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a b s t r a c t

Auxetic materials expand when stretched, and shrink when compressed. This is the

result of a negative Poisson’s ratio n. Isotropic configurations with n��1 have been

designed and are expected to provide increased shear stiffness G. This assumes that

Young’s modulus and n can be engineered independently. In this article, a micropolar-

continuum model is employed to describe the behavior of a representative auxetic

structural network, the chiral lattice, in an attempt to remove the indeterminacy in

its constitutive law resulting from n¼�1. While this indeterminacy is successfully

removed, it is found that the shear modulus is an independent parameter and, for

certain configurations, it is equal to that of the triangular lattice. This is remarkable as

the chiral lattice is subject to bending deformation of its internal members, and thus is

more compliant than the triangular lattice which is stretch dominated. The derived

micropolar model also indicates that this unique lattice has the highest characteristic

length scale lc of all known lattice topologies, as well as a negative first Lamé constant

without violating bounds required for thermodynamic stability. We also find that

hexagonal arrangements of deformable rings have a coupling number N¼1. This is the

first lattice reported in the literature for which couple-stress or Mindlin theory is

necessary rather than being adopted a priori.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Auxetic materials have fascinated solid mechanicians ever since a polymeric foam with negative Poisson’s ratio was
introduced by Lakes (1987). Interest in these unique materials has since grown significantly and a number of auxetic
configurations have been proposed, both chiral (Prall and Lakes, 1997; Grima et al., 2008) or not invariant with respect
to reflections, and non-chiral (Gaspar et al., 2005; Lakes, 1991; Smith et al., 2000; Theocaris et al., 1997). Envisioned
applications include indentation-resistant materials (Evans and Alderson, 2000; Lakes, 1987; Lakes and Elms, 1993; Smith
et al., 1999), doubly curved panels with synclastic curvature (Evans, 1990; Evans and Alderson, 2000; Lakes, 1987), and
miniaturized sandwich cores (Doyoyo and Hu, 2006).

Materials with Poisson’s ratio n��1 are expected to display significant shear stiffness (Yang et al., 2004) and
indentation resistance (Evans and Alderson, 2000; Lakes, 1987; Lakes and Elms, 1993; Smith et al., 1999). The employment
of auxetic materials, at least isotropic ones, as indentation-resistant materials assumes that Young’s modulus and Poisson’s
ratio can be designed independently (Evans and Alderson, 2000), while shear and bulk moduli are derived quantities. This
approach ignores the fact that the microstructural design required to yield auxetic behavior may couple Young’s modulus
and Poisson’s ratio. Poisson’s ratio in fact is determined by anisotropy, non-affine deformations and internal rotational
ll rights reserved.
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units (Lakes, 1991). The last two characteristics are achieved with cellular solids with a re-entrant microstructure (Choi
and Lakes, 1995; Gibson and Ashby, 1997; Lakes, 1991; Lakes and Witt, 2002), one with concave cells, and chirality (Grima
et al., 2008; Prall and Lakes, 1997).

Classical elasticity theory has been previously and successfully used to describe an equivalent continuum with auxetic
properties (Gaspar et al., 2005; Grima et al., 2008; Lakes, 1991; Prall and Lakes, 1997; Smith et al., 2000; Theocaris et al.,
1997). Negative Poisson’s and increased shear resistance in fact do not describe the behavior of internal members but
rather than of a bulk material made of may cells. These unique properties certainly encourage studies aimed at quantifying
the benefits introduced by auxetic materials for different applications, but in may cases, it is found that n¼�1. This leads
to an indeterminate constitutive law.

In this work, a representative auxetic structural network with internal rotational units, known as the chiral lattice is
investigated with an equivalent, micropolar-continuum model in an attempt to remove the indeterminacy n¼�1
encountered so far (Prall and Lakes, 1997; Spadoni, 2008; Spadoni et al., 2009). A detailed microstructural analysis of the
chiral lattice is also employed to describe the repercussions of auxetic behavior on the relationship between Young’s
modulus, shear modulus and Poisson’s ratio. This lattice moreover features internal rotational units, in the form of rings,
connected by tangent ligaments with rigid joints. This is important since the characteristics of ligament joints, rigid or
deformable, determine the effective Poisson’s ratio (Tanaka and Shibutani, 2009). In this work, rings with rigidly connected
ligaments represent moment loci instead of force loci. Very different configurations ranging from a hexagonal packing of
rings to the triangular lattice are obtained varying a single parameter known as the topology parameter which determines
the ring radius. This provides the opportunity to define a micropolar model where (i) the contribution of rotational units
can be tailored, as well as (ii) a model that can connect bending and axial-dominated microstructural configurations. These
two deformation mechanisms indeed distinguish auxetic and classic media (nZ0) with rigid joints between members.

Following a description of geometric properties in Section 2, the micropolar constitutive law for a general isotropic
medium is presented in Section 3 and its application for this particular framework is discussed. Two configurations are
employed to study the auxetic behavior of the chiral lattice in Section 4. In the first case, rings are assumed rigid; this
simplification enables the derivation of micropolar elastic constants analytically. A second case with deformable rings, the
actual behavior of the lattice, is analyzed with a finite-element model. Finally, the mechanical properties of both models
are compared to those of other common cellular solids like the square, triangular a hexagonal configurations.

2. Hexagonal chiral lattice

The structural layout of a hexagonal chiral lattice shown in Fig. 1 consists of rings of radius r, acting as nodes, connected
by ribs or ligaments, of length L tangent to the nodes themselves. The distance between node centers is denoted as R, while
the angle between the imaginary line connecting the node centers and the ribs is defined as b. The angle between adjacent
ligaments is denoted as 2y. The wall thickness of nodes and ribs is denoted as tc and tb respectively. As described in
Prall and Lakes (1997), the following geometric relationships hold:

sin b¼
2r

R
, tan b¼

2r

L
, sin y¼

R=2

R
, cos b¼

L

R
: ð1Þ

The tessellation of the unit cell of Fig. 1a along the symmetry vectors e1 and e2 generates the lattice shown in Fig. 1b. The
symmetry vectors shown in Fig. 1b are one of the three possible sets, given hexagonal symmetry. A convenient set is

e1 ¼ fR cos y,R sin ygT ,

e2 ¼ f�R cos y,R sin ygT : ð2Þ
β
r

L/2

2θ

R/2

tb

tc
e1e2

i2
∧

i1
∧

Fig. 1. Geometry of a hexagonal chiral lattice: (a) unit cell and (b) unit volume with symmetry vectors.



Fig. 2. Lattice configurations corresponding to increasing topology parameter L/R. (a) L=R-0. (b) L=R¼ 0:60. (c) L=R¼ 0:90. (d) L=R-1. Dashed lines

denote the unit cell for each configuration.
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For the remainder of this manuscript, vectors are denoted as bold, lower case letters, while capital bold letters identify
matrices.

Significantly different configurations can be obtained by varying the ratio L/R here denoted as the topology parameter.
Possible topologies range from a hexagonal arrangement of rings (L=R-0) to the classic triangular lattice (L=R-1) with
associated unit cells highlighted in dashed lines in Fig. 2. The ability to generate such topologically and mechanically
different structural networks provides the unique opportunity of deriving a mechanical model that connects bending-
dominated, axially-dominated, conventional, and auxetic lattices as a continuous function of the topology parameter. The
same model could also bring a very interesting insight into the transition between bending-dominated behavior and
axially dominated behavior which depend on ligament-wall thickness very differently. This implies that the relative
density plays an important role in determining the mechanical response of the chiral assembly. The relative density r of a
cellular solid is defined as the volume occupied by solid phase, in this case the walls of a unit cell, normalized by the sum
of the volumes of all phases. The second phase is simply vacuum in this case, with no influence on the static or and
dynamic response of the structure. Assuming that the lattice’s walls are thin, the relative density is

r ¼ rn

rs

¼
2prtcþ6Ltb=2

R2 cos y
, ð3Þ

where rn is the equivalent density of the lattice, while rs is the density of the constituent material. Furthermore, since
from Eq. (1) y is always 301, the relative density may be recast as

r ¼ rn

rs

¼
2
ffiffiffi
3
p
ð2prtcþ3LtbÞ

3R2
: ð4Þ

3. Constitutive model

A treatment of a micropolar constitutive model for noncentrosymmetric media, or configurations that are not invariant
to reflections, has eloquently been presented by Lakes and Benedict (1982). They found that in a noncentrosymmetric
medium described by a micropolar elasticity model, direct and coupled stresses are connected by three elastic constants. If
plane deformations only are considered, as is the case here, direct and couple stresses are independent of each other. This
can be shown by considering the strain energy density C for a general micropolar continuum with no residual or latent
stress as (Eringen, 2001; Lakes and Benedict, 1982)

C¼ 1
2 Aijklekleijþ

1
2BijkleijkklþCijklkijkkl, ð5Þ

where eij � uj,i�ekijfk is the micropolar strain tensor, ui is the displacement vector, fk is the microrotation vector, ekij is the
Levi–Civita permutation symbol, and kkl �fl,k is the curvature tensor. The subscript ð Þi indicates a partial derivative with
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respect to coordinate i while Aijkl, Bijkl and Cijkl are fourth-order tensors of elastic constants. Symmetries in the employed
model result in Aijkl ¼ Aklij and Cijkl ¼ Cklij (Eringen, 2001). The usual Einstein summation convention is used. The resulting
constitutive model becomes (Eringen, 2001)

sij ¼
@C
@eij
¼ AijkleklþBijklkkl, ð6Þ

mij ¼
@C
@kij
¼ BklijeklþCijklkkl, ð7Þ

where skl and mkl are the direct and couple stress tensors respectively. Lakes and Benedict (1982) conclude that reflections
invert the sign of the microrotation vector fk, and thus the strain energy density C is not invariant to such operations. This
is certainly the case of the noncentrosymmetric lattice in question, appropriately termed chiral. As a result Bijkla0 and
Cijkla0.

Given the hexagonal symmetry of the chiral lattice, its mechanical behavior is expected to be isotropic (Love, 1927,
Chapter VI, Section 110). The constitutive tensors Aijkl, Bijkl and Cijkl can be simplified considering the most general form of a
fourth-order tensor (one with proper isotropy but not necessarily mirror symmetry):

Tijkl ¼ T1dijdklþT2dikdjlþT3dildjk, ð8Þ

where dij is the kronecker delta. The stress tensors become

sij ¼ A1errdijþA2eijþA3ejiþB1krrdijþB2kijþB3kji, ð9Þ

mij ¼ B1errdijþB2eijþB3ejiþC1krrdijþC2kijþC3kji: ð10Þ

For the lattice under consideration, 2D plane deformations are of interest. Accordingly e¼ fe11 e22 e12 e21g
T , f¼f3,

r¼ fs11 s22 s12 s21g
T and m¼ fm13 m23g. In this case, Bijkl ¼ C1 ¼ 0 and Eqs. (9) and (10) collapse to those of an isotropic

micropolar medium with mirror symmetry. Within this framework, the noncentrosymmetric character of the chiral lattice
simply produces moments about nodes or rings, and in turn the couple stress components m13 and m31. The auxetic
behavior of the structural network, however, is not lost and remains the focus of this work.

4. Elasto-static behavior

The dominant deformation mechanism in 2D structural lattices may be of extensional or bending nature, according to the
manner in which the lattice’s components are interconnected. A rigorous procedure based on Maxwell’s theorem to determine
the deformation mechanism that defines a given 2D lattice is presented by Deshpande et al. (2001). This is a defining
characteristic since equivalent stiffness for extensional lattices scales as r, where r is the relative density, as opposed to r3 for
bending-dominated lattices. For a given relative density r, axially-dominated configurations are much stiffer.

The triangular lattice for example is characterized by axial deformations of its internal components (Wang and
McDowell, 2004), while the most common lattice, the hexagonal lattice, is dominated by cell-wall bending (Gibson and
Ashby, 1997). The same bending-dominated behavior has been observed experimentally for the chiral lattice (Prall and
Lakes, 1997) (numerically reproduced in Fig. 3). Knowledge of the equivalent mechanical properties of the chiral lattice,
however, is currently very limited; the only investigations available in the literature are those by Prall and Lakes (1997)
and Spadoni (2008). The first analysis by Prall and Lakes (1997) investigated both Young’s modulus and Poisson’s ratio in
the plane with the following assumptions:
1.
 nodes (or rings) are considered rigid;

2.
 internal forces oriented in a direction perpendicular to the externally applied stress vanish;
Fig. 3. Deformed configuration resulting from uniaxial stress.
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3.
Fig
kin
internal forces are dictated by the experimentally observed kinematic behavior;

4.
 axial and shear deformations of the ligaments are neglected;

5.
 deformations are small.
In their theoretical account, Prall and Lakes (1997) find Poisson’s ratio n¼�1. This implies that the in-plane shear modulus
is infinite and the resulting constitutive tensors of Eqs. (9) and (10) are indefinite. In an attempt to employ a homogenized
model of the chiral lattice to explore possible applications such as chiral honeycombs, Spadoni (2008) revisited the
analysis by relaxing some of the above assumptions within the Cauchy elasticity model.

In order to define a more accurate constitutive model and study variations in mechanical behavior varying with the size
of rings (Fig. 2), the following analyses are here extended to a generalized micropolar continuum and, as in Spadoni (2008),
the above assumptions are relaxed by studying two configurations: in the first case (case 1), assumptions 2–4 are removed,
while in a second case (case 2) the only retained assumption is 5.

4.1. Case 1: rigid nodes

In the original study by Prall and Lakes (1997), a single ligament was analyzed in light of isotropy and experimental
observations indicating that all ligaments deformed equally. The dominant behavior was observed to be a sigmoidal
deformation of the ligaments winding onto the rings, resulting in the rings themselves rolling along R (Prall and Lakes,
1997). The single-ligament model was also employed in Spadoni (2008) leading to a Poisson’s ratio n¼�1. In the current
framework, however, a refined estimate of the same parameter is desired even for rigid rings. Given the rotational
symmetry of the unit cell depicted in Fig. 1a, the irreducible set of distinct mechanical entities of Fig. 4a is expected to
produce the elasto-static behavior of the entire lattice. Constraint equations relating the kinematics of the center of each
ring to those of material points on the tings themselves (Fig. 4a) are expressed as

xOA ¼ xOBþxBA ¼ xOBþrðcos cî1þ sin cî2Þ, ð11Þ

xOA0 ¼ xOBþðuB î1þvB î2ÞþxBA0 ¼ xOBþðuB î1þvB î2Þþr½cosðcþfÞî1þsinðcþfÞî2�, ð12Þ

ðuA î1þvA î2Þ ¼ xOA0�xOA ¼ ðuB î1þvB î2Þþr½cosðcþfÞ�cos c�î1þr½sinðcþfÞ�sin c�î2

� ðuB î1þvB î2Þ�rf sin cî1þrf cos cî2: ð13Þ

Referring to Fig. 4b, (uA,vA) are the displacement components of point A along î1 and î2 respectively, while (uB,vB) are
those of point B, f is the rotation of the ring, and x denotes a position vector. The resulting kinematic constraint of Eq. (13)
is linearized in compliance with the assumption of small displacements and rotations. The same constraint may be
expressed in matrix form as:

uA

vA

fA

8><
>:

9>=
>;¼

1 0 �r sin c
0 1 r cos c
0 0 1

2
64

3
75

uB

vB

fB

8><
>:

9>=
>;¼ TðcÞ

uB

vB

fB

8><
>:

9>=
>;: ð14Þ
. 4. Irreducible set of entities required to study the mechanical response of the chiral lattice: geometry of ligaments connecting rigid rings (a),

ematics of a rigid ring (b), and equivalent mechanical model (c).
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The relation between forces and displacements for a beam-like entity such as a ligament including axial and bending
deformations is

Esbt

L

1 0 0 �1 0 0

12t2=L2 6t2=L 0 �12t2=L2 6t2=L

4t2 0 �6t2=L 2t2

1 0 0

symm 12t2=L2
�6t2=L

4t2=L

2
6666666664

3
7777777775

ui

vi

ai

uf

vf

af

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼Keue ¼ f e, ð15Þ

where Es is Young’s modulus of the constituent material while Ke, ue and f e are the symmetric stiffness matrix, vector of
generalized displacements and end forces. The subscript ð Þe indicates quantities expressed in the element (local)
coordinate system. Upon projection of generalized displacements to the global coordinate system and assembly of the
global stiffness matrix K containing the contributions all the three ligaments, the simplified geometric model shown in
Fig. 4a can be reduced to that depicted in Fig. 4c by way of Eq. (14) as follows:

~K ~u ¼ TðcÞT KTðcÞ ~u ¼ TðcÞT f , ð16Þ

where ~ð Þ indicates quantities associated with the reduced model depicted in Fig. 4c. The strain energy density of a unit cell
can be computed as

C¼
2

2V
�

1

2
~uT ~K ~u, ð17Þ

where the factor 2 is needed as the frame assembly of Fig. 4a represents half of the complete unit cell. The volume of one
unit cell is V ¼ bR2 cos y comprising ligaments of length L=2. The modeled system of Fig. 4, however, has ligaments of
length L. The strain energy in Eq. (17) is thus associated with 2V. The elastic constants Aklmn and Cklmn are evaluated as

Aijkl ¼
@2C
@ekl@eij

, Cijkl ¼
@2C
@kkl@kij

: ð18Þ

In order to obtain the strain energy of a unit cell in terms of geometric and material properties, the following displacement
field is assumed:

uOiðx,yÞ ¼ uðxO,yOÞþDxe11þDyðe21�fÞþOðDx2,Dy2Þ, ð19Þ

vOiðx,yÞ ¼ vðxO,yOÞþDye22þDxðe12þfÞþOðDx2,Dy2Þ, ð20Þ

fOiðx,yÞ ¼fðxO,yOÞþDxf,1þDyf,2þOðDx2,Dy2Þ, ð21Þ

where, from Eq. (2), 9Dx9¼ R cos y and 9Dy9¼ R sin y. Upon enforcing the rigid-node constraint of Eq. (16), the degree of
freedom a in Eq. (15) is the finite rotation of a rigid ring, and it is associated with global deformations of the ligaments
(winding behavior in Fig. 3), different from the micro-rotation f. For the assumed strain field of Eqs. (19)–(21), a is thus
not known a priori and must be solved for. Since the sub-assembly of Fig. 4a is part of an infinite lattice, all rings must
rotate by the same amount for a uniform strain field. This constraint can be enforced by relating the set of constrained
displacements û to ~u with a boolean matrix TB such that û ¼ TB ~u. The associated stiffness matrix is obtained as
K̂ ¼ TT

B
~K TB. Dividing Eq. (16) into known k and unknown u entities as

K̂ kk K̂ ku

K̂ uk K̂ uu

" #
ûk

ûu

( )
¼

f̂ u

f̂ k

8<
:

9=
;: ð22Þ

The rotations of the rigid rings can be evaluated as

ûu ¼ K̂
�1

uu ðK̂ ukûkÞ ð23Þ

given the assumed displacement field of Eqs. (19)–(21) expressed as ~uk. The constitutive laws of Eqs. (9) and (10) can be
re-arranged in matrix form as

s11

s22

s12

s21

m13

m23

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

D11 D12 0 0 0 0

D21 D22 0 0 0 0

0 0 D33 D34 0 0

0 0 D43 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

2
6666666664

3
7777777775

e11

e22

e12

e21

k13

k23

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: ð24Þ
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These elastic constants for the chiral lattice are

D11 ¼

ffiffiffi
3
p

Est

4L3

ðt4�L4
Þcos2 bþL4

þ3L2t2

ðt2�L2
Þ cos2 bþL2

, ð25Þ

D12 ¼�

ffiffiffi
3
p

Est

4L3

L4 tan2 bþt4�L2t2ð1þtan2 bÞ
L2 tan2 bþt2

, ð26Þ

D21 ¼�

ffiffiffi
3
p

Est

4L3

L4 tan2 bþt4�L2t2ð1þtan2 bÞ
L2 tan2 bþt2

, ð27Þ

D22 ¼

ffiffiffi
3
p

Est

4L3

ðt4�L4
Þ cos2 bþL4

þ3L2t2

ðt2�L2
Þ cos2 bþL2

, ð28Þ

D33 ¼

ffiffiffi
3
p

Est

4L3

½L42 tan2 bþL2R2
þt2ð2L2

þR2
Þ�

R2
, ð29Þ

D34 ¼�

ffiffiffi
3
p

Est

4L3

½L42 tan2 b�L2R2
þt2ð2L2

�R2
Þ�

R2
, ð30Þ

D43 ¼�

ffiffiffi
3
p

Est

4L3

½L42 tan2 b�L2R2
þt2ð2L2

�R2
Þ�

R2
, ð31Þ

D44 ¼

ffiffiffi
3
p

Est

4L3

½L42 tan2 bþL2R2
þt2ð2L2

þR2
Þ�

R2
, ð32Þ

D55 ¼

ffiffiffi
3
p

Est

12L
ð3L2 tan2 bþ4t2Þ, ð33Þ

D66 ¼

ffiffiffi
3
p

Est

12L
ð3L2 tan2 bþ4t2Þ: ð34Þ

Note that all elastic constants relating direct stresses to direct strains have the leading-order term ðt=LÞ3, which, in light of
Eq. (4), confirms that the behavior of the chiral lattice is bending dominated. The contribution of microrotations to couple
stresses, however, is dominated by axial deformations of the ligaments as D55 ¼D66pðt=LÞ indicating a very strong
micropolar behavior. The chiral lattice, as for the triangular lattice, is isotropic in plane. This was concluded on the basis of
the hexagonal symmetry in Section 3 and it is here confirmed by the derived elastic constants. The hexagonal arrangement
of rings (Fig. 2a) cannot be analyzed within the current assumptions as all strain energy would be stored in the rings
themselves. The mechanical behavior obtained assuming rigid rings is applicable for L=R 2 ð0;1� and it will be in significant
error as L=R-0.

For the topology parameter L=R¼ 1 (b¼ 0), one obtains the equilateral triangular lattice (Fig. 2d), and the elastic
constants of Eqs. (25)–(34) become

D11T ¼

ffiffiffi
3
p

Est

4L3
ð3L2
þt2Þ, ð35Þ

D12T ¼

ffiffiffi
3
p

Est

4L3
ðL2
�t2Þ, ð36Þ

D21T ¼

ffiffiffi
3
p

Est

4L3
ðL2
�t2Þ, ð37Þ

D22T ¼

ffiffiffi
3
p

Est

4L3
ð3L2
þt2Þ, ð38Þ

D33T ¼

ffiffiffi
3
p

Est

4L3
ðL2
þ3t2Þ, ð39Þ

D34T ¼

ffiffiffi
3
p

Est

4L3
ðL2
�t2Þ, ð40Þ

D43T ¼

ffiffiffi
3
p

Est

4L3
ðL2
�t2Þ, ð41Þ
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D44T ¼

ffiffiffi
3
p

Est

4L3
ðL2
þ3t2Þ, ð42Þ

D55T ¼

ffiffiffi
3
p

Est
3

3L
, ð43Þ

D66T ¼

ffiffiffi
3
p

Est
3

3L
, ð44Þ

which are identical to those obtained for a triangular lattice in Kumar and McDowell (2004) and derived without
considering second or higher-order terms in the Taylor-series expansion of displacements of Eqs. (19)–(21). This is
an encouraging result as it confirms the continuity in mechanical behavior for evolving configurations with respect to L/R
(Fig. 2), and it provides the opportunity to contrast the elastic behavior of bending and axially dominated configurations.

A more intuitive prospective of the chiral lattice behavior is obtained by defining engineering constants. Following the
treatments in Nakamura and Lakes (1995) and Yang and Huang (2001), the micropolar Young’s modulus and micropolar
Poisson’s ratio are defined as Em ¼ ðD

2
11�D2

12Þ=D11 and nm ¼D12=D11 and are obtained assuming the same relationships as
for plane deformations in classical elasticity:

Em ¼
Em

Es
¼

4
ffiffiffi
3
p
½1þðt=LÞ2�

½2ðt=LÞ4 cos2 bþ2 sin2 bþ6ðt=LÞ2�

t

L

� �3

, ð45Þ

nm ¼
4ðt=LÞ2

ðt=LÞ4 cos2 bþ1�cos2 bþ3ðt=LÞ2
�1: ð46Þ

The stiffness modulus scales with ðt=LÞ3 confirming the bending-dominated behavior of the chiral lattice. In addition,
Young’s modulus smoothly changes to that of the axially dominated triangular lattice (Wang and McDowell, 2004) (where
it is derived disregarding bending, thus no ðt=LÞ2 terms)

Em,T

Es
¼

2
ffiffiffi
3
p
½1þðt=LÞ2�

½3þðt=LÞ2�

t

L

� �
ð47Þ

and nm,T ¼ 1=3. Poisson’s ratio (Eq. (46)) is close to �1 but increases with increasing ligament aspect ratio t/L, hence the
indeterminacy in elastic constants is removed. Poisson’s ratio in fact would be exactly �1 only if t/L¼0. It also varies
smoothly as L=R-1 (b-0).

While the micropolar shear modulus Gm can simply be obtained from Young’s modulus and Poisson’s ratio above, it is
worth presenting it explicitly as auxetic or negative Poisson’s-ratio materials are often touted for their expected large
shear stiffness (Alderson et al., 1994; Evans and Alderson, 2000; Lakes and Elms, 1993). From Eqs. (45) and (46), the shear
stiffness is

Gm ¼
Gm

Es
¼

ffiffiffi
3
p

4

t

L

� �
þ

ffiffiffi
3
p

4

t

L

� �3

: ð48Þ

The shear modulus does not depend on the topology of the chiral lattice, i.e. it does not depend on the angle b in turn
determined by L/R, and it is the same as that of the triangular lattice reported in Wang and McDowell (2004) except for the
higher order term ðt=LÞ3. Moreover, it scales with the ligament’s aspect ratio (t/L) indicating that shear behavior is
determined by axial deformations of the ligaments. This leads to the conclusion that, while a 2D medium with n��1
indeed presents high shear stiffness, the deformation mechanism necessary to achieve strong isotropic, auxetic behavior
limits the shear stiffness to that of a medium with axially dominated deformations. This in turn restricts auxetic materials,
at least in 2D, to be very efficient systems for shear stiffness relatively to bending-dominated media and not in an
absolute sense.

The chiral lattice, however, remains a unique structural arrangement to study the strength of micropolar behavior as
rings decrease in size, or L=R-1. This can be investigated with two more micropolar constants: namely the characteristic
length l2c ¼D55=ð4GmÞ and the coupling number N2

¼ ðD33�D34Þ=ð2D33Þ (Nakamura and Lakes, 1995; Yang and Huang, 2001)

l2c ¼ R2 cos2 b
1
4 tan bþ1

3ðt=LÞ2
h i
½1þðt=LÞ2�

, ð49Þ

N2
¼ 1�

½1þðt=LÞ2�

½3þðt=LÞ2�2 cos2 bþ2ðt=LÞ2 cos2 b�
: ð50Þ

The micropolar characteristic length lc directly scales with the lattice parameter R and it is weakly dependent on ligament
aspect ratio t/L or in turn on relative density. For elasto-static behavior, the characteristic length affects the decay rate of
internal stresses from tractions at the boundaries of a body (Chen and Fleck, 2002; Diebels and Steeb, 2002; Eringen, 2001;
Nakamura and Lakes, 1995) and also determines the magnitude of couple stresses (see Nakamura and Lakes, 1995,
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Eq. (14)). The coupling number N determines the strength of micropolar behavior. Both lc and N are discussed in more
detail in Section 4.4 where their contribution to certain elasto-static problems is compared with other lattice types.

4.2. Case 2: deformable nodes

Analytical expressions for the mechanical behavior of the chiral lattice with deformable rings are difficult to define.
Legitimate modeling of the rings requires either an approximate representation based on many straight members or
nonlinear coupled equations for curved beams. In both cases, analytical solutions, if available at all, become unintelligible.
A finite-element (FE) model of a unit cell like the one depicted in Fig. 1a is employed instead. Six independent strain states
e¼ fe11 e22 e12 e21 k13 k23g

T are imposed numerically. The analyzed unit cell is depicted in Fig. 5, where the degrees of
freedom at the boundaries are shown. The displacements at each boundary site are prescribed according to Eqs. (19)–(21),
each associated with a distinct strain state. The applied values are listed in Table 1 for each considered case. Given the
rotational symmetry of the lattice, the displacements of only three sites are reported. As for the case of rigid rings,
rotations ai (i¼ 1;2, . . . ,6) of the ligaments are associated with global deformations (Fig. 3) and thus are to be
distinguished from micro-rotations fi. In Table 1, these initially unknown macro-rotations are indicated as â i. They are
obtained by employing the same equation partitioning reported in Eq. (22), albeit in this case K̂ corresponds to the global
stiffness matrix without rigid-ring kinematic constraints. In each case, the strain component is set to unity to evaluate the
associated elastic constants. The elastic cross term D12 is evaluated by setting e11 ¼ e22 ¼ 1 in calculating C and subtracting
the strain energy associated with e11 and e22. A similar procedure is used to evaluate D34.
Fig. 5. FE model of the unit cell employed to study configurations with deformable rings with boundary degrees of freedom, prescribed for each

considered strain state.

Table 1
Imposed displacements corresponding to six independent strain states.

e11 e22 e12 e21 k13 k23

u1 R cos y=2 0 �R sin y=2 0 0 0

v1 0 �R sin y=2 0 R cos y=2 0 0

a1 â1 â1 â1þ1=2 â1�1=2 R cos y=2 �R sin y=2

u2 R cos y=2 0 R sin y=2 0 0 0

v2 0 R sin y=2 0 R cos y=2 0 0

a2 â2 â2 â2þ1=2 â2�1=2 R cos y=2 R sin y=2

u3 0 0 R=2 0 0 0

v3 0 R=2 0 0 0 0

a3 â3 â3 â3þ1=2 â3�1=2 0 R/2
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4.3. Comparison of rigid and deformable-ring configurations

In order to provide a perception for the mechanical behavior of the chiral lattice, two particularly insightful elastic
constants are depicted in Fig. 6 for two values of ligament aspect-ratio (t/L), namely t=L¼ ½1=100;1=20�. In all cases, the
distance between rings R¼1 m and the ligament length L varies according to L/R. Elastic constant D11 from case 1 indicates
a much stiffer mechanical behavior than for case 2 with respect to direct strains and for L=Ra1. This is not surprising as the
strain energy related to ring deformations, a significant portion of the total for L=Ro0:9, is neglected. D11 associated with
the rigid-ring model scales differently with aspect ratio compared to the values for case 2. In the first case D11pðt=LÞ, while
in the second case D11pðt=LÞ3. The response to direct strains undergoes a dramatic change as rings become small. Above a
critical value of topology parameter, dependent upon the ligament aspect ratio, the lattice’s deformation mechanism
changes (more dramatically with low ligament aspect ratio (t/L)) from being bending-dominated to one characterized
by axial deflections of the ligaments. The rigid-ring configuration presents a much more abrupt (boundary-layer-like)
transition between the two deformation mechanisms.

Elastic constant D12 is crucial in defining auxetic behavior (Fig. 6b) as it determines direct-stress components
perpendicular to a given direct strain component. The sign of Poisson’s ratio (n¼D11=D12) is in fact determined by that of
D12 (D11 must be positive for thermodynamic stability (Eringen, 2001)). In both case 1 and case 2, D12 decreases with
increasing L/R and a attains a minimum in terms of L/R (strongest auxetic behavior) which is weakly dependent on t/L that
is the same nearly identical L/R minima are observed for both considered values of t/L. The transition from bending to axial
behavior (or auxetic to normal behavior) is determined by a change in sign in the numerator of Eq. (26). The topology
parameter at which n becomes positive can be estimated as tan2 b½1�ðt=LÞ2� ¼ ½ðt=LÞ2�ðt=LÞ4�. Stubby ligaments induce an
earlier shift with respect to L/R. While this estimate is obtained from Eq. (26) for case 1, it does provide a reasonable
indication for such dramatic shift in behavior for case 2 also (Fig. 6b).

In terms of engineering constants (Fig. 7), the chiral lattice appears very compliant in agreement with the bending-
dominated behavior. The value of Young’s modulus defined for case 1 (Eq. (45)) is in significant error with respect to case 2
for L=Ro0:90 (Fig. 7a), but it is an acceptable approximation as L=R-1 which leads to a significant increase in Young’s
modulus. The original model proposed by Prall and Lakes (1997) (E=Es¼

ffiffi
ð

p
3Þðt=LÞ3ðL=rÞ2) based on assumptions 1–5 in

Section 4 is also a reasonable approximation for topologies with very small rings.
In line with predictions in Prall and Lakes (1997), Spadoni (2008), Poisson’s ratio (Fig. 7b) is approximately �1 for case

1 (min½n� ¼ �0:9984) with small (t/L) and approaches 1/3 as L=R-1. Of note, Poisson’s ratio is nearly unchanged for
L=Rr0:90, although it presents a weak dependance on t/L (as for Eq. (46)). Deformable rings, however, yield a different
behavior, where n rapidly decreases to a minimum (min½n� ¼ �0:9426 for t/L¼1/100 and min½n� ¼ �0:8204 for t/L¼1/20)
with respect to L/R before increasing towards the positive value for the triangular lattice in a boundary-layer-like manner,
especially for small values of t/L. A hexagonal packing of rings (L=R-0, Fig. 7b) is instead characterized by n� 0:8. For this
configuration, obviously, the predictions of case 1 should be neglected.

The shear modulus (Fig. 7c) is significantly overestimated by the model with rigid rings. The shear modulus obtained
from case 2 in fact does not scale with t/L for the entire range of considered L/R values but rather with ðt=LÞ3, suggesting
that deformable rings yield a configuration whose shear stiffness is strongly affected by deformations of the rings
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Fig. 6. Micropolar elastic constants D11 (a) and D12 (b) for a chiral lattice with two values of ligament aspect ratio t=L¼ ½1=100;1=20� with rigid (black
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Fig. 7. Micropolar engineering constants for the chiral lattice with two values of ligament aspect ratio t=L¼ ½1=100;1=20� with rigid (black lines, þ , �

symbols) and deformable (red lines, &, n symbols) rings. Normalized Young’s modulus (a), Poisson’s ratio (b), and Shear modulus (c). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)
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themselves. As L=R-1, the shear modulus predicted by case 2 correctly approaches that of the triangular lattice from
Eq. (48). A hexagonal packing of rings (L=R-0, Fig. 7c) is found instead to be very compliant in shear.

The chiral lattice is a unique structural network from many points of view. This is also apparent comparing the derived
constitutive law Eq. (24) with that for a general micropolar continuum. A 2D, isotropic, micropolar medium in plane stress
has the constitutive law (Nakamura and Lakes, 1995)
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s12

s21

m13

m23
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>>>>>>>>>:

9>>>>>>>>>=
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9>>>>>>>>>=
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, ð51Þ

where l and m are the first and second Lamé constants (mn ¼ m�k=2), while k and g are micropolar constants. From the
analysis in Section 4.1, it can be verified that l¼D12ðD34þD33Þ=ðD34þD33�D12Þo0. This characteristic is not found in the
literature, and it is commonly assumed that lZ0 (Eringen, 2001). Since 3lþ2mnþk¼ 3lþD33þD3440, a necessary
condition for thermodynamic stability (Eringen, 2001; Lakes and Benedict, 1982), an auxetic micropolar continuum in
plane stress can have a negative first Lamé constant. The configuration with deformable rings also has lo0 and
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3lþ2mnþkZ0. This is consistent with the fact that both configurations have Gm4Em. As a note, Eringen’s bounds for
stability mentioned here are expressed in terms of mn instead of m in accordance with the observations by Cowin (1970).

4.4. Comparison of chiral and traditional lattices

It is helpful to compare the mechanical behavior of the chiral lattice to that of other periodic cellular solids both in
terms of engineering and micropolar constants. Square, triangular and hexagonal lattices are common topologies
encountered in physical models and engineering applications and their static behavior is discussed in Dempsey et al.
(2005), Gibson and Ashby (1997), Wang et al. (2005), Wang and McDowell (2004), among others. The equivalent
mechanical properties for such topologies in terms of geometric parameters are listed in Table 2. The results reported
here, as for previous sections, have been obtained for a wall thickness t¼0.01 m and distance between ring centers R¼1 m.
The ligament length L varies with L/R. The resulting relative density r from Eq. (4) for a topology parameter
0:0001rL=Rr0:9999 is shown in Fig. 8a. With the relative density at hand, it is possible to compare the mechanical
properties of the chiral lattice from case 2 with those of square, triangular and hexagonal lattices. Young’s modulus for
each configuration is presented in Fig. 8b. The chiral lattice features the lowest Young’s modulus for 0:0001rL=Rr0:98,
while the square lattice is the least compliant. This is reasonable as the square lattice is dominated by axial deformations.
The square lattice, on the other hand, features the lowest shear modulus, while the triangular lattice is the stiffest in shear.
The chiral lattice performs better in shear than square and hexagonal lattices for L=R40:83 and its shear modulus
approaches that of the triangular topology as L=R-1, in agreement with the earlier findings of Eq. (48). It is remarkable
that the shear modulus of the chiral lattice is significantly higher than both square and hexagonal lattices for L=Rr0:98
where all three topologies have a bending-dominated deformation mechanism.

Two additional constants, the characteristic length lc and the coupling number N (from Eqs. (24) and (51) and
Nakamura and Lakes, 1995),

l2c ¼
g

2ð2mnþkÞ ¼
g

4Gm
, ð52Þ

N2
¼

k
2ðmnþkÞ

ð53Þ

indicate the nature and significance of non-classical phenomena in the response of a medium with microstructure, here
recast in terms of Lamé constants and micropolar parameters g and k. The characteristic length determines the micro-
rotation stiffness (Eq. (52)) and it introduces size effects in the response of a medium. More about this is discussed below
where different topologies are compared. The coupling number 0rNr1 indicates the mechanism producing micro-
Table 2
Mechanical properties of common lattice topologies (Wang and McDowell, 2004).
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rotations and the contribution of the skew-symmetric part of the stress tensor or non-classical effects (Cowin, 1970;
Eringen, 2001). The two extreme cases N¼0 and N¼1 denote classical-elasticity behavior and the coinciding of micro-
rotations and macro-rotations respectively (Cowin, 1970). The latter is known as couple-stress (Cowin, 1970) or Mindlin
theory (Eringen, 2001; Mindlin, 1963), and it is a special case of micropolar elasticity with constrained micro-rotations or
g-1 (Cowin, 1970). 0oNo1 instead denotes micropolar behavior (Cowin, 1970).

The characteristic length and coupling number for the micropolar behavior described by the constitutive model of
Eqs. (25)–(34) and Eq. (49) (rigid rings) and that computed from Section 4.2 (deformable rings) are shown in Fig. 9. As a
note, the values predicted for the rigid-ring configuration are meaningless in the limit L=R-0 which represents a perfectly
rigid lattice. The coupling number N is large for both rigid and deformable-ring configurations, especially for low values of
L/R. In the limiting case L/R¼0, our analysis indicates that micro and micro-rotations coincide for a hexagonal packing of
deformable rings (N¼1 in Fig. 9b). The behavior of this lattice is then described by couple-stress or Mindlin theory
(Mindlin, 1963). So far couple-stress-elasticity behavior has been assumed a priori for certain configurations (Banks and
Sokolowski, 1968) (incorrectly in this case, see remarks in Bažant and Christensen, 1972), or it was concluded based on
experimental measurements (Yang and Lakes, 1981, 1982). A hexagonal packing of rings therefore may provide a useful
test bed to experimentally measure the implications of Mindlin theory. The coupling number for a triangular lattice is
instead very small suggesting classical-elasticity behavior. For rigid rings in fact N-2t2=L2 as L=R-1 from Eq. (50), a trend
that is indicative of deformable-ring configurations also. This is reasonable as a triangular lattice is dominated by axial
deformations. Micropolar effects, i.e. micro-rotations, are thus a higher-order effect. The coupling number also determines
the solution of an elastic half-space loaded by a concentrated load (Eringen, 2001; Khan and Dhaliwal, 1977) (in their
notation k2

¼ 4N2
Þ.

A number of analytical (Cowin, 1970; Diebels and Steeb, 2002; Eringen, 2001; Gauthier and Jahsman, 1975; Mindlin,
1963; Onck et al., 2001) numerical (Chen and Fleck, 2002; Diebels and Steeb, 2002; Onck et al., 2001) and experimental
studies of foams (Andrews et al., 2001; Chen and Fleck, 2002; Lakes, 1983) and human bone (Yang and Lakes, 1981, 1982)
have indicated various size effects in the compliance of media with microstructure, in addition to stress concentration
in the vicinity of boundaries and discontinuities. With the exception of Onck et al. (2001), no connection between
microstructure type and specific behavior is provided and the general contribution of the lattice parameter (or average cell
size for stochastic configurations) and length scale lc are discussed. In comparing previous experimental work and
theoretical models with the behavior of the chiral lattice, it is indicative to consider the micropolar behavior of classic
configurations summarized in Table 3. Deformation mechanisms associated with shearing and denoted by bending
of internal members result in high coupling numbers (important contribution of micro-rotations) and lc scales with the
internal members’ length (which may or may not be the lattice parameter). This is evident for square and hexagonal
configurations. The high values of lc derived here (Eq. (49) and Fig. 9) confirm that bending deformations of internal
members dominate the shearing response of the chiral lattice. The triangular lattice responds to shear with
axial deformations and thus lc and N are small and are proportional to the internal members’ wall thickness t (see
Tables 2 and 3).

Yang and Lakes (1982) find that micropolar effects (significant stiffening) can be measured for specimen with a
diameter 10 times the characteristic length or smaller, and for experiments on human bone, Lakes (1983) and Yang and
Lakes (1982) find that the characteristic length lc is comparable ‘‘to the size of the dominant structural elements’’. In view
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Table 3
Micropolar length scale and coupling number of common lattice topologies (Banks and

Sokolowski, 1968; Dos Reis and Ganghoffer, 2011; Wang and McDowell, 2004).
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of the analysis above, this may shed some light on the microstructural characteristics of human bone. Numerical models
and experimental measurements by Chen and Fleck (2002) also find that size effects are directly proportional to the cell
edge length. The numerical models by Chen and Fleck (2002) considered hexagonal cells and stochastic configurations as
perturbations of hexagonal cells. Numerical investigations by Diebels and Steeb (2002) find that boundary-layers and size
effects observed in the deformation and stress distribution for a cellular solid loaded in shear arise because of ‘‘obstructed’’
rotations at the boundaries, mimicking clamped boundary conditions. Given the strong micropolar behavior of the chiral
lattice, significant stiffening and boundary layers are expected in analogy with numerical models and experiments above.

The length lc is weakly dependent on t/L for both rigid and deformable-ring configurations, and it is significantly higher for
large rigid rings, in which case it is approximately half the lattice parameter R (Fig. 9a). As L/R increases, lc becomes very small,
several orders of magnitude smaller than R (� 1=3t2 from Eq. (49), in agreement with Table 3). Deformable rings yield lower
values of lc. This is reasonable as lc affects the decay rate of internal stresses from the values of tractions at the boundaries, and
for case 2, rings do contribute in storing strain energy induced by boundary loading. Adopting the conclusions by Chen and
Fleck (2002), Diebels and Steeb (2002), Lakes (1983), and Yang and Lakes (1982), chiral lattices with small (or deformable) rings
are expected to produce less significant size effects than their counterparts with large (or deformable) rings.

A classic problem that elucidates boundary effects for micropolar media as functions of lc and N is the stress
concentration around a cylindrical cavity of radius a in a field of uniaxial stress T (Cowin, 1970; Eringen, 2001; Mindlin,
1963). The maximum tangential stress syyðr,yÞ is found as (Eringen, 2001)

syyðr,0Þ ¼ T
ð3þF1Þ

ð1þF1Þ
, ð54Þ

F1 ¼ 8ð1�nÞN2 4þ
a2N2

l2c
þ

2aN
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K0ðaN=lcÞ

K1ðaN=lcÞ

" #�1

, ð55Þ

where K0 and K1 are modified Bessel functions of the second kind. The concentration factor Kt ¼ syyðr,0Þ=T is shown in
Fig. 10. Configurations with large rings have a high coupling number (N-1 as L=R-0 in Fig. 9b). From the analysis in
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Cowin (1970), Eringen (2001), and Mindlin (1963) however this should coincide with the lowest stress-concentration
factor, which instead takes place here for L=R¼ � 0:57 and N¼0.74. In this case, however, Poisson’s ratio also plays a role
(Eq. (55)), and it varies with L/R. As L=R-1, the stress concentration for the classical-elasticity solution is recovered.

5. Summary

The objective of this work is the definition of an equivalent, micropolar, continuum model to improve the description of
the elasto-static behavior of a chiral auxetic lattice. This is a structural network composed of rings connected by tangent
ligaments. Previous analyses indicated that the chiral lattice is transversely isotropic with an in-plane Poisson’s ratio
exactly equal to �1, yielding an undefined shear modulus and constitutive law in general. This inhibits attempts to include
this topology in optimization studies for structural applications.

This article introduces a micropolar continuum model that is derived from a complex unit cell which, unlike previous
work, includes all topologically distinct components. The analysis is based on two cases, one with rigid rings, and a second
case where a numerical model is employed to analyze the contribution of deformable rings. The derived continuum model
is a continuous function of the topology parameter L/R which allows investigating the mechanical behavior of significantly
different configurations, ranging from a hexagonal packing of deformable rings to the triangular lattice. Auxetic behavior is
confirmed for both rigid and deformable-ring configurations, except for the limiting case L=R-1. The latter corresponds to
the triangular lattice whose behavior is dominated by axial deformation of its internal components. For L=Ra1 instead, the
chiral lattice is dominated by bending deformation of the ligaments. The ideal, rigid-ring case indicates that mechanical
properties vary with L/R but undergo a boundary-layer like behavior as L=R-1. Poisson’s ratio is found to depend
on ligament aspect ratio t/L and can be �1 only for t=L¼ 0. The indeterminacy in the constitutive law of an equivalent
continuum is thus removed.

Our analysis also indicates that the shear modulus of the auxetic chiral lattice with rigid rings is equal to that of the
triangular lattice. This is an outstanding characteristic for a bending-dominated lattice, but it indicates that the
deformation mechanism necessary to achieve strong isotropic, auxetic behavior limits the shear stiffness to that of a
medium with axially dominated deformations. This in turn restricts auxetic materials, at least in two dimensions, to be
very efficient systems to resist shear relatively to bending-dominated configurations and not in an absolute sense. The
shear modulus is found to be much lower if the contribution of deformable rings is included. In this case, Poisson’s ratio is
negative for most values of L/R but attains a minimum, which depends on ligament aspect ratio, before increasing towards
the value of the triangular lattice (n¼ 0:33). The shear modulus corresponding to the minimum Poisson’s ratio is naturally
higher than Young’s modulus and it is higher than that for other common lattices like the square and hexagonal
configurations. The shear modulus correctly approaches its upper limit corresponding to the triangular lattice. Except for
L=R-1, Young’s modulus is the lowest of all common lattices.

The micropolar response of the chiral lattice is also unique in that it has the highest characteristic length scale lc of all
known lattice topologies. Our models also indicate that hexagonal distributions of deformable rings have a coupling
number N¼1. This is the first lattice reported in the literature for which couple-stress or Mindlin theory is necessary rather
than being adopted a priori. Finally, it is found that the chiral lattice, both with rigid and deformable rings, has a negative
first Lamé constant without violating bounds required for thermodynamic stability. This is an outstanding characteristic
that has never been reported before.
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