M −Mi)) the bits in the bitplane Mi = �log2(max(Ǐ li))� corresponding to Ǐ li are shifted to the MSB
bitplane M (see Fig. 4.12). Therefore, S = 1 results in distributing the bits bd equally to all the spatial
regions in the image. In other words, it concentrates encoding of both smooth and texture regions. We
show by experiments that S = 1 is the best choice for an accurate disparity estimation, since it preserves
the visual information in smooth regions without significantly penalizing the reconstruction quality in the
texture regions. The effect of other choices of S are summarized in Fig. 4.14. By increasing S, the proposed
rate allocation scheme gives more importance to the encoding of smooth regions than to the texture regions.
As a result, the reconstruction image quality is maximum at S = 0 for a given bit rate and it is minimum
at S >> 1.

S = 1S = 0 S >> 1

More importance to the 
encoding of smooth regions 

than texture regions

Equal importance to both 
smooth and texture regions 

More importance to the 
encoding of texture regions 

than smooth regions

Image reconstruction quality decreases

Figure 4.14: Effect of the parameter S in the proposed rate allocation scheme. S = 0 corresponds to the traditional
SPIHT coding scheme [128]. The quality of reconstructed image is maximized at S = 0, and it is penalized with
increasing S, due to the allocation of more bits to the smooth regions than texture regions.
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4.5 Improved disparity estimation performance
In this section, we demonstrate the benefits of using the proposed rate allocation methodology at encoding
for disparity estimation from the compressed images. We study the effect of the parameter S on the image
quality and the disparity estimation. Finally, we study the importance of accurate disparity estimation
in the view synthesis and joint reconstruction applications. Unless stated differently, we set S = 1 in the
proposed rate allocation scheme.

4.5.1 Planar images
We first apply our proposed rate allocation methodology to the synthetic Object dataset shown in Fig. 4.2.
Fig. 4.15(a) and Fig. 4.15(b) show the compressed left and right images respectively that have been encoded
at a bit rate of 0.1 bpp. By comparing these compressed images with the SPIHT-based compressed images
available in Fig. 4.4, we observe that the reconstruction quality of the small object has been improved at
the cost of marginal penalization in the quality of the big object. Interestingly, the proposed rate allocation
methodology preserves the bimodal intensity distributions for both big and small objects, as shown in
Fig. 4.16(a) and Fig. 4.16(b) respectively. As a result, the disparity values in both objects are estimated
correctly, with DE=1.26%, as shown in Fig. 4.15(c).

(a) (b) (c)

Figure 4.15: Disparity estimation from the proposed rate allocation scheme from the encoded images at a bitrate
of 0.1 bpp in the Object dataset. (a) Compressed left view Ĩ1; (b) compressed right view Ĩ2; (c) error in the disparity
image with DE = 1.26%.
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Figure 4.16: Effect of proposed rate allocation scheme on the bimodal intensity distribution in the Object dataset.
(a) Intensity distribution in the proximity of the big object; (b) intensity distribution in the proximity of the small
object. The intensity distributions are computed from the compressed image Ĩ1 shown in Fig. 4.15(a).

We then apply our rate allocation scheme to the natural image datasets and we compare our disparity
estimation results with the ones that are estimated from images compressed with the standard encoding
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Table 4.2: Comparison of disparity error between the proposed, SPIHT, JPEG 2000 and JPEG coding schemes for
the Tsukuba dataset. The influence of parameter S on the disparity estimation accuracy is also compared. Size of
the image: N = 384× 288. Results are tabulated using a wavelet decomposition with k = 4 levels.

Bit rate per view (bpp) Disparity Error (%)
Proposed Proposed Proposed SPIHT JPEG 2000 JPEG

S = 1 S = 0.5 S = 2
0.3 8.6 9.28 22.15 10.24 9.96 11.18
0.4 7.14 8.8 19.8 9.4 9.07 9.26
0.5 5.66 6.3 13.56 7.94 8.42 7.45
0.6 5.58 6.78 10.82 7.52 7.46 6.99
0.7 5.15 5.28 10.1 7.04 7 6.79
0.8 4.8 5 8.9 6.2 6.25 6.11

Table 4.3: Comparison of disparity error between the proposed, SPIHT, JPEG 2000 and JPEG coding schemes for
the Venus dataset. The influence of parameter S on the disparity estimation accuracy is also compared. Size of the
image: N = 434× 383. Results are tabulated using a wavelet decomposition with k = 5 levels.

Bit rate per view (bpp) Disparity Error (%)
Proposed Proposed SPIHT JPEG 2000 JPEG

S = 1 S = 2
0.4 6.56 8.1 10.4 8.92 9.61
0.5 5.67 6.18 9.26 7.54 9.24
0.6 4.89 5.8 8.5 7.64 8.37
0.7 4.14 5.6 8.1 7.22 6.91
0.8 3.91 5.25 7.7 6.93 5.91

solutions based on SPIHT, JPEG 2000 and JPEG. Table 4.2, Table 4.3 and Table 4.4 tabulate the disparity
error for the Tsukuba,Venus and Map datasets respectively, computed from the compressed images at various
encoded bit rates. From Tables 4.2 and 4.3 we see that for a given bit rate, the proposed rate allocation
scheme with S = 1 leads to a better disparity estimation than the standard encoding schemes based on
SPIHT, JPEG 2000 and JPEG. This is due to the better representation of the visual information in the low
contrast regions as described in Section 4.4. In other words, the proposed rate allocation scheme preserves
the bimodal intensity distribution in the low contrast regions. For example, in Fig. 4.17(c) we show the
intensity distribution of the bottom most right patch (in Tsukuba dataset) generated from the proposed
rate allocation scheme with S = 1. We see that the proposed rate allocation scheme preserves the bimodal
intensity distribution in the low contrast regions, while the standard rate allocation schemes fail to preserve
the bimodal distribution in these regions as shown earlier in Fig. 4.7. Finally, for the Map dataset the
disparity estimation results (see Table. 4.4) are very similar for the proposed, SPIHT and JPEG 2000 coding
schemes due to the textured nature of the scene. For visual comparisons, we present the disparity image mh

and the absolute disparity error in Fig. 4.18 and Fig. 4.19 for the Tsukuba and Venus datasets respectively.
We see that the proposed coding scheme with S = 1 permits to accurately compute the disparity value in
the regions close to weak edges, without significant penalization in the regions proximity to strong edges.
For example, the disparity values in the bottom most right portion of the Tsukuba image set is estimated
accurately in the proposed scheme (with S = 1), since the bimodal intensity distribution is preserved as
shown before. Also, for the same reason the slanted 3D surfaces in the Venus dataset are detected accurately
when the images are encoded with the proposed scheme compared to the estimation from standard encoded
images. Finally, from Fig. 4.20 we observe that our scheme competes with the standard coding solutions in
terms of disparity accuracy for the Map dataset that presents rich textures.

We now study the influence of the coding parameter S on the disparity estimation results. Table 4.2
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Table 4.4: Comparison of disparity error between the proposed, SPIHT, JPEG 2000 and JPEG coding schemes
for the Map dataset. Size of the image: N = 216 × 284. Results are tabulated using a wavelet decomposition with
k = 4 levels.

Bit rate per view (bpp) Disparity Error (%)
Proposed SPIHT JPEG 2000 JPEG

S = 1
0.1 10.66 11 10.43 66
0.15 8.62 9.22 8.83 66
0.2 7.74 7.9 7.75 63
0.3 7.23 7.15 7.24 8.3
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Figure 4.17: Effect of compression on the bimodal intensity distribution in the Tsukuba dataset. (a) Patch
(marked in white) on which the histogram is generated. (b) Intensity distribution generated from original image I1.
(c) Intensity distribution generated from the proposed compressed image Ĩ1 encoded at a bit rate of 0.4 bpp.

Proposed S=1 Proposed S=0.5 SPIHT JPEG 2000 JPEG

DE: 7.14% DE: 8.8% DE: 9.4% DE: 9.07% DE: 9.26%

Figure 4.18: Comparison of the disparity image estimation between the proposed and the standard rate allocation
schemes for the Tsukuba dataset. The disparity image is estimated from the compressed images encoded at 0.4 bpp
per view. Top row: Estimated disparity image results. Bottom row: Corresponding absolute disparity errors. The
white pixels denote errors in the disparity value.
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Proposed S=1 Proposed S=0.5 SPIHT JPEG 2000 JPEG

DE: 4.89% DE: 5.8% DE: 8.5% DE: 7.64% DE: 8.37%

Figure 4.19: Comparison of the disparity image estimation between the proposed and the standard rate allocation
schemes for the Venus dataset. The disparity image is estimated from the compressed images encoded at 0.6 bpp
per view. Top row: Estimated disparity image results. Bottom row: Corresponding absolute disparity errors. The
white pixels denote errors in the disparity value.

Proposed S=1 SPIHT JPEG 2000 Proposed S=1 SPIHT JPEG 2000

(a) (b) (c) (d) DE: 7.74% (e) DE: 7.9% (f) DE: 7.75%

Figure 4.20: Comparison of the disparity image estimation between the proposed and standard rate allocation
schemes for the Map dataset. The disparity image is estimated from the compressed images encoded at 0.2 bpp per
view. (a), (b) and (c) represent the estimated disparity image results from proposed, SPIHT and JPEG 2000 coding
schemes respectively. (d), (e) and (f) represent the corresponding absolute disparity error. The white pixels denote
errors in the disparity value.

and Table 4.3 compare the disparity error for various choices of S for the Tsukuba and Venus datasets,
respectively. From Table 4.2 and Table 4.3 we see that S = 1 gives the best disparity results due to
the balanced encoding of low and high frequency components. It can be further noted that the disparity
results are not better with increasing S due to the allocation of more bits to the low contrast regions. In
order to illustrate this, we show the compressed images in Fig. 4.21(a), Fig. 4.21(b) and Fig. 4.21(c) that
are encoded using SPIHT-based coding scheme and the proposed coding scheme with S = 1 and S = 2
respectively. From Fig. 4.21 we see that when S increases, our coding scheme allocates more bits to the
low contrast regions (e.g., bottom most right patch) than to the texture regions (e.g., lamp and head). We
now study the impact of the proposed rate allocation scheme on the quality of the compressed images Ĩ1
and Ĩ2 measured in terms of PSNR. Fig. 4.22(a) and Fig. 4.22(b) compare the RD performances between
the proposed and SPIHT-based coding schemes for the Tsukuba and Venus datasets respectively. We see
that the proposed coding scheme with S = 1 performs on the average 2 dB worse than the SPIHT-based
coding scheme mainly due to the encoding of weak edges. It can be further noted that the quality of the
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(a) PSNR: 30.36 (b) PSNR: 28.1 (c) PSNR: 22.7

Figure 4.21: Influence of the coding parameter S on the quality of the compressed image Ĩ1 in the Tsukuba dataset.
(a) SPIHT-based coding scheme; (b) proposed coding scheme with S = 1; (c) proposed coding scheme with S = 2.
The images are encoded using a bit rate of 0.4 bpp.

compressed images Ĩ1 and Ĩ2 can be improved with S = 0.5. However, as demonstrated in Table 4.2 this
penalizes the disparity estimation results. Similar behavior is observed on the other datasets. These results
show that it is difficult to jointly maximize the quality of the compressed images and the quality of the
disparity information estimated from the compressed images.
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Figure 4.22: Comparison of the joint reconstruction performances between the proposed and SPIHT-based rate
allocation schemes: (a) Tsukuba dataset; (b) Venus dataset.

In the remaining of this section, we study the effect of using our accurate disparity estimation results
in the view synthesis and joint reconstruction applications. We synthesize novel views by warping the
approximated reference view Ĩ1 using the associated disparity image mh. Table 4.5 and Fig. 4.23 show the
prediction error for the novel views measured in terms of PSNR for the Tsukuba dataset and the Flower
garden sequence, respectively. In these plots, the position of the synthesized viewpoint is numbered according
to the distance from the reference image (viewpoint 1). We observe that in spite of accurate disparity image
estimation, the quality of the rendered view is degraded in our scheme when compared to the SPIHT-based
scheme especially for viewpoints closer to the reference image. The degradation is mainly due to the poor
image quality of the reference view Ĩ1 comparing to the SPIHT-based scheme as described previously. But,
as the distances between the reference and synthesized view increases, we see that the performance gap
between the two schemes decrease as shown in Fig. 4.23. When views are far apart, the proposed scheme
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Table 4.5: Comparison of the prediction image quality between the proposed and SPIHT rate allocation schemes
for the Tsukuba dataset. The viewpoints are rendered by warping the reference image Ĩ1. Viewpoint 1 is closer to
the reference image.

Bit rate per view (bpp) Viewpoint 1 Viewpoint 2
Proposed Proposed SPIHT Proposed Proposed SPIHT

S=1 S=0.5 S=1 S=0.5
0.3 26.27 27.21 27.7 24.95 25 25.1
0.4 27.11 27.95 28.71 25.4 25.6 25.65
0.5 27.85 28.58 29.2 25.53 25.64 25.76
0.6 28.26 29.47 29.78 25.72 25.88 25.96
0.7 28.56 29.8 30.15 25.94 26.08 26.09
0.8 29.07 30.02 30.5 25.98 26.13 26.09
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Figure 4.23: Comparison of the quality of the predicted synthesized views for various novel view positions for the
proposed and SPIHT rate allocation schemes in the Flower Garden sequence. The view 2 is closer to the reference
image and view 12 is the farthest. The quality of the reference view Ĩ1 used for image prediction is 27 dB and 29.2
dB for the proposed and SPIHT-based schemes.

performs better than the SPIHT-based scheme due to the accurate estimation of the disparity image, even
if the quality becomes pretty low. We finally analyze in Fig. 4.22, the benefit of using accurate disparity
estimation for the joint reconstruction as proposed in Section 4.2.3. The joint reconstruction performances
based on SPIHT, and proposed coding schemes with S = 0.5 and S = 1 are denoted in dotted lines. The
corresponding independent coding performances are denoted in solid lines. We use the Bjontegaard metric
[146] to calculate the average difference in the RD performances between a particular joint coding scheme and
the corresponding independent coding scheme. For the Tsukuba dataset, the average quality improvement
due to joint reconstruction is found out to be 0.81 for the SPIHT, and 0.87 and 0.98 dB respectively for the
proposed rate allocation scheme with S = 0.5 and S = 1. Similarly, for the Venus dataset the gain is found
to be 1.1, 1.16 and 1.29 dB respectively. We see that the proposed rate allocation methodology improves
the average joint reconstruction image quality by 0.2 dB when compared to the joint reconstruction quality
improvement in the SPIHT-based coding scheme. This highlights the benefit of using accurate disparity
results for the image reconstruction. However, by comparing the blue and red dotted lines in Fig. 4.22,
we infer that the proposed rate allocation scheme could not outperform the SPIHT-based coding scheme
due to the compressed image quality penalization, as shown above. It can be noted that the overall joint
reconstruction quality can be improved by reducing S (e.g., S = 0.5), however this comes at the price of
a worse correlation estimation. Therefore, joint optimization of the image reconstruction quality and the
correlation estimation would not be possible for a given bit rate, as both demand accurate encoding of
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Figure 4.24: Performance comparison between the proposed and SPIHT rate allocation scheme for the Oval
spherical dataset: (a) disparity error; (b) prediction image quality. The red straight line corresponds to the disparity
estimated using the original spherical images I1 and I2.

different image characteristics. In particular, the former representation requires encoding of strong edges
and textures, while the latter requires encoding of smooth regions.

4.5.2 Spherical images
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Figure 4.25: Performance comparison between the proposed and SPIHT rate allocation scheme for the Room
spherical dataset: (a) disparity error; (b) prediction image quality. The red straight line corresponds to the disparity
estimated using the original spherical images I1 and I2.

We also illustrate the benefit of our proposed rate allocation methodology on the correlated Oval and
Room spherical datasets. Fig. 4.24(a) and Fig. 4.25(a) compare the disparity error between the proposed rate
allocation and SPIHT schemes at various encoding bit rates for the Oval and Room datasets respectively.
The red line represents the disparity error that is computed from the original images without compression,
therefore it represents benchmark performance. From Fig. 4.24(a) and Fig. 4.25(a) we see that the proposed
rate allocation scheme with S = 1 leads to a better disparity map compared to the SPIHT-based rate
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Proposed S=1 SPIHT Proposed S=1 SPIHT Proposed S=1 SPIHT
Bit rate: 0.1 bpp Bit rate: 0.1 bpp Bit rate: 0.4 bpp Bit rate: 0.4 bpp Bit rate: 0.9 bpp Bit rate: 0.9 bpp

DE: 40.93% DE: 77% DE: 34.43% DE: 49% DE: 18.3% DE: 27.22%

Figure 4.26: Oval spherical dataset: Comparison of the estimated disparity image between the proposed and
SPIHT-based rate allocation schemes for the bit rates 0.1, 0.4 and 0.9 bpp. Top row: Estimated disparity image
results. Bottom row: Corresponding absolute disparity errors. The white pixels denote errors in the disparity value.

allocation methodology. That is consistent with our earlier observations in the planar datasets. For visual
comparisons, we show in Fig. 4.26 the disparity results from the proposed and SPIHT rate allocation schemes
at encoding rates of 0.1, 0.4 and 0.9 bpp. From Fig. 4.26 we see that at a bit rate of 0.1 bpp, the proposed
scheme computes a coarse disparity image, while the SPIHT scheme fails to estimate a meaningful disparity
result. At high bit rates corresponding to 0.9 bpp, due to the balanced encoding of weak and strong
edges, the proposed scheme estimates an accurate disparity image with DE=18.3%, that is very close to
the disparity results estimated from the original images (see Fig. 4.24(a)). Therefore, it is clear that the
proposed coding scheme with S = 1 identifies and encodes the necessary information in each view to reduce
the distortion in the disparity image.
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Figure 4.27: Comparison of the joint reconstruction performances between the proposed and SPIHT-based rate
allocation schemes: (a) Oval dataset; (b) Room dataset.



4.6 Conclusions 63

We then evaluate the accuracy of the disparity image based on the quality of image prediction, where
we use the compressed view Ĩ1 and the respective disparity estimation mh to predict the second view.
Fig. 4.24(b) and Fig. 4.25(b) compare the quality of the predicted view at various encoded bit rates for
both datasets respectively. In spite of poor compressed reference image Ĩ1 quality, the proposed scheme
outperforms the image prediction quality of the SPIHT scheme due to the accurate disparity estimation.
This illustrates the importance of estimating an accurate correlation information in omnidirectional sensor
networks. We finally analyze in Fig. 4.27 the benefit of using accurate disparity estimation for the joint
reconstruction of the images as proposed in Section 4.2.3. We compute the average RD improvement between
the joint reconstruction schemes implemented with SPIHT and proposed rate allocation schemes using the
Bjontegaard metric [146]. The average joint reconstruction quality improvement compared to the respective
independent reconstruction is found out to be 0.1 and 1.2 dB respectively for the Oval dataset. For the
Room dataset, it is found out to be 0.6 and 1.7 dB respectively. Due to the better correlation estimation,
we see that the proposed scheme improves the quality of the compressed views by a margin of 1.1 dB when
compared to the SPIHT-based joint reconstruction scheme. In spite of 1.1 dB improvement in the joint
reconstruction, we see from Fig. 4.27 that the proposed scheme cannot outperform the SPIHT-based joint
representation scheme in terms of image quality. This is consistent with our earlier observations in the
planar datasets. Therefore, under fixed bit budget we can either optimize image reconstruction or depth
estimation as they represent different optimization objectives.

4.6 Conclusions
In this chapter, we have first contributed a novel rate balanced distributed representation scheme for com-
pressing a pair of correlated images captured in perspective or omnidirectional camera networks. We have
developed a new joint decoding algorithm based on a constrained optimization problem that permits to im-
prove the reconstruction quality by exchanging information between images. We have shown that our joint
reconstruction problem is convex and we have proposed to solve it effectively using proximal methods. We
have shown experimentally that the proposed joint decoding algorithm outperforms the independent coding
solutions for both planar and spherical datasets. However, at low bit rates the benefit of joint reconstruction
is not noticeable due to the poor correlation estimation from the highly compressed images.

We have then contributed a novel rate allocation scheme that preserves the visual information in the low
contrast regions in order to improve the quality of disparity estimation. Extensive simulations carried out
on planar and omnidirectional datasets confirm that the proposed rate allocation scheme brings a better
disparity image estimation compared to one that is estimated from standard coding solutions. We then show
that the improved disparity estimation however comes at a price of image quality penalization. For a given
bit budget, we have shown that there exists an actual trade-off between the quality of image reconstruction
and the accuracy of the correlation estimation. Therefore, our result is highly beneficial to distributively
compress the visual information in camera networks that target a particular application such as distributed
scene analysis (e.g., object detection) or distributed image coding. In the next chapter, we replace the
traditional imaging cameras with the CS-cameras and we propose a distributed representation scheme that
estimates a correlation model from the quantized linear measurements.
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Chapter 5

Asymmetric Distributed Representation
from Linear Measurements

5.1 Introduction

In the previous chapter, we have presented a distributed representation scheme for compressing the correlated
images acquired by traditional cameras. In such systems, the entire image is acquired prior to compression
and the encoding complexity grows with the resolution of image. In this chapter, we replace the traditional
cameras with CS-based cameras that directly acquires the compressed image in the form of quantized linear
measurements.

We consider the problem of estimating the correlation model between images where the common ob-
jects in different images are displaced due to the viewpoint change or motion of the scene objects. We
concentrate on the particular problem where one image is selected as the reference image and it is used as a
side information for decoding the other correlated images1. These compressed images are built on random
measurements that are further quantized and entropy coded. One solution in such settings is to reconstruct
all the compressed frames from the respective linear measurements by solving an l2-TV or l2-l1 optimization
problem (see Chapter 2), and then estimate the correlation model from the reconstructed images. Unfor-
tunately, reconstructing the compressed images based on solving an l2-l1 or l2-TV optimization problem is
computationally expensive. Also, the correlation model estimated from highly compressed images usually
fails to capture the actual geometrical relationship between images, as described in Chapter 4. Motivated
by these issues, we estimate in this chapter a robust correlation model directly in the compressed domain
without explicitly reconstructing all the compressed images.

We propose a geometry-based correlation model to describe the common information in image pairs. We
assume that the constitutive components of natural images can be captured by visual features that undergo
local geometric transformations in different images. We first estimate prominent visual features by comput-
ing a sparse approximation of the reference image with a dictionary of geometric basis functions. Then, we
formulate a regularized optimization problem whose objective is to identify the features in the compressed
images that correspond to the prominent components in the reference image. Correspondences then define
relative transformations between images that form the geometric correlation model. A regularization con-
straint ensures that the estimated correlation is consistent and correspond to the actual motion of visual
objects. We then use the estimated correlation in a new joint decoding algorithm that approximates the
multiple images with the help of the estimated correlation. The joint decoding is cast as an optimization
problem that warps the reference image according to the transformation described in the correlation infor-

1Part of this work has been submitted to: V. Thirumalai and P. Frossard, “Distributed Representation of Geometrically
Correlated Images with Compressed Linear Measurements,” IEEE Trans. on Image Proc., 2011.
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Figure 5.1: Schematic representation of the proposed scheme. The images I1 and I2 are correlated through
displacement of scene objects, due to viewpoint change or motion of scene objects.

mation, while enforcing the decoded images to be consistent with the quantized measurements. We finally
propose an extension of our algorithm to the joint decoding of multi-view images.

We analyze the performance of our novel framework on distributed video coding and multi-view imaging
applications. We show by experiments that the proposed algorithm computes a good estimation of the
correlation between multiple images captured in multi-view and video imaging scenarios. In particular, the
results confirm that dictionaries based on geometric basis functions permit to capture the correlation more
efficiently than a dictionary built on patches or blocks from the reference image as proposed in [103]. In
addition, we show that the estimated correlation model can be used to decode the compressed image by
disparity or motion compensation. Such a decoding strategy permits to outperform independent coding
solutions based on JPEG 2000 and state-of-the-art distributed coding schemes based on disparity/motion
learning [86, 147] in terms of rate-distortion (RD) performance computed on the compressed images. Finally,
the experiments outline that the consistent prediction term proves to be very effective in increasing the
decoding quality of the images given by the quantized linear measurements.

The rest of this chapter is organized as follows. The geometric correlation model used in our framework is
presented in Section 5.2. Section 5.3 describes the proposed regularized energy model for an image pair. The
proposed optimization algorithm is presented in Section 5.4 and the consistent image prediction algorithm
is presented in Section 5.5. Section 5.6 describes the extension of our scheme to cases with more than two
images. Experimental results in distributed multi-view and video imaging are finally given in Section 5.7.

5.2 Framework

5.2.1 Overview

We first describe our framework for a pair of images, and then the extension to more images is presented in
Section 5.6. We consider a pair of images I1 and I2 (with dimensions N = N1×N2) that represent a scene at
different time instants or from different viewpoints; these images are correlated through the motion of visual
objects. These images are encoded independently and transmitted to a joint decoder. The joint decoder
estimates the relative motion or disparity between the received signals and jointly decodes the images. The
framework is illustrated in Fig. 5.1.

We focus on the particular problem where one of the images serves as a reference for the correlation
estimation and decoding of the second image. While the reference image I1 could be encoded with any
coding algorithm (e.g., JPEG, compressed sensing framework [30]), we choose here to encode the reference
image I1 based on JPEG 2000. Next, we concentrate on the independent coding and joint decoding of the
second image, where the first image Î1 serves as the side information. At encoder, the second image I2
is projected on a random matrix Φ to generate the measurements Y2 = ΦI2. The measurements Y2 are
quantized with a uniform quantization algorithm. Finally, the quantized linear measurements are encoded
with an entropy coder (e.g., arithmetic coder).
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The joint decoder first computes the sparse approximation of the image Î1 using features in a para-
metric dictionary of geometric functions. Such an approximation captures the most prominent geometrical
components that represent the visual information in the image Î1. Given the most prominent geometrical
features in the image Î1, we estimate the corresponding features in the second image I2 from quantized
linear measurements Ŷ2. In particular, the corresponding visual features in both images are related using
a geometry-based correlation model, where the correspondences describe local geometric transformations
between images. We generate the horizontal mh and vertical mv components of the dense motion field that
represents the correlation from the geometric transformations of the visual features between images. This
motion information (mh,mv) is further used to predict the compressed image Ĩ2 from the reference image
Î1. We further ensure a consistent prediction of Ĩ2 by explicitly considering the quantized measurements
Ŷ2 during the warping process. Before getting into the details of the correlation estimation algorithm, we
describe the sparse image approximation algorithm and the geometry-based correlation model built on a
parametric dictionary.

5.2.2 Sparse image approximation

We discuss here the sparse approximation of images using geometric basis functions in a structured dictio-
nary. We propose to represent the images by a sparse linear expansion of geometric function gγ taken from a
parametric and overcomplete dictionary D = {gγ}. The geometric function gγ in the dictionary D is usually
called atom. The dictionary is constructed by applying a set of geometric transformations to a generating
function g. These geometric transformations can be represented by a family of unitary operators U(γ),
so that the dictionary takes the form D = {gγ = U(γ)g, γ ∈ Γ} for a given set of transformation indexes
Γ. Typically, this transformation set consists of scales sx, sy, rotation θ, and translations tx, ty operators,
defined as [

u
v

]
=

[
1/sx 0
0 1/sy

] [
cos θ sin θ
−sin θ cos θ

] [
m− tx
n− ty

]
,

where (m,n) define the image coordinates. Thus, each of the transformations or equivalently each atom in
D is indexed by five parameters denoted by γ = (tx, ty, θ, sx, sy).

We can write the linear approximation of the reference image Î1 with functions in D as

Î1 ≈
K∑
i=1

ci gγi , (5.1)

where {ci} represents the coefficient vector. The number of atoms K used in the approximation of Î1 is
usually much smaller than the dimensions of the image. It should be noted that in our framework we
are interested in approximating the reconstructed version of the first image Î1 using the functions in the
geometric dictionary D.

Given the dictionary D, finding the sparse approximation of the image using K atoms as given in
Eq. (5.1), is usually a NP-hard problem. Several suboptimal algorithms exist in the literature (e.g., Basis
Pursuit, Matching Pursuit) in order to find and capture the most salient and prominent visual features in
the images, in a reasonable computational time. In this work, we have chosen Matching Pursuit (MP) [148],
which greedily estimates the K atoms {gγi} that best match the image Î1 [38]. We briefly discuss how the
MP selects a set of K atoms from the dictionary D. Initially, MP sets the residual signal r = Î1. Then,
an atom gγi from the dictionary D that best matches the residual signal r is chosen. The algorithm then
updates the residual as r = r − 〈r, gγi〉gγi = r − cigγi ; this removes the component gγi from the residual
signal r. The atom selection and the residue update steps are repeated K times that eventually results in
a set of K atoms {gγi} and coefficients {ci}.
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5.2.3 Joint correlation model

We describe briefly the geometric correlation model between images I1 and I2 in the rest of this section.
For more details, we encourage the reader to refer to [70, 92]. We first compute the set of functions {gγi}
that form the sparse approximation of the reconstructed version of the reference image Î1 (see Eq. (5.1)).
Under the assumption that the images are correlated based on local geometric transforms of their principal
components, the second image I2 could be approximated with transformed versions of the atoms used in
the approximation of Î1. We can thus approximate I2 as

I2 ≈
K∑
i=1

ci F
i(gγi), (5.2)

where F i(gγi) represents a geometrical transformation of the atom gγi . For consistency, we have described
the correlation model given in Eq. (5.2) using the functions {gγi} that are picked from the reconstructed
image Î1. However, this correlation model holds well even if the atoms {gγi} are picked from the original
image I1. Due to the parametric form of the dictionary, the effect of F i generally corresponds to a geometrical
transformation of the atom gγi that results in another atom in the same dictionary D. Therefore, it
is interesting to note that the transformation F i on gγi boils down to a transformation δγ of the atom
parameters, i.e.,

F i(gγi) = U(δγ)gγi = U(δγ ◦ γi)g = gδγ◦γi = gγ′
i
. (5.3)

This means that the same dictionary can be used to represent the reference image Î1 and the compressed
images.

The main challenge in the joint decoder consists in estimating the local geometrical transformation F i

for each of the atoms gγi in Î1 from the compressed linear measurements Ŷ2. We formulate in the next
section a regularized optimization problem in order to estimate F i, or equivalently the relative motion or
disparity between images I1 and I2.

5.3 Correlation estimation with reference image

Given the set of K atoms {gγi} that approximate the first image Î1, the disparity or motion estimation
problem consists in finding the corresponding visual patterns in the second image I2, while the latter is given
only by the compressed random measurements Ŷ2. This is equivalent to finding the correlation between
images I1 and I2 with the joint sparsity model based on local geometrical transformations described in
Section 5.2.3. We describe here the proposed regularized optimization framework that leads to the estimation
of the correlation between images I1 and I2.

5.3.1 Regularized energy function

We are looking for a set of K atoms in I2 that corresponds to the K visual features {gγi} selected in the
first image. We denote their parameters by Λ, where Λ = (γ′1, γ

′
2, . . . , γ

′
K) for some γ′i, ∀i, 1 ≤ i ≤ K. We

propose to select this set of atoms in a regularized energy minimization framework as a trade-off between
the set that well approximates I2 and the set that results in smooth local transformations between images.
The energy model E proposed in our scheme is expressed as

E(Λ) = Ed(Λ) + α1Es(Λ), (OPT-1)

where Ed and Es represent data and smoothness terms respectively; α1 is the regularization parameter that
balances the data and smoothness terms. The solution of the correlation estimation problem is given by the
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set of K atom parameters Λ∗ that minimizes the energy E, i.e.,

Λ∗ = argmin
Λ∈S

E(Λ), (5.4)

where S represents the search space given by

S = {(γ′1, γ′2, . . . , γ′K) | γ′i = δγi ◦ γi, 1 ≤ i ≤ K, δγ ∈ L} , (5.5)

where {γi} are the parameters of the atoms in the reference image. The L ⊂ R
5 is given by L = [−δtx, δtx]×

[−δty, δty]× [−δθ, δθ]× [−δsx, δsx]× [−δsy, δsy], where δtx, δty, δθ, δsx, δsy determine the search window
size corresponding to the translation parameters tx, ty, rotation θ, and scales sx, sy respectively. We describe
below the two cost functions used in OPT-1.

5.3.2 Data cost function

The data fidelity term computes in the compressed domain, the accuracy of the sparse approximation of the
second image with geometric atoms. The decoder receives the measurements Ŷ2 that are computed by the
quantized projections of I2 onto a sensing matrix Φ. For each set of K atom parameters Λ = {γ′i}, the data
cost function Ed then reports the error between the measurements Ŷ2 and the orthogonal projection of Ŷ2
onto ΨΛ that is formed by the compressed versions of the atoms, i.e., ΨΛ = Φ[gγ′

1
|gγ′

2
| . . . |gγ′

K
]. It turns out

that the orthogonal projection of Ŷ2 is given as ΨΛΨ
†
ΛŶ2, where † represents the pseudo-inverse operator.

More formally, the data cost is computed using the following relation:

Ed(Λ) = ‖Ŷ2 −ΨΛΨ
†
ΛŶ2‖22 = ‖Ŷ2 −ΨΛc‖22. (5.6)

The data cost function given in Eq. (5.6) first calculates the coefficients c = Ψ†
ΛŶ2 and then measures the

distance between the observations Ŷ2 and ΨΛc. In other words, the data cost function Ed accounts for the
intensity variations between images by estimating the coefficients c of the warped atoms.

However, when the measurements are quantized, the coefficient vector c fails to properly account for
the error introduced by the quantization. The quantized measurements only provide the index of the
quantization interval containing the actual measurement value and the actual measurement value could be
any point in the quantization interval. Let Y2,p be the pth coordinate of the original measurement, and
Ŷ2,p be the corresponding quantized value. It should be noted that the joint decoder has only access to
the quantized value Ŷ2,p, but not the original value Y2,p. Henceforth, the joint decoder knows that the
quantized measurement lies within the quantized interval, i.e., Ŷ2,p ∈ RŶp

= (rp, rp+1], where rp and
rp+1 define the lower and upper bounds of the quantizer bin Qp. We propose to refine the data term by
computing a coefficient vector c̃ as the best solution when considering all the valid measurement values in
the quantization interval, i.e., Ỹ2 ∈ RŶ , where RŶ is the Cartesian product of all the quantized regions
RŶp

, i.e., RŶ =
∏
p
RŶp

. The coefficients c̃ and the measurements Ỹ2 can be jointly estimated by solving the

following optimization problem:

(c̃, Ỹ2) = argmin
c̃,Ỹ2

‖Ỹ2 −ΨΛc̃‖22 s.t. Ỹ2 ∈ RŶ . (5.7)

By following the steps in Proposition 1 described in Chapter 4, it can be easily shown that the Hessian
of the objective function h(Ỹ2, c̃) = ‖Ỹ2 −ΨΛc̃‖22 is positive semidefinite, i.e., ∇2h � 0, and hence the
objective function h is convex (not strictly). Also the region RŶ forms a closed convex set, as each region
RŶp

= (rp, rp+1], ∀p forms a convex set. Therefore, the optimization problem given in Eq. (5.7) is convex,
but not strictly convex as the Hessian of the objective function is not positive definite. Finally, the data
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fidelity term given in Eq. (5.6) can be modified with the estimated coefficients c̃ and the measurements Ỹ2
as

Ẽd(Λ) = ‖Ỹ2 −ΨΛc̃‖22, (5.8)

where Ẽd(Λ) represents the robust data function that efficiently accounts for the quantization noise.

5.3.3 Smoothness cost function

The goal of the smoothness term Es is to penalize the atom transformations such that they result in coherent
transformations of neighbor atoms. In other words, the atoms in the neighborhood are likely to undergo
similar transformations, when the correlation between images is due to object or camera motion. Instead
of penalizing directly the transformations {F i} (or equivalently {δγ}) such that they tend to be coherent
for neighbor atoms, we propose to generate a dense motion field from the atom transformations and to
penalize the motion (or disparity) field such that it is coherent for adjacent pixels. This regularization is
easier to handle than a regular set of transformations F i and directly corresponds to the physical constraints
that explain the formation of correlated images. For a given transformation field f = (fh, fv, fθ, fa, f b), we
compute the horizontal mh and vertical mv components of the motion field as

[
mh(z)
mv(z)

]
=

[
m(z)− tx(z)
n(z) − ty(z)

]
−

[
fa(z) 0
0 f b(z)

]

︸ ︷︷ ︸
S

[
cos(fθ(z)) sin(fθ(z))
−sin(fθ(z)) cos(fθ(z))

]

︸ ︷︷ ︸
R

[
m(z)− tx(z) − fh(z)
n(z) − ty(z) − fv(z)

]
,

︸ ︷︷ ︸
T

(5.9)
where (m(z), n(z)) represent the Euclidean coordinates, and tx(z) and ty(z) represent the translation pa-
rameters at location z. The matrices S, R and T represent the grid transformations due to scale, rotation
and translation changes respectively. Finally, the smoothness cost Es in OPT-1 is computed as

Es =
∑

z,z′∈N
Vz,z′ =

∑
z,z′∈N

min
(
|mh(z)−mh(z′)|+ |mv(z)−mv(z′)|, τ

)
, (5.10)

where z and z′ are the adjacent pixel locations, and N represents a usual 4-pixel neighborhood. The param-
eter τ sets a maximum limit to the smoothness penalty term, and thus helps to preserve the discontinuities
in the motion field [130].

Now, we describe the methodology to estimate the dense transformation field f from the sets of atom
transformations. Given the ith pair of atoms gγi and gγ′

i
with γi = (tx, ty, θ,sx, sy) and γ′i = (t′x, t

′
y, θ

′, s′x, s
′
y)

in the images I1 and I2 respectively, we first calculate the local transformation captured by these atoms
given by

δγi = (tx − t′x, ty − t′y, θ − θ′, s′x/sx, s′y/sy). (5.11)

It should be noted that all the pixels in the support of the atom gγi take the transformation value δγi, i.e.,
f(z) = δγi, ∀z ∈ Zi, where Zi denotes the set of pixels in the support of the atom gγi given as

Zi = {z = (m,n) | |gγi(m,n)| > ε}, (5.12)

where ε > 0 is a constant. Using a similar process (see Eq. (5.11)) a local transformation is established for
all the atom pairs. Then, the transformations {δγk} captured by the K pairs of atoms are fused together
to estimate a global transformation field f . For a given location z, we first assign relative weights {w(k)

z } to
each candidate transformation δγi based on the response of the ith atom at the pixel location z. Then, the
fusion process is simply implemented by choosing the most confident transformation for each pixel position
z. Mathematically, we write the transformation at position z as

f(z) = δγk̂(z), (5.13)
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where k̂(z) = arg max
i=1,2,...,K

w(i)
z , and w(i)

z is the response of the ith atom at the location z, i.e., w(i)
z = gγi(z) =

gγi(m,n). We denote this methodology as MAX in this chapter. The simple MAX-based scheme however
fails to effectively consider all the transformation values {δγk(z)} for the given pixel z; this usually results in a
suboptimal solution. In order to estimate a better solution we have proposed energy minimization problems
in Appendix A.1, which effectively consider all the transformation values {δγ} in the given pixel location z.
However, in this chapter we use MAX approach to generate a transformation field since it provides a good
trade-off between the complexity and the performance (see Appendix A.1 for more details).

5.4 Optimization algorithms

In this section, we describe the optimization methodology that is used to solve OPT-1. Recall that our
objective is to assign a transformation F i to each atom gγi in the reference image in order to build a set
of smooth local transformations that is consistent with the quantized measurements Ŷ2. The candidate
transformations are chosen from a finite set of labels L = Lx×Ly×Lθ×La×Lb, where Lx, Ly, Lθ, La and
Lb refer to the label sets corresponding to translations along x, y direction, rotations and scales, respectively
(see Eq. (5.5)). One could use an exhaustive search on the entire label set L to solve OPT-1. However, the
cost for such a solution is high as the size of the label set L grows exponentially with the size of the search
windows for all the transformation parameters. Rather than doing an exhaustive search, we propose two
optimization algorithms based on local and global techniques.

5.4.1 Local optimization

The local optimization algorithm estimates the transformation F i iteratively, by changing successively each
of the K atom parameters γi by one increment in the parameter space. We focus on the search space that is
given by perturbing the transformations of each atom parameter, i.e., tx ±Δtx, ty ±Δty, θ±Δθ, sx ±Δsx
and sy ± Δsy for each atom γi. The differential parameters Δtx,Δty,Δθ,Δsx and Δsy represent a unit
change in the translation, rotation and scale components respectively. We first initialize the algorithm with
zero motion, i.e., the set of atoms {gγi} generated from Î1 are used in the first iteration, γ′i = γi, ∀i where
1 ≤ i ≤ K, and the search space S0 is formed using

S0 ={(γ′1, γ′2, . . . , γ̂′i, . . . , γ′K)|γ̂′i = (tix ±Δtx, t
i
y ±Δty, θ

i ±Δθ, six ±Δsx, s
i
y ±Δsy), 1 ≤ i ≤ K} ⊂ S.

(5.14)

We then calculate the energy E in OPT-1 for the set of K atoms in the search space S0. Once the energy E
is computed for atoms in S0, we select the parameters Λ0 = (γ01 , γ

0
2 , . . . , γ

0
K) corresponding to the minimum

energy. Then, a new search space S1 is formed similarly to the definition in Eq. (5.14) with the current
solution Λ0 as reference. Such a procedure is repeated by successively constructing a new search space Sk

on the solution Λk−1 from the previous iteration of the algorithm. The algorithm stops when convergence
is attained (or till it reaches a maximum number of iterations). The proposed algorithm is guaranteed to
converge. Let E0 be the initial energy, i.e., the energy corresponding to set of parameters γ′i = γi, ∀i where
1 ≤ i ≤ K. If Ek is the minimal energy computed at step k of the algorithm, we clearly have Ek ≤ Ek−1,
as the search space Sk includes the best set of parameters Λk−1 from the previous iterations. The energy
decreases at every iteration till it reaches a local or global minimum Emin. The proposed optimization
scheme thus converges and provides a (suboptimal) solution with tractable computational complexity to the
estimation of correlation between images. The algorithm that bears some resemblance to a gradient descent
solution is summarized in Algorithm 4. Finally, the data cost in the 8th line of Algorithm 4 can be replaced
by the robust data cost term Ẽd as given in Eq. (5.8). We show later that the performance of our scheme
can be improved using the robust data cost term Ẽd.
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Algorithm 4 Local optimization: Correlation estimation with OPT-1
1: Input K,α1, δtx, δty, δθ, δsx, δsy
2: Generate {gγi} from Î1 s.t. Î1 ≈

∑K
i=1 ci gγi

3: Initialize Λ−1 = {γi}, k = 0
4: repeat
5: Generate index search space Sk based on Λk−1 (with Eq. (5.14))
6: for all Parameter vectors Λ in Sk do
7: Compute the motion field
8: Compute the data term Ed(Λ) with Eq. (5.6)
9: Compute the smoothness term Es(Λ) with Eq. (5.10)

10: Compute the global energy E(Λ) = Ed(Λ) + α1Es(Λ)
11: end for
12: Λk = argminΛ∈Sk E(Λ)
13: k = k + 1
14: until convergence is reached

5.4.2 Global optimization

The local optimization algorithm described above estimates only a suboptimal solution as it does not guar-
antee to converge to strong local minima or global minima. We therefore propose strong optimization
techniques based on Graph Cuts [130, 133] to solve OPT-1. Graph-based minimization techniques usu-
ally converge to strong local minima or global minima in a polynomial time with tractable computational
complexity.

Recall that Zi represents the set of pixels in the support of the atom gγi , as defined in Eq. (5.12).
Eq. (5.12) allows us to recast the atom-wise labeling problem, f : gγi → l ∈ L, ∀i that assigns one trans-
formation label to each atom gγi , as a pixel labeling problem where the objective is to assign a label to
the set of pixels Zi, i.e., f : Zi → l ∈ L, ∀i. Our problem becomes therefore equivalent to a dense labeling
problem that can be solved accurately using strong energy minimization techniques based on Graph Cuts
[130, 133]. The cost of assigning a label lk ∈ L to all pixels z in the support of atom gγi (i.e., ∀z ∈ Zi) can
be computed using Eq. (5.6), where Λ = (γ1, γ2, . . . , γi + lk, . . . , γK). However, due to atom overlapping
the pixels in the overlapped region could be assigned more than one label. In such cases, for the sake of
simplicity we compute the cost corresponding to the atom index k̂ (see Eq. (5.13)) that has the maximum
atom response (see Section 5.3.3). Finally, the data cost term in OPT-1 can be replaced with the robust
data term Ẽd in order to provide robustness to quantization errors. The resulting optimization problem can
be solved accurately using a Graph Cut algorithm.

5.5 Consistent image prediction by warping

Once the transformation between the correlated images has been estimated as described in the previous
section, one can simply reconstruct an approximate version of the second image Ĩ2 by warping the reference
image Î1 using a set of local transformations that forms the warping operator WΛ (see Fig. 5.1). The
resulting approximation is however not necessarily consistent with the quantized measurements Ŷ2; the
measurements corresponding to the projection of the image Ĩ2 on the sensing matrix Φ are not necessarily
equal to Ŷ2. The consistency error might be significant, because the atoms used to compute the correlation
and the warping operator do not optimally handle the texture information.

We therefore propose to add a consistency term Et in the energy model of OPT-1 to form a new opti-
mization problem. The consistency term enforces the image predicted through the warping operator WΛ to
be consistent with the quantized measurements. We define the additional term Et as the l2 norm error be-
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tween the quantized measurements generated from the predicted image Ĩ2 =WΛ(Î1) and the measurements
Ŷ2. The consistency term Et is written as

Et(Λ) = ‖Ŷ2 −Q[ΦĨ2]‖22 = ‖Ŷ2 −Q[ΦWΛ(Î1)]‖22, (5.15)

whereQ is the quantizer. It should be noted that, when the measurements are not quantized, the consistency
term reads

Et(Λ) = ‖Y2 − ΦWΛ(Î1)‖22. (5.16)

We then merge the three cost functions Ed, Es and Et with regularization constants α1 and α2 in order to
form a new energy model ER for consistent image prediction, expressed as

ER(Λ) = Ed(Λ) + α1Es(Λ) + α2Et(Λ). (OPT-2)

We now highlight the differences between the terms Ed and Et used in OPT-2. The data cost Ed adapts
the coefficient vector to consider the intensity variations between images but fails to properly consider the
texture information. On the other hand, the consistency term Et warps the atoms by considering the texture
information in the reconstructed image Î1 but fails to carefully consider the intensity variations between
images. These two terms therefore impose different constraints on the atom selection that effectively reduce
the search space. We experimentally show later that the quality of image Ĩ2 is maximized, when all the
three terms are activated in the optimization problem OPT-2. Finally, it should be noted that the data
cost in OPT-2 can be replaced with the robust data cost Ẽd given in Eq. (5.8) to properly account for the
measurement quantization noise. It reads as

ER(Λ) = Ẽd(Λ) + α1Es(Λ) + α2Et(Λ). (OPT-2 (Robust))

In order to solve OPT-2 or equivalently to estimate the correlation model that leads to consistent image
prediction, we propose to use the same optimization methods as those described in Section 5.4. In both
local and global optimization approaches we modify the objective functions to include the consistency term,
since the main difference between the OPT-1 and OPT-2 is the inclusion of the consistent term Et. The
steps carried out to solve OPT-2 problem using local optimization methodology is summarized in Algorithm
5 where in line 11 we compute the consistent term Et energy based on warping the reference image (in
addition to Ed and Es given in lines 9 and 10). As described in the previous section, such an approach
estimates a suboptimal solution with tractable computational complexity.

On the other hand, the global optimization technique based on Graph Cuts estimate a better solution as
they usually converge to a strong local minima. In order to solve OPT-2 problem with Graph Cuts we need
to compute the cost of assigning a label lk ∈ L to each pixel z. This follows from the fact that atom-wise
labeling problem is recast as a pixel-wise labeling problem (see Section 5.4.2). The cost of assigning a label
lk ∈ L to all pixels z in the support of atom gγi (i.e., ∀z ∈ Zi in Eq. (5.12)) is computed using Eq. (5.6)
and Eq. (5.16) where Λ = (γ1, γ2, . . . , γi + lk, . . . , γK). The former one computes the cost of assigning a
label lk ∈ L to pixels Zi based on data fidelity and the latter one computes the consistent cost of this label.
However, as described earlier the pixels in the overlapped region could be assigned more than one label in
the overlapping regions. In such cases, we take the value corresponding the atom index that has maximum
response (see Eq. (5.13)). Finally, the data cost Ed in OPT-2 can be further replaced by the robust data
cost term Ẽd given in Eq. (5.8), and it can be solved using local or global optimization techniques described
above. We show later that the performance of our scheme can be improved by using the robust data cost
term Ẽd.
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Algorithm 5 Local optimization: Correlation estimation with OPT-2
1: Input K,α1, α2, δtx, δty, δθ, δsx, δsy
2: Generate {gγi} from Î1 s.t. Î1 ≈

∑K
i=1 ci gγi

3: Initialize Λ−1 = {γi}, k = 0
4: repeat
5: Generate index search space Sk based on Λk−1 (with Eq. (5.14))
6: for all Parameter vectors Λ in Sk do
7: Compute the motion field
8: Warp the reference image Î1 using motion field, WΛ(Î1)
9: Compute the data term Ed(Λ) with Eq. (5.6)

10: Compute the smoothness term Es(Λ) with Eq. (5.10)
11: Compute the consistency term Et(Λ) with Eq. (5.15)
12: Compute the global energy ER(Λ) = Ed(Λ) + α1Es(Λ) + α2Et(Λ)
13: end for
14: Λk = argminΛ∈Sk ER(Λ)
15: k = k + 1
16: until convergence is reached

Complexity Issues

We discuss now briefly the computational complexity of the correlation estimation algorithm, which can
basically be divided into two stages. The first stage finds the most prominent features in the reference image
using sparse approximations in a structured dictionary. The second stage estimates the transformation
for all the features in the reference image by solving a regularized optimization problem such as OPT-1
or OPT-2. Our framework offers a very simple encoding stage with image acquisition based on random
linear projections. The computational burden is shifted to the joint decoder, which can still trade-off the
complexity and performance. The decoder is able to handle computationally complex tasks in our framework.
However, the complexity of our system can be reduced in both stages compared to the generic implementation
proposed above. For example, the complexity of the sparse approximation of the reference image can
be reduced significantly using a tree-structured dictionary, without significant loss in the approximation
performance [149]. In addition, a block-based dictionary can be used in order to reduce the complexity of
the transformation estimation problem with block-based computations. Experiments show however that this
comes at a price of a performance penalty in the image quality. Overall, it is clear that the decoding scheme
proposed above offers high flexibility with an interesting trade-off between the complexity and performance.
For example, one might decide to use the simple data cost Ed given in Eq. (5.6) even when the measurements
are quantized; it leads to a simpler scheme but to reduced estimation accuracy.

5.6 Extension to multiple image sets

So far, we have focused on the distributed representation of pairs of images. Now, we describe the extension
of our framework to datasets with J correlated images I1, I2, . . . , IJ . We consider I1 as the reference image;
this image is given in a compressed form Î1 and its prominent features are extracted at the decoder with
a sparse approximation over the dictionary D. The images I2, . . . , IJ are sensed independently using the
measurement matrix Φ. Their respective measurements Y2, . . . , YJ are quantized and entropy coded. Our
framework applies to image sequences and multi-view imaging. For the sake of clarity, we focus on the latter
framework where the multiple images captured from different viewpoints.

We are interested in estimating a depth map Z that captures the correlation between J images by
assuming that the camera parameters are given a priori. The depth map is constructed using the set of K
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features {gγi} in the reference image and the quantized measurements Ŷ2, . . . , ŶJ . We assume that the depth
values Z are discretized such that the inverse depth 1/Z is uniformly sampled in the range [1/Zmax, 1/Zmin],
where Zmin and Zmax are the minimal and maximal depth in the scene, respectively [150]. The problem is
equivalent to finding a set of labels l ∈ L that effectively captures depth information for each atom gγi or
pixel z in the reference image, where L is a discrete set of labels corresponding to different depth values.
We propose to estimate the depth information with an energy minimization problem OPT-3, which includes
three cost functions as follows:

Eu(Λ) = Ed,u(Λ) + α1Es,u(Λ) + α2Et,u(Λ), (OPT-3)

where Ed,u, Es,u and Et,u represent the data, smoothness and consistency terms respectively. The three
terms are balanced with regularization constants α1 and α2.
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Figure 5.2: Illustration of the atom interactions in the multi-view imaging scenario. The original position of the
features in all the images is marked in black color. Projection of the first feature gγ1 at l = 2 in the views I2 and I3
corresponds to the actual position of the feature in the respective views, and thus forms a valid 3D region at l = 2.
Meanwhile, the projection of the second feature gγ2 at l = 4 corresponds to the actual position only in view I3,
but not in view I2 (highlighted in red color). Hence, the second feature does not intersect at l = 4 which results in
suboptimal depth estimation at l = 4.

The data term Ed,u assigns a set of labels l1, l2, . . . , lK respectively to the K atoms gγ1 , gγ2 , . . . , gγK

while respecting consistency with the quantized measurements. The data cost function reads as

Ed,u({gγi}, {li}) =
J∑

j=2

‖Ŷj −Ψj
ΛΨ

j
Λ

†
Ŷj‖22, (5.17)

where Ψj
Λ = Φ[Pj(gγ1 , l1), Pj(gγ2 , l2), . . . ,Pj(gγi , li), . . . ,Pj(gγK , lK)]. The operator Pj(gγi , l) represents

the projection of the atom gγi to the jth view when the local transformation is given by the depth label
l (see Fig. 5.2). The data term in Eq. (5.17) is similar to the data term described earlier for image pairs
(see Eq. (5.6)) except that the sum is computed over all the views. Depending on the relative position of
the jth camera with respect to the reference camera, the projection Pj(gγi , l) can involve changes in the
translation, rotation or scaling parameter, or combinations of them. The projection Pj(gγi , l) of the atom
gγi to the jth view approximately corresponds to another atom in the dictionary D. It is interesting to note
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that the data cost is minimal if the projection of the feature gγi onto another view corresponds to its actual
position in this view2. This happens when the depth label l corresponds to the true distance to the visual
object represented by the atom gγi . For example, the projection of the feature gγ1 in Fig. 5.2 corresponds
to the actual position of the features in views I2 and I3. Therefore, the data cost for this feature gγ1 at
label l = 2 is minimal. On the other hand, the projection of the feature gγ2 is far from the actual position
of the corresponding feature in the view I2. The corresponding data cost ‖Y2 −Ψ2

ΛΨ
2
Λ
†
Y2‖22 is high, which

indicates a suboptimal estimation of the depth label l in this case.
The smoothness cost Es,u enforces consistency in the depth label for the adjacent pixels z and z′. It is

given as
Es,u =

∑
z,z′∈N

min (|l(z)− l(z′)|, τ) , (5.18)

where τ is a constant and N represents the usual 4-pixel neighborhood. Finally, the consistency term Et,u

favors depth labels that lead to image predictions that are consistent with the quantized measurements. We
compute the consistency for all the views as the sum of terms Et given in Eq. (5.15). More formally, the
consistency term Et,u in the multi-view scenario is given as

Et,u({gγi}, {li}) =
J∑

j=2

‖Ŷj −Q[ΦĨj ]‖22 =
J∑

j=2

‖Ŷj −Q[ΦWj(Î1, {li})]‖22, (5.19)

where Wj(Î1, {li}) predicts the jth view with the label set {li} corresponding to the set of K atoms {gγi}.
Finally, it is interesting to note that the optimization problem OPT-3 is similar to the OPT-2 problem except
that the sum is carried out for all the J views in the data and consistency terms. Therefore, the optimization
problem OPT-3 can be solved in polynomial time using the optimization methodologies described in Section
5.4.

5.7 Experimental results

5.7.1 Setup

We analyze the performance of the correlation estimation algorithms in multi-view imaging and distributed
video coding applications. In order to compute a sparse approximation of the reference image at the decoder,
we use a dictionary that is constructed using two generating functions [38]. The first one consists of 2D
Gaussian functions to capture the low frequency components. The second function represents Gaussian in
one direction and the second derivative of 2D Gaussian in the orthogonal direction to capture the edges.
The discrete parameters of the functions in the dictionary are chosen as follows. The translation parameters
tx and ty take any positive value and cover the full height N1 and width N2 of the image. Ten rotation
values are used between 0 and π, with increments of π/18. Five scaling parameters are equi-distributed in
the logarithmic scale from 1 to N1/8 vertically and 1 to N2/9.77 horizontally, where N = N1 × N2 is the
resolution of the image. Unless stated differently, we use global optimization methods based on Graph Cuts
to solve OPT-1 and OPT-2. The regularization parameters α1 and α2 can be selected in two ways: (1)
the motion field minimizes the error with respect to groundtruth transformation field, i.e., flow field should
be as close as possible to the groundtruth (2) the flow field maximizes the quality of the predicted image
Ĩ2. While this could be done in both ways we generally select the parameter set α1 and α2 (based on trial
and error experiments) such that the estimated flow field maximizes the quality of the predicted image Ĩ2.
Note that in practice, the groundtruth correlation model and the original images are not available a priori
to estimate an optimal regularization parameters α1 and α2. In such cases, the parameters α1 and α2 can

2we assume here that we have no occlusions.



5.7 Experimental results 77

be estimated based on learning from a set of training images or using the automated method proposed in
[143].

The image I2 is captured by random linear projections using a scrambled block Hadamard transform
with a block size of 8 [30]. The measurements Y2 are quantized using a uniform quantizer, and the bit
rate is computed by encoding the quantized measurements using an arithmetic coder. We report in this
section the performance of our correlation estimation algorithm applied to the multiple images captured
in multi-view and video imaging scenarios. We then analyze the influence of the measurement consistency
term in the energy minimization constraint and analyze the influence of the quantization of measurements
for the second image. We then compare the performance between the local and global optimization schemes.
Then, we study the image prediction results as a function of the measurement rate or the coding rate of the
second image. Finally, we compare the rate-distortion performance of the second image to state-of-the-art
solutions for independent and distributed image coding.

5.7.2 Generic transformation

We first study the performance of our scheme with a pair of synthetic images that contains three objects.
The original images I1 and I2 are given in Fig. 5.3(a) and Fig. 5.3(b) respectively. It is clear that the
common objects in the images have different positions and scales. The absolute error between the original
images is given in Fig. 5.3(c), where the PSNR between I1 and I2 is 15.6 dB.

We encode the reference image I1 to a quality of 35 dB and the number of features used for the approxi-
mation of Î1 is set to N = 15. The transformation field is estimated with δtx = δty = 3 pixels, δsx = δsy = 2
samples and δθ = 0. We first estimate the transformation field with problem OPT-1, by setting α1 = 0,
i.e., the smoothness term Es is not activated. The resulting motion field is shown in Fig. 5.3(d). From
Fig. 5.3(d) we observe that the proposed scheme gives a good estimation of the transformation field even
with a 5% measurement rate that are quantized with 2 bits. We further see that the image Ĩ2 predicted
with help of the estimated correlation is closer to the original image I2 than to I1 (see Fig. 5.3(g)). We
then include the consistency term in addition to the data cost and we solve the problem OPT-2 without
activating the smoothness term, i.e., α1 = 0. The estimated transformation field and the prediction error are
shown in Fig. 5.3(e) and Fig. 5.3(h), respectively. We observe that the consistency term improves the qual-
ity of the motion field and the prediction quality. Finally, we highlight the benefit of enforcing smoothness
constraint in our OPT-2 problem. The estimated transformation field with the OPT-2 problem including
the smoothness term is shown in Fig. 5.3(f). By comparing the correlation estimation in Fig. 5.3(e) and
Fig. 5.3(f) we see that the dense transformation map is smoother and more coherent when the smoothness
term is activated. Quantitatively, the smoothness energy Es of the motion field shown in Fig. 5.3(f) is 1479,
which is clearly smaller comparing to the solutions given Fig. 5.3(d) and Fig. 5.3(e) (resp. 4309 and 4851).
Also, the smoothness term effectively improves the quality of the predicted image and the predicted image
Ĩ2 gets closer to the original image I2, as shown in Fig. 5.3(i).

5.7.3 Stereo image coding

We then study the performance of our distributed image representation algorithms in stereo imaging frame-
works. We use two image datasets, namely Plastic and Sawtooth3 [7]. These datasets have been captured
by a camera array where the different viewpoints are uniformly arranged on a line. As this corresponds to
translating the camera along one of the image coordinate axes, the disparity estimation problem becomes
a one-dimensional search problem, and the smoothness term in Eq. (5.10) is simplified accordingly. The
images are downsampled to a resolution N = 144× 176. We carry out experiments using the views 1 and
5 of the Sawtooth image set, and views 1 and 2 of the Plastic image set. The viewpoint 1 is selected as
the reference image I1 and it is encoded such that the quality of Î1 is approximately 33 dB with respect to

3These image sets are available at http://vision.middlebury.edu/stereo/data/
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(a) I1 (b) I2 (c) |I1 − I2|

(d) (mh,mv) (e) (mh,mv) (f) (mh,mv)

(g) |I2 − Ĩ2| (h) |I2 − Ĩ2| (i) |I2 − Ĩ2|
Figure 5.3: Comparison of the estimated motion fields and the predicted images with the OPT-1 and OPT-2
problems in the synthetic scene: (a) original image I1; (b) original image I2; (c) absolute error between I1 and I2;
(d) motion field (mh,mv) estimated with OPT-1 without activating Es, i.e., α1 = 0; (e) motion field (mh,mv)
estimated with OPT-2 without activating Es, i.e., α1 = 0; (f) motion field (mh,mv) with OPT-2. The smoothness
energy Es of the motion fields are (d) 4309 (e) 4851 and (f) 1479. (g), (h) and (i) represent the quality of the
predicted image using the motion field in (d), (e) and (f) respectively. The PSNR of the predicted image Ĩ2 with
respect to I2 is found out to be 20 dB, 20.4 dB and 21.53 dB respectively. Quality of the reference image used in
this experiment is 35 dB. The motion field is estimated using a measurement rate of 5% with a 2-bit quantization.

I1. Matching pursuit is then carried out on Î1, and we select K = 30 and K = 60 features for the Plastic
and Sawtooth datasets respectively. The measurements are generally quantized using a 2-bit uniform quan-
tizer. At the decoder, the search for the geometric transformations F i is carried out along the translational
component tx with window size δtx = 4 pixels, and no search is considered along the vertical direction, i.e.,
δty = 0. Unless stated explicitly, we solve the OPT-1 and OPT-2 optimization problems using the data cost
Ed given in Eq. (5.6).

We first study the performance of the estimated disparity information. We show in Fig. 5.4 and Fig. 5.5
the estimated disparity field mh from 8870 quantized measurements (i.e., a measurement rate of 35%) for
both image sets respectively. The groundtruth Mh is given in Fig. 5.4(a) and Fig. 5.5(a) respectively. The



5.7 Experimental results 79

(a) Mh (b) mh (c) |Mh −mh| > 1 (d) mh (e) |Mh −mh| > 1

Figure 5.4: Comparison of the estimated disparity fields with OPT-1 and OPT-2 for the Plastic dataset: (a)
groundtruth disparity field Mh between views 1 and 2; (b) estimated disparity field with OPT-1; (c) error in the
disparity map with OPT-1 (DE = 10.8%); (d) estimated disparity field with OPT-2; (d) error in the disparity
map with OPT-2 (DE = 4.1%). The disparity field is estimated using a measurement rate of 35% with a 2-bit
quantization.

(a) Mh (b) mh (c) |Mh −mh| > 1 (d) mh (e) |Mh −mh| > 1

Figure 5.5: Comparison of the estimated disparity fields with OPT-1 and OPT-2 for the Sawtooth dataset: (a)
groundtruth disparity field Mh between views 1 and 5; (b) estimated disparity field with OPT-1; (c) error in the
disparity map with OPT-1 (DE = 8.1%); (d) estimated disparity field with OPT-2; (d) error in the disparity map
with OPT-2 (DE = 4.1%). The disparity field is estimated using a measurement rate of 35% with a 2-bit quantization.

transformation F i is estimated by solving OPT-1 and the resulting dense disparity fields are illustrated in
Fig. 5.4(b) and Fig. 5.5(b) respectively for the datasets. In this particular experiment, the parameters α1 and
α2 are selected such that the error in the disparity map is minimized. The disparity error DE is computed be-
tween the estimated disparity field mh and groundtruth Mh as DE = 1

N

∑
z=(m,n)

{
|Mh(z)−mh(z)| > 1

}
where N represents the pixel resolution of the image [7]. From Fig. 5.4(b) and Fig. 5.5(b) we observe that
OPT-1 gives a good estimation of the disparity map; in particular the disparity value is correctly estimated
in the regions with texture or depth discontinuity. We can also observe that the estimation of the disparity
field is however less precise in smooth regions as expected from feature-based methods. Fortunately, the
wrong estimation of the disparity value in the smooth regions does not significantly affect the warped or
predicted image quality. Fig. 5.4(c) and Fig. 5.5(c) confirm such a distribution of the disparity estimation
error, where the white pixels denote an estimation error larger than one. We can see that the error in
the disparity field is highly concentrated along the edges, since crisp discontinuities cannot be accurately
captured due to the scale and smoothness of the atoms in the chosen dictionary. The disparity information
estimated by OPT-2 is presented in Fig. 5.4(d) and Fig. 5.5(d) and the corresponding errors in Fig. 5.4(e)
and Fig. 5.5(e). We clearly see that the addition of the consistency term Et in the correlation estimation
algorithm improves the performance.

We propose a different illustration of the disparity estimation performance in Fig. 5.6 and Fig. 5.7.
The dense disparity field mh is used to warp the reference image Î1 and the predicted image is represented
by Ĩ2. We estimate the correlation between images in both datasets with OPT-1 using 2534 quantized
measurements (i.e., a measurement rate of 10%). We then warp the reference image to reconstruct an
approximation of the second image, denoted as Ĩ2. We show in Figs. 5.6(a) and (b) (resp. Figs. 5.7(a)
and (b)) the comparison between Ĩ2 and respectively I2 and I1, where white pixels represent a correct
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(a) MSE: 59.39 (b) MSE: 631.5 (c) MSE: 38.38 (d) MSE: 652.11

Figure 5.6: Comparison of the warped image Ĩ2 with respect to I2 and I1 in the Plastic dataset: (a) 1− |Ĩ2 − I2|
with OPT-1; (b) 1− |Ĩ2 − I1| with OPT-1; (c) 1− |Ĩ2 − I2| with OPT-2; (d) 1− |Ĩ2 − I1| with OPT-2. The image Ĩ2
is predicted using a measurement rate of 10% with a 2-bit quantization.

(a) MSE: 161.74 (b) MSE: 583.30 (c) MSE: 125.41 (d) MSE: 747.52

Figure 5.7: Comparison of the warped image Ĩ2 with respect to I2 and I1 in the Sawtooth dataset: (a) 1− |Ĩ2− I2|
with OPT-1; (b) 1− |Ĩ2 − I1| with OPT-1; (c) 1− |Ĩ2 − I2| with OPT-2; (d) 1− |Ĩ2 − I1| with OPT-2. The image Ĩ2
is predicted using a measurement rate of 10% with a 2-bit quantization.

reconstruction. It is clear that Ĩ2 is closer to I2 than I1, which confirms that the proposed scheme efficiently
captures the correlation between images. The same comparisons are given in Figs. 5.6(c) and (d) (resp.
Figs. 5.7(c) and (d)) when OPT-2 is used for correlation estimation. The results confirm that the addition
of the consistency term again provides a more accurate disparity field since the warped image Ĩ2 gets quite
closer to the target image I2.

We study now the rate-distortion performance of the proposed algorithms for the prediction of the image
Ĩ2 in Fig. 5.8 for both datasets. We show the performance of the reconstruction by warping the reference
image according to the correlation computed by OPT-1 and OPT-2. We compare the rate-distortion perfor-
mance to a distributed coding solution (DSC) based on the LDPC encoding of DCT coefficients, where the
disparity field is estimated at the decoder using Expected Maximization (EM) principles [86]. The scheme
is denoted as Disparity learning in the figures. Then, in order to demonstrate the benefit of geometric
dictionaries, we also propose a scheme denoted as block-based that adaptively constructs the dictionary
using blocks or patches in the reference image [103]. As described in [103], we construct a dictionary in the
joint decoder from the reference image Î1 segmented into 8 × 8 blocks. The search window size is δtx = 4
pixels along the horizontal direction. We then use the optimization scheme described in OPT-2 to select
the best block from the adaptive dictionary. In order to have a fair comparison, we encode the reference
image I1 similarly for both schemes (Disparity learning and block-based) with a quality of 33 dB (see Section
5.2). Finally, we also provide the performance of a standard JPEG 2000 independent encoding of the image
I2. From Fig. 5.8, we first see that the measurement consistency term Et greatly improves the prediction
quality, as OPT-2 gives better performance than OPT-1. We then solve the OPT-2 without the data cost
function Ed, i.e., using only the smoothness Es and consistency Et terms (marked as OPT-2 (no Ed)). From
Fig. 5.8, as expected, we see that the RD performance is maximized only when all the three terms in OPT-2
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Figure 5.8: Comparison of the RD performances between the proposed scheme, DSC scheme [86], block-based
scheme [103] and independent coding solutions based on JPEG 2000: (a) Sawtooth image set; (b) Plastic image set.

are activated. The results confirm that the proposed correlation estimation algorithms unsurprisingly out-
perform independent coding based on JPEG 2000, which outlines the benefits of the correlation information
in the decoding of compressed correlated images. It is worth mentioning that the JPEG 2000 compression
standard fails to provide a good RD performance for low resolution images, typically of image resolution
N = 144× 176 used in our experiments. Though this is the case, JPEG 2000 is still state-of-the-art coding
solutions for independent compression. From Fig. 5.8 we see that at high bit rate the performance of the
proposed algorithms however tend to saturate as our model mostly handles the geometry and the correlation
between images. But our scheme is not able to efficiently handle the fine details or texture in the scene, due
to the image reconstruction Î2 based on warping. In Chapter 7, we propose a joint reconstruction method-
ology to correct this saturation behavior by estimating the details and texture information from quantized
linear measurements. From Fig. 5.8, it is then clear that the reconstruction based on OPT-1 and OPT-2
outperforms the DSC coding scheme based on EM principles for both datasets. Finally, the experimental
results also show that our schemes outperform the scheme based on block-based dictionary mainly because
of the richer representation of the geometry and local transformations with the structured dictionary.

We now compare the RD performances between the local and global optimization methodologies with the
OPT-1 and OPT-2 schemes. It should be noted that our local optimization scheme implements constructive
parameter search strategy summarized in the Algo. 4 and Algo. 5 respectively. The comparison is available
in Fig. 5.9 where the RD performances are represented in the dashed and dotted lines respectively. From
Fig. 5.9 we observe that the local optimization scheme estimates a suboptimal solution, where it has a lower
RD performance comparing to the one estimated based on Graph Cuts. However, comparing Fig. 5.8 and
Fig. 5.9 it is interesting to note that the suboptimal solution estimated based on the constructive search
space still outperforms state-of-the-art independent and distributed coding solutions.

We now study the performance of OPT-2 in different settings in terms of camera distances, quality of the
reference image and quantization of the measurements. We first illustrate the rate-distortion performance of
the proposed scheme for images captured at various distances from the reference camera. In particular, we
study the quality of the images at viewpoints 3 and 5 in the Sawtooth dataset that are decoded by warping
the reference image at viewpoint 1. Fig. 5.10 confirms that the performance is better when the correlation
between images is stronger (the reference image is closer to viewpoint 3 than viewpoint 5). We further see
that the coding performance is better than state-of-the-art independent coding with JPEG 2000 and DSC
based on disparity learning [86], when the correlation between images is high. We further study the influence
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Figure 5.9: Comparison of the RD performances between the global and local optimization methodologies: (a)
Sawtooth image set; (b) Plastic image set.
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Figure 5.10: Rate-distortion performance as a function of the correlation between images. OPT-2 is used to predict
images at different viewpoints in the Sawtooth dataset, while the image at viewpoint 1 is selected as a reference
image.

of the quality of the reference image Î1 on the decoding performance. We use OPT-2 to decode Ĩ2 (viewpoint
5) by warping, when the reference image is encoded at different qualities (i.e., different bit rates). Fig. 5.11
shows that the prediction image quality Ĩ2 improves with the quality of the reference image Î1, as expected.
While the error in the disparity estimation is not drastically reduced by improved reference image Î1 quality,
the warping stage permits to provide more details in the representation of Ĩ2, when the reference is of better
quality. Now, we study the cumulative RD performance of views 1 and 5 for the Sawtooth dataset, i.e.,
we include the bit rate and quality of the reference image I1 (viewpoint 1), in addition to the rate and
quality of image I2 (viewpoint 5). Fig. 5.12 shows the cumulative RD performance for various reference
image bit rates 0.2, 0.3, 0.4, 0.5, 0.75 and 1.5 bpp. In our experiments, for a given reference image quality
we estimate the correlation model using OPT-2 (with 2-bit quantized measurements), and we compute the
joint RD performance at that specific reference image bit rate. As shown before, the RD performance
improves with increasing reference image quality. When we take the convex hull of the RD performances
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(which corresponds to implementing a proper rate allocation strategy), we outperform independent coding
solutions based on JPEG 2000.
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Figure 5.11: Rate-distortion performance with OPT-2 for decoding Ĩ2 (viewpoint 5) as a function of the quality of
the reference image Î1 (resp. 28 dB, 33 dB and 38 dB) in the Sawtooth dataset.

0 0.5 1 1.5 2 2.5
20

21

22

23

24

25

26

27

28

29

30

Total bitrate (bpp)

A
vg

. P
S

N
R

 (
d

B
)

 

 

JPEG 2000
Proposed: rate 0.2
Proposed: rate 0.3
Proposed: rate 0.4
Proposed: rate 0.5
Proposed: rate 0.75
Proposed: rate 1.5

Figure 5.12: Cumulative RD performance of the views 1 and 5 for the Sawtooth dataset. OPT-2 is used to predict
the image Ĩ2 (view 5) using the image Î1 (view 1) as the reference image. The image at view 5 is predicted with
varying reference image bit rates 0.1, 0.2, 0.3, 0.4, 0.5, 0.75 and 1.5.

We finally study the influence of the quantization bit rate on the RD performance of Ĩ2 with the OPT-
2. We quantize the measurements Ŷ2 with a number of bits between 2 to 6. While the quality of the
correlation estimation degrades when the number of bits reduces (see Fig. 5.13(a) and Fig. 5.14(a)), it is
largely compensated by the reduction in bit rate in the RD performance, as confirmed by Fig. 5.13(b) and
Fig. 5.14(b). This means that the proposed correlation estimation is relatively robust to quantization so
that it is possible to attain good rate-distortion performance by drastic quantization of the measurements.
Then, we study the improvement offered by the robust data cost Ẽd (see Eq. (5.8)) in OPT-2 (i.e., OPT-2
(Robust) problem), when the measurements have been compressed with a 2-bit uniform quantizer and an
arithmetic coder. We use the optimization toolbox based on CVX [151] in order to solve the optimization
problem described in Eq. (5.7). From Fig. 5.13(a) and Fig. 5.14(a) it is clear that the performance of the
scheme can be improved by activating the robust data term. Also, Fig. 5.8 compares the modified OPT-2



84 Chapter 5. Asymmetric Distributed Representation from Linear Measurements

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

26.6

26.8

27

27.2

27.4

27.6

27.8

28

Measurement rate

P
S

N
R

 

 

Without Quantization
6−bit Quantization
4−bit Quantization
2−bit Quantization
2−bit Quantization (robust)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
25

25.5

26

26.5

27

27.5

28

28.5

Bit rate (bpp)
P

S
N

R

 

 

8 bit
6 bit
4 bit
2 bit

(a) (b)

Figure 5.13: Effect of measurement quantization on the quality of the image Ĩ2 decoded with OPT-2 scheme in
the Sawtooth dataset. The quality of the predicted image Ĩ2 is given in terms of (a) measurement rate and (b) bit
rate. The benefit of using robust data cost is illustrated using a 2-bit uniform quantizer.
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Figure 5.14: Effect of measurement quantization on the quality of the image Ĩ2 decoded with OPT-2 scheme in
the Plastic dataset. The quality of the predicted image Ĩ2 is given in terms of (a) measurement rate and (b) bit rate.
The benefit of using robust data cost is illustrated using a 2-bit uniform quantizer.

with DSC based on disparity learning [86], a joint reconstruction with a block-based dictionary [103] and
independent coding with JPEG 2000. The relative performance of the different schemes are maintained
with the robust data cost Ẽd. However, the robust data cost permits to improve the quality of the predicted
image Ĩ2 by 0.5-1 dB, especially at low measurement rate.

5.7.4 Distributed video coding

We study now the performance of the proposed algorithms in distributed video coding applications. The
experimental setup is similar to the stereo imaging framework described in the previous section, except
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that the correlation estimation relates to the motion estimation instead of disparity computation. We have
tested our algorithm on three datasets. The first dataset is built using the frames 2 and 3 of the Foreman
sequence, and the second dataset is built using the frames 65 and 66 of the Tennis sequence. The third
dataset Mequon is selected from the Middlebury optical flow database4. Frames 2 and 66 are selected as
the reference image I1 in the first and second datasets respectively. The quality of the reference image
is approximately 45 dB for the first dataset, and 33 dB for the second and third datasets. We use the
same dictionary described in the previous section for approximating the image Î1. For the first dataset we
approximate Î1 using K = 60 atoms, and for the second and third datasets we approximate Î1 using K = 90
atoms. The measurements Y2 are compressed using a 2-bit uniform quantizer and an arithmetic coder. The
search window size is δtx = δty = 4 pixels for the translational components tx and ty for the first dataset,
and δtx = δty = 6 for the second and third datasets.

Fig. 5.15 illustrates the accuracy of the motion information computed in the OPT-2 scheme with 1267
and 3801 quantized measurements (i.e., 5% and 15% measurement rate respectively). It compares the image
Ĩ2 reconstructed by warping the reference image, to respectively the original images I2 and I1. We see that
the warped image is closer to I2 than I1, which confirms the benefit of the motion estimation in the joint
decoder. We further observe that the error denoted by black pixels is reduced significantly in the face
region due to a good estimation of the motion field in smooth areas. Similarly to the stereo experiments
the motion around sharp edges is however not perfectly captured due to the choice of a dictionary that does
not include very thin geometrical patterns. Similar experimental findings are observed in the Tennis and
Mequon datasets shown in Fig. 5.16 and Fig. 5.17 respectively, where the proposed algorithm can capture
efficiently the complex and large motion fields in the Tennis and Mequon datasets from 1267 (5%) quantized
measurements.

We further study the RD performance of the proposed algorithms in the decoding of the image Ĩ2. From
Fig. 5.18(a) and Fig. 5.18(b) it is clear that our proposed solutions outperform independent coding since it
exploits the correlation between images. We then compare the performance to state-of-the-art solutions in
joint and distributed video coding. First, we provide the performance of a DSC scheme based on motion
learning [147], using the experimental setup similar to the one demonstrated in the previous section and a
reference image Î1 of 45 dB for a fair comparison (denoted as Motion learning in the figures). In addition,
we implement OPT-2 with a different dictionary that is built on blocks of the reference image, similarly
to [103] (denoted as Block scheme in the figures). For the sake of completeness, we further provide results
of a joint video encoding solution based on H.264 with an IP encoding structure (i.e., a GOP size of 2).
We again encode the reference I-frame (I1) at a quality of 45 dB for the Foreman dataset (33 dB for the
Tennis dataset), and we vary the quantization parameter for the P-frame (I2) to build the rate-distortion
characteristics. We consider two different settings in the H.264 motion estimation, which is performed with
variable and fixed macro block size. From Fig. 5.18(a) we first observe that the measurement consistency
term Et in OPT-2 greatly improves the performance of our motion estimation algorithm. It also outperforms
the DSC solution based on motion learning due to better model of the geometric correlation between images.
The correlation estimation with block-based dictionary is less efficient than the estimation with a dictionary
of geometric atoms. Finally, from Fig. 5.18(a) and Fig. 5.18(b) we see that the joint encoding based on
H.264 is better than the distributed coding solutions for both Foreman and Tennis datasets. However, our
algorithm is able to compete at low bit rates with H.264 based on a fixed block-size motion estimation, which
is certainly an interesting and promising result. It should be noted that in our scheme we predict the second
image based on motion compensation (i.e., warping); this certainly fails to estimate accurately the visual
information along the edges and in texture regions. On the other hand, state-of-the-art schemes such as
H.264 and DSC-based on motion learning compensate also for the prediction error in addition to correlation
estimation. Though this is the case, we show by experiments that the proposed scheme outperforms H.264
(at low rate) and DSC-based on motion learning due to an accurate motion field estimation. In Chapter
7, we propose a joint reconstruction algorithm that improves the quality of the image Ĩ2 by estimating the

4available at http://vision.middlebury.edu/flow
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(a) MSE: 78.49 (b) (mh,mv) (c) MSE: 47.22 (d) MSE: 60.1

(e) (mh,mv) (f) MSE: 38.1 (g) MSE: 62.11

Figure 5.15: Comparison of the warped image Ĩ2 with respect to I2 and I1 with the OPT-2 scheme in the Foreman
dataset. (a) Inverted absolute error 1 − |I1 − I2| between original images. Top row: Results estimated from a
measurement rate of 5% with a 2-bit quantized measurements: (b) motion map (mh,mv); (c) inverted prediction
error 1 − |Ĩ2 − I2| with respect to I2; (d) inverted prediction error 1 − |Ĩ2 − I1| with respect to I1. Bottom row:
Results estimated from a measurement rate of 15% with a 2-bit quantized linear measurements: (e) motion map
(mh,mv); (f) inverted prediction error 1− |Ĩ2 − I2| with respect to I2; (g) inverted prediction error 1− |Ĩ2 − I1| with
respect to I1.

(a) MSE: 282.77 (b) (mh,mv) (c) MSE: 154.25 (d) MSE: 271.12

Figure 5.16: Comparison of the warped image Ĩ2 with respect to I2 and I1 with the OPT-2 scheme in the Tennis
dataset: (a) inverted absolute error 1− |I1 − I2| between original images; (b) motion map (mh,mv) estimated with
OPT-2; (c) inverted prediction error 1 − |Ĩ2 − I2| with respect to I2; (d) inverted prediction error 1 − |Ĩ2 − I1|
with respect to I1. The motion field is estimated using a measurement rate of 5% with a 2-bit quantized linear
measurements.

missing visual information from quantized linear measurements. We then compare the RD performances
for the predicted image Ĩ2 between the graph-based (global) and the constructive search parameter (local)
optimization methodologies. The comparison is available in Fig. 5.19 for the Foreman dataset, where the
RD performances for global and local optimization schemes are represented in the dashed and dotted lines
respectively. From Fig. 5.9, we see that the RD performance is significantly improved when the OPT-1
and OPT-2 optimizations are solved using strong optimization techniques based on Graph Cuts, which is
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(a) MSE: 481.01 (b) (mh,mv) (c) MSE: 195.77 (d) MSE: 414.17

Figure 5.17: Comparison of the warped image Ĩ2 with respect to I2 and I1 with the OPT-2 scheme in the Mequon
dataset: (a) inverted absolute error 1− |I1 − I2| between original images; (b) motion map (mh,mv) estimated with
OPT-2; (c) inverted prediction error 1 − |Ĩ2 − I2| with respect to I2; (d) inverted prediction error 1 − |Ĩ2 − I1|
with respect to I1. The motion field is estimated using a measurement rate of 5% with a 2-bit quantized linear
measurements.
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Figure 5.18: (a) Rate-distortion performance with OPT-1 and OPT-2 schemes for decoding Ĩ2 in the Foreman
dataset. Comparisons with state-of-the-art coding solutions in independent, joint and distributed video coding
schemes. (b) Rate-distortion performance of the proposed OPT-2 scheme with state-of-the-art independent coding
solutions based on JPEG 2000 for Tennis and Mequon datasets.

consistent with our earlier observations in the disparity estimation experiments.

5.7.5 Multi-view image coding

We finally evaluate the performance of our correlation estimation algorithms in scenarios with more than 2
correlated images. We use five images from the Tsukuba dataset (center, left, right, bottom and top views),
and five frames (frames 3-7) from the Flower Garden sequence [150]. These datasets are down-sampled
by a factor 2 and the resolution of these datasets used in our experiments is of 144 × 192 and 120 × 180
respectively. In both datasets, the reference image I1 (center view and frame 5 resp.) is encoded with a
quality of approx. 33 dB. The measurements Yi, ∀i ∈ {1, 2, 3, 4} computed from the remaining four images
are quantized using a 2-bit quantizer. We first compare our results to a stereo setup where a depth field
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Figure 5.19: Comparison of the RD performances between the global and local optimization methodologies for the
Foreman dataset.

is estimated with OPT-2 between the center and left images (in Tsukuba), and frames 5 and 6 (in Flower
Garden) respectively. Fig. 5.20 compares the inverse depth error (sum of the labels with error larger than one
with respect to groundtruth) between the multi-view and disparity scenarios. In this particular experiment,
the parameters α1 and α2 are selected such that they minimize the error in the depth image with respect to
the groundtruth. It is clear from the plot that the depth error is small for a given measurement rate when
all the views are available. It should be noted that the x-axis in Fig. 5.20 represents the measurement rate
per view, and hence the total number of measurements used in the multi-view scenario is higher than for
the stereo case. However, these experiments show that the proposed multi-view scheme gives a better depth
image when more images are available. Fig. 5.21(b) and Fig. 5.21(d) show the depth map estimated using
the OPT-3 (multi-view) and OPT-2 (stereo) algorithms respectively from 3% quantized measurements (per
view) for the Flower Garden sequence. As the groundtruth for this dataset is not available, we estimate the
depth using the original images and it is available in Fig. 5.21(a) for visual comparison. From Fig. 5.21(b)
and Fig. 5.21(d) we see that the proposed multi-view scheme estimates a better depth map than the stereo
setup, as it is more accurate in the background and tree regions. When this coarse depth map is used for
predicting frame 6, we see from Fig. 5.21(b) and Fig. 5.21(e) respectively that the prediction is better when
five views are used for depth estimation. We then study the RD performance of the proposed multi-view
scheme in the decoding of four images (top, left, right, bottom images in Tsukuba, and frames 3, 4, 6, 7
in Flower Garden). The images are decoded by warping the reference image Î1 using the estimated depth
map. Fig. 5.22 compares the overall RD performance (for 4 images) of our multi-view scheme with respect
to independent coding performance based on JPEG 2000. As expected, the proposed multi-view scheme
outperforms independent coding solutions based on JPEG 2000, as it benefits from the correlation between
images. Note that the JPEG 2000 codec is state-of-the-art coding solutions for independent compression
though it has not been optimized for low resolution images. Furthermore, as observed in distributed stereo
and video coding the proposed multi-view coding scheme saturates at high rates, as the warping operator
captures only the geometry and correlation between images and not the detail and texture information.

Finally, we compare our results with the joint encoding approach where the depth image is estimated
from the original images and the computed depth image is transmitted to the joint decoder. At the decoder,
the views are predicted from the reconstructed reference image Î1 and the compressed depth image based
on view prediction. The results are presented in Fig. 5.22 (marked as Joint encoding), where the bit rate
is computed only on the depth image encoded using the JPEG 2000 coding solution. The main difference
between our scheme and the joint encoding is that the quantized linear measurements are transmitted for
a depth estimation in the former scheme, while the depth information is directly transmitted in the latter
scheme. Therefore, by comparing these two approaches we can fairly judge the accuracy of the estimated
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Figure 5.20: Inverse depth error at various measurement rates for the Tsukuba multi-view dataset. OPT-2 and
OPT-3 are used to estimate the depth in stereo and multi-view scenarios respectively. The measurements are
quantized using a 2-bit quantizer.

(a) (b) (c) MSE: 136.99 (d) (e) MSE: 167.85

Figure 5.21: Comparison of the qualities of the depth image and the warped image Ĩ2 estimated in multi-view
and stereo scenarios in the Garden dataset: (a) depth image Mh estimated using the original images; (b) depth
image mh estimated in the multi-view scenarios using OPT-3; (c) inverted prediction error 1− |Ĩ2 − I2| when depth
image in (b) is used for prediction; (d) depth image mh estimated in the stereo scenario using OPT-2; (e) inverted
prediction error 1− |Ĩ2 − I2| when depth image in (c) is used for prediction. The depth image is estimated using a
measurement rate of 3% (per image) with 2-bit quantized measurements.
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Figure 5.22: Comparison of the overall RD performances between the proposed scheme and the independent coding
scheme based on JPEG 2000. Five images are used in both datasets to estimate a depth image using OPT-3. The
bit rate of the reference image I1 is not included in the total bit budget.

correlation model or equivalently the quality of the predicted view at a given bit rate. From Fig. 5.22 we
see that at low rates < 0.2, the proposed scheme estimates a better structural information compared to the
joint encoding scheme, thanks to the geometry-based correlation representation. However at rates above
0.2, we see that the proposed scheme becomes comparable with the joint encoding approach, leading to the
conclusion that the proposed scheme effectively estimates the depth information from the highly compressed
quantized measurements. It should be noted that in joint encoding approach the depth images are estimated
at a central encoder. In contrary to this, we estimate the depth images at the central decoder from the
independently compressed visual information and therefore our encoder is very simple.

5.8 Conclusions
In this chapter we have contributed a novel framework for the distributed representation of correlated images
with quantized linear measurements along with novel algorithms for estimating the geometric correlation
between images at the joint receiver. We have proposed a correlation model based on local transformations of
geometric patterns that are present in the sparse representation of images. The motion or depth information
in distributed video coding and respectively multi-view imaging can then be estimated by matching the
corresponding geometric features in different compressed images. We have proposed a new regularized
optimization problem in order to identify the geometrical transformations that result in smooth motion or
depth fields between a reference image and one or more predicted image(s). Furthermore, we have proposed
an improved image warping solution that leads to image prediction that is consistent with the compressed
measurements.

Experimental results demonstrate that the proposed methodology provides a good estimation of dense
disparity/depth or motion fields in different natural image datasets. We also show that our geometry-based
correlation model is more efficient than block-based correlation models. Then, the consistency term proves
to offer improved image prediction quality, such that the proposed algorithm outperforms JPEG 2000 and
DSC schemes in terms of rate-distortion performance computed on the quantized linear measurements.
Finally, we show experimentally that our low complex distributive correlation estimation scheme competes
with the solution of the scheme that estimates a correlation model in centralized settings. Therefore, our
scheme certainly provides an interesting alternative to distributed image processing applications due to a
framework based on effective handling of the geometry that is one of the main component of correlated
natural images. Note that the experiments are carried out using the datasets with QCIF resolution images.
We left to extend our scheme to large image resolution, which is one of the interesting future perspectives
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of this thesis. In Chapter 7, we propose a joint reconstruction methodology that estimates the missing high
frequency texture information of the reconstructed image from the quantized linear measurements. In the
next chapter, we extend the scenario to the symmetric case, where we propose to estimate the correlation
model directly from the quantized linear measurements.
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Chapter 6

Correlation Estimation from
Compressed Linear Measurements

6.1 Introduction

In the previous chapter, we have proposed an algorithm to estimate the geometrical relationship between
correlated images from a reference image and compressed linear measurements. In this chapter, we propose
to estimate the correlation between images in a symmetric framework, where all the sensors transmit com-
pressed images that have been obtained by a small number of linear projections of the original images, as
illustrated in Fig. 6.1. Such linear projections typically represent simple measurements in low complexity
sensing systems [15, 16].

We propose a novel solution for the correlation estimation at the joint decoder1, where the analysis
is performed directly in the compressed domain to avoid expensive image reconstruction tasks. Recall
that state-of-the-art distributed schemes estimate the correlation model from the reconstructed images,
which are typically obtained by solving an l2-l1 or l2-TV optimization problem in the compressed sensing
framework. Unfortunately, reconstructing the reference images based on solving optimization problems are
highly complex. Also, in image analysis applications (e.g., object detection) it is sufficient to estimate only
the correlation model and the explicit reconstruction of images is often not required. Hence, we propose
to estimate the correlation model directly from the quantized linear measurements by building a pixel-wise
geometrical model between images.

We assume that the correlation between images corresponds to camera or object motion, which can be
efficiently represented by a dense disparity or motion field model. We show that such a correlation model
can be described by a linear operator and we further analyze in detail the effect of such an operator in the
compressed domain. Later, we cast the correlation estimation problem as a regularized energy minimization
problem with constraints on data consistency and on consistency of the motion field. In particular, we
regularize the correlation model such that the motion values in the neighboring pixels are similar except at
image discontinuities. Such an optimization problem can be solved using a Graph Cut algorithm. Finally,
we propose robust solutions to the correlation estimation by effectively considering the non-linearities due
to quantization of measurements.

We then analyze in details the performance of our novel correlation estimation framework. In particular,
we study the penalty in the correlation estimation that is due to working in the compressed domain as
opposed to the original image domain as in traditional correlation estimation problems. We show that the
penalty decreases when the number of measurements increases and that our algorithm tends to find the

1Part of this work has been accepted to: V. Thirumalai and P. Frossard, “Correlation Estimation from Compressed Images,”
Journal of Visual Communication and Image Representation, 2011.
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Ŷ1

Figure 6.1: Schematic representation of the proposed scheme. The images I1 and I2 are correlated through
displacement of the scene objects due to view point change or motion of scene objects. The correlation model is
directly estimated in the compressed domain without any intermediate image reconstruction steps.

optimal correlation solution at high measurement rates. Extensive simulations in distributed multi-view
and video imaging applications confirm the effective estimation performance of our algorithm. Finally, we
show experimentally that our correlation estimation algorithm properly handles the quantization noise in
the measurements.

The rest of this chapter is organized as follows. In Section 6.2, we describe the proposed framework and
show how the correlation estimation problem carries out to the compressed domain. Section 6.3 describes the
proposed correlation estimation algorithm; its performance are analyzed in details in Section 6.4. Section 6.5
extends our correlation framework to quantization scenarios. Finally, in Section 6.6 we describe extensions
to multi-view imaging frameworks.

6.2 Distributed representation of correlated Images

6.2.1 Framework

We consider a framework where the images represent a scene at different time instants or from different
viewpoints. For the sake of clarity, we consider a pair of images I1 and I2 (with resolution N = N1 ×N2),
but the framework extends to larger number of images, as described in Section 6.6. These images are
represented by linear measurements that correspond to the projection of the image pixel values on a set of
coding vectors. Typically, the coding vectors can be constructed from Gaussian or Bernoulli distributions
[15] or with a block structured matrix [30, 31] for easier handling and fast sampling of large images. The
computed measurements are quantized and transmitted to a joint decoder that estimates the correlation
between compressed images. The framework is illustrated in Fig. 6.1.

In more details, the sensors process images row by row. Let I1,m and I2,m represent the mth row of the
images I1 and I2 respectively, and Y1,m and Y2,m represent the linear measurements computed from I1,m
and I2,m using the measurement matrices φm1 and φm2 respectively. The measurements Y1,m and Y2,m are
computed as

Y1,m = φm1 IT1,m, ∀m = 1, 2, . . . , N1, (6.1)

Y2,m = φm2 IT2,m, ∀m = 1, 2, . . . , N1,

where (.)T denotes the transpose operator. It should be noted that φm1 and φm2 are of dimensions M ×N2,
where M << N2 is the number of measurements for each row in the image. From Eq. (6.1) it is easy to
check that the measurements Y1 = [Y1,1, Y1,2, . . . , Y1,N1 ]

T and Y2 = [Y2,1, Y2,2, . . . , Y2,N1 ]
T can be computed
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as
⎡
⎢⎢⎢⎣

Yj,1
Yj,2
...

Yj,N1

⎤
⎥⎥⎥⎦ = Φj

⎡
⎢⎢⎢⎣

ITj,1
ITj,2
...

ITj,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Ij

, ∀j ∈ {1, 2}, (6.2)

where Φj is the measurement matrix used to sample the jth image ∀j = {1, 2}. It can be represented as

Φj =

⎡
⎢⎢⎢⎣

φ1j 0 . . . 0
0 φ2j . . . 0
...

...
. . .

...
0 0 . . . φN1

j

⎤
⎥⎥⎥⎦
K×N

, ∀j ∈ {1, 2}, (6.3)

where K =MN1 and N = N1N2.

6.2.2 Correlation model

In the above settings, the correlation between images is mainly explained by the relative displacement of
objects in the scene. This can be modeled effectively by the optical flow that determines the amount of
displacement of objects or pixels in different images. Such a correlation model can be described by a linear
operator. In Chapter 4, we have described that the disparity field between two images can be represented
using a linear operator. In this section, we go one step further to show that the motion compensation can
also be described linearly. Let mh and mv represent the horizontal and vertical motion at each pixel in the
image. As the visual objects in the images I1 and I2 are displaced, the pixel at position z = (m,n) in one
image moves to z′ = (m + mh(m,n), l + mv(m,n)) in the second image. The images I1 and I2 can thus
simply be related by a linear operator T that changes the coordinate system from (m,n) in the first image
to (m+mh(m,n), l +mv(m,n)) in the second image, i.e.,

I2 = T {I1},
I2,m(n) = I1,(m+mh(m,n)(n+mv(m,n)). (6.4)

For mathematical convenience we use an equivalent representation of Eq. (6.4) in the form of matrix multi-
plication:

IT2,m = Am

⎡
⎢⎢⎢⎣

IT1,1
IT1,2
...

IT1,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I1

, ∀m = 1, 2, . . . , N1, (6.5)

where Am is a matrix of dimensions N2×N1N2 whose entries are determined by the horizontal and vertical
components of the motion field in the mth row, i.e., mh(m, .) and mv(m, .). The elements of the matrix Am

are given by

Am(n, n+ β1 + β2N2) =

{
1 if mh(m,n) = β1,m

v(m,n) = β2,
0 otherwise. (6.6)

If n+ β1 + β2N2 > N1N2 (e.g., at image boundaries), we set n+ β1 + β2N2 = N1N2 so that the dimensions
of the matrix Am stays N2 ×N1N2. It is easy to check that the matrix Am in Eq. (6.6) contains only one
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Figure 6.2: Illustration of the relation between the matrices A and B. On the left, the images I1, I2 ∈ R
N are

related using the matrix A with N = N1N2. In the compressed domain, the measurement vectors Y1, Y2 are related
using the matrix B, where K = MN1. The matrices A and B can be related by B ≈ Φ2AΦ†

1, where Φ1 and Φ2 are
the sensing matrices.

entry ’1’ in each row; this implies I2,m(n) = I1,m+β1(n + β2) if Am(n, n + β1 + β2N2) = 1. The action of
the matrix Am shifts the pixels in I1 according to the motion given as mh(m, .) and mv(m, .), and forms
an estimate of the image I2,m. It should be noted that the matrix Am is completely determined by the mth

row of the motion vectors mh(m, .) and mv(m, .).
The relation given in Eq. (6.5) can be extended to all rows of I2. The images I1 and I2 are finally related

by a linear operator A such that I2 = AI1, which can be written as
⎡
⎢⎢⎢⎣

IT2,1
IT2,2
...

IT2,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I2

=

⎡
⎢⎢⎢⎣

A1

A2

...
AN1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

IT1,1
IT1,2
...

IT1,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
I1

. (6.7)

This relation is illustrated on the lefthand side of Fig. 6.2.

6.2.3 Relation between measurements

We now extend the above correlation model to the compressed domain. Without loss of generality we first
assume that the measurements Y1 and Y2 can be related by a linear transformation B, i.e.,

⎡
⎢⎢⎢⎣

Y2,1
Y2,2

...
Y2,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Y2

=

⎡
⎢⎢⎢⎣

B1

B2

...
BN1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣

Y1,1
Y1,2

...
Y1,N1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Y1

, (6.8)

where Bm, ∀m = 1, 2, . . . , N1 is a matrix with dimensions M ×MN1. In other words, the measurements
Y2,m can be related to Y1 as

Y2,m = Bm Y1, ∀m = 1, 2, . . . , N1. (6.9)

Any two vectors Y1, Y2 ∈ R
MN1 can be related by a linear transformation B as long as Y1 �= 0, which is the

case in our framework. The proof is given in the following proposition.

Proposition 2. Let x and y be two vectors in R
K . We show that two vectors can be related by Bx = y if
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x �= 0.

Proof: The system of linear equations Bx = y can be written as
⎡
⎢⎢⎢⎢⎢⎢⎣

b11 b12 ... ... b1K
b21 b22 ... ... b2K
b31 b32 ... ... b3K
...
...
bK1 bK2 ... ... bKK

⎤
⎥⎥⎥⎥⎥⎥⎦
K×K

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...
...
xK

⎤
⎥⎥⎥⎥⎥⎥⎦
K×1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...
...
yK

⎤
⎥⎥⎥⎥⎥⎥⎦
K×1

The above equation can be rewritten as Xb = y, where X and b are defined as

X =

⎡
⎢⎢⎣
x1 x2 ... xK 0 ... 0 ... 0 ... 0
0 0 ... 0 x1 ... xK ... 0 ... 0
....
0 0 ... 0 0 ... 0 ... x1 ... xK

⎤
⎥⎥⎦
K×K2

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11
b12
...
b1K
b21
...
b2K
...
...
bK1

...
bKK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
K2×1

The solution to the above equation Xb = y exists if y ∈ span(X). In other words, b can be found if
y ∈ span(X), where span(X) refers to the subspace spanned by the columns of X . It is clear that the
columns of matrix X forms an orthogonal basis in R

K if the vector x contains at least one non-zero value,
i.e., any of xi �= 0 for i = {1, 2, . . . ,K}. The matrix X therefore spans the space R

K , and hence y ∈ R
K . �

The linear transformation B that relates the measurements Y1 and Y2 a priori does not have any special
form. We are interested in understanding the relation between this matrix and the matrix A that shifts the
pixels between images I1 and I2. Pre-multiplying Eq. (6.7) by Φ2 on both sides, one can write

Y2 = Φ2I2 = Φ2AI1. (6.10)

In addition, by replacing Y1 = Φ1I1 in Eq. (6.8), one obtains

Y2 = BY1 = BΦ1I1. (6.11)

From Eqs. (6.10) and (6.11), the relation between B and A can finally be given as

BΦ1 = Φ2A. (6.12)

This forms an over-determined system of linear equations, as the number of unknown in matrix B is smaller
than the number of equations in Φ2A. In this case, the optimal matrix B̂ that minimizes ‖BΦ1 − Φ2A‖2 is
given by

B̂ = Φ2AΦ1
†, (6.13)

where † denotes the pseudo-inverse operator. As the rows in Φ1 are generally orthonormal, the pseudo-
inverse of Φ1 can be computed using the transpose operator, i.e., Φ1

† = Φ1
T . Substituting B̂ = Φ2AΦ1

T in
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Eq. (6.8), the relation between the measurements becomes

Y2 ≈ Φ2AΦ1
†Y1 = Φ2AΦ1

TY1, (6.14)
Y2,m ≈ φm2 A

mΦ1
TY1, ∀m = 1, 2, . . . , N1, (6.15)

where Eq. (6.15) comes from the fact that measurements are computed across rows of pixels in our framework.
The relationship between the matrices A and B is illustrated in Fig. 6.2, where the matrices A and B are
used to relate the points in the original and compressed domains, respectively. In the next section, we
propose an algorithm for estimating the correlation model directly from the linear measurements Y1 and Y2.

6.3 Correlation estimation from linear measurements

6.3.1 Regularized energy minimization problem

We propose in this section a method for estimating the correlation between images from the compressed
measurements without any explicit image reconstruction step. In particular, we concentrate on estimating
the correlation model in the unquantized scenarios. Later, in Section 6.5, we describe our extension to the
quantized scenarios. Our objective is to compute an optical flow or motion field that represents the motion
between images I1 and I2. We denote this field as M = (mh,mv), where mh and mv are horizontal and
vertical components of the motion respectively. The problem is then to find the value of the motion field
M at each pixel position z = (m,n) such that the estimated correlation is consistent with the measurement
vectors Y1 and Y2. At the same time, the motion field has to be piecewise smooth in order to model
consistent motion of visual objects. We propose to cast the correlation estimation problem as a regularized
energy minimization problem, where the energy E(M) is composed of a data fidelity term Ed(M) and a
smoothness term Es(M). The optimal mapping M∗ is obtained by minimizing the energy function E(M)
as

M∗ = argmin
M

E(M) = argmin
M

[Ed(M) + λEs(M)], (6.16)

where λ balances the trade-off between the data and smoothness terms.
We now discuss in more details the components of the energy function. The smoothness term measures

the penalty of assigning different motion values to adjacent pixels. We write it as

Es(M) =
∑

z,z′∈N
min(|mh(z)−mh(z′)|+ |mv(z)−mv(z′)|, τ), (6.17)

where τ sets an upper bound on the smoothness penalty that helps preserving the discontinuities [130], and
z and z′ represent adjacent pixels in the 4-pixel neighborhood N .

Next, the data term measures the consistency of a particular motion value for pixel z with the vectors
Y1 and Y2. Classically, the accuracy of the motion value is evaluated with the original images [8], and the
data cost is typically given by,

Ẽd(M) =

N1∑
m=1

N2∑
n=1

ΔM(m,n), (6.18)

where ΔM(m,n) = ‖I2,m(n)− I1,m+mh(m,n)(n+mv(m,n))‖22 represents the error of matching the pixel at
position (m,n) in the second image with a pixel in the first image that is selected according to the motion
information. As discussed in Section 6.2.2, the effect of motion between images can be captured by a linear
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operator A that is a composition of sub-matrices {Am}. We can therefore rewrite Eq. (6.18) as

Ẽd(M) =

N1∑
m=1

‖IT2,m −Am
MI1‖22, (6.19)

where the sub-matrix Am depends on the motion field M according to Eq. (6.6). In the rest of the devel-
opment, we drop the indexM, as the dependency on the motion field is clear from the context.

In our framework however, we do not have access to the original images but only to the measurement
vectors Y1 and Y2. We thus approximate the data cost Ẽd(M) by another term Ed(M) that is computed
directly from the measurement vectors. It can be written as

Ẽd(M) =

N1∑
m=1

‖IT2,m −AmI1‖22 (6.20)

≈
N1∑
m=1

‖Y2,m −BmY1‖22 (6.21)

≈
N1∑
m=1

‖Y2,m − φm2 AmΦ1
TY1‖22 (6.22)

= Ed(M). (6.23)

Note that the data cost approximation due to working in the compressed domain comes from the approximate
relationship between the matrices A and B that is given as B ≈ Φ2AΦ

T
1 . We study in details the effect of

this approximation in the next section.
We can finally rewrite the regularized energy objective function for the correlation estimation problem.

It reads

E(M) =

N1∑
m=1

‖Y2,m − φm2 Am
MΦ1

TY1‖22 + λ
∑

z,z′∈N
min(|mh(z)−mh(z′)|+ |mv(z)−mv(z′)|, τ). (6.24)

This cost function is used in the optimization problem of Eq. (6.16), which usually becomes a non-convex
problem. The search space is discrete and usually constrained by limits on each of the motion values, which
typically define a motion search window. The solution to this problem can be determined with strong
optimization techniques based on Graph Cuts [130, 133] or Belief propagation [132]. A comprehensive
overview of various energy minimization techniques are summarized in [152]. In this chapter, we use an
optimization algorithm based on the α-expansion mode in Graph Cuts [130, 133].

Finally, it should be noted that the correlation estimation can also be performed by block of pixels. In
this case, each block of pixels is assumed to move in a coherent way, and the objective of the correlation
estimation problem is to compute one motion vector per block. The data cost function can then be modified
in a straightforward way by imposing the same motion vectors for all the pixels in a block. The smoothness
function is also modified in this case such that it penalizes the difference between the motion values of
adjacent blocks rather than neighboring pixels. The optimization problem keeps the same form in block-
based motion estimation but the search space is dramatically reduced as the number of motion vectors is
smaller.

6.3.2 Compressed domain penalty

We now discuss the penalty of estimating the correlation from measurements instead of the original images.
When the correlation M is given, this penalty corresponds to the difference between the values of the
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regularized energy function of Eq. (6.16) that is evaluated from the original images and the respective linear
measurements. Recall that the smoothness cost function Es(M) depends only on the correlation (see Eq.
(6.17)). Therefore, the estimation penalty is identical to the error between the data cost functions Ẽd(M)
and Ed(M) that are computed in the original and compressed domains respectively. In what follows, we
first show that this penalty is bounded. Then, we show that the penalty decreases monotonically when the
number of measurements increases.

Proposition 3. The penalty of estimating the correlation from measurements is bounded. In particular
we have |(1− δ)2Ẽd(M) − Cl| ≤ Ed(M) ≤ (1 + δ)2Ẽd(M) + Cu, where δ > 0, Cl = η2 + 2(1 − δ)αη,
Cu = η2 + 2(1 + δ)αη, α =

∑N1

m=1 ‖IT2,m − AmI1‖2, η =
∑N1

m=1 σmax(A
m)

∑m+wy

q=m−wy
‖Ì1,q − I1,q‖2 with

Ì1 = ΦT
1 Y1.

Proof: Let us assume that M or equivalently A is given. Then, the points P = {IT2,m, AmI1 : m =
1, 2, . . . , N1} forms a finite set. According to the Johnson-Lindenstrauss (JL) lemma, the distances be-
tween points in P are preserved in the measurement domain R

M when M = O(δ−2 log|P|) measurements
are computed with a measurement matrix φm2 [153, 154], where |P| denotes the number of points in P .
Mathematically, the JL-embedding is given as

(1− δ)‖IT2,m −AmI1‖2 ≤ ‖φm2 IT2,m − φm2 AmI1‖2 ≤ (1 + δ)‖IT2,m −AmI1‖2, (6.25)

for a positive constant δ. It should be noted that, when the measurement matrix φm2 satisfies Eq. (6.25),
then with high probability it satisfies the restricted isometry property (RIP). For more details related to
the connection between the JL-lemma and the RIP we refer the reader to [153, 154]. Eq. (6.25) holds with
high probability not only for measurement matrices constructed using Gaussian and Bernoulli distributions
but also for structured measurement matrices constructed using orthonormal bases, e.g., DCT, FFT [154].
In our experiments we construct measurement matrices using structured FFT.

For a given row index m, the term Y2,m − φm2 AmΦT
1 Y1 in Eq. (6.22) can be written as

Y2,m − φm2 AmΦT
1 Y1 = φm2 I

T
2,m − φm2 AmΦT

1 Φ1I1

= φm2 I
T
2,m − φm2 AmI1 + φm2 A

mI1 − φm2 AmΦT
1 Φ1I1

= φm2 I
T
2,m − φm2 AmI1 + EI1, (6.26)

where E = φm2 A
m − φm2 AmΦT

1 Φ1. The term ‖Y2,m − φm2 AmΦT
1 Y1‖2 can be upper bounded as

‖Y2,m − φm2 AmΦT
1 Y1‖2 = ‖φm2 IT2,m − φm2 AmI1 + EI1‖2

≤ ‖φm2 IT2,m − φm2 AmI1‖2 + ‖EI1‖2
≤ (1 + δ)‖IT2,m −AmI1‖2 + ‖EI1‖2, (6.27)

where the last inequality is derived from Eq. (6.25). Similarly the term ‖Y2,m − φm2 AmΦT
1 Y1‖2 can be lower

bounded as

‖Y2,m − φm2 AmΦT
1 Y1‖2 = ‖φm2 IT2,m − φm2 AmI1 + EI1‖2

= ‖φm2 IT2,m − φm2 AmI1 − (−EI1)‖2
≥ |‖φm2 IT2,m − φm2 AmI1‖2 − ‖EI1‖2| (6.28)

≥ |(1− δ)‖IT2,m −AmI1‖2 − ‖EI1‖2|, (6.29)

where Eq. (6.28) follows from ‖x− y‖2 ≥ |‖x‖2 − ‖y‖2|, and Eq. (6.29) is derived from Eq. (6.25). The
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term ‖EI1‖2 in Eqs. (6.27) and (6.29) can also be bounded as

‖EI1‖2 = ‖φm2 AmI1 − φm2 AmΦT
1 Φ1I1‖2

= ‖φm2 Am(ΦT
1 Φ1I1 − I1)‖2

≤ ‖Am(Ì1 − I1)‖2 (6.30)

≤ ‖Am‖2
m+wy∑

q=m−wy

‖Ì1,q − I1,q‖2

= σmax(A
m)

m+wy∑
q=m−wy

‖Ì1,q − I1,q‖2 = ηm, (6.31)

where Eq. (6.30) follows from ‖Φx‖2 ≤ ‖x‖2, as Φ is a non expanding operator [153] and Ì1 = ΦT
1 Φ1I1 is

the pre-image of I1. The parameter σmax(A
m) in Eq. (6.31) denotes the largest singular value of Am. The

summation in Eq. (6.31) is carried out from rows m−wy to m+wy as the search window is usually bounded,
where wy is the admissible search size along the vertical direction. Combining Eq. (6.27), Eq. (6.29) and
Eq. (6.31) and by taking squares we get for each row of pixels

(
|(1− δ)‖IT2,m −AmI1‖2 − ηm|

)2 ≤ ‖Y2,m − φm2 AmΦT
1 Y1‖22 ≤

(
(1 + δ)‖IT2,m −AmI1‖2 + ηm

)2
. (6.32)

Adding the second and third inequality terms of Eq. (6.32) for all rows m = 1, 2, . . . , N1 results in

Ed(M) =

N1∑
m=1

‖Y2,m − φm2 AmΦT
1 Y1‖22

≤ (1 + δ)2
N1∑
m=1

‖IT2,m −AmI1‖22 +
N1∑
m=1

η2m +

N1∑
m=1

2(1 + δ)ηm‖IT2,m −AmI1‖2

≤ (1 + δ)2Ẽd(M) +

(
N1∑
m=1

ηm

)2

+ 2(1 + δ)

N1∑
m=1

ηm

︸ ︷︷ ︸
η

N1∑
m=1

‖IT2,m −AmI1‖2
︸ ︷︷ ︸

α

= (1 + δ)2Ẽd(M) + η2 + 2(1 + δ)ηα

= (1 + δ)2Ẽd(M) + Cu, (6.33)

where
Cu = η2 + 2(1 + δ)ηα, (6.34)

and

η =

N1∑
m=1

ηm =

N1∑
m=1

σmax(A
m)

m+wy∑
q=m−wy

‖Ì1,q − I1,q‖2. (6.35)



102 Chapter 6. Correlation Estimation from Compressed Linear Measurements

In a similar way, from the first and second inequality terms of Eq. (6.32) we get

Ed(M) =

N1∑
m=1

‖Y2,m − φm2 AmΦT
1 Y1‖22

≥
N1∑
m=1

{
|(1 − δ)2‖IT2,m −AmI1‖22 + η2m − 2(1− δ)ηm‖IT2,m −AmI1‖2|

}

≥ |
N1∑
m=1

(1− δ)2‖IT2,m −AmI1‖22 +
N1∑
m=1

η2m −
N1∑
m=1

2(1− δ)ηm‖IT2,m −AmI1‖2|

≥ |(1− δ)2
N1∑
m=1

‖IT2,m −AmI1‖22 −
(

N1∑
m=1

ηm

)2

− 2(1− δ)
N1∑
m=1

ηm

N1∑
m=1

‖IT2,m −AmI1‖2|

= |(1− δ)2Ẽd(M)− (η2 + 2(1− δ)ηα)|
= |(1− δ)2Ẽd(M)− Cl| (6.36)

where
Cl = η2 + 2(1− δ)ηα, (6.37)

and η is given in Eq. (6.35). �

Proposition 4. The penalty of estimating the correlation from measurements monotonically decreases
when the measurement rate K/N increases. It further becomes negligible at high measurement rate.

Proof: In Proposition 3 we have shown that the difference between the data cost functions estimated
from compressed measurements Ed(M) and images Ẽd(M) is lower and upper bounded by errors Cl and
Cu, respectively given in Eq. (6.37) and Eq. (6.34). The error η =

∑N1

m=1 ηm ∝
∑N1

m=1 ‖Ì1,m − I1,m‖2 (see
Eq. (6.35)) decreases with increasing measurement rate because (φm1 )Tφm1 becomes an orthogonal projection
operator, and Ì1 = ΦT

1 Φ1I1 becomes arbitrarily close to I1 when the number of measurements increases.
Therefore, the errors Cl and Cu decrease as the measurement rate increases and when sufficient number of
measurements are taken the errors Cl and Cu become negligible, i.e., Ed(M) ≈ Ẽd(M). �

Due to the error between the cost functions Ed(M) and Ẽd(M), the solution M estimated from the
linear measurements is not accurate especially at low measurement rates. The solution of the correlation
estimation problem in the compressed domain might thus be quite far from the actual correlation between
the images. However, as the number of measurements increases the approximation in the compressed domain
becomes more accurate and the solution of the correlation estimation tends to the actual correlation between
original images.

6.4 Experimental results

We analyze the performance of the proposed correlation estimation algorithm in both stereo and video
imaging applications. The random projections are computed using a scrambled Fourier measurement matrix,
where the scrambled operator is a diagonal matrix with entries ±1 taken from an i.i.d. Bernoulli random
variable with equal probability [154]. In all experiments, we sample both images using the same measurement
rate. The correlation is estimated by minimizing the objective function in Eq. (6.24). The accuracy of the
correlation estimation is evaluated in three ways: (1) comparing the estimated correlation with respect to
the groundtruth information; (2) comparing the estimated correlation with the solution computed from
the reconstructed images; (3) evaluating the quality of the second view that is reconstructed by prediction



6.4 Experimental results 103

(denoted as Ĩ2) using the estimated correlation. In practice, the groundtruth correlation model and the
original images are not available a priori to estimate an optimal regularization parameter λ. In such cases,
the regularization parameter λ can be estimated based on learning from a set of training images or using
the automated method proposed in [143]. In our experiments, we however select the parameter λ based on
trial and error experiments.

6.4.1 Disparity estimation
For the stereo imaging case, we evaluate the disparity estimation performance in two natural image sets
namely Tsukuba and Venus2 [7]. These datasets have been captured by a camera array where the different
viewpoints correspond to translating the camera along one of the image coordinate axis. In such a scenario,
the motion of objects due to the viewpoint change is restricted to the horizontal direction with no motion
along the vertical direction. Thus, the disparity estimation is a one-dimensional search problem, and the
smoothness and data cost functions are modified accordingly by assuming that mv = 0. The size of the
search windows used in our experiments are 16 pixels for Tsukuba and 20 pixels for Venus [7]. In our
experiments we estimate disparity in both dense (per pixel) and block settings, where the block size is fixed
to 4× 4 pixels.

(a) Mh (b) mh (c) |Mh −mh| > 1 (d) mh (e) |Mh −mh| > 1

Figure 6.3: Comparison of the estimated disparity image with respect to groundtruth information at measurement
rates 0.2 and 0.7 in the Tsukuba dataset. (a) Groundtruth disparity image Mh; (b) computed dense disparity image
mh at measurement rate 0.2; (c) disparity error at rate 0.2. The pixels with absolute error greater than one is
marked in white. The percentage of white pixels is 32%. (d) Computed dense disparity image mh at measurement
rate 0.7; (e) disparity error at rate 0.7. The percentage of white pixels is 10.3%.

(a) Mh (b) mh (c) |Mh −mh| > 1 (d) mh (e) |Mh −mh| > 1

Figure 6.4: Comparison of the estimated disparity image with respect to groundtruth information at measurement
rates 0.2 and 0.7 in the Venus dataset. (a) Groundtruth disparity image Mh; (b) computed dense disparity image
mh at measurement rate 0.2; (c) disparity error at rate 0.2. The pixels with absolute error greater than one is
marked in white. The percentage of white pixels is 41%. (d) Computed dense disparity image mh at measurement
rate 0.7; (e) disparity error at rate 0.7. The percentage of white pixels is 10.7%.

We first illustrate the disparity maps for the Tsukuba and Venus datasets, where the compressed data
is obtained with a different measurement matrix for each image, i.e., Φ1 �= Φ2. Fig. 6.3(b) and Fig. 6.4(b)

2Available at http://vision.middlebury.edu/stereo/data/scenes2001/
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(a) MSE: 243 (b) MSE: 1270 (c) MSE: 180 (d) MSE: 1257

Figure 6.5: Evaluating the accuracy of disparity image in Fig. 6.3(b) and Fig. 6.3(d) in terms of image prediction
quality for the Tsukuba dataset. The disparity images in Fig. 6.3(b) and Fig. 6.3(d) are used to predict the image
Ĩ2 at measurement rates 0.2 and 0.7 respectively. (a) Inverse prediction 1− |Ĩ2 − I2| at a measurement rate of 0.2;
(b) inverse prediction 1− |Ĩ2 − I1| at a measurement rate of 0.2; (c) inverse prediction 1− |Ĩ2 − I2| at a measurement
rate of 0.7; (d) inverse prediction 1− |Ĩ2 − I1| at a measurement rate of 0.7. The error is inverted, so that the white
pixels correspond to no error.

(a) MSE: 205 (b) MSE: 1221 (c) MSE: 101 (d) MSE: 1219

Figure 6.6: Evaluating the accuracy of disparity image in Fig. 6.4(b) and Fig. 6.4(d) in terms of image prediction
quality for the Venus dataset. The disparity images in Fig. 6.4(b) and Fig. 6.4(d) are used to predict the image Ĩ2
at measurement rates 0.2 and 0.7 respectively. (a) Inverse prediction 1− |Ĩ2 − I2| at a measurement rate of 0.2; (b)
inverse prediction 1 − |Ĩ2 − I1| at a measurement rate of 0.2; (c) inverse prediction 1 − |Ĩ2 − I2| at a measurement
rate of 0.7; (d) inverse prediction 1− |Ĩ2 − I1| at a measurement rate of 0.7. The error is inverted, so that the white
pixels correspond to no error.

show the disparity maps estimated from a measurement rate K/N = 0.2 for each dataset. Fig. 6.3(c)
and Fig. 6.4(c) represent the corresponding disparity errors. Comparing these results with the respective
groundtruth given in Fig. 6.3(a) and Fig. 6.4(a), we see that at low measurement rates (0.2 in this case)
we estimate a coarse version of the disparity map. Quantitatively, the disparity errors with respect to the
groundtruth are found out to be 41% and 32% respectively for the Tsukuba and Venus datasets, when it
is measured as the percentage of pixels with absolute error greater than one [7]. We then estimate the
disparity image at a measurement rate of 0.7. The results are shown in Fig. 6.3(d) and Fig. 6.4(d), and the
corresponding disparity errors are available in Fig. 6.3(e) and Fig. 6.4(e). At higher rate, we see that the
disparity map is more accurate and that the disparity error drops below 11% for both datasets.

We then evaluate in Fig. 6.5 and Fig. 6.6 the accuracy of the correlation estimation in terms of image
prediction quality. In our experiments, we predict the second view from the first view using the estimated
correlation information. When a coarse disparity map mh (i.e., estimated at a low measurement rate) is
used for image prediction, the resulting predicted image Ĩ2 is closer to I2 than I1, as shown in Figs. 6.5(a)
and (b) (resp. Figs. 6.6(a) and (b)). We observe that the mean square error (MSE) between the predicted
image Ĩ2 and I2 is smaller than the error between Ĩ2 and I1, which confirms the benefit of the disparity
estimation in the image prediction step. When the measurement rate increases, the quality of the disparity
map improves. Meanwhile, the quality of the predicted image Ĩ2 also improves substantially as observed in
Figs. 6.5(c) and (d) (resp. Figs. 6.6(c) and (d)), where the measurement rate is set to 0.7.
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Figure 6.7: Comparison of the quality of predicted image Ĩ2 with respect to I2 and I1 with and without regular-
ization, i.e., λ �= 0 and λ = 0 in Eq. (6.24) respectively in the Tsukuba dataset. The image prediction is carried out
using dense disparity image.

We now illustrate the benefit of regularization in the disparity estimation problem. Fig. 6.7 plots the
quality of the predicted image Ĩ2 with and without the smoothness cost in the correlation estimation problem
(i.e., λ �= 0 and λ = 0 respectively in Eq. (6.24)) for the Tsukuba dataset. It is clear that the quality of
Ĩ2 is improved by enabling the regularization term in our optimization framework. Similar behavior is
also observed for the Venus dataset. From Fig. 6.7, we further notice that the quality of the predicted
image Ĩ2 at a measurement rate of 0.05 is measured as 22.2 dB (with corresponding disparity error 39%),
which is approximately 3.5 dB away from the saturation point (or from the global minima solution) due
to the influence of the penalty terms Cl and Cu discussed in Section 6.3.2. As the measurement rate
increases the influence of the penalty terms Cl and Cu decreases. As a result, the quality of the predicted
image Ĩ2 increases and saturates with measurement rates above 0.5. In other words, our scheme gives
accurate disparity estimation at high measurement rates. We also carry out experiments using the same
measurement matrix for both images, i.e., Φ1 = Φ2. Fig. 6.8(a) and Fig. 6.8(b) compare the quality of the
predicted image Ĩ2 in terms of PSNR and the disparity error respectively, with the results obtained using
different measurement matrices. It is clear that the prediction image quality and the disparity accuracy
improve when different measurement matrices are used, since this brings more information from both images
to solve the correspondence problem. Similar conclusions can be derived for the Venus dataset in Fig. 6.9.

We finally compare our disparity estimation results to a scheme that first reconstructs the images be-
fore estimating the disparity map. The images are reconstructed independently from the corresponding
measurements by solving a convex optimization problem. We denote this methodology as disparity from
reconstructed images (DFR). We have implemented two different reconstruction methodologies: (1) DFR-
sparsity that minimizes the l1 norm of the sparse coefficients assuming that the image is sparse in a particular
orthonormal basis (e.g., a wavelet basis). This problem is solved using the GPSR [155]; (2) DFR-TV that
minimizes the TV norm of the reconstructed image. This problem is solved using the BPDQ toolbox [156].
In both approaches, the disparity map is then estimated using the α-expansion mode in Graph Cuts applied
on the reconstructed images. Fig. 6.8 and Fig. 6.9 show the comparison of the proposed scheme with DFR-
sparsity and DFR-TV schemes, respectively for the Tsukuba and Venus datasets. From Fig. 6.8 and Fig. 6.9
we observe that the performance of our low complexity correlation solution competes with the DFR-sparsity
scheme. At rates smaller than 0.1, our scheme performs even better than the DFR-sparsity scheme, as
the poor quality of the reconstructed image in DFR-sparsity scheme leads to inaccurate estimation of the
disparity map. On the other hand, the DFR-TV scheme significantly outperforms our scheme at low rates,
due to the good quality of the reconstructed image. However, our scheme estimates an accurate correlation
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Figure 6.8: Comparison of the proposed scheme with the DFR schemes in the Tsukuba dataset: (a) comparison
in terms of image prediction quality; (b) comparison in terms of disparity error. The performance of the proposed
scheme is evaluated using both the same and different sets of measurement matrices.
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Figure 6.9: Comparison of the proposed scheme with the DFR schemes in the Venus dataset: (a) comparison in
terms of image prediction quality; (b) comparison in terms of disparity error. The performance of the proposed
scheme is evaluated using both the same and different sets of measurement matrices.

for rates above 0.5 and performs similarly to the DFR-TV scheme at high measurement rates, but with a
complexity that is dramatically smaller due to the absence of image reconstruction. In particular, in our
experiments we have observed that the running time of Graph Cuts algorithms that estimate the correlation
information from linear measurements is approximately same as the one that estimates the correlation in-
formation from reconstructed images. The complexity of our correlation estimation scheme stays reasonable
due to the efficiency of Graph Cuts algorithms whose complexity is bounded by a low order polynomial
[130, 133]. Comparing to the DFR-sparsity and DFR-TV schemes, we save on the complexity corresponding
to solving the l2-l1 and l2-TV optimization problems respectively. It is however hard to precisely give the
order of complexity of solving the l2-l1 and l2-TV optimization problems, as it is highly depend on the
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Figure 6.10: Comparison of the proposed scheme with the DFR schemes: (a) Tsukuba dataset; (b) Venus dataset.
The disparity is estimated per block with a block size 4 × 4. The performance of the proposed scheme is evaluated
using both the same and different sets of measurement matrices.

type of solvers. For some of the popular solvers like GPSR [155] and NESTA [157], the order of complexity
is given as TO(NlogN), where T is the number of iterations and N is the resolution of the image [158].
Therefore, comparing to the DFR schemes we save a complexity of 2TO(NlogN).

The complexity of the proposed scheme can be further reduced when a disparity value is estimated per
block instead of per pixel. Fig. 6.10(a) and Fig. 6.10(b) compare the performance of our scheme with the
DFR schemes, when disparity is estimated per block with a block size 4 × 4. For the Tsukuba dataset,
comparing Fig. 6.10(a) and Fig. 6.8(a) we see that the relative performances between the schemes remain
approximately the same when the disparity image is estimated per block or per pixel. Similar conclusions
can be derived for the Venus dataset by comparing Fig. 6.10(b) and Fig. 6.9(a). This confirms that the
proposed scheme can easily adapt the granularity of disparity estimation without big penalty in order to
meet the complexity requirements at the decoder.

6.4.2 Motion estimation
In the video scenario, we analyze the motion estimation accuracy in two synthetic scenes, namely Yosemite
and Grove, and one natural scene, Mequon3 [8]. The Grove and Mequon datasets are resampled to a
resolution of 160 × 120 pixels using bilinear filters. The size of the search windows is ±3 pixels in both
horizontal and vertical directions [8]. For the sake of simplicity, we estimate motion field for blocks of pixels
with size 4× 4.

We first estimate motion vectors with different sensing matrices Φ1 �= Φ2 for each image. These vectors
are then used to predict the second image from the first image. Fig. 6.11 compares the predicted image Ĩ2
with the original images I2 and I1 for the Yosemite and Grove datasets, respectively. It is clear that for
a given measurement rate the predicted image Ĩ2 is closer to I2 than I1, which indicates that the motion
between images is efficiently captured by our correlation estimation algorithm. Similar experimental results
are observed for the Mequon dataset. We then highlight the benefit of sampling the images with different
sets of measurement matrices in Fig. 6.12. From Fig. 6.12, we see that the quality of the predicted image Ĩ2
is better when the images are sampled with different measurement matrices, compared to the case where the
same measurement matrix is used for all images. This is consistent with the results shown for the disparity

3Available at http://vision.middlebury.edu/flow
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Figure 6.11: Illustration of the accuracy of motion field estimation in terms of image prediction quality for the
Yosemite and Grove datasets. The quality of the predicted image Ĩ2 is compared with respect to I2 and I1. The
prediction is carried out using the motion field estimated with block of pixels 4× 4.
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Figure 6.12: Comparison of the quality of the predicted image Ĩ2 between the proposed, DFR-sparsity and DFR-
TV schemes: (a) Yosemite dataset; (b) Grove dataset. The image prediction is carried out using the motion field
that is estimated using block of pixels 4× 4.

estimation performance. We finally compare our results to DFR-sparsity and DFR-TV schemes that build
the correlation model from (independently) reconstructed images based on optimizations with the sparsity
and TV priors respectively. Fig. 6.12(a) and Fig. 6.12(b) show the comparison for the Yosemite and Grove
datasets respectively. From Fig. 6.12 we see that for both datasets the proposed scheme performs better than
DFR-sparsity scheme at low rates, and is competitive at high rates, as already observed in the disparity
estimation study. Similar experimental findings are observed for the Mequon dataset. Furthermore, we
see that the proposed scheme is also competitive with the performance of DFR-TV scheme at low rate
for the Grove dataset (see Fig. 6.12(b)). The reason is that the Grove scene is textured with limited
low frequency components, therefore the TV prior results in poor reconstruction quality, especially in the
textured areas. Overall, the proposed scheme provides effective motion estimation results, while avoiding
an order of computational complexity 2TO(NlogN) involved in the image reconstruction steps with the
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DFR-TV and DFR-sparsity schemes.

6.5 Handling non-linearities of quantization

In this section, we extend our framework to efficiently handle the measurement noise, where the noise
is introduced by uniform quantization of the measurements (see Fig. 6.1) denoted as Ŷ1 and Ŷ2. In our
framework described in Section 6.3, the smoothness cost is independent of the observation model. Therefore,
we modify the data cost function to consider efficiently the error introduced by measurement quantization.

6.5.1 Robust data cost

We propose to handle the non-linearities of quantization on Y1 and Y2 in a different way at the joint decoder
because of their different impacts on the correlation estimation solution. We first describe how we account
for the quantization non-linearities on the measurement vector Y1 and then on Y2. Let Y1,m(p) be the pth

coordinate of the original measurement in the mth row, and Ŷ1,m(p) be the corresponding quantized value.
Since the joint decoder has the quantized value Ŷ1,m(p), but not the original value Y1,m(p), it only knows that
the quantized measurement lies within the quantized interval, i.e., Ŷ1,m(p) ∈ RŶ1,m(p) = (rp, rp+1], where
rp and rp+1 define the lower and upper bounds of quantizer bin Qp. Given the quantized measurements Ŷ1,
we need to pick a measurement Ỹ1 such that ΦT Ỹ1 is closer to the original image I1 than ΦT Ŷ1, i.e.,

‖I1 − ΦT Ỹ1‖2 ≤ ‖I1 − ΦT Ŷ1‖2. (6.38)

By following the analysis described in Section 6.3.2, it is clear that an estimated measurement vector Ỹ1
that satisfies Eq. (6.38) is guaranteed to improve the quality of the correlation estimation. In practice, it
is not possible to find Ỹ1 satisfying Eq. (6.38) at the decoder, due to the absence of the original image I1.
We therefore propose to jointly estimate a measurement Ỹ1 and an image Ī1 as a solution to the following
optimization problem:

(Ī1, Ỹ1) = min
(Ỹ1,Ī1)

‖Φ1Ī1 − Ỹ1‖2 s.t. Ỹ1 ∈ RŶ1
, (6.39)

where RŶ1
is the cartesian product of all the quantized regions RŶ1,m(p), i.e., RŶ1

=
∏
m,p
RŶ1,m(p). The above

optimization problem considers all the measurements Ỹ1 in the quantized interval RŶ1
, and jointly estimates

Ī1 and Ỹ1 that minimize the objective function ‖Φ1Ỹ1 − Ī1‖2. The solution Ỹ1 estimated from Eq. (6.39) is
guaranteed to satisfy Eq. (6.38), since the quantized measurements Ŷ1 are included in the search space RŶ1

,
i.e., Ŷ1 ∈ RŶ1

. Using the estimated solution Ỹ1 we modify the data cost in Eq. (6.22) as

Êd,1 =
∑
m

‖Ŷ2,m − φm2 AmΦ1
T Ỹ1‖22. (6.40)

Now, we describe the proposed methodology to handle the quantization effect on the measurement
vector Y2. We propose to estimate a vector Ỹ2 that minimizes the distance ‖Ỹ2,m − φm2 AmΦ1

T Ŷ1‖2 by
considering all the valid measurement values in the quantization interval RŶ2,m

, where RŶ2,m
=

∏
p
RŶ2,m(p).

A measurement Ỹ2 is estimated by solving the following problem:

Ỹ2 = min
Ỹ2

∑
m

‖Ỹ2,m − φm2 AmΦ1
T Ŷ1‖2 s.t. Ỹ2,m ∈ RŶ2,m

. (6.41)

Using the estimated vector Ỹ2 in Eq. (6.22), we get the robust data term for proper handling of the quanti-
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Figure 6.13: Effect of quantization on the quality of the predicted image Ĩ2: (a) Tsukuba dataset; (b) Venus
dataset. When the measurements are quantized we used BPDNp [48] to reconstruct the images in DFR-TV scheme.
The image prediction is carried out using the dense disparity image estimated by solving Eq. (6.24).

zation effect on measurements Y2. It is given as

Êd,2 =
∑
m

‖Ỹ2,m − φm2 AmΦ1
T Ŷ1‖22. (6.42)

The objective functions in Eq. (6.39) and Eq. (6.41) are convex, since they can be easily expressed as l2
norm of a linear or affine function. Also, the regions RŶ1

and RŶ2
form a closed convex set as each region

RŶj,m(p) = (rp, rp+1], ∀j ∈ {1, 2} is a convex set. Therefore, the optimization problems given in Eq. (6.39)
and Eq. (6.41) are (not strictly) convex.

So far, we handle the non-linearities of the quantization independently on Y1 and Y2, and the respective
modified cost functions are given in Eq. (6.40) and Eq. (6.42). We now describe the methodology to handle
the effect simultaneously on both Y1 and Y2. One solution is to jointly estimate a pair of measurement
vectors Ỹ1 and Ỹ2, by combining the optimization problems in Eq. (6.39) and Eq. (6.41). Such a joint
estimation approach is however complex. Instead, we first estimate a vector Ỹ1 by solving Eq. (6.40) and it
is used to solve Eq. (6.41), i.e., we solve Eq. (6.41) with the objective function ‖Ỹ2,m − φm2 AmΦ1

T Ỹ1‖2. By
combining the results in Eq. (6.40) and Eq. (6.42) the robust data cost is given as

Êd =
∑
m

‖Ỹ2,m − φm2 AmΦ1
T Ỹ1‖22, (6.43)

where Ỹ1 is estimated by solving Eq. (6.39) and Ỹ2 is estimated by solving Eq. (6.41) with the objective
function ‖Ỹ2,m − φm2 AmΦ1

T Ỹ1‖2. Finally, the robust correlation solution is estimated by solving the opti-
mization problem in Eq. (6.16) using the modified data function Êd given in Eq. (6.43). At last, it should
be noted that the roles of I1 and I2 (equivalently Y1 and Y2) could be reversed if we change the reference
grid for the correlation estimation.
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6.5.2 Performance analysis

We first estimate the correlation model by minimizing the energy objective function in Eq. (6.24) using
the quantized measurements Ŷ1 and Ŷ2 without using robust data cost. Fig. 6.13 shows the effect of
quantization on the disparity estimation performance when measurements are uniformly quantized using 2,
3 and 4 bits. We use the disparity map to predict the second image in the Tsukuba and Venus dataset.
Interestingly, we see that the 4-bit quantizer does not significantly affect the quality of the disparity image,
as the degradation stays below 0.5 dB in the quality of Ĩ2 at low to medium rates. As expected, however, the
quality of the predicted image Ĩ2 decreases with increasing quantizer coarseness level for a fixed measurement
rate. We then compare our results with DFR-TV scheme that first reconstructs the images by solving an
optimization problem based on BPDNp in order to efficiently handle the quantization noise [48], and then
use the reconstructed images for disparity estimation. From Fig. 6.13, we see that the performance gap
between DFR-TV and compressed domain estimation is approximately the same in both the unquantized
and quantized (i.e., 2-bit) scenarios. We show later in this section that the performance of our solution can
be improved by effectively considering the non-linearities of the quantization.
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Figure 6.14: Effect of using 4-, 3- and 2-bits quantizers on the image prediction quality for (a) Yosemite dataset
and (b) Mequon dataset. When the measurements are quantized we used BPDNp [48] to reconstruct the images in
DFR-TV scheme. The image prediction is carried out using the motion field estimated by solving Eq. (6.24).

We then carry out similar experiments on the Yosemite and Mequon datasets. Fig. 6.14(a) and
Fig. 6.14(b) show the quality of the predicted image, where the prediction is performed with the mo-
tion vectors that are directly estimated from quantized measurements, i.e., no robustness. As expected,
the quality of the predicted image or equivalently the accuracy of motion estimation is reduced when the
measurements are quantized. Similarly, in the case of disparity estimation, the influence of the quantization
is negligible when the measurements are quantized with a 4-bit quantizer. We also compare our results with
DFR-TV scheme that first reconstructs the images by solving an optimization problem based on BPDNp,
and then estimates a motion field from the reconstructed images. The performance of DFR-TV scheme for
the 2-bit quantization scenario is shown in Fig. 6.14. Interestingly, when the measurements are quantized
we see that the proposed scheme competes with the DFR-TV scheme; this is because of the poor image
reconstruction performance in the DFR-TV scheme when the measurements are coarsely quantized (i.e.,
2-bit quantizer).

We now carry out our experiments using the robust data cost functions given in Eqs. (6.40), (6.42) and
(6.43). We use the CVX toolbox [151] to solve the optimization problems given in Eq. (6.39) and Eq. (6.41).
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Figure 6.15: Effect of the proposed robust data costs on the (a) image prediction quality and (b) disparity error in
the Venus dataset. The measurements are quantized using a uniform 2-bit quantizer. When the measurements are
quantized the images are reconstructed independently in DFR-TV scheme using BPDNp [48] .
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Figure 6.16: Effect of robust data cost on the image prediction quality in the (a) Yosemite dataset and (b) Mequon
dataset. The measurements are quantized using a uniform 2-bit quantizer. When the measurements are quantized
the images are reconstructed independently in DFR-TV scheme using BPDNp scheme [48] .

We first quantify our results using a 2-bit quantizer. In particular, we consider the non-linearity effects only
on Y1. In order to consider this, we minimize the correlation energy function in Eq. (6.16) using the data
cost function given in Eq. (6.40). The resulting experimental behavior is plotted in Fig. 6.15, Fig. 6.16(a)
and Fig. 6.16(b) for the Venus, Yosemite and Mequon datasets respectively (marked as Robust Y1). From the
plots we observe that the correlation estimation performance is improved by considering the non-linearities
of quantization on Y1, when compared to the non-robust scheme that estimates a correlation model directly
from the quantized measurements (marked as No robustness), especially at low measurement rates. We then
carry out similar experiments to consider the non-linearity effects only on the second measurement vector
Y2, i.e., we minimize the energy function in Eq. (6.16) using the data cost Êd,2 given in Eq. (6.42). The
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resulting performance is marked as Robust Y2 in the plots shown in Fig. 6.15 and Fig. 6.16 for the respective
datasets. From the plots we observe the benefit of our robust data term Êd,2 that considers effectively the
noise on the measurement vector Y2. Further, it is interesting to note that the overall performance is similar
for both robust data cost functions given in Eq. (6.40) and Eq. (6.42). In other words, due to the symmetric
encoding scheme, we achieve same amount of gain (compared to the non-robust scheme) by considering
effectively the quantization noises either on Y1 or Y2.
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Figure 6.17: Effect of the proposed robust data costs on the (a) image prediction quality and (b) disparity error
in the Tsukuba dataset. The measurements are quantized using a uniform 2-bit quantizer. When the measurements
are quantized the images are reconstructed independently in DFR-TV scheme using BPDNp [48] .

We then consider the effects of quantization noises on both Y1 and Y2 using the data cost function
given in Eq. (6.43). The resulting performance is shown in Fig. 6.15 and Fig. 6.17 for the Venus and
Tsukuba stereo datasets (marked as Robust Y1, Y2). It is clear from the plots that our robust scheme leads
to an improved estimation performance comparing to the non-robust scheme, especially at low to medium
measurement rates. At high rates, the performance is not dramatically improved, due to the significant
measurement quantization. Furthermore, from Fig. 6.15 we see that it is beneficial to consider the non-
linearity effects on both Y1 and Y2 rather than considering it on one of them. Similar conclusions can be
derived for the Yosemite and Mequon motion datasets shown in Fig. 6.16. It is interesting to note that
our robust correlation estimation scheme outperforms the performance of DFR-TV scheme in the quantized
scenario (see Fig. 6.16); this is certainly a promising and interesting result. Finally, we carry out similar
experiments using the measurements that are quantized using 3 and 4 bits. In this scenario, we consider
the quantization noise effects on both Y1 and Y2. The results are summarized in Fig. 6.18(a), Fig. 6.18(b)
and Fig. 6.19 for the Yosemite, Grove and Tsukuba datasets respectively. From the plots, as expected,
we see that the performance of our robust scheme outperforms the non-robust scheme. Furthermore, it is
interesting to observe that our robust correlation estimation scheme competes with the performance of the
non-quantization scheme, even when the measurements are coarsely quantized using 3 bits. These results
demonstrate that the proposed robust estimation scheme provides an accurate correlation model even with
significant quantization of the measurements.
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Figure 6.18: Effect of robust data cost on the image prediction quality in the (a) Yosemite dataset and (b) Grove
dataset. The measurements are quantized using 3-bit and 4-bit uniform quantizers.
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Figure 6.19: Effect of the proposed robust data costs on the (a) image prediction quality and (b) disparity error
in the Tsukuba dataset. The measurements are quantized using 3-bit and 4-bit uniform quantizers.

6.6 Extension to multi-view images

So far, we have focused on the correlation estimation between a pair of images. In this section, we describe our
extension to more than two images. Let I1, I2, . . . , IJ denote the J correlated images, and the corresponding
measurements generated from these images are given as Y1, Y2, . . . , YJ respectively. We are interested in es-
timating a correlation model between J images from the corresponding measurements Y1, Y2, . . . , YJ . In this
section, we focus on J correlated images that are captured in a multi-view imaging scenario. Nevertheless,
our framework could also be extended to multiple images captured in a video sequence.

In multi-view imaging scenarios, the correlation model between J views is described using a depth image
Z. As described in the previous chapter (see Section 5.6), we assume that the depth values Z are discretized
such that the inverse depth 1/Z is uniformly sampled in the range [1/Zmax, 1/Zmin], where Zmin and Zmax



6.6 Extension to multi-view images 115

are the minimal and maximal depth values in the scene respectively. The estimation problem is equivalent
to finding a set of depth labels l ∈ L that effectively capture the depth information for each pixel z in the
reference image, where L is a discrete set of labels. We propose to estimate a depth image in a regularized
energy minimization framework as a trade-off between the data Ed,u and smoothness Es,u costs. The data
cost function estimates a depth label l for each pixel that best agrees with the J linear measurements, while
the smoothness cost Es,u enforces consistency in the depth image. The energy model is given as

Eu(l) = Ed,u(l) + λEs,u(l), (6.44)

where λ is a regularization constant.

The smoothness cost Es,u(l) enforces consistency in the depth values between the adjacent pixels z and
z′. For a given pair of adjacent pixels z and z′, we propose to compute the smoothness penalty using the
truncated absolute difference given as

Vz,z′ = min(|l(z)− l(z′)|, τ), (6.45)

where τ is a constant that sets an upper bound on the penalty. The smoothness cost is then defined as the
cumulative sum of the penalties given in Eq. (6.45) for all the adjacent pixels z, z′ in N , i.e.,

Es,u(l) =
∑

z,z′∈N
min(|l(z)− l(z′)|, τ). (6.46)

We now describe the data cost function that measures how well a particular depth label l fits with the J
correlated measurements. Before deriving the expression for the data cost function Ed,u in the compressed
domain, we first derive a data cost expression Ẽd,u as a function of the linear motion operator A in the image
domain. Let Pi(z, l) be a projection operator that projects the pixel z = (m,n) from the reference image I1
to the ith view through depth level l ∈ L, as shown in Fig. 6.20. From Fig. 6.20 we see that the projection
operator shifts the pixel z = (m,n) in reference image I1 to the location (m+mh(m,n)), l +mv(m,n)) in
view Ii, where mh(m,n) and mv(m,n) represent the horizontal and vertical motion components respectively.
The amount of motion mh and mv for each pixel depends on the particular depth label l for a fixed camera
configuration. Therefore, we can relate the reference view I1 to the view Ii by a motion field. In other
words, the images I1 and Ii can be related as Ii = AiI1, where Ai is the matrix that shifts the pixels in the
reference image I1 to form Ii. It should be noted that the matrix Ai is a function of the depth label l. By
extending the same argument to all views we can write the data cost between J images as

Ẽd,u(l) =

J∑
j=2

‖Ij −AjI1‖22 (6.47)

=

J∑
j=2

N1∑
m=1

‖ITj,m −Am
j I1‖22, (6.48)

where Eq. (6.48) follows from Eq. (6.7). It should be noted that the data cost Ẽd,u in the multi-view scenario
is similar to the stereo data function given in Eq. (6.19), except that the summation is carried out for all
the views.

In our framework however, we do not have access to the original images but only to linear measurements
computed from the images. Therefore, we approximate the data cost relating the J measurements using the
relationship between the matrices A and B described in Section 6.2.3. The approximate data cost relating
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Figure 6.20: Depth estimation in the multi-view scenario. Pi(z, l) represents a projection operator that projects
the pixel z in view I1 to the ith view at depth label l. The pixel z in view I1 and the projected pixel Pi(z, l) in view
Ii are related by a motion vector.

the J measurements is given as

Ẽd,u(l) =
J∑

j=2

N1∑
m=1

‖ITj,m −Am
j I1‖22 (6.49)

≈
J∑

j=2

N1∑
m=1

‖Y T
j,m − φmj Am

j ΦT
1 Y1‖22 (6.50)

= Ed,u(l), (6.51)

where the last equation is derived using the approximate relation between the matrices A and B, given as
B ≈ Φ2AΦ

T
1 . Finally, the depth image can be estimated by minimizing Eq. (6.44) using Graph Cuts.

We now quantify the penalty of estimating the depth image in the compressed domain similarly to the
analysis described in Section 6.3.2 with two images. The multi-view data cost function Ed,u(l) in Eq. (6.50)
is the cumulative sum of the stereo data cost function given in Eq. (6.23) for all the views. Using this
property and repeating the steps in Proposition 3 and Proposition 4 one can prove the following results.

Corollary 1. The penalty of estimating the depth image directly from the measurements is bounded. In
particular we have |(1− δ)2Ẽd,u(l) − κl| ≤ Ed,u(l) ≤ (1 + δ)2Ẽd,u(l) + κu, where κl = (J − 1)Cl and
κu = (J − 1)Cu. The terms Cl and Cu are given in Eq. (6.37) and Eq. (6.34) respectively.

Corollary 2. The penalty of estimation depth image directly from measurements monotonically decreases
when the measurement rate increases. It further becomes negligible at high measurement rate.

Finally, we modify the data cost Ed,u(l) to efficiently handle the measurement quantization noise, where
the quantized measurements are represented as Ŷ1, Ŷ2, . . . , ŶJ respectively. As described in Section 6.5, we
first handle the quantization noise in the measurement vector Y1, and then the result is used to handle the
noise in the measurement vectors Y2, . . . , YJ . In more details, we first jointly estimate a measurement vector
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Ỹ1 and an image Ī1 by solving the optimization problem given in Eq. (6.39). The estimated vector Ỹ1 is then
used to jointly estimate a set of measurement vectors Ỹ2, . . . , ỸJ as a solution to the following optimization
problem:

(Ỹ2, . . . , ỸJ) = min

J∑
j=2

N1∑
m=1

‖Y T
j,m − φmj Am

j ΦT
1 Ỹ1‖2 s.t. Ỹ2,m ∈ RŶ2

, . . . , ỸJ,m ∈ RŶJ
. (6.52)

Using the estimated measurement vectors Ỹ1, Ỹ2, . . . , ỸJ , the robust data term is given as

Êd,u(l) =

J∑
j=2

N1∑
m=1

‖Ỹ T
j,m − φmj Am

j ΦT
1 Ỹ1‖22. (6.53)

We then replace the data term Ed,u(l) with the robust data term Êd,u(l) in the energy model given in
Eq. (6.44) in order to estimate a robust depth solution from quantized measurements. We show later the
experimental results that highlight the benefit of robust data term Êd,u(l).
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Figure 6.21: Comparison of the inverse depth error estimated in the multi-view and stereo scenarios for the Tsukuba
dataset. Five views (center, left, right, bottom and top views) are used in the multi-view experiments. The effect of
2-bit measurements quantization on the performance is also illustrated in the multi-view scenario.

We finally evaluate the performance of our multi-view scheme using five images from the Tsukuba
dataset (center, left, right, bottom and top views) [150]. For a given measurement rate, we estimate a
depth image by solving the optimization given in Eq. (6.44) using a modified Graph Cut algorithm. The
resulting performance is given in Fig. 6.21, where the x-axis represents the measurement rate per image and
y-axis represents the corresponding depth error. As expected, from Fig. 6.21 we observe that the quality of
the depth image is improved when the measurement rate is increased. In particular, we observe that the
disparity error is approx 7.5% at a measurement rate of 0.7, and that the accuracy of the disparity image
is not further improved for rates larger than 0.7. This is because the proposed scheme reaches a saturation
point at high rates; this is consistent with our earlier observations in the stereo imaging frameworks. We
then compare our results to a scheme that estimates a disparity image in the stereo imaging framework.
The performance comparison between the multi-view and stereo scenarios is given in Fig. 6.21. It is clear
from the plot that the depth error is small for a given measurement rate when all the views are available.
For visual comparisons, we show in Fig. 6.22(b) and Fig. 6.22(d) the depth map obtained in stereo and
multi-view scenarios, respectively for a measurement rate of 0.4 per view. The corresponding errors with
respect to the groundtruth are shown in Fig. 6.22(c) and Fig. 6.22(e) respectively, where the white pixels
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(a) Mh (b) mh (c) |Mh −mh| > 1 (d) mh (e)|Mh −mh| > 1

Figure 6.22: Comparison of the depth image estimated in the multi-view and stereo scenarios for the Tsukuba
dataset: (a) Groundtruth disparity map; (b) estimated depth map in the stereo setup; (c) absolute error in the
inverse depth map with DE=22%; (d) estimated depth map in the multi-view setup; (e) absolute error in the inverse
depth map with DE=13.6%. Pixels with absolute error greater than one is marked as white. The depth image is
estimated at a measurement rate of 0.4 per image.

denote errors. We see that the error is smaller in the multi-view scenario. In particular, the depth values in
the lamp region are correctly estimated in the multi-view scenario when compared to the stereo scenario.
Finally, it should be noted that the total number of measurements used in the multi-view scenario is higher
than the one used in the stereo imaging case. The proposed multi-view scheme however gives a better depth
image when more information is available.

Lastly, we study the performance of our multi-view scheme in the quantized scenario, where the measure-
ments are uniformly quantized using a 2-bit quantizer. We first estimate a depth image directly from the
quantized measurements using the data cost Ed,u given in Eq. (6.50). The resulting performance is denoted
as Non robust in Fig. 6.21. As expected, for a given measurement rate the performance is degraded in the
quantized scenario when compared to the unquantized scenario. We then estimate a depth map using the
robust data term given in Eq. (6.53) and the resulting performance is denoted as Robust in Fig. 6.21. We
see that similarly to our earlier observations in the stereo scenarios, the proposed robust data term improves
the performance when compared to the non-robust scheme that directly uses the quantized measurements
for depth estimation.

6.7 Conclusions
In this chapter we have contributed a novel and robust framework for estimating a correlation model between
multiple images directly from compressed linear measurements without any explicit image reconstruction
steps. We have shown that the underlying correlation structure that relates the images remains linear in both
image and compressed domains, when the sensing matrix is linear. Based on this observation, we have derived
a new regularized cost function to estimate the motion field directly in the compressed domain. A robust
correlation information is estimated by solving a regularized energy minimization problem that enforces
consistency with the measurements and smoothness of the correlation estimate. We have theoretically
proved that the accuracy of the correlation estimation improves monotonically with increasing measurement
rates; this has been later verified with experiments too. Then, we have demonstrated experimentally that
our novel framework is very promising in handling the measurement noise due to quantization. Finally, we
have shown that the performance of our low complex correlation estimation scheme is competitive to the
DFR-sparsity scheme; this is certainly an interesting and promising result especially in distributed analysis
tasks that do not target reconstruction.

In the next chapter, we propose a novel joint reconstruction algorithm that uses our correlation estimation
for decoding the correlated images. We will also see that our accurate correlation solution helps the joint
reconstruction algorithm to improve the decoding quality of the images when compared to the independent
reconstruction of images.



Chapter 7

Joint Reconstruction from Compressed
Linear Measurements

7.1 Introduction

In Chapters 5 and 6, we have proposed correlation estimation algorithms in a framework where multiple
simple CS sensors transmit compressed images in the form of quantized linear measurements. In this
chapter, we build on these frameworks and propose efficient joint reconstruction solutions that combine the
correlation information and the quantized measurements to decode the images.

In the first part of this chapter, we build on the asymmetric correlation estimation algorithm described in
Chapter 5 and propose a joint reconstruction algorithm from quantized linear measurements. As described
in Chapter 5, we first compute the most prominent visual features in the reference image and approximate
them with geometric functions drawn from a parametric dictionary. Then, a correlation model is constructed
by solving a regularized optimization problem that estimates the corresponding features in the compressed
images along with the relative geometric transformations. When the correlation model is used for com-
pressed image estimation based on warping, we have observed that the visual information is not accurately
represented along the edges and high frequency components. In this chapter, we propose a reconstruction
algorithm that captures the missing details and texture information in the predicted image from the informa-
tion provided by quantized measurements. The joint reconstruction is based on a constrained optimization
framework that reconstructs a smooth image which is as close as possible to the predicted image (that
is obtained in Chapter 5). At the same time, we use additional constraints to enforce the reconstructed
image to be consistent with the quantized measurements, where the consistency is measured using an lp
norm to effectively account the quantization non-linearities [48]. We solve this joint reconstruction problem
using parallel proximal algorithms [136]. Our experimental results confirm that the proposed reconstruction
scheme improves the quality of the predicted image and also improves the RD performance of the proposed
distributed coding solution.

In the second part of this chapter, we propose a novel joint reconstruction algorithm that takes benefit of
our correlation estimation (described in Chapter 6) for decoding the correlated images in symmetric sensing
framework. The joint reconstruction is cast as an optimization problem where the reconstructed images have
to satisfy sparsity priors, as well as consistency with the corresponding quantized measurements and the
correlation information. We solve this joint reconstruction problem by effective proximal methods and show
that accurate correlation estimation in distributed image representation permits to outperform independent
decoding solutions in terms of image quality.
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Î2

Figure 7.1: Schematic representation of the proposed asymmetric coding scheme. The images I1 and I2 are
correlated through displacement of scene objects due to viewpoint change or motion of scene objects. The correlation
between images is first estimated and then used to generate a side information Ĩ2, as described in Chapter 5. The
quality of the side information Ĩ2 is improved using an additional joint reconstruction stage that decodes an image
Î2 from the quantized linear measurements Ŷ2.

7.2 Asymmetric framework

We consider the framework shown in Fig. 7.1, where a pair of images I1 and I2 (with resolution N) represent
a scene at different time instants or from different viewpoints; these images are correlated through the motion
of visual objects. The correlated images I1 and I2 are independently encoded and the compressed visual
information is jointly processed at a central decoder. In particular, we consider the scenario where the
image I1 is selected as the reference and it is used as a side information for decoding the second image
I2. The first image I1 is encoded using standard coding solutions based on JPEG 2000, and the second
image I2 is represented in terms of small number of linear projections Y2. At the joint decoder, we estimate
the underlying correlation model between I1 and I2 from the compressed reference image Î1 and quantized
linear measurements Ŷ2, using the algorithm described in Chapter 5. Recall that the correlation model is
estimated from the linear measurements by solving the OPT-1 or OPT-2 optimization problems described
in Sections 5.3 and 5.5.

We have shown experimentally that the quality of Ĩ2 saturates at high rates as the high frequency
components are not efficiently captured. We describe now a novel reconstruction algorithm based on an
optimization framework that estimates the high frequency components from the measurements information
(see Fig. 7.1). The key idea in the proposed reconstruction algorithm is to consider the predicted image Ĩ2
obtained in Chapter 5 as a side information and combine it with the information from the measurements
for the reconstruction of the improved image Î2. We propose to reconstruct an image Î2 that is not only
consistent with the measurements Y2, but also close to the image Ĩ2 that is obtained by warping the reference
image. By merging these two constraints the proposed optimization problem is given as

Î2 = argmin
I2
‖I2‖TV s.t. ‖Y2 − ΦI2‖2 = 0, ‖I2 − Ĩ2‖2 ≤ ε2. (7.1)

In the above optimization, we use the prior based on total variation (TV) norm defined in Eq. (2.6) that
works well for natural images [16]. Nevertheless, one could also use a sparsity prior that assumes sparse
representation of the reconstructed image in a particular basis Ψ.

When the measurements are quantized, it is well known that the optimization problem given in Eq. (7.1)
fails to meet the quantization consistency, i.e., the reconstructed image Î2 is not consistent with the quantized
measurements. Jacques et al. [48] have showed that the quantization consistency can be enforced with an
lp norm with p > 2 and not using l2 norm in the first constraint. Inspired by Jacques et al. [48], when the
measurements Y2 are quantized, the above optimization problem can be modified as

Î2 = argmin
I2
‖I2‖TV s.t. ‖Y2 − ΦI2‖p ≤ ε1, ‖I2 − Ĩ2‖2 ≤ ε2. (7.2)
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Finally, it should be noted the optimization problems given in Eq. (7.1) or Eq. (7.2) can also be used
to decode video images in the distributed compressive sampling applications proposed in [101, 102]. In
these schemes, the side information Ĩ2 used for decoding the Wyner-Ziv image I2 is constructed using the
key frames based on motion compensated prediction (see Section 2.5.3). However, it is well known that
the motion compensation prediction fails to accurately estimate the visual information in the texture and
edge regions. Therefore, the optimization given in Eq. (7.1) can help in capturing the missing details in the
side information and subsequently to reconstruct the Wyner-Ziv frame Î2. The main advantage is that our
joint reconstruction scheme efficiently handles the measurement quantization noise, while it is not efficiently
considered in [101, 102].

7.2.1 Optimization methodology

We now describe the optimization methodology based on parallel proximal methods (PPXA) to solve
Eq. (7.2). The optimization problem given in Eq. (7.2) can be visualized as

min
X∈H

f(X) = min
X∈H

f1(X) + f2(X) + f3(X), (7.3)

where H = R
N is the Hilbert space. The functions f1, f2 and f3 are given as

f1(X) = ‖X‖TV , (7.4)
f2(X) = icp(ε1)(X), where cp(ε1) = {X ∈ R

N | ‖Ŷ2 − ΦX‖p ≤ ε1}, (7.5)

f3(X) = id(ε2)(X), where d(ε2) = {X ∈ R
N | ‖X − Ĩ2‖2 ≤ ε2}, (7.6)

where ia represents the indicator function of the closed convex set a. In the rest of this section, we focus
on computing the prox for the functions f1, f2 and f3 given in Eqs. (7.4)-(7.6). For more details about the
PPXA methods we refer the reader to Section 4.2.4. The prox for the function f1(X) = ‖X‖TV can be
computed using Chambolle’s algorithm [137]. The function f2 can be represented using the combination of
a function F and an affine operator G, with F = iDp(ε1) and G = ΦX − Ŷ2, i.e., f2 = F ◦G. The set Dp(ε1)
is the lp ball with radius ε1 that is represented as

Dp(ε1) = {y ∈ R
K | ‖y‖p ≤ ε1}. (7.7)

As the measurement matrix Φ is a tight frame, i.e., ΦΦ∗ = c�, the proxf2 can be computed as

proxf2 (X) = proxF◦G(X) = X + c−1Φ∗(proxF − �)(G(X)). (7.8)

The proxF for p = 2 can be computed using as

proxF (y) = min(ε1
y

‖y‖2
, y). (7.9)

Unfortunately, for p > 2 there is no closed form expression to compute the proxF (y). In such cases, one has
to rely on the iterative scheme proposed in [48]. Finally, the function f3 can be represented as f3 = F ◦G,
where F = iD2(ε2) and G = (�X − Ĩ2). The set D2(ε2) represents the l2 ball with radius ε2 (see Eq. (7.7)).
The proxf3 can be computed as

proxf3 (X) = proxF◦G(X) = X + (proxF − �)(G(X)), (7.10)

where proxF for the indicator function F = iD2(ε2) can be computed using Eq. (7.9).
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7.2.2 Experimental results

The performance of the joint reconstruction has been studied on three natural datasets: Sawtooth and Plastic
stereo images, and Foreman video sequence (frames 2 and 3), as considered in Chapter 5. In our experiments,
we set the quality of the reference image Î1 to 33 dB for the Sawtooth and Plastic datasets and to 45 dB for
the Foreman dataset. The measurements are generated using a block scrambled Hadamard transform with a
block size 8 [30]. For a given measurement rate, we estimate the correlation model with OPT-2 optimization
problem using the robust data cost in Eq. (5.8). In particular, we use the local optimization techniques based
on constructive search strategy to estimate a robust correlation model with consistent image prediction (see
Algo. 5 in Chapter 5). We consider this suboptimal correlation solution for simplicity; nevertheless one could
also use graph-based solutions to estimate the correlation model (see Chapter 5 for details). The estimated
correlation model is then used to predict the second image Ĩ2 based on disparity or motion compensation
respectively. We then reconstruct the second image Î2 from the compressed measurements Ŷ2 and the
predicted image Ĩ2 by solving Eq. (7.2).

Fig. 7.2 shows the benefit of additional reconstruction stage for the Plastic and Foreman datasets, in
unquantized scenario. It should be noted that, when the measurements are not quantized we solve the
optimization problem in Eq. (7.2) with p = 2. The parameter ε1 is set to 1e − 4 and the parameter ε2 is
selected based on trial and error experiments such that the quality of reconstructed image Î2 is maximized.
The PSNR curves corresponding to the predicted image Ĩ2 and the reconstructed image Î2 are marked in red
and blue respectively. From Fig. 7.2, it is clear that the quality of the predicted image Ĩ2 saturates around
a measurement rate of 0.2 (see corr Est: no Quant). By activating the reconstruction stage the quality of
the reconstructed image Î2 improves as the measurement rate increases; this proves that the reconstruction
stage captures the details and texture components (see Joint reco: no Quant). Similar experimental findings
are observed for the Sawtooth dataset shown in Fig. 7.3.

Now, we analyze the behavior of the proposed joint reconstruction scheme in the quantized scenario. We
solve the optimization problem with p = 8 (selected based on trial and error experiments), and the parameter
ε1 is calculated based on the quantization bit rate and the value of p [48]. Fig. 7.2 and Fig. 7.3 compare
the reconstruction quality of Î2, when the measurements are quantized using 2, 4 and 6 bits. As expected,
for a given measurement rate the quality of the reconstructed image Î2 degrades when the quantization bit
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Figure 7.2: Influence of measurement quantization on the joint reconstruction performance: (a) Plastic dataset;
(b) Foreman dataset. The PSNR is computed between I2 and Î2 in the joint reconstruction scheme and between I2
and Ĩ2 in the correlation estimation scheme.
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Figure 7.3: Influence of measurement quantization on the joint reconstruction performance in the Sawtooth dataset.
The PSNR is computed between I2 and Î2 in the joint reconstruction scheme and between I2 and Ĩ2 in the correlation
estimation scheme.

rate decreases.
We finally analyze the coding performance of the proposed scheme, where the bit rate is computed by

entropy coding of the quantized measurements using an arithmetic encoder (see Fig. 7.1). Fig. 7.4 shows
the coding performance of the proposed scheme when the measurements are quantized using 2 and 4 bits.
For a given bit rate, it is clear from the plot that the proposed reconstruction scheme improves the quality
of the warped image Ĩ2. Also, as expected, the quality of the reconstructed image Î2 increases with the bit
rate and thus corrects the saturation of the predicted image Ĩ2 at high rates. In addition, our solution shows
significant improvement over independent coding solutions based on JPEG 2000 between low to medium bit
rates. The choice of using p > 2 is proven effective in Fig. 7.4, when the measurements are quantized using
a 2-bit quantizer. It is clear that the coding performance is improved with p = 8 instead of p = 2, as the
former choice effectively handles the quantization noise while reconstructing the image Î2.
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Figure 7.4: Influence of 2- and 4-bit rate quantizers on the joint reconstruction performance: (a) Sawtooth dataset;
(b) Plastic dataset. The PSNR is computed between I2 and Î2 in the joint reconstruction scheme and between I2
and Ĩ2 in the correlation estimation scheme.
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Figure 7.5: Benefit of using side information on the joint reconstruction performance: (a) Sawtooth dataset; (b)
Plastic dataset. The independent coding performance is obtained by solving Eq. (7.1) without activating the last
constraint ‖I2 − Ĩ2‖2 ≤ ε2.

At last, we highlight the benefit of using side information (i.e., the benefit of exploiting the correlation for
the joint reconstruction) in Fig. 7.5. It is clear that the proposed joint reconstruction scheme significantly
outperforms the independent reconstruction scheme at low rates; this is due to the efficient correlation
estimation. When the rate increases, we notice that the impact of side information on the reconstruction
quality of image Î2 decreases. In other words, the benefit of exploiting the correlation between images is
less beneficial at high rates.

7.3 Symmetric framework
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Figure 7.6: Schematic representation of the proposed symmetric coding scheme. The images I1 and I2 are correlated
through displacement of scene objects due to viewpoint change or motion of scene objects. The correlation model is
estimated directly in the compressed domain without any intermediate image reconstruction, as described in Chapter
6. The estimated correlation information (mh,mv) is used for joint reconstruction to decode the images Î1 and Î2.

We now describe our symmetric distributed joint reconstruction framework for reconstructing multiple
correlated images. The scenario is illustrated in Fig. 7.6 for two correlated images I1 and I2 and we describe
later the extension to more than two images. As shown in Fig. 7.6, the images I1 and I2 are directly acquired
in the form of linear measurements, respectively given as Y1 and Y2. The computed linear measurements
are quantized and entropy coded. A central decoder jointly processes the compressed linear measurements
Ŷ1 and Ŷ2, and decodes a pair of images Î1 and Î2.
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In this setting, we propose to estimate the underlying correlation model between images directly in the
compressed domain as described in Chapter 6. In this chapter, we propose a novel joint reconstruction
algorithm that takes benefit of our estimated correlation information (mh,mv) to jointly reconstruct the
images as shown in Fig. 7.6. We propose to reconstruct a pair of images Î1 and Î2 by enforcing consistency
with the compressed information and with the estimated correlation model. A pair of images Î1 and Î2 is
reconstructed as a solution to the following constrained optimization problem:

(Î1, Î2) = arg min
(I1,I2)

(‖Ψ∗I1‖1 + ‖Ψ∗I2‖1) s.t. ‖Y1 − Φ1I1‖2 = 0, ‖Y2 − Φ2I2‖2 = 0, ‖I2 −AI1‖22 ≤ ε2,

(7.11)
where Ψ represents a redundant dictionary or an orthonormal basis in which the image is assumed to be
sparse and Ψ∗ represents the conjugate transpose of Ψ. In this optimization framework we use the sparse
prior for simplicity, however one could also use a TV prior as described in Section 7.2. From Eq. (7.11) it
is clear that the images can be reconstructed independently if we solve the optimization without the last
constraint ‖I2 −AI1‖22 ≤ ε; this corresponds to reconstructing the sparse images in Ψ that best agree with
the given measurement information. By adding the last constraint we impose that the pair of images should
also satisfy the correlation model in addition to the sparsity and data fidelity constraints.

When the measurements are quantized, we compute the measurement consistency in the first two con-
straints using the lp distance, as described in Section 7.2. The optimization problem in Eq. (7.11) can be
rewritten as

(Î1, Î2) = arg min
(I1,I2)

(‖Ψ∗I1‖1 + ‖Ψ∗I2‖1) s.t. ‖Ŷ1 − Φ1I1‖p ≤ ε1, ‖Ŷ2 − Φ2I2‖p ≤ ε1, ‖I2 − AI1‖22 ≤ ε2,

(7.12)
where the measurement consistency is measured using the lp norm with p > 2. It is easy to check that
all the functions in Eq. (7.11) and Eq. (7.12), i.e., ‖Ψ∗Ij‖1, ‖Ŷj − ΦjIj‖p, ∀j ∈ {1, 2} and ‖I2 − AI1‖22 are
convex. For more details related to the convexity of the last constraint ‖I2 − AI1‖22, we refer the reader to
Proposition 1 in Chapter 4. Therefore the optimization problems in Eq. (7.11) and Eq. (7.12) are convex
that allows to effectively solve using proximal solutions.

7.3.1 Optimization methodology

In this section, we describe the methodology to solve the optimization problem in Eq. (7.12) using parallel
proximal splitting (PPXA) methods. For mathematical convenience we rewrite problem in Eq. (7.12) as

min
X

(‖Ψ∗E1X‖1 + ‖Ψ∗E2X‖1) s.t. ‖E1(Y − ΦX)‖2 ≤ ε1, ‖E2(Y − ΦX)‖2 ≤ ε1, ‖[−A �]X‖22 ≤ ε2,
(7.13)

where X =

[
I1
I2

]
, Y =

[
Ŷ1
Ŷ2

]
, E1 =

[
� 0

]
, E2 =

[
0 �

]
, and Φ =

[
Φ1 0
0 Φ2

]
.

The optimization problem in Eq. (7.13) can be visualized as

min
X∈H

f(X) = min
X∈H

f1(X) + f2(X) + f3(X) + f4(X) + f5(X), (7.14)
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where H = R
2N is the Hilbert space. The functions f1, f2, f3, f4 and f5 are given as

f1(X) = ‖Ψ∗E1X‖1, (7.15)
f2(X) = ‖Ψ∗E2X‖1, (7.16)
f3(X) = icp1(ε1)(X),where cp1(ε1) = {X ∈ R

2N | ‖E1(Y − ΦX)‖p ≤ ε1}, (7.17)

f4(X) = icp2(ε1)(X),where cp2(ε1) = {X ∈ R
2N | ‖E2(Y − ΦX)‖p ≤ ε1}, (7.18)

f5(X) = id(ε)(X),where d(ε) = {X ∈ R
2N | ‖[−A �]X‖22 ≤ ε2}. (7.19)

In the rest of this section, we focus on the methodology to compute the prox for functions fi, ∀i ∈
{1, 2, 3, 4, 5}, while for more details about the PPXA algorithm we refer the reader to Section 4.2.4. The
function f1(X) = ‖Ψ∗E1X‖1 can be represented by the combination of functions F and G, where F = ‖.‖1
and G = Ψ∗E1X = ΩX , i.e., f1 = F ◦ G. If Ψ is an orthonormal basis (i.e., ΩΩ∗ = �) the proxf1 can be
computed using the following closed form expression

proxf1 (X) = proxF◦G(X) = X +Ω∗(proxγF − �)(G(X)), (7.20)

[136, 138]. The proxγF of F = ‖.‖1 can be computed using component-wise soft thresholding with threshold
γ [138]. On the other hand, if Ψ is a general frame or redundant dictionary (i.e., c1� ≤ ΨΨT ≤ c2�) the
prox can be computed using Eqs. (4.20)-(4.21). The proxf2 can be computed using Eq. (7.20) or Eqs. (4.20)-
(4.21) by setting F = ‖.‖1 and G = Ψ∗E2X = ΩX , depending on Ψ is an orthonormal basis or a redundant
dictionary (general frame) respectively.

The function f3 can be represented using the combination of a function F and an affine operator G where
F = iDp(ε1) and G = E1ΦX − E1Y . The set Dp(ε1) is the lp ball with radius ε1 as defined in Eq. (7.7). As
the operator Φ is a tight frame with frame constant c, the proxf3 can be computed as

proxf3 (X) = proxF◦G(X) = X + c−1(E1Φ)
∗
(proxF − �)(G(X)), (7.21)

where proxF of F = iDp(ε1) can be computed using Eq. (7.9) for p = 2. For p > 2, we use the iterative
scheme proposed in [48] to compute the proxF . Following the same analogy, the prox for the function f4
can be solved using Eq. (7.21) by setting F = iDp(ε1) and G = E2ΦX−E2Y . Finally, the prox computation
of function f5 can be computed using Eqs. (4.20)-(4.21).

7.3.2 Experimental results

In this section, we report the experimental behavior of our novel joint reconstruction algorithm of Eq. (7.13)
in the correlated stereo and motion datasets that are used in Chapter 6. In particular, we perform joint
reconstruction experiments using the correlation model estimated with different sets of measurement ma-
trices, i.e., Φ1 �= Φ2. We assume that the images are sparse in an orthonormal basis built on a wavelet
representation. Hence, the proxf1 and proxf2 operators are computed using Eq. (7.20). The parameter ε2
is selected based on a trial and error procedure that maximizes the reconstruction image quality of Î1 and
Î2. In the rest of this section, we highlight the benefit of our joint reconstruction algorithm that effectively
considers the underlying correlation model while jointly decoding a pair of images. We then study the
importance of accurate correlation estimation and the impact of the measurement quantization noise in the
joint reconstruction performance. Finally, we extend our proposed joint reconstruction scheme to decode
more than two images.

We first analyze the performance of our joint reconstruction scheme using the correlation model esti-
mated from the unquantized linear measurements for the stereo datasets (Tsukuba and Venus). We found
experimentally that ε2 = 14 works well on Tsukuba and Venus datasets. We first compare our result with
respect to an independent reconstruction scheme that decodes the images without exploiting the correlation.
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Figure 7.7: Influence of the disparity accuracy on the joint reconstruction performance: (a) Tsukuba dataset; (b)
Venus dataset. The joint reconstruction performance is also compared to the independent reconstruction scheme.

This corresponds to solving the optimization problem of Eq. (7.13) without activating the last constraint
‖I2 −AI1‖22 ≤ ε2. Fig. 7.7 compares the average reconstruction quality between the joint (denoted as Joint
reco: Proposed) and independent reconstruction schemes (denoted as Indep reco) for Tsukuba and Venus
datasets. As expected, the joint reconstruction improves the reconstruction quality by 2 dB at low mea-
surement rate and by approximately 1 dB at high rates when compared to the independent reconstruction
scheme. We also observe in our experiments that the PSNR quality of both reconstructed images Î1 and
Î2 are similar, i.e., the quality is balanced between the images. The disparity estimation thus proves to be
useful in improving the image quality while reconstructing the images.

We then jointly reconstruct the images using the disparity estimated with the DFR-sparsity and DFR-
TV schemes. Recall that the DFR scheme estimates a correlation model from the reconstructed reference
images (see Section 6.4.1 for details). Fig. 7.7 compares the quality of reconstructed images in the proposed
and DFR schemes. We see that the joint reconstruction performance of the proposed scheme is competitive
with the joint reconstruction based on DFR-sparsity scheme in terms of image reconstruction quality. This
is particularly obvious at a low rate 0.05 where the DFR-sparsity scheme fails to accurately estimate the
disparity (see Section 6.4.1). However, the quality of the reconstructed images are marginally penalized
(i.e., 0.2 dB and 0.4 dB for the Tsukuba and Venus datasets respectively) compared to the reconstruction
achieved in the DFR-TV scheme. Finally, we carry out the same experiments in a scenario where the images
are jointly reconstructed using a correlation model that is estimated from the original images. This scheme
serves as a benchmark for the joint reconstruction, since the correlation is accurately known at the decoder.
The corresponding results are denoted as Joint reco:original in Fig. 7.7. We see that the reconstruction
quality achieved with the correlation estimated from compressed measurements converges to the upper-
bound performance when the measurement rate increases; this further confirms the quality of the disparity
estimation algorithm described in Chapter 6.

We now carry out similar experiments on the Yosemite, Mequon and Grove video datasets. The experi-
ments are carried out with ε2 = 3 (selected based on trial and error procedure). Fig. 7.8(a) and Fig. 7.8(b)
compare the performance of the proposed joint reconstruction scheme with respect to independent recon-
struction for the Mequon and Grove datasets respectively. As expected, by exploiting the correlation between
images we improve the reconstruction quality by 3-4 dB at low to medium measurement rates and by ap-
proximately 2-3 dB at high rates. We then compare our results with the joint reconstruction scheme based
on DFR schemes. For the Mequon dataset (see Fig. 7.8(a)), we observe that the quality penalization is
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Figure 7.8: Influence of the motion accuracy on the joint reconstruction performance: (a) Mequon dataset; (b)
Grove dataset. The joint reconstruction performance is also compared to the independent reconstruction scheme.

close to 1 dB at low rates and 0.5 dB at high rates when compared to DFR-TV scheme. This is due to the
fact that the DFR-TV scheme estimates an accurate correlation model due to good reconstruction quality
of the images, as described in Section 6.4.2. However, the proposed scheme performs competitively to the
joint reconstruction scheme based on DFR-sparsity. For the Grove dataset (see Fig. 7.8(b)), the proposed
scheme competes with the image reconstruction quality of the DFR-TV scheme due to accurate correlation
estimation. Finally, we compare our results to a joint reconstruction scheme that uses the true motion field
estimated from the original images. As expected, the proposed scheme is far from the upper-bound by a
margin of 0.8 dB for the Grove dataset (similar performance for Yosemite dataset) and of 1.5 dB for the
Mequon dataset.

We then analyze the effect of the measurement quantization on the joint reconstruction performance. For
the sake of simplicity, we study this influence using uniform quantizers. In the quantized scenarios, we esti-
mate a correlation model using the robust data cost function given in Eq. (6.43). We then use the estimated
robust correlation model to solve the joint reconstruction problem in Eq. (7.13) with p = 8. Figs. 7.9(a)-
7.12(a) show the resulting joint reconstruction performance (shown in dashed lines) for the Tsukuba, Venus,
Grove and Mequon datasets respectively, when the measurements are quantized using 2, 3 and 4 bits. We
first observe from Figs. 7.9(a)-7.12(a) that the quality of the decoded images degrades in the quantized
scenario compared to the unquantized scenario (marked as Joint reco:No Quantization). Especially, the
degradation is significant when the measurements are quantized coarsely using a 2-bit quantizer. We now
compare the quality difference between the joint and independent scheme for a given quantization bit rate.
For 3- and 4-bit rate quantizers we observe that the gain with respect to the corresponding independent
scheme remains approximately the same as in unquantized scenario, due to the robust correlation estimation
from quantized measurements. This shows that the measurement quantization noise is efficiently handled in
our distributed representation scheme. However, when the measurements are coarsely quantized using 2 bits
the gain with respect to the independent scheme reduces (by 0.5-1 dB) when compared to the unquantized
scenario.

We now analyze the RD performance of our symmetric scheme when the bit rate is computed by entropy
coding of the quantized measurements. Figs. 7.9(b)- 7.12(b) show the resulting joint reconstruction perfor-
mances (shown in dashed line) when the measurements are quantized using 2, 3 and 4 bits. From the plots we
observe that, at low bit rates the 2-bit quantizer performs better than 3- and 4-bit rate quantizers in terms
of reconstruction quality. Though the quality of the reconstruction image degrades with 2-bit quantizers as
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Figure 7.9: Influence of the 2-, 3- and 4-bit rate quantizers on the quality of the reconstructed images Î1 and Î2 in
the Tsukuba dataset. The quality evolution is given for (a) measurement rate and (b) bit rate.
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Figure 7.10: Influence of the 2-, 3- and 4-bit rate quantizers on the quality of the reconstructed images Î1 and Î2
in the Venus dataset. The quality evolution is given for (a) measurement rate and (b) bit rate.

shown before, it is largely compensated by the reduction in bit rate in the rate-distortion performance. This
means that the proposed distributed representation scheme is relatively robust to quantization, so that it is
possible to attain good rate-distortion performance by drastic quantization of the measurements. At high bit
rates, we see that the 4-bit quantizer performs better than the 2- and 3-bit rate quantizers. When we take
the convex hull of the RD performances (which corresponds to implementing a proper rate allocation strat-
egy), we observe that the proposed joint reconstruction scheme outperforms independent coding solutions
based on JPEG at low rates. However, at high bit rates the proposed scheme performs significantly worse
than the JPEG coding solutions due to the high entropy of the linear measurements. Several researchers
have noted it already that CS is actually not good for coding or compression applications [44, 45, 46].

We finally extend our proposed symmetric joint reconstruction scheme to more than two images. Es-
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Figure 7.11: Influence of the 2-, 3- and 4-bit rate quantizers on the quality of the reconstructed images Î1 and Î2
in the Mequon dataset. The quality evolution is given for (a) measurement rate and (b) bit rate.
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Figure 7.12: Influence of the 2-, 3- and 4-bit rate quantizers on the quality of the reconstructed images Î1 and Î2
in the Grove dataset. The quality evolution is given for (a) measurement rate and (b) bit rate.

pecially, we describe here the extension to multi-view imaging scenarios, however the scheme can also be
extended to the video imaging scenarios. Given the measurements Yj , ∀j = {1, 2, . . . , J} and the correlation
information among J images (in the form Ai, ∀j = {2, . . . , J}, as described in Section 6.6), we propose to
jointly reconstruct the J multi-view images as a solution to the following optimization problem:

min
I1,...,IJ

(
J∑

i=1

‖Ψ∗Ii‖1

)
s.t.

J∑
i=1

‖Yi − ΦiIi‖2 = 0,

J∑
i=2

‖Ii −AiI1‖22 ≤ ε. (7.22)

From the above equation, we see that the proposed reconstruction algorithm estimates J sparse images
that are consistent with both the measurement and correlation informations. Furthermore, it can be noted
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Figure 7.13: Joint reconstruction performance comparison between the multi-view and stereo imaging scenarios in
the Tsukuba multi-view dataset. Five views (center, left, right, bottom and top views) are jointly reconstructed in
the multi-view scenario.

that the above optimization problem is an extension to the one described in Eq. (7.11), except that the
sparsity constraints and the measurement and correlation consistency objectives are applied more than
images. The optimization problem in Eq. (7.22) can be rewritten as

min
X

(
J∑

i=1

‖Ψ∗EiX‖1
)

s.t. ‖E1(Y − ΦX)‖2 = 0, ‖E2(Y − ΦX)‖2 = 0, . . . , ‖EJ(Y − ΦX)‖2 = 0,

‖DX‖22 ≤ ε,
(7.23)

where X =
[
I1 I2 · · · IJ

]T , Y =
[
Y1 Y2 · · · YJ

]T , E1 =
[
� 0 · · · 0

]
,

EJ =
[
0 0 · · · �

]
. The matrices Φ and D are given as Φ =

⎡
⎢⎢⎢⎣

Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . ΦJ

⎤
⎥⎥⎥⎦,

D =

⎡
⎢⎢⎢⎣

−A2 � 0 . . . 0 0
0 −A3 � . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . −AJ �

⎤
⎥⎥⎥⎦. It is easy to check that the optimization problem in Eq. (7.23)

is convex. Therefore, the solution can be estimated with parallel proximal splitting methods. In particular,
the prox operators for the objective function and constraints in Eq. (7.23) can be easily computed by
following the steps described in Section 7.3.1.

We analyze the multi-view joint reconstruction performance with the Tsukuba multi-view dataset (center,
left, right, bottom and top views) [150]. Fig. 7.13 shows the quality of the reconstructed images in terms
of average PSNR for the proposed joint reconstruction scheme and an independent decoding scheme. From
Fig. 7.13 we observe that for a given measurement rate the proposed joint reconstruction scheme outperforms
the independent scheme by a margin of 3 dB. Finally, we compare the joint reconstruction performance
between the multi-view and stereo imaging scenarios in Fig. 7.13. We observe that the quality of the
reconstructed images in multi-view scenario is 1.5 dB better than the stereo scenario; this is due to better
correlation estimation in the former case. Therefore, it is clear that the quality of decoded images can be
improved when more views are available at the decoder.
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7.4 Conclusions
Our first contribution in this chapter is a novel and robust asymmetric distributed joint reconstruction al-
gorithm for decoding correlated images from quantized linear measurements. We have formulated a convex
optimization algorithm that ensures the reconstructed image to be consistent with the quantized measure-
ments and also with the predicted image obtained by warping the reference image. We have enforced the
measurement consistency using an lp norm with p > 2 in order to account for the non-linearities of the quan-
tization noise. We have experimentally shown that the proposed joint reconstruction solution is effective in
capturing the texture and details in the predicted image. We have then shown that the RD performance of
our asymmetric coding scheme computed on quantized linear measurements is far superior to state-of-the-art
independent coding solutions based on JPEG 2000.

Our next contribution in this chapter is a novel and robust symmetric joint representation algorithm
that decodes the images by exploiting the correlation model which is directly estimated in the compressed
domain. We have formulated a new constraint convex optimization problem which encourages the sparsity
prior of the reconstructed images and also uses both the correlation and the compressed linear measurements
information. We have then shown that our optimization framework can be easily extended to decode multi-
view images. Finally, we have shown experimentally that our proposed joint decoding solution reconstructs
a better quality image compared to the independent decoding solutions for various multi-view and video
datasets. This certainly positions our low complexity distributed coding frameworks for an effective 3D
scene communication in multi-view or video imaging scenarios.



Chapter 8

Conclusions

8.1 Thesis achievements

This thesis has addressed the problem of effective distributed 3D scene representation and joint reconstruc-
tion for multiple correlated images, whose correlation is mainly driven by the displacement of objects. We
have considered the use of various sensing methodologies for the scene representation which include planar,
omnidirectional and compressed sensing cameras. Since the geometry of the visual representation is differ-
ent for each sensor, we have proposed algorithms to process the data by properly considering the specific
geometry of the imaging system.

First, we have proposed an innovative solution for the distributed representation and coding of correlated
images captured in omnidirectional camera networks, with equivalent computational resources and trans-
mission capabilities. We have proposed to work directly in the spherical framework in order to efficiently
model the geometry of the omnidirectional images. The joint decoder effectively exploits the intra- and
inter-view correlation based on image prediction and disparity compensation, respectively and improves on
the coding performance of the independent coding solutions. Therefore, our rate balanced coding scheme
certainly provides an interesting solution for simple networks of omnidirectional cameras, since it neither
requires camera calibration nor hierarchy between sensors.

Next, we have studied the problem of distributed joint representation in a framework, where the corre-
lated images are encoded independently at similar rates using standard coding schemes (e.g., SPIHT). In
this setting, we have contributed a novel joint reconstruction algorithm that jointly decodes the images by
taking benefit of the inter-view correlation. We have shown that our reconstruction algorithm is convex
and we have proposed effective solutions based on proximal splitting methods. Simulation results confirm
that the proposed joint representation algorithm is successful in improving the reconstruction quality of
the compressed images for both planar and omnidirectional datasets. However, quality enhancement of the
compressed images are not noticeable at low rates. We have provided insights into this scenario and we have
described that this is due to the standard rate allocation scheme which fails to provide a compressed rep-
resentation for an accurate disparity estimation. We have then contributed a novel rate allocation method
based on modified SPIHT coding principles that allow for an accurate correlation estimation from the highly
compressed images. Finally, for a given target bit rate, we have shown that there exists an effective trade-
off between the accurate correlation estimation and the quality of image reconstruction due to different
encoding optimization objectives; this implies that one has to encode different image characteristics for an
effective distributed scene analysis or distributed coding of visual information captured in camera networks.

The next contribution of this thesis is a novel distributed representation scheme that estimates the un-
derlying correlation model between a compressed reference image and a set of compressed images given in
the form of quantized linear measurements. We have related the prominent features among multiple images



134 Chapter 8. Conclusions

using a geometry-based correlation model. The depth or motion field is computed by solving a new regular-
ized optimization problem under local geometrical transform constraints. We have also proposed innovative
solutions to cope up with the measurement noise due to quantization and it has been successfully verified
by experiments. Experimental results also demonstrate that the proposed methodology computes a good
estimation of dense depth or motion field for various multi-view and video datasets. To the best of our
knowledge, we are the first ones to show that the RD performance computed on compressed linear measure-
ments (in distributed settings) outperform state-of-the-art independent and distributed coding schemes due
to accurate and robust correlation estimation. This clearly positions our scheme as an effective solution for
distributed image processing with low encoding complexity.

Then, we have contributed a novel and robust framework that estimates the correlation among multiple
images directly in the compressed domain without reconstructing the images. We have proposed linear rep-
resentations for disparity and motion models and we have shown that the correlation can be estimated in the
compressed domain; thanks to the distance preserving property of the sensing matrices. We have proposed
to estimate a robust correlation model in an energy minimization framework that is solved effectively using
Graph Cuts. We have experimentally justified that our novel algorithm estimates a good correlation model
even when the measurements are highly quantized. Simulation results further confirm that, our low com-
plexity correlation estimation solution competes with the solution of a scheme that estimates the correlation
model after reconstructing the images. Therefore, our correlation estimation framework from compressed
measurements certainly provides an effective solution for distributed scene analysis or coding applications
in low complexity sensor networks.

Finally, we have proposed novel and robust joint reconstruction algorithms (asymmetric and symmetric)
that take benefit of the correlation estimation to decode the images from quantized linear measurements.
The joint reconstruction is cast as an optimization problem that decodes sparse or smooth images by
enforcing consistency with both the quantized linear measurements and correlation estimation. We have
shown that the proposed optimization problems are convex and solved effectively using parallel proximal
splitting methods. Simulation results confirm that the proposed joint representation scheme effectively
exploits the inter-view correlation to achieve high compression gains at low bit rates when compared to
state-of-the-art independent coding solutions; this illustrates the potential of our scheme in distributed
multi-view or video coding applications. Therefore, our joint representation scheme certainly provides a
low-complexity coding solution for the effective representation of 3D scenes in multi-view or video imaging
scenarios.

8.2 Future directions

In this thesis, we have addressed the problem of designing efficient and robust distributed algorithms to
jointly process the compressed visual information from various sensing methods, i.e., planar, omnidirec-
tional and CS cameras. We have shown experimentally that our novel correlation estimation algorithms
effectively handles the compressed images that allows for an improved joint reconstruction image quality.
The frameworks presented in this thesis opens new exciting directions for further research.

In Chapter 3, we have used half of the entropy coded visual information from both images for the
correlation estimation at the joint decoder. However, we did not consider the other half of compressed
visual information given in terms of parity bits for the disparity estimation. Recently, Varodayan et al.
[86] demonstrated that the underlying disparity model between images can be learned from the compressed
syndrome bits based on Expectation-Maximization (EM) principles. Therefore, it would be interesting
to merge the entropy and Slepian-Wolf coded visual information to estimate the correlation model at the
decoder. We can benefit from both forms of compressed visual informations for the correlation estimation;
this might lead to improved correlation estimation accuracy. Also, it would be interesting to extend our
rate balanced omnidirectional coding scheme to encode correlated planar images.

In Chapter 4, we have developed a rate allocation scheme that identifies and encodes the low contrast
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regions in the images, which permits to estimate an accurate correlation information for a given bit rate.
However, the decoder estimates the correlation model directly from the compressed images, without properly
considering the quantization noise or compression artifacts. Different cost functions have been proposed in
[159] to efficiently consider the radiometric variations (e.g., brightness and contrast variations) between
images. However, it is well known that these cost functions fail to efficiently handle the compression
artifacts. Therefore, developing robust matching terms to estimate an accurate correlation model from
highly compressed images would be an interesting topic of future research. For a good starting point, one
could borrow ideas from the robust data fidelity functions proposed in Chapters 5 and 6.

In Chapters 5 and 6, we have proposed correlation estimation algorithms that build the underlying scene
geometry from the compressed linear measurements. In our energy minimization framework however, we
did not consider the presence of occlusions between multi-view images. Intuitively, the sets of occluded
pixels can be identified by including additional terms in our framework, in order to enforce global visibility
and uniqueness constraints [160, 161]. Extending our correlation estimation scheme for efficient occlusion
handling can be a very interesting and challenging future research problem. Finally, it would be interesting
to extend our low complexity distributed solutions presented in Chapters 5, 6 and 7 to the case of dynamic
scenes simultaneously recorded by two or more cameras. The main goal in this case is to estimate a
correlation model in terms of 3D scene flow that determines both the 3D geometry and the 3D motion of
the scene at every pixel from compressed linear measurements.
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Appendix

A.1 Motion field estimation from atom transforms

We describe here the methodologies to estimate the dense transformation field f from the sets of atoms
{gγi} and {gγ′

i
} that are related with the geometric transformations {F i}. That is, the ith pair of atoms gγi

and gγ′
i

are related by
gγ′

i
= F i(gγi) = gδγi◦γi , (A.1)

where γi = (tx, ty, θ,sx, sy), γ′i = (t′x, t
′
y, θ

′, s′x, s
′
y) and δγi = (tx−t′x, ty−t′y, θ−θ′, s′x/sx, s′y/sy). The scenario

is illustrated in Fig. A.1 using K = 4 atoms where we see that it is trivial to find the transformation solution
f for the pixels in the non-overlapping regions. However, the pixels in overlapping regions have multiple
transformation values {δγi} that represent possible solutions. For example, as shown in Fig. A.1, the pixel
z in the overlapping region gγ1 ∩ gγ2 has two solutions given by δγ1 and δγ2. Therefore, it is clear that
the dense transformation field estimation from the sets of geometrically transformed atoms is an ill-posed
problem. We propose here two methodologies based on energy minimization framework to estimate a dense
transformation field f from the geometrically transformed atoms {gγi} and {gγ′

i
}.

Our first framework effectively considers all the transformations {δγk(z)} at the given pixel z in order to
generate a smooth transformation field, where k(z) ∈ {1, 2, · · · ,K} (recall that K is the number of atoms).
Our solution is based on an energy minimization framework that estimates a transformation field that is

gγ1

gγ2

gγ3

I1

gγ′
1

gγ′
2

gγ′
3

I2

gγ4
gγ′

4

z

Figure A.1: Transformation field estimation from sets of atom transformations. The same colored atoms between
images are related with a transformation F i as gγ′

i
= F i(gγi) = gδγi◦γi . The pixels in the non-overlapping regions

have a unique transformation solution, and the pixels in overlapping regions have more than one solution. For
example, the transformation field solutions at the pixel z are δγ1 and δγ2.



138 A. Appendix

consistent with the given transformation values {δγk(z)}, ∀z. At the same time, we ensure coherency in the
transformation field in order to model consistent motion of visual objects. The proposed regularized energy
model is represented as

E(f , k) = Ed(f , k) + λ1Es(f , k) + λ2EI(f , k), (TFE-1)

where k represents the dense atom index image with k(z) ∈ {1, 2, · · · ,K}. The parameters λ1 and λ2
balance the data term Ed and the smoothness terms Es, EI .

Now, we describe the three costs functions used in our framework. The data term Ed(f , k) finds the
amount of disagreement between the estimated solution f and the given transformation model {δγk(z)}
given in Eq. (A.1). In other words, the data term finds how well a particular solution f fits with the given
observation model {δγk(z)}. The data term is defined as

Ed(f , k) =
∑
z∈Z
C(f(z), k(z)), (A.2)

where Z denote the total number of pixels, i.e., |Z| = N , where N represents the resolution of the image.
The term C(f(z), k(z)) is given as

C(f(z), k(z)) = ‖gγ′
k(z)
− gf(z)◦γk(z)

‖22 Bk(z)(z). (A.3)

where Bi be a binary function that assigns the value 1 if a particular pixel z = (m,n) belongs to the support
of the atom gγi and ∞ otherwise. Mathematically, it reads as

Bi(z) =
{

1 if z ∈ Zi,
∞ otherwise. (A.4)

Recall that Zi represents the set of pixels in the support of the atom gγi (see Eq. (5.12)). From Eq. (A.3),
it is clear that C(f(z), k(z)) = 0, ∀z ∈ Zi when the transformation label f(z) = δγi where i = k(z), i.e.,
‖gγ′

i
−gf(z)◦γi

‖22 = 0. This follows from Eq. (A.1) where ith atom pairs gγi and gγ′
i
are related by gγ′

i
= gδγi◦γi .

Therefore, the proposed fidelity term C(f(z), k(z)) assigns zero for all pixels in the support of atom gγi when
the transformation label f(z) satisfies with the observation model. Furthermore, it is worth mentioning that
for a pixel z in the overlapping region the cost C(f(z), k(z)) is zero for several labels (see Fig. A.1). Due to
this ambiguity, it is not possible to solve the problem uniquely based only on the data cost Ed. We therefore
rely on two additional smoothness prior terms Es and EI to resolve the ambiguity. Now, we explain the
smoothness terms Es and EI .

The smoothness cost Es represents the penalty of assigning different transformations to adjacent pixels,
so that it results in a coherent deformation field. Instead of enforcing the smoothness constraint directly on
the transformation field, we propose to smooth the underlying motion field estimated from the sets of atom
transformations, since the correlation between images usually takes the form of motion or disparity vectors
in video or multi-view images (see Section 5.3.3). For a given transformation field f , we first generate a
dense motion field using Eq. (5.9), and then we compute the smoothness cost using Eq. (5.10).

The third term EI smoothens the atom indexes of the neighboring pixels, so that the transformation
values of adjacent pixels tend to come from the same atom. We propose to measure the cost EI as

EI(f , k) =
∑

z,z′∈N
Iz,z′ (k(z), k(z

′)) (A.5)

=
∑

z,z′∈N
min(Tk(z), Tk(z′))δk(z),k(z′), (A.6)

where z and z′ are the adjacent pixels with atom indices k(z) and k(z′) respectively. The term Tk(z)
represents the total number of pixels in the support of the atom gγk(z)

, i.e., Tk(z) = |Zk(z)| (see Eq. (5.12)).
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From Eq. (A.6), it is clear that Iz,z′ is zero if the pixels z and z′ belong to the same atom, i.e., k(z) = k(z′).
However, Iz,z′ is nonzero in the regions where the atoms intersect and the amount of penalty is then given as
min(Tk(z), Tk(z′)). By taking the minimum cost between Tk(z) and Tk(z′) we enforce less penalty to the thin
atoms when compared to the fat atoms. This encourages the presence of thin atoms in the final solution,
so that the transformations along the edges of the objects can be effectively captured.

Finally, the dense transformation solution (f̂ , k̂) is estimated by minimizing the energy function E(f , k)
given as

(f̂ , k̂) = argmin
f ,k
E(f , k). (A.7)

The problem given in Eq. (A.7) is non-convex, and therefore a solution to Eq. (A.7) can be estimated by
using strong optimization techniques based on Graph Cuts [130, 133] or Belief Propagation [132].

We now describe the second approach to generate the dense transformation field. This approach is also
based on an energy minimization framework, where the energy is given as

Ẽ(f) = Ẽd(f) + λ1Es(f), (TFE-2)

where Es represents the smoothness term discussed earlier. The data term Ẽd reads as

Ẽd(f) =
∑
z∈Z
C̃(f(z)) =

∑
z∈Z

K∑
i=1

gγi(z)‖gγ′
i
− gf(z)◦γi

‖22, (A.8)

where gγi(z) represents the response of the ith atom at location z. The correlation solution f́ can be
estimated as a solution to following minimization problem:

f́ = argmin
f
Ẽ(f). (A.9)

The solution to the above equation can be obtained using energy minimization techniques based on Graph
Cuts or Belief Propagation. Finally, by comparing Eq. (A.7) and Eq. (A.9), it can be noted that the size
of the search space in TFE-2 is reduced by an order K when compared to the TFE-1 scheme. Therefore,
the TFE-2 problem is relatively less complex compared to TFE-1. However, it should be noted that MAX
scheme (see Eq. (5.13)) is the simplest one to build the transformation field, as the TFE-1 and TFE-2
schemes are based on solving a regularized optimization problem. In the experimental results section, we
compare the performances among these three schemes and we show that there is a clear trade-off between
the performance and the complexity.

A.1.1 Performance analysis

We now compare the performances among the three transformation field estimation schemes based on MAX,
TFE-1 and TFE-2. For simplicity, we compare the performances in a scenario where the sets of atoms
{gγ′

i
} are estimated from the 2-bit quantized measurements using the local optimization methodology. In

particular, we estimate atoms {gγ′
i
} with OPT-2 optimization problem described in Section 5.5. After

estimating the sets of atoms {gγ′
i
} for a given measurement rate, we estimate a dense disparity model

based on MAX, TFE-1 and TFE-2 schemes. The optimization problems TFE-1 and TFE-2 are solved using
Graph Cuts. Figs. A.2(b), (c) and (d) show the disparity solutions estimated with the MAX, TFE-1 and
TFE-2 schemes respectively, for a measurement rate of 0.2 that is further quantized with a 2-bit quantizer.
Compared to the groundtruth image given in Fig. A.2(a), we see that the TFE-1 and TFE-2 optimization
schemes improve the disparity estimation solution when compared to the solution obtained using the MAX
scheme given in Fig. A.2(b). Especially, we observe the improvement along the vertical edges in the center
of the disparity image. We also see that the TFE-1 scheme estimates a better solution than TFE-2, where
the DE is 3.13% for the former and 3.37% for the latter. This is because the TFE-1 scheme performs an
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(a) Mh (b) MAX (c) TFE-1 (d) TFE-2

(f) DE: 4.8% (g) DE: 3.13% (h) DE: 3.37%

Figure A.2: Performance comparison of the disparity results among the MAX, TFE-1 and TFE-2 schemes in the
Sawtooth dataset. (a) Groundtruth disparity field Mh between views 1 and 5. Top row: Disparity fields estimated
with MAX, TFE-1 and TFE-2 schemes respectively. Bottom row: Respective disparity errors with DE=4.8%, 3.13%,
3.37%. The white pixels denote an error larger than 1.

exhaustive search by effectively considering all the possible transformation solutions at a given pixel as
discussed above. Fig. A.3(a) and Fig. A.3(b) compare the accuracy of the disparity estimation solution
between the MAX, TFE-1 and TFE-2 schemes in terms of disparity error and image prediction quality
respectively. For a given measurement rate, we see from Fig. A.3 that the disparity estimation solution
based on TFE-1 gives better results compared to the TFE-2 and MAX schemes. Therefore, it is clear that
there is a trade-off between the complexity and the performance. However, from Fig. A.3 we see that the
MAX scheme performance is reasonably good if one advantageously considers the low complexity of this
approach.

We now illustrate the benefit of using the smoothness priors, and the effect of regularization parameters
in the TFE-1 and TFE-2 schemes. We first highlight the benefit of activating the smoothness term EI in
the optimization TFE-1. We first solve the TFE-1 scheme without activating the EI term, i.e., λ2 = 0.
Fig. A.4 compares the performance of this setting with respect to the TFE-1 scheme where all the terms
are activated, i.e., λ1 �= 0 and λ2 �= 0. It is clear from Fig. A.4 that the disparity error and the prediction
image quality are improved by activating the term EI . While carrying out the experiments, we have further
observed a degradation in performance when the TFE-1 is solved only with the EI term and not using the
smoothness Es term, i.e., λ1 = 0 and λ2 �= 0. Finally, we study the sensitivity of the parameter λ1 in TFE-2
scheme. Fig. A.5 shows the disparity error (left side) and image prediction quality (right side) for various
choices of λ1 between 0 to 180 with a step-size 5. From Fig. A.5, we see that the TFE-2 scheme gives a
similar disparity image with DE ≈ 3.5% for λ1 between 40 to 80. Similarly, the quality of the predicted
image is approximately 27.8 dB for λ1 between 20 to 70, which illustrates the insensitivity of our proposed
scheme to the exact value of λ1. When the parameter λ1 is increased beyond 100, we notice that the
disparity becomes over smooth; this leads to a bad disparity estimation solution and also to a poor image
prediction quality.

We now compare the estimated motion field among the MAX, TFE-1 and TFE-2 schemes using a
similar experimental setup in the stereo imaging framework, i.e., we compare the performances in a scenario
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Figure A.3: Performance comparison for the disparity image computed using MAX, TFE-1 and TFE-2 schemes
for the Sawtooth and Plastic datasets. For a given measurement rate the accuracy of the disparity estimation is
evaluated in terms of (a) disparity error and (b) quality of image prediction. These plots are generated from 2-bit
quantized measurements.
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Figure A.4: Performance comparison for the disparity image computed using the TFE-1 scheme with and without
EI . For a given measurement rate the accuracy of the disparity estimation is evaluated in terms of (a) disparity error
and (b) quality of image prediction. These plots are generated from 2-bit quantized measurements.

where the sets of atoms {gγ′
i
} are estimated from 2-bit quantized measurements by solving OPT-2 scheme

using local optimization methodology. Figs. A.6(b), (c) and (d) compare the motion fields for the Foreman
sequence that are estimated from 2-bit quantized measurements at the rate 0.15. Comparing Figs. A.6(b),
and (c) we see that the motion field in the face region is better represented with the TFE-1 scheme compared
to the MAX scheme. This can be clearly observed in the prediction errors given in Figs. A.6(f) and (g) when
the motion fields respectively in Figs. A.6(b) and (c) are used for image prediction. We then compare in
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Figure A.5: Effect of the regularization parameter λ1 on the disparity estimation performance with the TFE-2
scheme in the Sawtooth dataset. The left and right side of the y-axis show the disparity error and the quality of the
predicted image respectively.

(a) 1− |I2 − I1| (b) MAX (c) TFE-1 (d) TFE-2

(f) MSE: 41.90 (g) MSE: 34.85 (h) MSE: 38.17

Figure A.6: Performance comparison among the MAX, TFE-1 and TFE-2 schemes in the Foreman dataset. (a)
Inverted absolute error between original images I1 and I2. MSE between I2 and I1 is 79.5. Top row: Motion fields
computed with MAX, TFE-1 and TFE-2 schemes respectively. Bottom row: Respective prediction errors w.r.t. I2.
The error is inverted so that the white pixels correspond to no error.
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Figure A.7: Performance comparison of the quality of the predicted image using the motion field computed with
MAX, TFE-1 and TFE-2 schemes in the Foreman dataset.

Fig. A.7, the prediction image quality among the three schemes for measurement rates from 0.03 to 0.2. As
observed earlier in disparity scenario, we notice (see Fig. A.7) that the complex TFE-1 scheme outperforms
the TFE-2 and MAX schemes, where the gain reaches up to 1 dB at low rates. However, it is interesting
to note that the MAX scheme estimates a reasonably good solution with low computational complexity;
this encourages to use this approach in our correlation estimation OPT-1 and OPT-2 problems described
in Chapter 5.
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