Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices

High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening perspectives for cost-effective integration of CMOS chips to microfluidics circuits. Accordingly, this note introduces an easy, low-cost and efficient method for realizing high pressure microfluidics-to-CMOS integration. First, we report a new low temperature (280 °C) Parylene-C wafer bonding technique, where O2 plasma-treated Parylene-C bonds directly to Si3N4 with an average bonding strength of 23 MPa. The technique works for silicon wafers with nitride surface and uses a single layer of Parylene-C deposited only on one wafer, and allows microfluidic structures to be easily formed by directly bonding to the nitride passivation layer of the CMOS devices. Exploiting this technology, we demonstrated a microfluidic chip burst pressure as high as 16 MPa, while metal electrode structures on the silicon wafer remained functional after bonding.


Published in:
Lab on a Chip, 12, 2, 396-400
Year:
2012
Publisher:
Royal Society of Chemistry
ISSN:
1473-0197
Keywords:
Laboratories:




 Record created 2011-11-11, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)